
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 253

RESEARCH ARTICLE OPEN ACCESS

Manuscript received October 5, 2024; Revised December 1, 2024; Accepted December 12, 2024; date of publication February 20, 2025
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i2.492
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).

How to cite: Tirimula Rao Benala, Anupama Kaushik and Satchidananda Dehuri, “Swarm Intelligence-Based Functional Link Fuzzy Neural Estimator

for Software Development Effort Estimation”, Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 7, no. 2, pp. 253-269,

April 2025.

Swarm Intelligence-Based Functional Link Fuzzy
Neural Estimator for Software Development Effort
Estimation

Tirimula Rao Benala1 , Anupama Kaushik2 and Satchidananda Dehuri3

1 Department of Information Technology, JNTU-GV College of Engineering Vizianagaram (Autonomous), Jawaharlal Nehru Technological University
 Gurajada Vizianagaram Dwarapudi Vizianagaram, Andhra Pradesh-535003, India. Email: btirimula.it@jntugvcev.edu.in
2 Department of IT, Maharaja Surajmal Institute of Technology, Affiliated to GGSIP University, New Delhi, India. Email: anupama@msit.in
3 Department of Information and Communication Technology, Fakir Mohan University, Vyasa Vihar, Balasore-756019, Odisha, India. Email: satchi.lapa@gmail.com

Corresponding Author: Tirimula Rao Benala (Email: btirimula.it@jntugvcev.edu.in)

ABSTRACT Accurate Software Development Effort Estimation (SDEE) is pivotal for effective project management, significantly

impacting resource allocation and the overall success of software projects. This paper introduces the Swarm Intelligence-Based

Functional Link Fuzzy Neural Estimator (SFNE), a novel computational intelligence model designed to enhance estimation

accuracy by integrating multiple advanced methodologies. The SFNE framework employs the QUICK algorithm for dataset

optimization, effectively minimizing noise and redundancy. A Functional Link Artificial Neural Network (FLANN) captures

complex nonlinear relationships within the data, while Interval Type-2 Fuzzy Logic Systems (IT2FLS) address inherent data

uncertainties. Additionally, Particle Swarm Optimization (PSO) is applied to fine-tune model parameters, improving prediction

precision. Empirical evaluations were conducted using six benchmark datasets from the PROMISE repository. The results

demonstrate that the SFNE model significantly outperforms existing models across key metrics, including Mean Magnitude of

Relative Error (MMRE), Median Magnitude of Relative Error (MdMRE), and Prediction at 0.25 (PRED(0.25)). Notably, SFNE

achieved a predictive accuracy of 99.983% on the DesharnaisL3 dataset and an MMRE of 2.87×10⁻⁵ on the DesharnaisL1 dataset.

These findings underscore the robustness and adaptability of SFNE in addressing the limitations of traditional SDEE methods,

particularly in managing data scarcity and uncertainty. The proposed SFNE model establishes a new benchmark for SDEE accuracy

and demonstrates substantial potential for practical application in real-world software engineering projects. Future research will

explore integrating additional computational intelligence techniques, such as deep learning and reinforcement learning, and

developing automated tools to advance SDEE practices further. These advancements contribute to more reliable and efficient

software project management, facilitating real-time effort estimation and informed decision-making in the software industry.

 Software Cost Estimation, Functional Link Artificial Neural Network, Fuzzy Logic System, Interval Type-2FLS,

Particle Swarm Optimization, Active Learning Algorithm

I. INTRODUCTION

Fred Brooks (2003) identified software cost estimation as one

of the three significant challenges in computer science [1].

Every year, a significantly large number of new applications are

produced, and existing applications are modified. Thus,

software cost estimation is a significant activity for almost

every software company. According to the Standish Group

Chaos Report (2015), 19% of software projects fail because of

poor software cost estimation practices [2]. In this context, our

study aims to devise a suitable SDEE technique. The primary

task of software cost estimation is to estimate the total effort

required to complete a project, as the cost of effort dominates

the project's cost. Estimated software cost serves as the basis for

almost every project planning activity. Therefore, inaccurate

cost estimation can have serious consequences. Two prime

issues in software cost estimation are over and under-

estimation. Underestimating the cost of a project leads to the

allocation of less staff, the design of short schedules, and the

production of low-quality deliverables. In contrast, project cost

overestimation can lead to customer cancellation or

overallocation of resources, resulting in underproductivity.

A significant challenge in cost estimation is accurately

estimating the size of the software artifact to be developed in

the planning phase long before the commencement of project

development work. Due to the inherent uncertainties in any

project, most current techniques used for software cost

estimation tend to be inaccurate in the early stages of software

development and only improve as the project heads toward the

last stage and when most of the risks have been resolved. Most

traditional parametric software effort estimation models are

based on multiple regression approaches. These models aim to

accurately predict the effort by calibrating actual data collected

from completed software projects. Examples of popular

parametric effort prediction models include the constructive

cost model (COCOMO) [3] and software life cycle

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v7i2.492
https://creativecommons.org/licenses/by-sa/4.0/
mailto:btirimula.it@jntugvcev.edu.in
file:///D:/IJACSA-SFNE/FInal/Camera%20Ready%20Paper/anupama@msit.in
mailto:satchi.lapa@gmail.com
mailto:btirimula.it@jntugvcev.edu.in
https://orcid.org/0000-0002-0613-9893
https://orcid.org/0000-0003-4665-1434
https://orcid.org/0000-0003-1435-4531

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 254

management (SLIM) [4]. When applied to software engineering

data, these models face serious challenges that are typically

scarce, incomplete, and imprecise.

