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ABSTRACT  Accurate Software Development Effort Estimation (SDEE) is pivotal for effective project management, significantly 

impacting resource allocation and the overall success of software projects. This paper introduces the Swarm Intelligence-Based 

Functional Link Fuzzy Neural Estimator (SFNE), a novel computational intelligence model designed to enhance estimation 

accuracy by integrating multiple advanced methodologies. The SFNE framework employs the QUICK algorithm for dataset 

optimization, effectively minimizing noise and redundancy. A Functional Link Artificial Neural Network (FLANN) captures 

complex nonlinear relationships within the data, while Interval Type-2 Fuzzy Logic Systems (IT2FLS) address inherent data 

uncertainties. Additionally, Particle Swarm Optimization (PSO) is applied to fine-tune model parameters, improving prediction 

precision. Empirical evaluations were conducted using six benchmark datasets from the PROMISE repository. The results 

demonstrate that the SFNE model significantly outperforms existing models across key metrics, including Mean Magnitude of 

Relative Error (MMRE), Median Magnitude of Relative Error (MdMRE), and Prediction at 0.25 (PRED(0.25)). Notably, SFNE 

achieved a predictive accuracy of 99.983% on the DesharnaisL3 dataset and an MMRE of 2.87×10⁻⁵ on the DesharnaisL1 dataset. 

These findings underscore the robustness and adaptability of SFNE in addressing the limitations of traditional SDEE methods, 

particularly in managing data scarcity and uncertainty. The proposed SFNE model establishes a new benchmark for SDEE accuracy 

and demonstrates substantial potential for practical application in real-world software engineering projects. Future research will 

explore integrating additional computational intelligence techniques, such as deep learning and reinforcement learning, and 

developing automated tools to advance SDEE practices further. These advancements contribute to more reliable and efficient 

software project management, facilitating real-time effort estimation and informed decision-making in the software industry. 

 Software Cost Estimation, Functional Link Artificial Neural Network, Fuzzy Logic System, Interval Type-2FLS, 

Particle Swarm Optimization, Active Learning Algorithm 

I. INTRODUCTION 

Fred Brooks (2003) identified software cost estimation as one 

of the three significant challenges in computer science [1]. 

Every year, a significantly large number of new applications are 

produced, and existing applications are modified. Thus, 

software cost estimation is a significant activity for almost 

every software company. According to the Standish Group 

Chaos Report (2015), 19% of software projects fail because of 

poor software cost estimation practices [2]. In this context, our 

study aims to devise a suitable SDEE technique. The primary 

task of software cost estimation is to estimate the total effort 

required to complete a project, as the cost of effort dominates 

the project's cost. Estimated software cost serves as the basis for 

almost every project planning activity. Therefore, inaccurate 

cost estimation can have serious consequences. Two prime 

issues in software cost estimation are over and under-

estimation. Underestimating the cost of a project leads to the 

allocation of less staff, the design of short schedules, and the 

production of low-quality deliverables. In contrast, project cost 

overestimation can lead to customer cancellation or 

overallocation of resources, resulting in underproductivity. 

A significant challenge in cost estimation is accurately 

estimating the size of the software artifact to be developed in 

the planning phase long before the commencement of project 

development work. Due to the inherent uncertainties in any 

project, most current techniques used for software cost 

estimation tend to be inaccurate in the early stages of software 

development and only improve as the project heads toward the 

last stage and when most of the risks have been resolved. Most 

traditional parametric software effort estimation models are 

based on multiple regression approaches. These models aim to 

accurately predict the effort by calibrating actual data collected 

from completed software projects. Examples of popular 

parametric effort prediction models include the constructive 

cost model (COCOMO) [3] and software life cycle 
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management (SLIM) [4]. When applied to software engineering 

data, these models face serious challenges that are typically 

scarce, incomplete, and imprecise.  

In response to these challenges, considerable efforts have 

been dedicated to developing estimators based on 

computational intelligence (CI) techniques, which synergize 

neural networks, evolutionary computation, fuzzy systems 

(FS), and swarm intelligence (SI). CI techniques are popular 

because they do not require precise models for evaluating the 

cost function [5]. Despite the advances in CI, there still needs 

to be more integration of advanced CI techniques, such as 

interval type-2 fuzzy logic systems (IT2FLS) and swarm 

intelligence, in SDEE. 

Our study addresses this research gap by developing a 

novel hybrid estimator, the Swarm Intelligence-Based 

Functional Link Fuzzy Neural Estimator (SFNE), specifically 

designed for SDEE. The significant contributions of this study 

are as follows: 

1. Developed a hybrid Swarm Intelligence-Based Functional 

Link Fuzzy Neural Estimator (SFNE) model to improve the 

accuracy of software effort estimation. 

2. A data reduction technique using the QUICK algorithm was 

introduced to optimize datasets by eliminating noise and 

redundancy, enhancing the model's performance. 

3. Integrated Functional Link Artificial Neural Network 

(FLANN) for efficient computational processing, which 

captures complex nonlinear relationships in the data. 

4. Applied Interval Type-2 Fuzzy Logic Systems (IT2FLS) to 

manage uncertainty and imprecision in software effort 

datasets, improving the robustness of the model. 

5. Utilized Particle Swarm Optimization (PSO) to fine-tune the 

model's output parameters, ensuring high accuracy and 

minimizing prediction errors. 

6. Validated the SFNE model through extensive experiments 

on six datasets from the PROMISE repository, 

demonstrating superior performance compared to other 

estimation techniques. 

This research presents the development of a novel Swarm 

Intelligence-Based Functional Link Fuzzy Neural Estimator 

(SFNE) for Software Development Effort Estimation (SDEE). 

The SFNE model integrates advanced computational 

intelligence techniques, including Interval Type-2 Fuzzy Logic 

Systems (IT2FLS), active learning, and Particle Swarm 

Optimization (PSO), to enhance the accuracy and reliability of 

effort prediction. The model addresses critical limitations of 

traditional estimation approaches by combining data reduction 

methods and Functional Link Artificial Neural Networks 

(FLANN). Empirical validation using six benchmark datasets 

from the PROMISE repository demonstrates the superior 

performance of SFNE, establishing it as a robust and effective 

tool for software effort estimation. In the following section, we 

first discuss the different types of fuzzy systems. Subsequently, 

we discuss the architecture of FLANN. 

A. TYPE 1 FUZZY LOGIC SYSTEM VS. INTERVAL TYPE 2 
FUZZY LOGIC SYSTEM 

The transition from a crisp set to a fuzzy set becomes necessary 

when assigning an element's membership as 0 or 1 is 

challenging. A type-1 fuzzy set (T1FS) is utilized in such 

scenarios, where the membership grade can be represented as a 

crisp number within the interval [0, 1]. However, when the 

uncertainty is so profound that even the membership grade 

cannot be precisely determined within this interval, a type-2 

fuzzy set (T2FS) is employed [6], [7]. Both type-1 and type-2 

fuzzy logic systems (FLS) are regarded as state-of-the-art 

methodologies for managing uncertainty in complex real-world 

problems. The primary distinction between T2FLS and T1FLS 

lies in the enhanced degree of design flexibility inherent to 

T2FLS. The structure of a general type-2 fuzzy logic system 

(T2FLS), illustrated in FIGURE 1, incorporates a type 

reduction process and defuzzification, distinguishing it from a 

type-1 fuzzy logic system (T1FLS). In T1FLS, the output 

processor directly maps a fuzzy set to a crisp number. 

In contrast, T2FLS involves two stages: type reduction, 

which converts a type-2 fuzzy set into a type-1 fuzzy set, and 

defuzzification, which then transforms the type-1 fuzzy set into 

a crisp number. This added complexity renders T2FLS 

computationally intensive and more challenging to implement 

than T1FLS. To address these computational demands, interval 

type-2 fuzzy logic systems (IT2FLS) have been developed. 

IT2FLS retains the capability to manage uncertainties 

effectively while reducing computational complexity. This 

adaptation has led to the widespread adoption of IT2FLS in 

various applications, as it strikes a balance between handling 

uncertainty and maintaining computational efficiency [8-10]. 

Type-1 fuzzy sets denote the degree of membership of a crisp 

value x′ of a base variable x in a fuzzy set A, characterized by a 

crisp membership function. 𝜇𝐴(𝑥′) that assumes values within 

the interval [0, 1]. Such a set can be formally represented by Eq. 

(1) [7]: 

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|∀𝑥 ∈ 𝑋}   (1) 

 

 

FIGURE 1. General structure of type-2 FLS 

Consequently, type-1 fuzzy logic systems (FLS) are 

limited in handling uncertainties as they require precise 

identification of membership functions. To address this 

limitation, Castillo et al. (2007) introduced type-2 fuzzy logic 

systems (T2FLS) to mitigate the impact of uncertainty within 

the rule base [11]. This advancement has facilitated the 

application of T2FLS in various fields, including modeling. 

Type-2 FLS has since been extensively utilized across domains 

such as control systems, data mining, system identification, 

forecasting, computer vision, and pattern recognition. 

The representation of a general type-2 and IT2FLS differs 

from that of type-1 FLS by a tilde symbol. For example, if 𝐴 
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denotes a type-1 fuzzy set, then �̃� denotes interval type-2 fuzzy 

set or type-2 fuzzy set. A type-2 fuzzy set, denoted by �̃�, is 

characterized by a membership function (MF), 𝜇𝐴(𝑥, 𝑢), where 

𝑥 ∈ 𝑋 and 𝑢 ∈  𝐽𝑥 ⊆ [0,1], that is, The notation for general 

type-2 and interval type-2 fuzzy logic systems (IT2FLS) 

includes a tilde symbol to distinguish them from type-1 fuzzy 

logic systems (T1FLS). For instance, while 𝐴 represents a type-

1 fuzzy set, �̃� denotes an interval type-2 fuzzy set or a type-2 

fuzzy set. A type-2 fuzzy set, denoted by �̃�, is defined by a 

membership function (MF), 𝜇𝐴(𝑥, 𝑢), where 𝑥 ∈ 𝑋 and 

𝑢 ∈  𝐽𝑥 ⊆ [0,1] such that: 

�̃� = {((𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1]}            (2) 

Where 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1. 