In response to these challenges, considerable efforts have

been dedicated to developing estimators based on

computational intelligence (CI) techniques, which synergize

neural networks, evolutionary computation, fuzzy systems

(FS), and swarm intelligence (SI). CI techniques are popular

because they do not require precise models for evaluating the

cost function [5]. Despite the advances in CI, there still needs

to be more integration of advanced CI techniques, such as

interval type-2 fuzzy logic systems (IT2FLS) and swarm

intelligence, in SDEE.

Our study addresses this research gap by developing a

novel hybrid estimator, the Swarm Intelligence-Based

Functional Link Fuzzy Neural Estimator (SFNE), specifically

designed for SDEE. The significant contributions of this study

are as follows:

1. Developed a hybrid Swarm Intelligence-Based Functional

Link Fuzzy Neural Estimator (SFNE) model to improve the

accuracy of software effort estimation.

2. A data reduction technique using the QUICK algorithm was

introduced to optimize datasets by eliminating noise and

redundancy, enhancing the model's performance.

3. Integrated Functional Link Artificial Neural Network

(FLANN) for efficient computational processing, which

captures complex nonlinear relationships in the data.

4. Applied Interval Type-2 Fuzzy Logic Systems (IT2FLS) to

manage uncertainty and imprecision in software effort

datasets, improving the robustness of the model.

5. Utilized Particle Swarm Optimization (PSO) to fine-tune the

model's output parameters, ensuring high accuracy and

minimizing prediction errors.

6. Validated the SFNE model through extensive experiments

on six datasets from the PROMISE repository,

demonstrating superior performance compared to other

estimation techniques.

This research presents the development of a novel Swarm

Intelligence-Based Functional Link Fuzzy Neural Estimator

(SFNE) for Software Development Effort Estimation (SDEE).

The SFNE model integrates advanced computational

intelligence techniques, including Interval Type-2 Fuzzy Logic

Systems (IT2FLS), active learning, and Particle Swarm

Optimization (PSO), to enhance the accuracy and reliability of

effort prediction. The model addresses critical limitations of

traditional estimation approaches by combining data reduction

methods and Functional Link Artificial Neural Networks

(FLANN). Empirical validation using six benchmark datasets

from the PROMISE repository demonstrates the superior

performance of SFNE, establishing it as a robust and effective

tool for software effort estimation. In the following section, we

first discuss the different types of fuzzy systems. Subsequently,

we discuss the architecture of FLANN.

A. TYPE 1 FUZZY LOGIC SYSTEM VS. INTERVAL TYPE 2
FUZZY LOGIC SYSTEM

The transition from a crisp set to a fuzzy set becomes necessary

when assigning an element's membership as 0 or 1 is

challenging. A type-1 fuzzy set (T1FS) is utilized in such

scenarios, where the membership grade can be represented as a

crisp number within the interval [0, 1]. However, when the

uncertainty is so profound that even the membership grade

cannot be precisely determined within this interval, a type-2

fuzzy set (T2FS) is employed [6], [7]. Both type-1 and type-2

fuzzy logic systems (FLS) are regarded as state-of-the-art

methodologies for managing uncertainty in complex real-world

problems. The primary distinction between T2FLS and T1FLS

lies in the enhanced degree of design flexibility inherent to

T2FLS. The structure of a general type-2 fuzzy logic system

(T2FLS), illustrated in FIGURE 1, incorporates a type

reduction process and defuzzification, distinguishing it from a

type-1 fuzzy logic system (T1FLS). In T1FLS, the output

processor directly maps a fuzzy set to a crisp number.

In contrast, T2FLS involves two stages: type reduction,

which converts a type-2 fuzzy set into a type-1 fuzzy set, and

defuzzification, which then transforms the type-1 fuzzy set into

a crisp number. This added complexity renders T2FLS

computationally intensive and more challenging to implement

than T1FLS. To address these computational demands, interval

type-2 fuzzy logic systems (IT2FLS) have been developed.

IT2FLS retains the capability to manage uncertainties

effectively while reducing computational complexity. This

adaptation has led to the widespread adoption of IT2FLS in

various applications, as it strikes a balance between handling

uncertainty and maintaining computational efficiency [8-10].

Type-1 fuzzy sets denote the degree of membership of a crisp

value x′ of a base variable x in a fuzzy set A, characterized by a

crisp membership function. 𝜇𝐴(𝑥′) that assumes values within

the interval [0, 1]. Such a set can be formally represented by Eq.

(1) [7]:

𝐴 = {(𝑥, 𝜇𝐴(𝑥))|∀𝑥 ∈ 𝑋} (1)

FIGURE 1. General structure of type-2 FLS

Consequently, type-1 fuzzy logic systems (FLS) are

limited in handling uncertainties as they require precise

identification of membership functions. To address this

limitation, Castillo et al. (2007) introduced type-2 fuzzy logic

systems (T2FLS) to mitigate the impact of uncertainty within

the rule base [11]. This advancement has facilitated the

application of T2FLS in various fields, including modeling.

Type-2 FLS has since been extensively utilized across domains

such as control systems, data mining, system identification,

forecasting, computer vision, and pattern recognition.

The representation of a general type-2 and IT2FLS differs

from that of type-1 FLS by a tilde symbol. For example, if 𝐴

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 255

denotes a type-1 fuzzy set, then �̃� denotes interval type-2 fuzzy

set or type-2 fuzzy set. A type-2 fuzzy set, denoted by �̃�, is

characterized by a membership function (MF), 𝜇𝐴(𝑥, 𝑢), where

𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐽𝑥 ⊆ [0,1], that is, The notation for general

type-2 and interval type-2 fuzzy logic systems (IT2FLS)

includes a tilde symbol to distinguish them from type-1 fuzzy

logic systems (T1FLS). For instance, while 𝐴 represents a type-

1 fuzzy set, �̃� denotes an interval type-2 fuzzy set or a type-2

fuzzy set. A type-2 fuzzy set, denoted by �̃�, is defined by a

membership function (MF), 𝜇𝐴(𝑥, 𝑢), where 𝑥 ∈ 𝑋 and

𝑢 ∈ 𝐽𝑥 ⊆ [0,1] such that:

�̃� = {((𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1]} (2)

Where 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1.

Eq. (2) [8] defines a type-2 fuzzy set �̃� with a membership

function 𝜇𝐴(𝑥, 𝑢) that assigns a membership grade to each pair

(𝑥, 𝑢), where 𝑥 is an element from the domain 𝑋 and 𝑢 is an

element of primary membership 𝐽𝑥, which is a subset of the

interval [0,1]. This equation indicates that for every 𝑥 ∈ 𝑋, there

is a set 𝐽𝑥 of secondary membership values 𝑢 that lie within

[0,1].

The amplitude of a secondary membership function is termed

the secondary grade. In Eq. (2) [8], 𝜇𝐴(𝑥, 𝑢) for 𝑥 ∈ 𝑋,
𝑢 ∈ 𝐽𝑥 ⊆ [0,1] is a secondary grade. When the values of the

secondary grade are uniformly equal to 1, it results in an interval

type-2 membership function. Thus, ∀𝑥 ∈ 𝑋 if 𝜇𝐴(𝑥, 𝑢) = 1,

then �̃� is an interval type-2 fuzzy set.

FIGURE 2 elucidates the definition and representation of a

type-2 fuzzy set. The diagram represents the primary

membership (x-axis), where x′ is a specific value, and the

secondary membership (u-axis), indicating secondary

membership values u within [0,1]. The shaded area enclosed by

the outer boundary represents the Footprint of Uncertainty

(FOU), capturing possible membership values. The upper and

lower boundaries of the FOU denote the upper membership

function (𝜇𝐴) and lower membership functions (𝜇𝐴),

respectively. For each x′, the vertical slice through the FOU

represents the secondary membership function 𝐽𝑥′. The point 𝐴𝑒

illustrates a specific instance of primary and secondary

membership values.

FIGURE 2. IT2 FL and its associated quantities.

B. ARCHITECTURE OF FLANN

Initially proposed by Pao, FLANN is a novel single-layer neural

network with a faster convergence rate; it is a computationally

efficient neural network model compared with MLP [12]. The

typical structure of FLANN is shown in FIGURE 3. The

nonlinearity in FLANN is introduced by orthogonal functional

expansions (i.e., basis functions). The commonly used basis

functions are Chebyshev polynomial, Legendre polynomial,

and power polynomial. Software effort estimation is a

functional approximation optimization problem. The goal of

FLANN can be defined as selecting a basis function to learn the

effort estimation function 𝑓(𝑋) by approximating the

function𝑓𝑊(𝑋). The interpolation of the function 𝑓(𝑋) is

achieved by FLANN. 𝑊 is the set of weights to be optimized to

obtain the best approximate of 𝑓(𝑋).

In this study, we selected the Chebyshev polynomial

functional expansion as the basis function because of its low

error estimation characteristics. The basis function nonlinearly

transforms the input space (low dimensions) into feature space

at high dimensions. The feature space was multiplied by the

weight vector, resulting in normalized output in the range [-0.5,

+0.5]. The summation was given as input to the sigmoid

function for predicting the cost function. The optimal cost

function was obtained by iteratively updating the weight vector.

The PSO learning algorithm modified the weight vector.

FIGURE 3. FLANN

C. ACTIVE LEARNING FOR DATASET REDUCTION

Active learning was introduced by Simon in 1974 [13]. The key

idea behind active learning is to improve the performance of the

FLANN by choosing valuable samples from the software effort

estimation dataset. QUICK, an active learning algorithm

proposed by Ekrem Kocaguneli et al. (2012), has been utilized

in this study. It identifies the essential content of the dataset fed

to the SFNE model to improve estimation accuracy [14]. The

QUICK method has two principal components-synonym

pruning and outlier pruning.

Initially, the dataset was represented by a 2D matrix. The

rows represent project instances, and the columns describe the

features or attributes. The dataset undergoes transposition in

synonym pruning, and the similarity measure between attributes

is calculated based on Euclidean distance. After obtaining the

distance matrix, similar values in each row rank are assigned by

incrementing by 1. Attributes having similar neighbors

represented by the popularity index, that is, the most famous

attributes, are eliminated. Next, the process of outlier pruning is

initiated. The obtained matrix is transposed to restore its

original form. Now, the rows represent project instances, and

the columns represent features. The matrix contains only

selected features from the previous phase. The distance matrix

is generated using an Euclidean distance measure. The rows are

sorted based on the distance. The k-closet neighbors of another

instance are defined to be popular. The system retains the

popular ones while removing the unpopular project instances.