Eq. (2) [8] defines a type-2 fuzzy set �̃� with a membership 

function 𝜇𝐴(𝑥, 𝑢) that assigns a membership grade to each pair 

(𝑥, 𝑢), where 𝑥 is an element from the domain 𝑋 and 𝑢 is an 

element of primary membership 𝐽𝑥, which is a subset of the 

interval [0,1]. This equation indicates that for every 𝑥 ∈ 𝑋, there 

is a set 𝐽𝑥 of secondary membership values 𝑢 that lie within 

[0,1]. 

The amplitude of a secondary membership function is termed 

the secondary grade. In Eq. (2) [8], 𝜇𝐴(𝑥, 𝑢) for 𝑥 ∈ 𝑋, 
𝑢 ∈  𝐽𝑥 ⊆ [0,1] is a secondary grade. When the values of the 

secondary grade are uniformly equal to 1, it results in an interval 

type-2 membership function. Thus, ∀𝑥 ∈ 𝑋 if 𝜇𝐴(𝑥, 𝑢) = 1, 

then �̃� is an interval type-2 fuzzy set. 

FIGURE 2 elucidates the definition and representation of a 

type-2 fuzzy set. The diagram represents the primary 

membership (x-axis), where x′ is a specific value, and the 

secondary membership (u-axis), indicating secondary 

membership values u within [0,1]. The shaded area enclosed by 

the outer boundary represents the Footprint of Uncertainty 

(FOU), capturing possible membership values. The upper and 

lower boundaries of the FOU denote the upper membership 

function (𝜇𝐴) and lower membership functions (𝜇𝐴), 

respectively. For each x′, the vertical slice through the FOU 

represents the secondary membership function 𝐽𝑥′. The point 𝐴𝑒 

illustrates a specific instance of primary and secondary 

membership values.  

 

FIGURE 2. IT2 FL and its associated quantities. 

B. ARCHITECTURE OF FLANN 

Initially proposed by Pao, FLANN is a novel single-layer neural 

network with a faster convergence rate; it is a computationally 

efficient neural network model compared with MLP [12]. The 

typical structure of FLANN is shown in FIGURE 3. The 

nonlinearity in FLANN is introduced by orthogonal functional 

expansions (i.e., basis functions). The commonly used basis 

functions are Chebyshev polynomial, Legendre polynomial, 

and power polynomial. Software effort estimation is a 

functional approximation optimization problem. The goal of 

FLANN can be defined as selecting a basis function to learn the 

effort estimation function 𝑓(𝑋) by approximating the 

function𝑓𝑊(𝑋). The interpolation of the function 𝑓(𝑋) is 

achieved by FLANN. 𝑊 is the set of weights to be optimized to 

obtain the best approximate of 𝑓(𝑋). 

In this study, we selected the Chebyshev polynomial 

functional expansion as the basis function because of its low 

error estimation characteristics. The basis function nonlinearly 

transforms the input space (low dimensions) into feature space 

at high dimensions. The feature space was multiplied by the 

weight vector, resulting in normalized output in the range [-0.5, 

+0.5]. The summation was given as input to the sigmoid 

function for predicting the cost function. The optimal cost 

function was obtained by iteratively updating the weight vector.  

The PSO learning algorithm modified the weight vector. 

 

FIGURE 3. FLANN 

 

C. ACTIVE LEARNING FOR DATASET REDUCTION 

Active learning was introduced by Simon in 1974 [13]. The key 

idea behind active learning is to improve the performance of the 

FLANN by choosing valuable samples from the software effort 

estimation dataset. QUICK, an active learning algorithm 

proposed by Ekrem Kocaguneli et al. (2012), has been utilized 

in this study. It identifies the essential content of the dataset fed 

to the SFNE model to improve estimation accuracy [14]. The 

QUICK method has two principal components-synonym 

pruning and outlier pruning. 

Initially, the dataset was represented by a 2D matrix. The 

rows represent project instances, and the columns describe the 

features or attributes. The dataset undergoes transposition in 

synonym pruning, and the similarity measure between attributes 

is calculated based on Euclidean distance. After obtaining the 

distance matrix, similar values in each row rank are assigned by 

incrementing by 1. Attributes having similar neighbors 

represented by the popularity index, that is, the most famous 

attributes, are eliminated. Next, the process of outlier pruning is 

initiated. The obtained matrix is transposed to restore its 

original form. Now, the rows represent project instances, and 

the columns represent features. The matrix contains only 

selected features from the previous phase. The distance matrix 

is generated using an Euclidean distance measure. The rows are 

sorted based on the distance. The k-closet neighbors of another 

instance are defined to be popular. The system retains the 

popular ones while removing the unpopular project instances. 

Thus, we obtain the most useful data samples and feed them to 

the next stage.  
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D. PARTICLE SWARM OPTIMIZATION LEARNING 
ALGORITHM 

PSO is a population-based multi-agent stochastic algorithm 

proposed by Eberhart and Kennedy in 1995 [15]. In PSO, the 

particle represents a potential solution. A set of possible 

solutions is called a "Swarm." Each particle's state information 

is represented by its position and velocity in the search space. 

Randomly generated particles (known as trial solutions) are 

selected to fly through a D-dimensional search space toward the 

optimal solution over some iterations by utilizing its best 

position and global best particle state in each iteration.  

In the D-dimensional design space, the position and velocity 

vectors of ith particle for the dth dimension are assumed to be 

�⃗�𝑖𝑑 𝑎𝑛𝑑 �⃗�𝑖𝑑, respectively. At any sampling instance t, the 

velocity and position can be represented by Eq. (3) and Eq. (4) 

[24]:    

�⃗�𝑖𝑑(𝑡 + 1) = 𝑤𝑖 ⃗⃗⃗⃗⃗  ⊗  �⃗�𝑖𝑑(𝑡)  + 𝑐1⃗⃗ ⃗  ⊗ 𝑟1⃗⃗⃗ ⃗ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) −

�⃗⃗⃗�𝑖𝑑(𝑡)) + 𝑐2⃗⃗⃗⃗ ⊗ 𝑟2⃗⃗⃗⃗ ⊗ (𝑔𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗⃗⃗�𝑖𝑑(𝑡))                           (3) 

�⃗�𝑖𝑑(𝑡 + 1) = �⃗�𝑖𝑑(𝑡) + �⃗�𝑖𝑑(𝑡 + 1)         (4) 

The symbol ⊗  denotes point-by-point vector multiplication, 

𝑤 is the inertia weight; 𝑐1 and 𝑐2 They are chosen uniformly 

and randomly in some interval [0, 2], and they are the 

acceleration coefficients influencing the maximum size of the 

step a particle can take in one iteration. State space exploitation 

is introduced by vectors random numbers 𝑟1 and 𝑟2. They are 

the distributed random numbers in the range [0, 1]. To ensure 

optimal convergence, the adaptive inertia weight strategy is 

adopted. The inertia weight decreases as the generation 

increases to balance the exploration and exploitation trade-off 

in the search space. 

 
E. DESIGN OF INTERVAL TYPE-2 FUZZY SETS (IT2FSS) 

FOR ATTRIBUTES  

This section shows how IT2FSs for an attribute of the 

COCOMO81 dataset were designed. FIGURE 4 depicts the 

algorithm (APPENDIX A: Algorithm 1). COCOMO'81 has 17 

attributes; the last attribute, i.e., the 17th attribute, is the output 

attribute. The MATLAB FIS editor represents all the attributes, 

as shown in FIGURE 4(a) and 4(b). The membership function 

can be of any type; we chose the Gaussian membership function 

with five linguistic variables (very low, low, moderate, high, 

and very high). The standard deviation is updated, and 

membership values are calculated and represented as in 

Algorithm 2 (APPENDIX A). 

Illustration of Algorithm 1: Algorithm 1 delineates a 

systematic procedure for transforming type-1 fuzzy sets into 

type-2 ones within a Functional Link Artificial Neural Network 

(FLANN) framework. The algorithm proceeds through several 

key steps to ensure a robust and precise conversion process. 

Initially, the algorithm computes the membership values 

associated with type-1 fuzzy sets for each data instance. Let N 

denote the number of data instances and M the number of 

attributes. For each data instance 𝑖 (𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑁) and 

each attribute 𝑗 (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, … , 𝑀 − 1), the algorithm 

performs the following computations: 

1. Calculation of Mean membership values: The mean of 

the type-1 membership values across all linguistic variables 

is calculated as in Eq. (5) [7]:  

𝜇2(𝑖, 𝑗) =
1

𝑘
∑ 𝜇1

𝑘

𝑙=1

(𝑖, 𝑗, 𝑙)                                         (5) 

Where 𝜇1(𝑖, 𝑗, 𝑙) represents the membership value for the 𝑙-
th linguistic variable (with 𝑙 = 1, … ,5) of the 𝑗-th attribute 

in the 𝑖-th data instance, 𝑘 = 5 is the total number of 

linguistic variables considered. 

2. Calculation of Standard Deviation of Membership Values: 

The standard deviation of the type-1 membership values is 

determined to quantify their variability as shown in Eq. (6) 

[7]: 

𝜎2(𝑖, 𝑗) = √
1

𝑘
∑ 𝜇1(𝑖, 𝑗, 𝑙) − 𝜇2(𝑖, 𝑗)2

𝑘

𝑙=1

                      (6) 

These statistical measures, 𝜇2(𝑖, 𝑗) and 𝜎2(𝑖, 𝑗), effectively 

capture the central tendency and dispersion of the membership 

values for each attribute, thereby facilitating the construction of 

type-2 fuzzy sets. 

Following the computation of the mean and standard 

deviation, each attribute in the dataset is segmented according 

to the derived type-2 fuzzy parameters. Although the algorithm 

permits flexibility in determining the number of segments, this 

number must match the output nodes of the FLANN’s final 

layer. In the present implementation, two segments are 

employed, facilitating defuzzification through which type-2 

fuzzy sets are converted into crisp output values for effective 

decision-making. This methodological approach preserves the 

integrity of the fuzzy logic system by ensuring that each dataset 

value is accurately represented through its mean membership 

and associated variability. 

For example, if the mean value of FLANN [1, 1] = 0.3456, 

then the first segment ranges from 0 to (0.3456/2), and segment 

2 spans from (0.3456/2) to 0.3456. Thus, we get segments that 

are divided into equal intervals of type-2 mean called interval 

type-2. According to step 4.4 of the algorithm, each value is 

divided into two segments. The lower and upper membership 

values are obtained with the help of R, α, and β for both 

segments using the formulas in Algorithm 2. Both segments' 

upper and lower means are calculated as mentioned in step 4.5. 

Membership values are obtained using step 4.6. Finally, T-norm 

is performed to obtain interval type-2 fuzzy set as cited in step 

4.7. 

The rest of the paper is structured as follows: Section II 

outlines the related work, Section III presents the methodology 

used in this study, Section IV summarizes the results and 

findings- compares our model's performance with other 

prediction models such as ANN, FLANN with gradient descent, 

and RBF. Section V presents the discussion. Section VI 

describes the threats to validity, and Section VII concludes the 

article. 

II. RELATED WORK 

The application of computational intelligence (CI) in 

software development effort estimation (SDEE) has been 

extensively studied. This section provides a brief review of 

notable research in this area. Muzaffar et al. (2010) examined 

factors within fuzzy logic systems that influence the accuracy 

of software development effort predictions [16]. Their findings 

indicate that a fuzzy logic-based prediction system's 

architecture, parameters, and training algorithms critically 
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impact accuracy. Ahmed and Muzaffar (2009) proposed a type-

2 fuzzy logic framework to handle the imprecision and 

uncertainty inherent in effort prediction data [17]. 

In 2004, Xu and Khoshgoftaar introduced an innovative 

fuzzy identification cost estimation technique that 

automatically generates fuzzy membership functions and rules 

to process linguistic data [18]. In 2009, Azzeh, Neagu, and 

Cowling combined fuzzy set theory with grey relational 

analysis to enhance software project similarity measurement 

and attribute weighting in effort-based analysis (EBA) [19]. 

Sheta utilized the Takagi-Sugeno method to develop fuzzy 

models for two nonlinear processes in 2006 [20], while Lee et 

al. proposed a fuzzy size estimation procedure for goal-driven 

use case models based on Use Case Points (UCP) in 2011 [21]. 

In 2012, Ekrem et al. explored active learning-based effort 

estimation, identifying essential components of SDEE datasets 

and recommending suitable estimation methods for different 

datasets. 

Benala et al. reported using Functional Link Artificial 

Neural Networks (FLANN) for SDEE in 2009, conducting 

empirical validation using the COCOMO'81 dataset from the 

PROMISE repository. Their promising results highlight 

FLANN's simple architecture and computational efficiency 

compared to multilayer perceptrons (MLP) [22]. In 2012, 

Benala et al. proposed three approaches for SDEE using 

FLANN, introducing a preprocessing step called optimally 

reduced datasets (ORDs) [23]. These ORDs reduced the dataset 

to small, representative subsets, which were then processed by 

FLANN and tested on eight polynomial expansions. Their 

methods demonstrated superior performance over conventional 

FLANN, support vector machine regression (SVR), radial basis 

function (RBF), and classification and regression trees (CART). 

They also explored genetic algorithm optimization for FLANN 

and fuzzy clustering combined with FLANN for SDEE. In 

2013, Benala et al. utilized particle swarm optimization (PSO) 

to optimize FLANN feature weights. This resulted in the PSO-

FLANN framework, which showed promising outcomes [24]. 

2014, they proposed a new model that integrates active learning 

and PSO in FLANNs to improve software effort estimation 

[25]. In 2024, Manchala, P., & Bisi, M. present a novel model 

using feature selection and parameter optimization to enhance 

the accuracy of software development effort estimation (SDEE) 

through a two-stage optimization technique integrating 

improved social network search algorithms with an adaptive 

neuro-fuzzy inference system (ANFIS) [26]. 

 

 

(a)
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(b) 

FIGURE 4. Membership function of COCOMO81 for one attribute: (a) FIS for COCOMO81; (b) membership function for Input Variable Rely 

III. METHODOLOGY 

The Methodology section delineates a systematic framework 

for developing and assessing the Swarm Intelligence-Based 

Functional Link Fuzzy Neural Estimator (SFNE) tailored for 

Software Development Effort Estimation (SDEE). This 

section is structured into four primary subsections to facilitate 

clarity and ensure technical coherence. Initially, the Dataset 

Description subsection provides a comprehensive overview 

of the six benchmark datasets utilized in this study, sourced 

from the PROMISE repository. These datasets encompass a 

variety of software project attributes, including effort 

metrics, development environments, and project scales, 

accompanied by statistical analyses to underscore the 

complexities inherent in accurate effort estimation across 

diverse domains. Subsequently, the High-Level Algorithm 

of SFNE subsection expounds on the proposed estimator's 

architectural framework and integral components. It 

elucidates the integration of Functional Link Artificial Neural 

Networks (FLANN), Interval Type-2 Fuzzy Logic Systems 

(IT2FLS), and Particle Swarm Optimization (PSO), 

highlighting the model's capability to manage uncertainty and 

nonlinear relationships through its layered structure. The 

Experimental Procedure subsection outlines the stepwise 

implementation process of SFNE, encompassing data 

preprocessing via the QUICK algorithm and the application 

of leave-one-out cross-validation (LOOCV) for model 

evaluation. Finally, the Performance Evaluation Metrics 

subsection defines the criteria employed to measure SFNE's 

efficacy, robustness, and adaptability, including metrics such 

as MMRE, MdMRE, and PRED(0.25). This methodical 

approach ensures a logical progression, technical rigor, and 

reproducibility, substantiating SFNE's viability as a robust 

tool for SDEE. 

FIGURE 5. Layered structure of SFNE using the Mamdani Fuzzy Reasoning System 
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A. DATASET DESCRIPTION 

The evaluation utilized six datasets from the PROMISE 

repository, which is publicly accessible at the PROMISE 

repository. These datasets are categorized based on their 

sources and characteristics: 

Desharnais: Contains Canadian software projects. 

COCOMO81: Projects developed in the United States. 

NASA93: Projects developed in the United States. 

China: Chinese software projects. 

Maxwell: Finnish banking software projects. 

Albrecht: IBM projects from the 1970s. 

In 2011, Dejaeger et al. classified these datasets into four 

categories: size features, development features, environment 

features, and project data [29]. Table 1 provides the descriptive 

statistics of these datasets, illustrating the variability and 

skewness of effort values, posing challenges for accurate 

estimation. 

TABLE 1 

Descriptive statistics of the datasets 

 

 

Featu

res 

Number 

of 

Projects 

Effort Data 

Unit Min Max Mean Median Skew 

Desharnais 12 77 Hours 546 23,940 5046 3647 2.0 

Nasa 3 18 Months 5 138.3 49.47 26.5 0.57 

Cocomo 17 63 Months 6 11,400 686 98 4.4 

China 18 499 Hours 26 54,620 3921 1829 3.92 

Maxwell 27 62 Hours 583 63,694 8223.2 5189.5 3.26 

Albrecht 7 24 Months 1 105 22 12 2.2 

 
B. HIGH-LEVEL ALGORITHM OF SFNE 

SFNE is an integrated model that combines two computational 

models: FLANN and interval type-2 fuzzy logic system. Thus, 

it has the advantage of both models. Further, it incorporates the 

active learning technique, namely QUICK, as a preprocessing 

step. This technique helps improve the prediction accuracy by 

feeding essential inputs to the system. Adaptive PSO updates 

the weight in FLANN. Hence, it always converges to global 

optima, unlike FLANN with backpropagation, which may trap 

in local minima. 

SFNE is typically a 5-layer network, as shown in FIGURE 

5. The first layer takes the input from the dataset and transmits 

it to the next layer. Layer 2 initiates the interval type-2 fuzzy 

logic system (IT2FLS). Our method incorporates a variant of 

Wang and Mendel (1991) approach for generating fuzzy rules 

from standard data [27]. The type-2 Gaussian membership 

function with uncertain mean is considered for the antecedent 

and consequent variables, and the type-2 Gaussian with 

uncertain standard deviation is considered the membership 

function for the input in this work. An IT2FLS deals with the 

lower and upper membership functions. Nodes in Layer 3 

receive degrees of associated rules from nodes in Layer 2. In 

the proposed model, two rules are generated, each having two 

values (lower and upper). Thus, the total output of this layer is 

four. Nodes in Layer 4 are called consequent nodes. The outputs 

obtained from the third layer and two local outputs of FLANN 

are considered inputs to this layer. The final layer is the output 

processing layer, which comprises two back-to-back 

components. The first element is a type reducer. We adopted 

the Karnik and Mendel algorithm [28] for type reduction. The 

defuzzification component computes the final crisp output. 

Algorithm 2 represents the methodology (as illustrated in 

APPENDIX A). 

C. EXPERIMENTAL PROCEDURE FOR SFNE USING 
SAMPLE EXAMPLE 

The simple SFNE comprises a hypothetical dataset containing 

four rows and four columns, as shown in Table 2. The step-by-

step procedure for applying the SFNE model to the given 

dataset follows. APPENDIX B depicts the illustration for 

building interval type-2 FL. 