Thus, we obtain the most useful data samples and feed them to

the next stage.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 256

D. PARTICLE SWARM OPTIMIZATION LEARNING
ALGORITHM

PSO is a population-based multi-agent stochastic algorithm

proposed by Eberhart and Kennedy in 1995 [15]. In PSO, the

particle represents a potential solution. A set of possible

solutions is called a "Swarm." Each particle's state information

is represented by its position and velocity in the search space.

Randomly generated particles (known as trial solutions) are

selected to fly through a D-dimensional search space toward the

optimal solution over some iterations by utilizing its best

position and global best particle state in each iteration.

In the D-dimensional design space, the position and velocity

vectors of ith particle for the dth dimension are assumed to be

�⃗�𝑖𝑑 𝑎𝑛𝑑 �⃗�𝑖𝑑, respectively. At any sampling instance t, the

velocity and position can be represented by Eq. (3) and Eq. (4)

[24]:

�⃗�𝑖𝑑(𝑡 + 1) = 𝑤𝑖 ⃗⃗⃗⃗⃗ ⊗ �⃗�𝑖𝑑(𝑡) + 𝑐1⃗⃗ ⃗ ⊗ 𝑟1⃗⃗⃗ ⃗ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) −

�⃗⃗⃗�𝑖𝑑(𝑡)) + 𝑐2⃗⃗⃗⃗ ⊗ 𝑟2⃗⃗⃗⃗ ⊗ (𝑔𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗⃗⃗�𝑖𝑑(𝑡)) (3)

�⃗�𝑖𝑑(𝑡 + 1) = �⃗�𝑖𝑑(𝑡) + �⃗�𝑖𝑑(𝑡 + 1) (4)

The symbol ⊗ denotes point-by-point vector multiplication,

𝑤 is the inertia weight; 𝑐1 and 𝑐2 They are chosen uniformly

and randomly in some interval [0, 2], and they are the

acceleration coefficients influencing the maximum size of the

step a particle can take in one iteration. State space exploitation

is introduced by vectors random numbers 𝑟1 and 𝑟2. They are

the distributed random numbers in the range [0, 1]. To ensure

optimal convergence, the adaptive inertia weight strategy is

adopted. The inertia weight decreases as the generation

increases to balance the exploration and exploitation trade-off

in the search space.

E. DESIGN OF INTERVAL TYPE-2 FUZZY SETS (IT2FSS)

FOR ATTRIBUTES

This section shows how IT2FSs for an attribute of the

COCOMO81 dataset were designed. FIGURE 4 depicts the

algorithm (APPENDIX A: Algorithm 1). COCOMO'81 has 17

attributes; the last attribute, i.e., the 17th attribute, is the output

attribute. The MATLAB FIS editor represents all the attributes,

as shown in FIGURE 4(a) and 4(b). The membership function

can be of any type; we chose the Gaussian membership function

with five linguistic variables (very low, low, moderate, high,

and very high). The standard deviation is updated, and

membership values are calculated and represented as in

Algorithm 2 (APPENDIX A).

Illustration of Algorithm 1: Algorithm 1 delineates a

systematic procedure for transforming type-1 fuzzy sets into

type-2 ones within a Functional Link Artificial Neural Network

(FLANN) framework. The algorithm proceeds through several

key steps to ensure a robust and precise conversion process.

Initially, the algorithm computes the membership values

associated with type-1 fuzzy sets for each data instance. Let N

denote the number of data instances and M the number of

attributes. For each data instance 𝑖 (𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, … , 𝑁) and

each attribute 𝑗 (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, … , 𝑀 − 1), the algorithm

performs the following computations:

1. Calculation of Mean membership values: The mean of

the type-1 membership values across all linguistic variables

is calculated as in Eq. (5) [7]:

𝜇2(𝑖, 𝑗) =
1

𝑘
∑ 𝜇1

𝑘

𝑙=1

(𝑖, 𝑗, 𝑙) (5)

Where 𝜇1(𝑖, 𝑗, 𝑙) represents the membership value for the 𝑙-
th linguistic variable (with 𝑙 = 1, … ,5) of the 𝑗-th attribute

in the 𝑖-th data instance, 𝑘 = 5 is the total number of

linguistic variables considered.

2. Calculation of Standard Deviation of Membership Values:

The standard deviation of the type-1 membership values is

determined to quantify their variability as shown in Eq. (6)

[7]:

𝜎2(𝑖, 𝑗) = √
1

𝑘
∑ 𝜇1(𝑖, 𝑗, 𝑙) − 𝜇2(𝑖, 𝑗)2

𝑘

𝑙=1

 (6)

These statistical measures, 𝜇2(𝑖, 𝑗) and 𝜎2(𝑖, 𝑗), effectively

capture the central tendency and dispersion of the membership

values for each attribute, thereby facilitating the construction of

type-2 fuzzy sets.

Following the computation of the mean and standard

deviation, each attribute in the dataset is segmented according

to the derived type-2 fuzzy parameters. Although the algorithm

permits flexibility in determining the number of segments, this

number must match the output nodes of the FLANN’s final

layer. In the present implementation, two segments are

employed, facilitating defuzzification through which type-2

fuzzy sets are converted into crisp output values for effective

decision-making. This methodological approach preserves the

integrity of the fuzzy logic system by ensuring that each dataset

value is accurately represented through its mean membership

and associated variability.

For example, if the mean value of FLANN [1, 1] = 0.3456,

then the first segment ranges from 0 to (0.3456/2), and segment

2 spans from (0.3456/2) to 0.3456. Thus, we get segments that

are divided into equal intervals of type-2 mean called interval

type-2. According to step 4.4 of the algorithm, each value is

divided into two segments. The lower and upper membership

values are obtained with the help of R, α, and β for both

segments using the formulas in Algorithm 2. Both segments'

upper and lower means are calculated as mentioned in step 4.5.

Membership values are obtained using step 4.6. Finally, T-norm

is performed to obtain interval type-2 fuzzy set as cited in step

4.7.

The rest of the paper is structured as follows: Section II

outlines the related work, Section III presents the methodology

used in this study, Section IV summarizes the results and

findings- compares our model's performance with other

prediction models such as ANN, FLANN with gradient descent,

and RBF. Section V presents the discussion. Section VI

describes the threats to validity, and Section VII concludes the

article.

II. RELATED WORK

The application of computational intelligence (CI) in

software development effort estimation (SDEE) has been

extensively studied. This section provides a brief review of

notable research in this area. Muzaffar et al. (2010) examined

factors within fuzzy logic systems that influence the accuracy

of software development effort predictions [16]. Their findings

indicate that a fuzzy logic-based prediction system's

architecture, parameters, and training algorithms critically

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 257

impact accuracy. Ahmed and Muzaffar (2009) proposed a type-

2 fuzzy logic framework to handle the imprecision and

uncertainty inherent in effort prediction data [17].

In 2004, Xu and Khoshgoftaar introduced an innovative

fuzzy identification cost estimation technique that

automatically generates fuzzy membership functions and rules

to process linguistic data [18]. In 2009, Azzeh, Neagu, and

Cowling combined fuzzy set theory with grey relational

analysis to enhance software project similarity measurement

and attribute weighting in effort-based analysis (EBA) [19].

Sheta utilized the Takagi-Sugeno method to develop fuzzy

models for two nonlinear processes in 2006 [20], while Lee et

al. proposed a fuzzy size estimation procedure for goal-driven

use case models based on Use Case Points (UCP) in 2011 [21].

In 2012, Ekrem et al. explored active learning-based effort

estimation, identifying essential components of SDEE datasets

and recommending suitable estimation methods for different

datasets.

Benala et al. reported using Functional Link Artificial

Neural Networks (FLANN) for SDEE in 2009, conducting

empirical validation using the COCOMO'81 dataset from the

PROMISE repository. Their promising results highlight

FLANN's simple architecture and computational efficiency

compared to multilayer perceptrons (MLP) [22]. In 2012,

Benala et al. proposed three approaches for SDEE using

FLANN, introducing a preprocessing step called optimally

reduced datasets (ORDs) [23]. These ORDs reduced the dataset

to small, representative subsets, which were then processed by

FLANN and tested on eight polynomial expansions. Their

methods demonstrated superior performance over conventional

FLANN, support vector machine regression (SVR), radial basis

function (RBF), and classification and regression trees (CART).

They also explored genetic algorithm optimization for FLANN

and fuzzy clustering combined with FLANN for SDEE. In

2013, Benala et al. utilized particle swarm optimization (PSO)

to optimize FLANN feature weights. This resulted in the PSO-

FLANN framework, which showed promising outcomes [24].

2014, they proposed a new model that integrates active learning

and PSO in FLANNs to improve software effort estimation

[25]. In 2024, Manchala, P., & Bisi, M. present a novel model

using feature selection and parameter optimization to enhance

the accuracy of software development effort estimation (SDEE)

through a two-stage optimization technique integrating

improved social network search algorithms with an adaptive

neuro-fuzzy inference system (ANFIS) [26].

(a)

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 258

(b)

FIGURE 4. Membership function of COCOMO81 for one attribute: (a) FIS for COCOMO81; (b) membership function for Input Variable Rely

III. METHODOLOGY

The Methodology section delineates a systematic framework

for developing and assessing the Swarm Intelligence-Based

Functional Link Fuzzy Neural Estimator (SFNE) tailored for

Software Development Effort Estimation (SDEE). This

section is structured into four primary subsections to facilitate

clarity and ensure technical coherence. Initially, the Dataset

Description subsection provides a comprehensive overview

of the six benchmark datasets utilized in this study, sourced

from the PROMISE repository. These datasets encompass a

variety of software project attributes, including effort

metrics, development environments, and project scales,

accompanied by statistical analyses to underscore the

complexities inherent in accurate effort estimation across

diverse domains. Subsequently, the High-Level Algorithm

of SFNE subsection expounds on the proposed estimator's

architectural framework and integral components. It

elucidates the integration of Functional Link Artificial Neural

Networks (FLANN), Interval Type-2 Fuzzy Logic Systems

(IT2FLS), and Particle Swarm Optimization (PSO),

highlighting the model's capability to manage uncertainty and

nonlinear relationships through its layered structure. The

Experimental Procedure subsection outlines the stepwise

implementation process of SFNE, encompassing data

preprocessing via the QUICK algorithm and the application

of leave-one-out cross-validation (LOOCV) for model

evaluation. Finally, the Performance Evaluation Metrics

subsection defines the criteria employed to measure SFNE's

efficacy, robustness, and adaptability, including metrics such

as MMRE, MdMRE, and PRED(0.25). This methodical

approach ensures a logical progression, technical rigor, and

reproducibility, substantiating SFNE's viability as a robust

tool for SDEE.