TABLE 2 
Sample Dataset (D) 

 1 2 3 4 

1 0.8800 1.1600 0.7000 1 

2 0.8800 1.1600 0.8500 1 

3 1 1.1600 0.8500 1 

4 0.7500 1.1600 0.7000 1 

Step 1) The dataset is normalized using min-max 

normalization. 

TABLE 3 
Normalized Dataset 

 1 2 3 4 

1 0.2000 1.0000 0 0 

2 0.2000 1.0000 0.3846 1.0000 

3 0 1.0000 0 0 

4 0.1579 0 0.1579 0 

Step 2) The sample SFNE system adopts the leave-one-out-

cross-validation (LOOCV) technique as a sampling 

method. It performs four iterations of model building 

and evaluation. The results of the first two iterations 

are displayed in Tables 4 and 5. This process is 

continued for four iterations as four data points are 

available in the dataset. 

TABLE 4 

First Iteration (after applying LOOCV) 

T
ra

in
 

d
at

as
et

 

 1 2 3 4  

1 0.2000 1.0000 0 0 

2 0.2000 1.0000 0.3846 1.0000 

3 0 1.0000 0 0 

 4 0.1579 0 0.1579 0 Test dataset 

 
TABLE 5 

Second Iteration (after applying LOOCV) 

  1 2 3 4  

1 0.2000 1.0000 0 0 Test dataset 

T
ra

in
 

d
at

as
et

 

2 0.2000 1.0000 0.3846 1.0000  

3 0 1.0000 0 0 

4 0.1579 0 0.1579 0 

Step 3) The preprocessing step adapted in our work involves 

the active learning method QUICK to obtain useful 

samples. Table 5 displays the output of this step. The 

system forwards the results obtained to the next stage, 

FLANN, to predict the output.  
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TABLE 6 
Matrix after application of quick method 

 1 2 3 

1 1.0000 0 0 

2 1.0000 0.3846 1.0000 

3 1.0000 0 0 

 
D. BUILDING INTERVAL TYPE-1 FL 

Step 4) Type-1 fuzzy logic system is applied to the normalized 

dataset parallel to steps 2 and 3 to convert each 

attribute to the fuzzy number.  

Step 5) The mean and standard deviation for each attribute in 

Table 3 are obtained using MATLAB functions 

"mean" and "std." Table 6 displays the obtained 

results. As each attribute has a single value, Tables 3 

and 6 are identical.  

TABLE 7 
Matrix representing the mean and standard deviation of  

each attribute of table 2 

 1 2 3 4 

1 0.2000 1.0000 0 0 

2 0.2000 1.0000 0.3846 1.0000 

3 0 1.0000 0 0 

4 0.1579 0 0.1579 0 

Step 5.1 The rules are created using the Mamdani FIS. The 

Wang and Mendel approach (1991) is used to define 

the input and output variable fuzzy sets and initiate the 

FIS. In our work, the fuzzy sets for the input and output 

variables are created using a Gaussian membership 

function. Suppose the domain interval of each attribute 

is [𝑥− , 𝑥+], i.e., the most probable range of the 

attributes. In our work, the interval spans from [0, 1] 

as both input and output variables are normalized in 

the range [0, 1]. The domain interval is divided into 

2N+1 regions, with N=2, i.e., and each attribute has 

five fuzzy regions, as shown in FIGURE 4(b).  

Step 5.3 The function 𝑔𝑎𝑢𝑠𝑠𝑚𝑓 (𝑚𝑎𝑡𝑟𝑖𝑥𝑠𝑜𝑚𝑒𝑥(𝑖,𝑗)
, [𝜎, 𝑐]) is an in-

built function in MATLAB that helps find 

membership values for all variables in the normalized 

dataset, each comprising five different membership 

values based on number of linguistic variables. Table 

8 indicates that the membership values for all 

attributes of example Table 7 are very low, thus 

obtaining type-1 FL membership values.  

TABLE 8 
Matrix representing lower membership values of each attribute 

 1 2 3 4 

1 0.7980 0.0112 1.0000 1.0000 

2 0.7980 0.0112 0.7601 1.0000 

3 0 1.0000 0 0 

4 0.1579 0 0.1579 0 

 
E. PERFORMANCE EVALUATION METRICS 

This section describes the metrics employed to evaluate the 

performance of software development effort estimation (SDEE) 

models. Performance metrics are essential for assessing the 

effectiveness of these models. For a comprehensive evaluation, 

five widely recognized metrics were selected: MMRE, 

MdMRE, PRED (0.25), SA, and Delta. 

The Mean Magnitude of Relative Error (MMRE) is a 

critical metric for evaluating the accuracy of predictive models 

in software estimation. It is calculated by first determining the 

Magnitude of Relative Error (MRE) for each prediction, as 

defined by Eq. (7) [34]: 

 

𝑀𝑅𝐸𝑖 = |
𝑦𝑖−�̂�𝑖

𝑦𝑖
| (7) 

where 𝑦𝑖  is the actual value and �̂�𝑖  is the predicted value for the 

𝑖-th instance. Subsequently, MMRE is obtained by averaging 

all MRE values across the dataset, as shown in Eq. (8) [34]: 

 

𝑀𝑀𝑅𝐸 = ∑ 𝑀𝑅𝐸𝑖 𝑛⁄𝑛
𝑖=1         (8) 

This approach normalizes the prediction errors, enabling a 

comprehensive assessment of the model’s performance by 

averaging the relative discrepancies between predicted and 

actual values. 

The Median Magnitude of Relative Error (MdMRE) serves 

as a robust global error metric that is less susceptible to the 

influence of outliers compared to mean-based measures. 

MdMRE is defined as the median value of all individual 

Magnitude of Relative Errors (MREs) within a dataset. 

Mathematically, it is expressed in Eq. (9) [34]: 

𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸𝑖)   (9) 

 

Where 𝑀𝑅𝐸𝑖 = |
𝑦𝑖−�̂�𝑖

𝑦𝑖
|. By utilizing the median, MdMRE 

effectively captures the central tendency of the prediction 

errors, providing a more representative measure of a model’s 

typical performance. This characteristic makes MdMRE 

particularly valuable for evaluating models in scenarios where 

outliers may distort average error assessments, thereby offering 

a clearer insight into the model’s reliability and accuracy. 

The PRED(x) metric quantifies the percentage of 

predictions that fall within a specified tolerance level, 𝑥%, of 

the actual values. Mathematically, PRED(x) is defined in Eq. 

(10) [34]: 

 𝑃𝑅𝐸𝐷(𝑥) =
100

𝑁
× ∑ 𝐷𝑖

𝑁
𝑖=1                                                   (10) 

where 𝐷𝑖 is an indicator function defined by Eq. (11) [34]: 

𝐷𝑖 = {
1 𝑖𝑓𝑀𝑀𝑅𝐸 <

𝑥

100
 

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

When 𝑥 = 25, the PRED metric is defined as  

PRED (0.25).                                                                      (11) 

 

For example, when 𝑥 = 25, the metric is referred to as PRED 

(0.25). This metric clearly measures the model’s accuracy by 

indicating the proportion of predictions within 25% of the 

actual values. PRED(x) is particularly useful for assessing the 

reliability of predictive models, as it highlights the consistency 

of predictions within an acceptable error margin, thereby 

offering valuable insights into the model’s practical 

applicability and performance. 

Traditional measures based on Magnitude of Relative Error 

(MRE), such as MMRE and PRED, exhibit several limitations, 

including an asymmetric error distribution that often biases 
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results toward certain prediction models [33],[34]. 

Consequently, these MRE-based metrics may underestimate 

errors. To overcome this issue, researchers have adopted the 

Mean Absolute Error (MAE), which is calculated by first 

determining the Absolute Error (AE) for each prediction in Eq. 

(12) [33]: 

𝐴𝐸𝑖 = |𝑦𝑖 − �̂�𝑖| (12) 

 

Where 𝑦𝑖  and �̂�𝑖  are actual and predicted efforts, respectively.  

The MAE is then obtained by averaging all absolute errors as 

shown in Eq. (13) [33]: 

𝑀𝐴𝐸 =
∑ 𝐴𝐸𝑖

𝑁
𝑖=1

𝑁
 (13) 

Unlike MRE-derived metrics, MAE is not susceptible to 

asymmetric distributions and thus provides a more balanced 

view of prediction accuracy. However, MAE alone can be 

difficult to interpret because it lacks standardization. To address 

this challenge, Shepperd and MacDonell [33] introduced the 

concept of Standardized Accuracy (SA), defined in Eq. (14) 

[33]: 

𝑆𝐴 = 1 −
𝑀𝐴𝐸

𝑀𝐴𝐸𝑃0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (14) 

where MAE is the mean absolute error, and 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅
𝑝𝑜

 denotes 

the mean absolute error obtained from a large number (typically 

1000) of random guesses. SA thus indicates how effectively the 

model outperforms random guessing: values near zero suggest 

low reliability, whereas negative values are deemed 

unacceptable. In addition, the Effect Size (Δ) provides further 

insight into the magnitude of improvement over random 

guessing. Delta is used to assess the effect size improvement 

over random guessing and is depicted in Eq. (15) [33]: 

∆=
𝑀𝐴𝐸−MAEP0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

sP0

  (15) 

Where 𝑠𝑃0
 is the sample standard deviation from the 

random-guessing strategy. Categorized as small (0.2), medium 

(0.5), or large (0.8), a ∆≥ 0.5 is typically considered favorable 

[33], [34]. This standardized framework—encompassing MAE, 

SA, and Δ—enables robust, unbiased assessment of software 

effort estimation models, thereby ensuring more reliable and 

interpretable conclusions regarding their predictive 

performance. 

IV. RESULT 

The following sections detail cost estimation models and 

experimental results. 

 
A. COST ESTIMATION MODELS 

This study explores the feasibility of various models based on 

FLANN. The experimental setup includes C-FLANN, P-

FLANN, and L-FLANN models. For simplicity, C-FLANN is 

referred to as FLANN in this paper. Other popular models, such 

as ANNs and RBFs, are also included for a comprehensive 

evaluation. 

Radial Basis Function Networks (RBF) are designed using 

parameters such as the global width (σ) and a measure of 

closeness (δ) between the interpolation matrix and its 

approximation. The model determines the minimum number of 

basis functions required to achieve the desired approximation 

accuracy and identifies the centers of these basis functions. 

Weights to the output nodes are then computed using the 

pseudo-inverse method [30]. 

In ANN models, configuration parameters such as the 

number of hidden layers, hidden nodes, and transfer functions 

are critical in determining prediction accuracy. A single hidden 

layer is often recommended to avoid over-parameterization. 

The training phase involves using historical data to train ANN 

models with the specified configurations, and the model 

structure that results in the lowest MMRE is chosen for further 

analysis [31]. 

B. EXPERIMENTAL RESULTS 

This section reports the results of applying all the techniques 

discussed in sections 3 and 4.3 in the testing stage. The best-

performing technique is documented in bold. Tables 9–13 

summarize all the methods applied to the PROMISE repository 

dataset. FIGURE 6 shows the real values (solid line) and the 

predicted values generated by the proposed SFNE model, as it 

has the best value of standardized accuracy (Sa) and Delta 

(dashed line) for the COCOMO81 dataset. Upon analysis of the 

empirical validation results, SFNE shows remarkable accuracy 

on all performance measures. In general, all results for SFNE 

are relatively good. The best results for all the performance 

measures across all the techniques are as follows:  

(1) According to the performance indicator SA, it is 99.983% 

for the DesharnaisL3 dataset using the SFNE technique.  

(2) According to the performance indicator Delta, it is 2.8498 

for the COCOMO81 dataset using the SFNE technique.  

(3) According to the performance indicator MMRE, it is 

2.87E-05 for the DesharnaisL1 dataset using the SFNE 

technique. 

(4) According to the performance indicator MdMRE, it is 

7.1123E-09 for the DesharnaisL1 dataset using the SFNE 

technique. 

(5) According to the PRED (0.25) performance indicator, all 

the methods seem very close to each other except RBF. 

The results (1)–(4) are exhibited by SFNE. (1) emphasizes 

the fact that SFNE is not a random guess model and is 

meaningful; (2) solidifies the fact that the SFNE model is not 

by chance, and the value 2.8498 suggests that there is a large 

effect improvement over a random guess model; and (3) and (4) 

have been selected based on the goal as minimization of MMRE 

and MdMRE.    

The worst results for all the performance measures across 

all the techniques are as follows:  

(1) According to the performance indicator SA, it is 41.734 % 

for the Albrecht dataset using the RBF technique.  

(2) According to the performance indicator Delta, it is 0.1432 

for the China dataset using the RBF technique. 

(3) According to the performance indicator MMRE, it is 

0.34391 for the Albrecht dataset using the RBF technique. 

(4) According to the performance indicator MdMRE, it is 

0.030064 for the Albrecht dataset using the RBF technique. 

(5) According to the PRED (0.25) performance indicator, all 

the methods seem very close to each other except RBF. 

The experimental results suggest that SFNE outperforms 

all other models in most cases, and RBF performs worst in 

almost all the scenarios. PSO-FLANN exhibits performance 

comparable to SFNE in some instances but performs better than 

SFNE in others.

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                          Vol. 7, No. 2, April 2025, pp: 253-269;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                           262 

TABLE 9 

Significance Testing - Standardized Accuracy (SA) 

 PSO-FLANN ACTIVE- 

FLANN-PSO 

FLANN- 

FUZZY-PSO 

SFNE BP-ANN BP-FLANN RBF 

Albrecht 92.664 82.084 54.038 92.913 90.917 91.512 41.734 

China 99.811 99.674 97.702 99.81 97.8 99.629 94.347 

Cocomo81 99.913 99.505 99.872 99.917 99.811 99.89 94.165 

Cocomo81e 99.519 98.8672 98.414 99.632 99.009 99.49 32.466 

Cocomo81o 95.869 91.558 87.307 95.09 85.031 93.114 69.704 

Cocomo81s 99.138 99.343 97.401 99.796 98.145 98.759 48.469 

Desharnais 99.894 99.822 99.667 99.748 99.81 99.893 90.256 

DesharnaisL1 99.958 99.956 99.86 99.968 99.896 99.929 86.282 

DesharnaisL2 99.955 99.95 99.869 99.97 99.924 99.922 74.612 

DesharnaisL3 99.973 99.964 99.882 99.983 99.886 99.858 53.74 

Maxwell 99.953 99.936 99.865 99.915 99.935 99.946 45.93 

Nasa93 99.151 98.444 95.544 95.757 98.444 99.081 74.798 

Nasa93_center_1 98.608 96.472 96.008 99.92 97.586 96.426 67.409 

Nasa93_center_2 97.617 94.624 92.974 98.167 97.739 94.501 54.667 

Nasa93_center_5 99.851 99.573 99.328 99.717 99.618 99.786 20.238 
 
 

TABLE 10 

Effect Size – (COHEN'S D) Glass Delta 

 
PSO-FLANN ACTIVE- 

FLANN-PSO 

FLANN- 

FUZZY-PSO 

SFNE BP-ANN BP-FLANN RBF 

Albrecht 1.5834 1.4027 0.92339 1.5877 1.5536 1.1536 1.224 

China 0.16072 0.1605 0.15733 0.15748 0.16072 0.1604 0.1432 

Cocomo81 2.8496 2.8485 2.849 2.8498 2.8467 2.838 2.6857 

Cocomo81e 2.5287 2.5121 2.5006 2.5316 2.5157 2.528 0.82493 

Cocomo81o 0.84341 0.80548 0.76808 0.83656 0.74806 0.8191 0.6264 

Cocomo81s 2.6896 2.6267 2.6425 2.6952 2.7075 2.6793 1.315 

Desharnais 0.27793 0.27773 0.2773 0.27753 0.2777 0.2779 0.2577 

DesharnaisL1 0.39191 0.39195 0.39152 0.3919 0.39166 0.3917 0.2952 

DesharnaisL2 0.72081 0.72092 0.72019 0.72078 0.72059 0.7205 0.2119 

DesharnaisL3 1.2581 1.2583 1.257 1.462 1.257 1.2567 1.258 

Maxwell 1.4337 1.4335 1.4324 1.4332 1.4334 1.4336 1.2184 

Nasa93 0.71417 0.70907 0.68819 0.71366 0.70907 0.7136 0.6137 

Nasa93_center_1 0.91131 0.89158 0.88729 0.92344 0.90187 0.8911 0.6911 

Nasa93_center_2 1.2326 1.2395 1.1739 1.9148 1.2341 1.1932 1.1522 

Nasa93_center_5 1.9041 1.8988 1.8941 1.9015 1.8997 1.9029 1.4838 

 

TABLE 11 

MMRE Values 

 PSO-FLANN ACTIVE- 

FLANN-PSO 

FLANN- 

FUZZY-PSO 

SFNE BP-ANN BP-FLANN RBF 

Albrecht 0.0147 0.0359 0.0921 0.0142 0.0182 0.0651 0.34391 

China 5.27E-05 9.11E-05 6.41E-04 6.14E-04 5.32E-05 1.03E-04 0.49378 

Cocomo81 0.0023 0.0034 0.0029 0.0022 0.005 0.0131 0.15448 

Cocomo81e 0.0017 0.004 0.0056 0.0013 0.0035 0.0018 0.23851 

Cocomo81o 0.0069 0.0082 0.0212 0.0141 0.025 0.0115 0.55128 

Cocomo81s 0.0059 0.0045 0.0178 0.0014 0.0127 0.0085 0.35287 

Desharnais 6.21E-05 1.05E-04 1.95E-04 1.47E-04 1.11E-04 6.26E-05 0.60105 

DesharnaisL1 3.79E-05 3.97E-05 1.27E-04 2.87E-05 9.43E-05 6.41E-05 0.66105 

DesharnaisL2 5.26E-05 5.88E-05 1.53E-04 3.48E-05 8.87E-05 9.17E-05 0.46105 

DesharnaisL3 9.61E-05 1.28E-04 4.20E-04 6.21E-05 4.08E-04 5.05E-04 0.77105 

Maxwell 5.82E-05 8.02E-05 1.69E-04 1.06E-04 8.16E-05 6.69E-05 0.23105 

Nasa93 0.0012 0.0022 0.0063 0.006 0.0022 0.0013 0.56105 

Nasa93_center_1 0.003 0.0076 0.0086 1.73E-04 0.0052 0.0077 0.66105 

Nasa93_center_2 0.0039 0.0088 0.0115 0.003 0.0037 0.009 0.36105 

Nasa93_center_5 3.11E-04 5.89E-04 0.0014 8.88E-04 7.96E-04 4.45E-04 0.26105 
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TABLE 12 

Pred Values 

 PSO-FLANN ACTIVE- 

FLANN-PSO 

FLANN- 

FUZZY-PSO 

SFNE BP-ANN BP- FLANN RBF 

Albrecht 0.83333 0.41667 0.20833 0.25 0.79167 0.83333 0.041667 

China 1 1 1 1 1 1 0.96794 

Cocomo81 1 1 1 1 1 1 0.61905 

Cocomo81e 0.64286 0.5 0.42857 0.75 0.5 0.60714 0.035714 

Cocomo81o 0.66667 0.54167 0.16667 0.6768 0.16667 0.54167 0.041667 

Cocomo81s 0.54545 0.54545 0.36364 0.45455 0.90909 0.54545 0.090909 

Desharnais 0.91358 0.82716 0.58025 0.74074 0.82716 0.91358 0.24 

DesharnaisL1 1 1 0.95652 1 0.95652 1 0.2798 

DesharnaisL2 1 0.91358 1 1 0.90909 1 0.96745 

DesharnaisL3 0.5 0.6 0.3 0.6 0.5 0.5 0.19 

Maxwell 0.8871 0.83871 0.66129 0.8342 0.82258 0.87097 0.2798 

Nasa93 0.53763 0.4086 0.15054 0.17204 0.4086 0.51613 0.010753 

Nasa93_center_1 0.2973 0.91892 0.081081 0.081081 0.18919 0.081081 0.00012 

Nasa93_center_2 0.40541 0.51351 0.24324 0.2973 0.37838 0.35135 0.054054 

Nasa93_center_5 0.51282 0.28205 0.10256 0.20513 0.23077 0.38462 0 

TABLE 13 

MDMRE Values 

 

 

 

FIGURE 6. Prediction results for COCOMO'81 dataset (test set) using 

SFNE algorithm; actual values are denoted as solid lines, and predicted 

values are denoted as dashed lines 

V. DISCUSSION 

The proposed Swarm Intelligence-Based Functional Link 

Fuzzy Neural Estimator (SFNE) was rigorously evaluated 

against six benchmark models: BP-FLANN [22], FLANN 

[23], PSO-FLANN [24], ACTIVE-FLANN-PSO [25], RBF 

[30], and BP-ANN [31]. Utilizing six datasets from the 

PROMISE repository, the comparative analysis presented in 

Tables 9 through 13 underscores the superior performance of 

SFNE across multiple evaluation metrics. 