FIGURE 5. Layered structure of SFNE using the Mamdani Fuzzy Reasoning System

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 259

A. DATASET DESCRIPTION

The evaluation utilized six datasets from the PROMISE

repository, which is publicly accessible at the PROMISE

repository. These datasets are categorized based on their

sources and characteristics:

Desharnais: Contains Canadian software projects.

COCOMO81: Projects developed in the United States.

NASA93: Projects developed in the United States.

China: Chinese software projects.

Maxwell: Finnish banking software projects.

Albrecht: IBM projects from the 1970s.

In 2011, Dejaeger et al. classified these datasets into four

categories: size features, development features, environment

features, and project data [29]. Table 1 provides the descriptive

statistics of these datasets, illustrating the variability and

skewness of effort values, posing challenges for accurate

estimation.

TABLE 1

Descriptive statistics of the datasets

Featu

res

Number

of

Projects

Effort Data

Unit Min Max Mean Median Skew

Desharnais 12 77 Hours 546 23,940 5046 3647 2.0

Nasa 3 18 Months 5 138.3 49.47 26.5 0.57

Cocomo 17 63 Months 6 11,400 686 98 4.4

China 18 499 Hours 26 54,620 3921 1829 3.92

Maxwell 27 62 Hours 583 63,694 8223.2 5189.5 3.26

Albrecht 7 24 Months 1 105 22 12 2.2

B. HIGH-LEVEL ALGORITHM OF SFNE

SFNE is an integrated model that combines two computational

models: FLANN and interval type-2 fuzzy logic system. Thus,

it has the advantage of both models. Further, it incorporates the

active learning technique, namely QUICK, as a preprocessing

step. This technique helps improve the prediction accuracy by

feeding essential inputs to the system. Adaptive PSO updates

the weight in FLANN. Hence, it always converges to global

optima, unlike FLANN with backpropagation, which may trap

in local minima.

SFNE is typically a 5-layer network, as shown in FIGURE

5. The first layer takes the input from the dataset and transmits

it to the next layer. Layer 2 initiates the interval type-2 fuzzy

logic system (IT2FLS). Our method incorporates a variant of

Wang and Mendel (1991) approach for generating fuzzy rules

from standard data [27]. The type-2 Gaussian membership

function with uncertain mean is considered for the antecedent

and consequent variables, and the type-2 Gaussian with

uncertain standard deviation is considered the membership

function for the input in this work. An IT2FLS deals with the

lower and upper membership functions. Nodes in Layer 3

receive degrees of associated rules from nodes in Layer 2. In

the proposed model, two rules are generated, each having two

values (lower and upper). Thus, the total output of this layer is

four. Nodes in Layer 4 are called consequent nodes. The outputs

obtained from the third layer and two local outputs of FLANN

are considered inputs to this layer. The final layer is the output

processing layer, which comprises two back-to-back

components. The first element is a type reducer. We adopted

the Karnik and Mendel algorithm [28] for type reduction. The

defuzzification component computes the final crisp output.

Algorithm 2 represents the methodology (as illustrated in

APPENDIX A).

C. EXPERIMENTAL PROCEDURE FOR SFNE USING
SAMPLE EXAMPLE

The simple SFNE comprises a hypothetical dataset containing

four rows and four columns, as shown in Table 2. The step-by-

step procedure for applying the SFNE model to the given

dataset follows. APPENDIX B depicts the illustration for

building interval type-2 FL.

TABLE 2
Sample Dataset (D)

 1 2 3 4

1 0.8800 1.1600 0.7000 1

2 0.8800 1.1600 0.8500 1

3 1 1.1600 0.8500 1

4 0.7500 1.1600 0.7000 1

Step 1) The dataset is normalized using min-max

normalization.

TABLE 3
Normalized Dataset

 1 2 3 4

1 0.2000 1.0000 0 0

2 0.2000 1.0000 0.3846 1.0000

3 0 1.0000 0 0

4 0.1579 0 0.1579 0

Step 2) The sample SFNE system adopts the leave-one-out-

cross-validation (LOOCV) technique as a sampling

method. It performs four iterations of model building

and evaluation. The results of the first two iterations

are displayed in Tables 4 and 5. This process is

continued for four iterations as four data points are

available in the dataset.

TABLE 4

First Iteration (after applying LOOCV)

T
ra

in

d
at

as
et

 1 2 3 4

1 0.2000 1.0000 0 0

2 0.2000 1.0000 0.3846 1.0000

3 0 1.0000 0 0

 4 0.1579 0 0.1579 0 Test dataset

TABLE 5

Second Iteration (after applying LOOCV)

 1 2 3 4

1 0.2000 1.0000 0 0 Test dataset

T
ra

in

d
at

as
et

2 0.2000 1.0000 0.3846 1.0000

3 0 1.0000 0 0

4 0.1579 0 0.1579 0

Step 3) The preprocessing step adapted in our work involves

the active learning method QUICK to obtain useful

samples. Table 5 displays the output of this step. The

system forwards the results obtained to the next stage,

FLANN, to predict the output.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 260

TABLE 6
Matrix after application of quick method

 1 2 3

1 1.0000 0 0

2 1.0000 0.3846 1.0000

3 1.0000 0 0

D. BUILDING INTERVAL TYPE-1 FL

Step 4) Type-1 fuzzy logic system is applied to the normalized

dataset parallel to steps 2 and 3 to convert each

attribute to the fuzzy number.

Step 5) The mean and standard deviation for each attribute in

Table 3 are obtained using MATLAB functions

"mean" and "std." Table 6 displays the obtained

results. As each attribute has a single value, Tables 3

and 6 are identical.

TABLE 7
Matrix representing the mean and standard deviation of

each attribute of table 2

 1 2 3 4

1 0.2000 1.0000 0 0

2 0.2000 1.0000 0.3846 1.0000

3 0 1.0000 0 0

4 0.1579 0 0.1579 0

Step 5.1 The rules are created using the Mamdani FIS. The

Wang and Mendel approach (1991) is used to define

the input and output variable fuzzy sets and initiate the

FIS. In our work, the fuzzy sets for the input and output

variables are created using a Gaussian membership

function. Suppose the domain interval of each attribute

is [𝑥− , 𝑥+], i.e., the most probable range of the

attributes. In our work, the interval spans from [0, 1]

as both input and output variables are normalized in

the range [0, 1]. The domain interval is divided into

2N+1 regions, with N=2, i.e., and each attribute has

five fuzzy regions, as shown in FIGURE 4(b).

Step 5.3 The function 𝑔𝑎𝑢𝑠𝑠𝑚𝑓 (𝑚𝑎𝑡𝑟𝑖𝑥𝑠𝑜𝑚𝑒𝑥(𝑖,𝑗)
, [𝜎, 𝑐]) is an in-

built function in MATLAB that helps find

membership values for all variables in the normalized

dataset, each comprising five different membership

values based on number of linguistic variables. Table

8 indicates that the membership values for all

attributes of example Table 7 are very low, thus

obtaining type-1 FL membership values.

TABLE 8
Matrix representing lower membership values of each attribute

 1 2 3 4

1 0.7980 0.0112 1.0000 1.0000

2 0.7980 0.0112 0.7601 1.0000

3 0 1.0000 0 0

4 0.1579 0 0.1579 0

E. PERFORMANCE EVALUATION METRICS

This section describes the metrics employed to evaluate the

performance of software development effort estimation (SDEE)

models. Performance metrics are essential for assessing the

effectiveness of these models. For a comprehensive evaluation,

five widely recognized metrics were selected: MMRE,

MdMRE, PRED (0.25), SA, and Delta.

The Mean Magnitude of Relative Error (MMRE) is a

critical metric for evaluating the accuracy of predictive models

in software estimation. It is calculated by first determining the

Magnitude of Relative Error (MRE) for each prediction, as

defined by Eq. (7) [34]:

𝑀𝑅𝐸𝑖 = |
𝑦𝑖−�̂�𝑖

𝑦𝑖
| (7)

where 𝑦𝑖 is the actual value and �̂�𝑖 is the predicted value for the

𝑖-th instance. Subsequently, MMRE is obtained by averaging

all MRE values across the dataset, as shown in Eq. (8) [34]:

𝑀𝑀𝑅𝐸 = ∑ 𝑀𝑅𝐸𝑖 𝑛⁄𝑛
𝑖=1 (8)

This approach normalizes the prediction errors, enabling a

comprehensive assessment of the model’s performance by

averaging the relative discrepancies between predicted and

actual values.

The Median Magnitude of Relative Error (MdMRE) serves

as a robust global error metric that is less susceptible to the

influence of outliers compared to mean-based measures.

MdMRE is defined as the median value of all individual

Magnitude of Relative Errors (MREs) within a dataset.

Mathematically, it is expressed in Eq. (9) [34]:

𝑀𝑑𝑀𝑅𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑅𝐸𝑖) (9)

Where 𝑀𝑅𝐸𝑖 = |
𝑦𝑖−�̂�𝑖

𝑦𝑖
|. By utilizing the median, MdMRE

effectively captures the central tendency of the prediction

errors, providing a more representative measure of a model’s

typical performance. This characteristic makes MdMRE

particularly valuable for evaluating models in scenarios where

outliers may distort average error assessments, thereby offering

a clearer insight into the model’s reliability and accuracy.

The PRED(x) metric quantifies the percentage of

predictions that fall within a specified tolerance level, 𝑥%, of

the actual values. Mathematically, PRED(x) is defined in Eq.

(10) [34]:

 𝑃𝑅𝐸𝐷(𝑥) =
100

𝑁
× ∑ 𝐷𝑖

𝑁
𝑖=1 (10)

where 𝐷𝑖 is an indicator function defined by Eq. (11) [34]:

𝐷𝑖 = {
1 𝑖𝑓𝑀𝑀𝑅𝐸 <

𝑥

100

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

When 𝑥 = 25, the PRED metric is defined as

PRED (0.25). (11)

For example, when 𝑥 = 25, the metric is referred to as PRED

(0.25). This metric clearly measures the model’s accuracy by

indicating the proportion of predictions within 25% of the

actual values. PRED(x) is particularly useful for assessing the

reliability of predictive models, as it highlights the consistency

of predictions within an acceptable error margin, thereby

offering valuable insights into the model’s practical

applicability and performance.