A. ACCURACY COMPARISON 

SFNE consistently outperformed all benchmark models 

across the evaluated datasets. For example, on the 

DesharnaisL3 dataset, SFNE achieved a standardized 

accuracy (SA) of 99.983%, which is marginally higher than 

PSO-FLANN [24] (99.973%) and BP-FLANN [22] 

(99.964%). Notably, the RBF model [30] lagged significantly 

with an SA of 53.74% (Table 9). Similarly, on the 

COCOMO81 dataset, SFNE attained an SA of 99.917%, 

demonstrating its robustness and adaptability across diverse 

datasets. 

B. ERROR METRICS ANALYSIS 

SFNE demonstrated substantial improvements in error 

reduction compared to conventional approaches. 

Specifically, on the DesharnaisL1 dataset, SFNE achieved a 

 PSO-FLANN ACTIVE- 

FLANN-PSO 

FLANN- 

FUZZY-PSO 

SFNE BP-ANN BP-FLANN RBF 

Albrecht 0.001285 0.0031383 0.0080512 0.0012413 0.001591 0.0056909 0.030064 

China 2.8814e-08 4.9809e-08 3.5046e-07 3.357e-07 2.9087e-08 5.6315e-08 0.00026997 

Cocomo81 2.3469e-05 3.4694e-05 2.9592e-05 2.2449e-05 5.102e-05 2.3469e-05 0.0015763 

Cocomo81e 4.8444e-06 3.7045e-06 1.5958e-06 1.1398e-06 9.9737e-06 5.1293e-06 0.00067966 

Cocomo81o 0.00015007 0.00017835 0.00046109 0.00030667 0.00054374 0.00025012 0.01199 

Cocomo81s 3.7821e-05 2.8846e-05 0.0001141 8.9744e-06 8.141e-05 5.4487e-05 0.002262 

Desharnais 1.7028e-08 2.8791e-08 5.3469e-08 4.0307e-08 3.0436e-08 1.7165e-08 0.00016481 

DesharnaisL1 9.3922e-09 9.8383e-09 3.1473e-08 7.1123e-09 2.3369e-08 1.5885e-08 0.00016382 

DesharnaisL2 1.0916e-08 1.1434e-08 3.6578e-08 8.2661e-09 2.716e-08 1.8462e-08 0.00019039 

DesharnaisL3 4.9836e-08 5.5711e-08 1.4496e-07 3.2972e-08 8.404e-08 8.6882e-08 0.00043683 

Maxwell 1.1218e-08 1.5459e-08 2.2575e-08 1.0432e-08 1.5729e-08 1.2895e-08 4.4536e-05 

Nasa93 4.7619e-06 8.7302e-06 2.5e-06 2.381e-06 8.7302e-06 5.1587e-06 0.0022264 

Nasa93_center_1 4.5833e-05 2.6431e-06 0.00013139 0.00011611 7.9444e-05 0.00011764 0.010099 

Nasa93_center_2 4.7561e-05 3.6585e-05 4.585e-05 3.2585e-05 4.5122e-05 0.00010976 0.004403 

Nasa93_center_5 5.4428e-07 1.0308e-06 2.4501e-07 1.5541e-07 1.3931e-06 7.7879e-07 0.00045686 
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mean magnitude of relative error (MMRE) of 2.87E-05, 

indicating a significant reduction relative to the RBF model's 

MMRE of 0.66105 (Table 11). Additionally, the median 

magnitude of relative error (MdMRE) for SFNE on the same 

dataset was 7.1123E-09, markedly lower than the RBF 

model's MdMRE of 0.00016382(Table 13). These findings 

underscore SFNE’s enhanced capability to minimize 

prediction errors compared to traditional models. 

C. EFFECT SIZE AND PREDICTION ACCURACY 

The Cohen's d effect size (Delta) further emphasizes SFNE's 

efficacy. On the COCOMO81 dataset, SFNE achieved a 

Delta of 2.8498, indicating a significant improvement over 

competing models (Table 10). Moreover, SFNE attained a 

PRED(0.25) of 100% on the COCOMO81 dataset, far 

exceeding the best value of 66% reported by authors in [23] 

for their FLANN models (Table 12). This further underscores 

the SFNE model's robustness in delivering accurate 

predictions within an acceptable error range, making it highly 

effective in practical applications of SDEE. 

D. LIMITATIONS OF THE PROPOSED MODEL 

While the Swarm Intelligence-Based Functional Link Fuzzy 

Neural Estimator (SFNE) demonstrates superior performance 

in Software Development Effort Estimation (SDEE), certain 

limitations must be acknowledged to guide future research 

and practical adoption. 

1. Dataset Dependency: SFNE's performance heavily 

depends on the quality and diversity of the datasets used 

for training and validation. Although six datasets from 

the PROMISE repository were utilized, these datasets 

represent only a subset of real-world scenarios. This 

limitation may impact the model's generalizability across 

domains or less-represented software project 

characteristics. 

2. Computational Complexity: Integrating advanced 

methodologies, such as Interval Type-2 Fuzzy Logic 

Systems (IT2FLS) and Particle Swarm Optimization 

(PSO), increases the computational overhead. This 

complexity may pose challenges in scenarios with 

limited computational resources or time-critical 

applications. 

3. Sensitivity to Parameter Tuning: The SFNE model's 

accuracy is influenced by the choice of parameters, such 

as the membership functions in IT2FLS and the weights 

optimized by PSO. Improper parameter tuning could 

result in suboptimal performance, necessitating 

automated or adaptive approaches to parameter 

optimization. 

4. Handling of Dynamic Data: The current model assumes 

static datasets and does not account for dynamic or 

evolving project environments. Real-time adaptation to 

changing project parameters and requirements remains 

an open area for enhancement. 

5. Scalability for Large-Scale Projects: While SFNE has 

shown promising results for moderate-sized datasets, its 

scalability for large-scale, complex software projects 

with extensive attributes has not been extensively 

validated. 

Addressing these limitations through further research, 

such as incorporating more diverse datasets, optimizing 

computational efficiency, and exploring adaptive techniques, 

will enhance the robustness and applicability of SFNE in 

broader software engineering contexts. 

 
E. COMPARISON WITH PRIOR STUDIES 

SFNE's advancements are particularly noteworthy when 

juxtaposed with prior studies. For instance, FLANN [23] and 

PSO-FLANN [24] have been pivotal in functional link neural 

network research. However, SFNE integrates interval type-2 

fuzzy logic systems and particle swarm optimization, which 

allows it to handle better complex relationships and 

uncertainties inherent in software effort estimation. 

ACTIVE-FLANN-PSO [25] introduced adaptive 

mechanisms within the FLANN framework, yet SFNE's 

comprehensive approach results in superior performance 

metrics. Similarly, compared to BP-ANN [31], which relies 

on traditional backpropagation, SFNE's swarm intelligence-

based optimization leads to faster convergence and higher 

accuracy. These comparisons affirm that SFNE builds upon 

existing methodologies and sets a new benchmark in the 

field. 

F. SIGNIFICANCE AND PRACTICAL IMPLICATIONS 

The empirical results validate SFNE as a robust and reliable 

software development effort estimation model. Its superior 

accuracy and error minimization across various datasets 

make it a valuable tool for practitioners seeking precise effort 

predictions. Furthermore, integrating swarm intelligence and 

fuzzy neural networks in SFNE offers a scalable and 

adaptable framework, paving the way for future research and 

development in effort estimation models. 

In conclusion, SFNE outperforms existing benchmark 

models and advances state-of-the-art software effort 

estimation by leveraging advanced swarm intelligence and 

fuzzy logic techniques. These findings establish SFNE  

VI. THREATS TO VALIDITY 

Several threats to the validity of our study results exist. We 

discuss these threats following the guidelines provided by 

Runeson and Höst (2009) [32]. 

A. INTERNAL VALIDITY 

One potential threat to this study's internal validity is the 

selection bias in the datasets used for training and testing the 

SFNE model. The six datasets from the PROMISE repository 

may have inherent characteristics influencing the model's 

performance. To mitigate this, a rigorous cross-validation 

technique, specifically leave-one-out cross-validation 

(LOOCV), was employed to ensure that the results are not 

overly optimistic due to specific data characteristics. 

B. CONSTRUCT VALIDITY 

Construct validity could be compromised if the performance 

metrics used do not adequately capture the effectiveness of 

the SFNE model. The study uses recognized metrics such as 

MMRE, MdMRE, PRED(0.25), SA, and Delta to evaluate 

the model. These metrics are standard in the field of software 

effort estimation, which strengthens the construct validity. 

However, relying solely on these metrics might not fully 

encapsulate all dimensions of model performance, and 
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incorporating additional metrics or qualitative assessments 

could provide a more comprehensive evaluation. 

C. EXTERNAL VALIDITY 

The nature of the datasets limits the external validity of the 

findings. The six datasets from the PROMISE repository are 

diverse but may not cover the full spectrum of real-world 

software projects. Consequently, the generalizability of the 

results to other datasets or domains not represented in the 

study may be limited. Future work should include a wider 

variety of datasets from different domains to enhance the 

generalizability of the results. 

D. CONCLUSION VALIDITY 

Conclusion validity concerns whether the statistical analysis 

is accurate and whether the conclusions drawn from the data 

are valid. The study employs robust statistical techniques to 

analyze the performance of the SFNE model. However, the 

findings might be affected by the potential overfitting of the 

model to the specific datasets used. Regularization 

techniques and additional independent validation sets could 

help confirm that the model's performance is not overstated. 

By acknowledging these threats and implementing 

strategies to mitigate them, the study strives to present a 

reliable and valid evaluation of the SFNE model. Future 

research should address these limitations by incorporating a 

broader range of datasets and performance metrics and 

validating the findings across different contexts and domains. 

The structured approach ensures that the findings are 

critically evaluated and the conclusions are well-supported, 

enhancing the study's contribution to estimating software 

development effort. 

VII. CONCLUSIONS AND FUTURE WORK 

This study presents the Swarm Intelligence-Based Functional 

Link Fuzzy Neural Estimator (SFNE) for Software 

Development Effort Estimation (SDEE). The SFNE model 

integrates interval type-2 fuzzy logic systems (IT2FLS), 

active learning, and particle swarm optimization (PSO) to 

improve the accuracy and reliability of effort predictions. 

Empirical evaluations conducted on six real-world datasets 

from the PROMISE repository demonstrate that SFNE 

consistently outperforms traditional models, including PSO-

FLANN, Active-FLANN-PSO, FLANN with BP learning, 

ANN with BP learning, and radial basis functions (RBFs). 

Key performance indicators, such as Mean Magnitude of 

Relative Error (MMRE), Median Magnitude of Relative 

Error (MdMRE), and Standardized Accuracy (SA), highlight 

the superiority of SFNE in delivering more accurate and 

consistent estimates. For example, the SFNE model achieved 

an MMRE of 2.87E-05 and a MdMRE of 7.1123E-09 on the 

DesharnaisL1 dataset, significantly outperforming the RBF 

model, which recorded an MMRE of 0.34391. Furthermore, 

SFNE's SA score reached 99.983% on the DesharnaisL3 

dataset, while the RBF model only achieved 41.734% on the 

Albrecht dataset. These findings underscore SFNE's 

robustness and adaptability across diverse datasets, making it 

a valuable tool for accurate effort estimation in software 

development projects. 

Future research will focus on refining the SFNE model 

further. One direction involves comparing the performance 

of different membership functions, such as Gaussian and 

triangular, to assess their impact on the accuracy of fuzzy 

logic systems. Additionally, optimizing the parameters α and 

β, which influence the generation of interval type-2 fuzzy 

sets, will be explored to enhance model performance further. 

Contemporary computational intelligence techniques, 

including deep learning and reinforcement learning, will be 

investigated for higher estimation accuracy and model 

robustness. These approaches could potentially improve the 

adaptive learning capabilities of SFNE. Furthermore, efforts 

will be directed toward developing automated tools and 

software based on the SFNE model, facilitating its practical 

adoption in the software industry for real-time effort 

estimation and decision-making. 
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APPENDIX A: ALGORITHMS

Algorithm 1: 

[ 𝝁𝒔𝟏
, 𝝁𝒔𝟏

, 𝝁𝒔𝟐
, 𝝁𝒔𝟐

] = 𝑭𝒖𝒛𝒛𝒚 (𝑵𝑻𝑫[𝟏 … 𝑵. 𝟏 … 𝑴]) 

For each 𝑖 = 1 … 𝑁 

For each j=1…M-1 

𝐿𝑜𝑤𝑒𝑟(𝑆1[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=1))2

2𝜎𝑠1(𝑖,𝑗)2⁄ )
 

𝑈𝑝𝑝𝑒𝑟(𝑆1[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=1))2

2𝜎𝑠1(𝑖,𝑗)2⁄ )
 

𝐿𝑜𝑤𝑒𝑟(𝑆2[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=2))2

2𝜎𝑠2(𝑖,𝑗)2⁄ )
 

𝑈𝑝𝑝𝑒𝑟(𝑆2[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=2))2

2𝜎𝑠2(𝑖,𝑗)2⁄ )
 

End 

End 

Step 4.7: Perform T-norm that is logical AND to the membership values. It is simply the minimum membership 

value.  

For each row 𝑖 = 1 … 𝑁 

For each column j=1…M-1 

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆1[𝑖, 𝑗])) 

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆1[𝑖, 𝑗])) 

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆2[𝑖, 𝑗])) 

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆2[𝑖, 𝑗])) 

End 

End 

Thus, we obtained the Interval Type-2 fuzzy set for each attribute. 

Step 1: Using Mamadhani Fuzzy Inference system tool create a FIS and membership function as Gaussian function. 

Step 2: Initially calculate mean and standard deviation as 𝑀𝑒𝑎𝑛 (𝑁𝑇𝐷 (1 … 𝑁, 1 … 𝑀]) and𝑠𝑡𝑑 (𝑁𝑇𝐷 [1 … 𝑁, 1 … 𝑀]). 

Step 3: Update the Gaussian parameter standard deviation with calculated standard deviation values 

of 𝑁𝑇𝐷 [1 … 𝑁, 1 … 𝑀]. % Crisp to Type 1 fuzzy set % 

 𝑀𝑒𝑚𝑏𝑒𝑠𝑟𝑠ℎ𝑖𝑝𝑣𝑎𝑙𝑢𝑒𝑠[1 … 𝑁, 1 … 𝑀, 1 … 𝑘]= 𝑔𝑎𝑢𝑠𝑠𝑚𝑓(𝑁𝑇𝐷(1 … 𝑁, 1 … 𝑀), [𝜎, 𝑐]) 

Step 4: Convert the Type-1 to Interval Type 2 fuzzy set using mean and standard deviation of membership values of 

type -1 

Step 4.1:  𝑇𝑦𝑝𝑒2𝑀𝑒𝑎𝑛(1 … 𝑁, 1 … 𝑀 − 1) = 𝑀𝑒𝑎𝑛(𝑀𝑒𝑚𝑏𝑒𝑠𝑟𝑠ℎ𝑖𝑝𝑣𝑎𝑙𝑢𝑒𝑠[1 … 𝑁, 1 … 𝑀 − 1,1 … 𝑘]) 

𝑇𝑦𝑝𝑒2𝑠𝑡𝑑(1 … 𝑁, 1 … 𝑀 − 1) = 𝑠𝑡𝑑(𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝𝑣𝑎𝑙𝑢𝑒𝑠[1 … 𝑁, 1 … 𝑀 − 1,1 … 𝑘]) 

Step 4.2: Randomly assign values between range [0, 1] to 𝛼[1 … 𝑁, 1 … 𝑀 − 1] and   

 𝛽[1 … 𝑁, 1 … 𝑀 − 1]. 
Step 4.3: Calculate 𝑅(1, 𝑖) = 𝑠𝑢𝑚(𝑇𝑦𝑝𝑒2𝑠𝑡𝑑[1 … 𝑁, 1 … 𝑀 − 1])/𝑁 

Step 4.4: Divide each value of 𝑇𝑦𝑝𝑒2𝑀𝑒𝑎𝑛(1 … 𝑁, 1 … 𝑀 − 1) into two segments s1 and s2 and calculate midpoint 

of each segment 𝑀𝑠1, 𝑀𝑠2 

Step 4.5: Calculate lower and upper means and standard deviation values for both segments 𝑠1𝑎𝑛𝑑 𝑠2 over the 

midpoints 𝑀𝑠1, 𝑀𝑠2 

For each row 𝑖 = 1 … 𝑁 
For each column 𝑗 = 1 … 𝑀 − 1 

For each segment 𝑠 = 1 … 2 

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 1) = 𝑀𝑠1 − (𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗)) 

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 1) = 𝑀𝑠1 + ( 𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗)) 

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 2) = 𝑀𝑠2 − ( 𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗)) 

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 2) = 𝑀𝑠2 ± ( 𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗)) 

𝜎𝑠1(𝑖, 𝑗) = 𝛽(𝑖, 𝑗) ∗ 𝑅(1, 𝑗) 

𝜎𝑠2(𝑖, 𝑗) = 𝛽(𝑖, 𝑗) ∗ 𝑅(1, 𝑗) 

End 

End 

End  

Step 4.6: Calculate lower and upper membership values for both segments for each attribute of every project in a 

dataset using Gaussian membership function. 
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  Algorithm 2: 

 

Let us assume, D is the dataset, ND is the normalized Dataset. TrainDataset and TestDataset are the training and 

testing parts respectively, P is the data point of reduced size, L and H are lower and higher dimensions 

respectively, and TC is the termination criteria, O is the output layer, W is the weighted sum, E is the error, 

current best fitness value is CF. Fitness value is F, GB represents global best, PV is the particle velocity. 

Step 1: For each 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷[1 … 𝑁, 1 … 𝑀] 
 Step 1.1: 𝑁𝐷[1 … 𝑁, 1 … 𝑀] = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐷[1 … 𝑁, 1 … 𝑀]) 

Step 2: Divide ND 2/3rd parts into TrainDataset and 1/3rd part into TestDataset. 

Step 3: [𝜇𝑠1
[1 … 𝑁, 1. . 𝑀], 𝜇𝑠1

[1 … 𝑁, 1. . 𝑀], 𝜇𝑠2
[1 … 𝑁, 1. . 𝑀], 𝜇𝑠2

[1 … 𝑁, 1. . 𝑀]] = 𝐹𝐼𝑇(𝑁𝐷[1 … 𝑁, 1 … 𝑀]) 

 Returns upper and lower membership values of segment1 (s1) and segnent2 (s2) 

Step 3: For each TrainDataset 

Step 3.1: Apply 𝑄𝑢𝑖𝑐𝑘_𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡[1 … 𝑛 − 1,1 … 𝑚] = 𝑄𝑢𝑖𝑐𝑘(𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡[1 … 𝑁 − 1,1 … 𝑀]) 

Step 4: For each P 

Step 4.1: Map from L to H. 

Step 5: For each particle initialize with small values from [-1, 1]. 

Step 6: While (!TC) 

 { 

 Apply 

𝐹𝐿𝐴𝑁𝑁_𝑃𝑆𝑂(𝑌, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑐1, 𝑐2 , 𝑟1𝑟2, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝜔, 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, 𝑄𝑢𝑖𝑐𝑘_𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡[1 … 𝑛
− 1,1 … 𝑚]) 

 { 

  For each swarm 

   { 

   For each particle in the swarm 

    { 

    For each sample in the training sample 

     { 

     Calculate W, and send it as input to O. 

The tuned values of Interval Type 2 fuzzy  

𝜇𝑠1
[1 … 𝑁, 1. . 𝑀], 𝜇𝑠1

[1 … 𝑁, 1. . 𝑀], 𝜇𝑠2
[1 … 𝑁, 1. . 𝑀], 

𝜇𝑠2
[1 … 𝑁, 1. . 𝑀] are converted to type 1 fuzzy Using  

outputs (Y1 & Y2) in output layer 

     𝑌𝑙 =
(𝜇𝒔𝟏

× 𝑌1 + 𝜇𝒔𝟐
× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)⁄  

     𝑌𝑟 =
(𝜇

𝒔𝟏
× 𝑌1 + 𝜇𝒔𝟐

× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)
⁄   

Then again defuzzyfy the type 1 values to crisp set using Output= 𝜆 × 𝑌𝑙 + (1 − 𝜆) × 𝑌𝑟  

     Calculate𝐸 = 𝑌 − 𝑂𝑢𝑡𝑝𝑢𝑡. 

     } 

    Assign E to F. 

    If (F is better than CF) 

      { 

      Assign F to CF 

      } 

    Assign CF to GB 

    } 

   For each particle 

    { 

    Call Reduced () and Find PV. 

    Update Particle Positions 

    } 

   } 

  } 

 } 
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APPENDIX B: BUILDING INTERVAL TYPE-2 FL 

Step 1 The mean of membership values of all the attributes 

of the dataset is calculated as follows: 

Mean (1, 1) = (𝜇𝑣𝑒𝑟𝑦𝑙𝑜𝑤 +  𝜇𝑙𝑜𝑤 + 𝜇𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 + 𝜇ℎ𝑖𝑔ℎ +  𝜇𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ)/5 

 =  (0.7980 + 0.9860 + 0.6018 + 0.1815 + 0.0270) 5⁄  

 = 0.51886 

Step 2 The system calculates type-2 standard deviation of 

every attribute. The results of type-2 standard 

deviation of the first row and first column of the 

hypothetical dataset are as follows: 

Type2std(1,1) = ((0.7980 − 0.51886)2

+ (0.9860 − 0.51886)2

+ (0.6018 − 0.51886)2

+ (0.1815 − 0.51886)2

+      (0.0270 − 0.51886)2)
=  (0.27914)2 +  (0.46714)2

+  (0.08294)2 + (−0.33736)2

+ (−0.49186)2  
=  (0.07791914 + 0.21821978
+ 0.006879044 + 0.11381177
+ 0.24192626) 

 = 0.658755994/
5(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)  

 = 0.131751199 

Step 3 𝛼 and β  are assigned random values between [0,1]. 

Step 4 The system obtains the R matrix by the following 

procedure: 

R(1,1 … 4) = sum(Type2std[1 … 4,1 … 4])/
(number of rows) i.e.  

R(1,1)=(Type2std(1,1)=0.1318+Type2std(1,2)+ 

Type2std(1,3)+Type2std(1,4)) 

Step 5 The type-2 mean is divided into equal interval of t 

segments. Here, we consider t = 2. 

Range of Segment1= from 0 to 

((0.51886)/2=0.25943) 

Range of segment2= from 0.25943 to 0.51886 

Step 6 To calculate the interval type-2 membership values, 

the mean and standard deviation of each segment is 

deducted as follows: 

Mean:  

 Take midpoint of segment 1 and segment 2, that is, 

 Ms1= (0+0.25943)/2=0.129715 

Ms2= (0.25943+0.51886)/2=0.389145 

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 1)
= 𝑀𝑠1 − (𝛼(1,1) ∗ 𝑅(1,1))
= 0.1297 − (0.4 ∗ 𝑅(1,1)) 

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 1)
= 𝑀𝑠1 + ( 𝛼(1,1) ∗ 𝑅(1,1))
= 0.1297 + (0.6 ∗ 𝑅(1,1) 

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 2)
= 𝑀𝑠2 − ( 𝛼(1,1) ∗ 𝑅(1,1))
= 0.3892 − (0.1 ∗ 𝑅(1,1)) 

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 2)
= 𝑀𝑠2 ± ( 𝛼(1,1) ∗ 𝑅(1,1))
= 0.3892 + (0.3 ∗ 𝑅(1,1)) 

Standard deviation: 

𝜎𝑠𝑒𝑔𝑚𝑒𝑛𝑡1(1,1) = 𝛽(1,1) ∗ 𝑅(1,1) = 0.6 ∗ 𝑅(1,1) 

𝜎𝑠𝑒𝑔𝑚𝑒𝑛𝑡2(1,1) = 𝛽(1,1) ∗ 𝑅(1,1) = 0.7 ∗ 𝑅(1,1) 

𝐿𝑜𝑤𝑒𝑟𝑠1[1 … 4,1. .4], 𝑈𝑝𝑝𝑒𝑟𝑠1
[1 … 4,1. .4], 𝐿𝑜𝑤𝑒𝑟𝑠2

[1 … 4,1. .4], 𝑈𝑝𝑝𝑒𝑟𝑠2
[1 … 4,1. .4] 

Step 7 T-norm is computed for 𝐿𝑜𝑤𝑒𝑟𝑠1
[1 … 4,1. .4], 

𝐿𝑜𝑤𝑒𝑟𝑠2
[1 … 4,1. .4], 𝑈𝑝𝑝𝑒𝑟𝑠1

[1 … 4,1. .4], and 

𝑈𝑝𝑝𝑒𝑟𝑠2
[1 … 4,1. .4] as follows: 

For example,  

𝐿𝑜𝑤𝑒𝑟𝑠1
(1 … 4,1 … 4) = [0.0023  0.0036  0.0012 0.0032 

0.0253 0.0085 0.0124 0.3211 

0.1248 0.3214 0.0258 0.1289 

0.0001 0.0014 0.0005 0.2587]  

 

𝐿𝑜𝑤𝑒𝑟𝑠2
(1 … 4,1 … 4) = [0.0123  0.0026  0.012 0.02 

0.0153 0.0055 0.0134 0.411 

0.138 0.3144 0.0148 0.1089 

0.0034 0.0214 0.0045 0.2657]  

Then, T-norm of each matrix, that is, minimum for each row, 

is obtained as follows: 

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆1[𝑖, 𝑗])) 

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆1[𝑖, 𝑗])) 

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆2[𝑖, 𝑗])) 

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆2[𝑖, 𝑗])) 

Hence, 𝜇𝑠1
(1,1) = min(0.0023,0.0036,0.0012,0.0032) =

0.0012 

 𝜇𝑠1
(2,1) = min(0.0253,0.0085,0.0124,0.3211) = 0.0085 

Step 8 The local outputs of FLANN, 𝑌1 and 𝑌2, are used to 

convert the interval type-2 fuzzy set output to type-

1 fuzzy set output. Let us assume 𝑌1 = 0.125 and 

𝑌2 = 0.325 after one iteration and for one instance.  

𝑌𝑙 =
(𝜇𝒔𝟏

× 𝑌1 + 𝜇𝒔𝟐
× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)
⁄   

 𝑌𝑟 =
(𝜇

𝒔𝟏
× 𝑌1 + 𝜇𝒔𝟐

× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)
⁄   

Let us obtain the value of 𝑌𝑙; 𝑌𝑟  value is obtained in a similar 

manner. For one instance of the dataset, 

  𝑌𝑙 = (
𝜇𝑠1

(1,1) × 𝑌1 + 𝜇𝑠2
(1,1) × 𝑌2)

(𝜇𝑠1
+ 𝜇𝑠2

)
⁄  

=
((0.0012 × 0.125) + (0.0026 × 0.325))

(0.0012 + 0.0026)⁄  

𝑌𝑙 = 0.0038 

Thus, after getting 𝑌𝑙  & 𝑌𝑟 , i.e., type-1 fuzzy set outputs, we 

defuzzify them into crisp set outputs by using the following 

formula:   

𝜆 × 𝑌𝑙 + (1 − 𝜆) × 𝑌𝑟 

Here, λ is the defuzzify parameter, which takes any random 

number from the range [0, 1]. Thus, we get the final 

calculated output as:  

Ŷ =𝜆 × 𝑌𝑙 + (1 − 𝜆) × 𝑌𝑟 

Step 9 The system calculates the error values, and weights 

are updated using the adaptive PSO technique 

reported by Benala et al. (2015). 

Step 10 The quality measures, namely mean magnitude of 

relative error (MMRE), MdMRE, prediction 

(PRED), standardized accuracy (SA), Delta, etc., 

are obtained.  
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