Traditional measures based on Magnitude of Relative Error

(MRE), such as MMRE and PRED, exhibit several limitations,

including an asymmetric error distribution that often biases

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 261

results toward certain prediction models [33],[34].

Consequently, these MRE-based metrics may underestimate

errors. To overcome this issue, researchers have adopted the

Mean Absolute Error (MAE), which is calculated by first

determining the Absolute Error (AE) for each prediction in Eq.

(12) [33]:

𝐴𝐸𝑖 = |𝑦𝑖 − �̂�𝑖| (12)

Where 𝑦𝑖 and �̂�𝑖 are actual and predicted efforts, respectively.

The MAE is then obtained by averaging all absolute errors as

shown in Eq. (13) [33]:

𝑀𝐴𝐸 =
∑ 𝐴𝐸𝑖

𝑁
𝑖=1

𝑁
 (13)

Unlike MRE-derived metrics, MAE is not susceptible to

asymmetric distributions and thus provides a more balanced

view of prediction accuracy. However, MAE alone can be

difficult to interpret because it lacks standardization. To address

this challenge, Shepperd and MacDonell [33] introduced the

concept of Standardized Accuracy (SA), defined in Eq. (14)

[33]:

𝑆𝐴 = 1 −
𝑀𝐴𝐸

𝑀𝐴𝐸𝑃0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (14)

where MAE is the mean absolute error, and 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅
𝑝𝑜

 denotes

the mean absolute error obtained from a large number (typically

1000) of random guesses. SA thus indicates how effectively the

model outperforms random guessing: values near zero suggest

low reliability, whereas negative values are deemed

unacceptable. In addition, the Effect Size (Δ) provides further

insight into the magnitude of improvement over random

guessing. Delta is used to assess the effect size improvement

over random guessing and is depicted in Eq. (15) [33]:

∆=
𝑀𝐴𝐸−MAEP0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

sP0

 (15)

Where 𝑠𝑃0
 is the sample standard deviation from the

random-guessing strategy. Categorized as small (0.2), medium

(0.5), or large (0.8), a ∆≥ 0.5 is typically considered favorable

[33], [34]. This standardized framework—encompassing MAE,

SA, and Δ—enables robust, unbiased assessment of software

effort estimation models, thereby ensuring more reliable and

interpretable conclusions regarding their predictive

performance.

IV. RESULT

The following sections detail cost estimation models and

experimental results.

A. COST ESTIMATION MODELS

This study explores the feasibility of various models based on

FLANN. The experimental setup includes C-FLANN, P-

FLANN, and L-FLANN models. For simplicity, C-FLANN is

referred to as FLANN in this paper. Other popular models, such

as ANNs and RBFs, are also included for a comprehensive

evaluation.

Radial Basis Function Networks (RBF) are designed using

parameters such as the global width (σ) and a measure of

closeness (δ) between the interpolation matrix and its

approximation. The model determines the minimum number of

basis functions required to achieve the desired approximation

accuracy and identifies the centers of these basis functions.

Weights to the output nodes are then computed using the

pseudo-inverse method [30].

In ANN models, configuration parameters such as the

number of hidden layers, hidden nodes, and transfer functions

are critical in determining prediction accuracy. A single hidden

layer is often recommended to avoid over-parameterization.

The training phase involves using historical data to train ANN

models with the specified configurations, and the model

structure that results in the lowest MMRE is chosen for further

analysis [31].

B. EXPERIMENTAL RESULTS

This section reports the results of applying all the techniques

discussed in sections 3 and 4.3 in the testing stage. The best-

performing technique is documented in bold. Tables 9–13

summarize all the methods applied to the PROMISE repository

dataset. FIGURE 6 shows the real values (solid line) and the

predicted values generated by the proposed SFNE model, as it

has the best value of standardized accuracy (Sa) and Delta

(dashed line) for the COCOMO81 dataset. Upon analysis of the

empirical validation results, SFNE shows remarkable accuracy

on all performance measures. In general, all results for SFNE

are relatively good. The best results for all the performance

measures across all the techniques are as follows:

(1) According to the performance indicator SA, it is 99.983%

for the DesharnaisL3 dataset using the SFNE technique.

(2) According to the performance indicator Delta, it is 2.8498

for the COCOMO81 dataset using the SFNE technique.

(3) According to the performance indicator MMRE, it is

2.87E-05 for the DesharnaisL1 dataset using the SFNE

technique.

(4) According to the performance indicator MdMRE, it is

7.1123E-09 for the DesharnaisL1 dataset using the SFNE

technique.

(5) According to the PRED (0.25) performance indicator, all

the methods seem very close to each other except RBF.

The results (1)–(4) are exhibited by SFNE. (1) emphasizes

the fact that SFNE is not a random guess model and is

meaningful; (2) solidifies the fact that the SFNE model is not

by chance, and the value 2.8498 suggests that there is a large

effect improvement over a random guess model; and (3) and (4)

have been selected based on the goal as minimization of MMRE

and MdMRE.

The worst results for all the performance measures across

all the techniques are as follows:

(1) According to the performance indicator SA, it is 41.734 %

for the Albrecht dataset using the RBF technique.

(2) According to the performance indicator Delta, it is 0.1432

for the China dataset using the RBF technique.

(3) According to the performance indicator MMRE, it is

0.34391 for the Albrecht dataset using the RBF technique.

(4) According to the performance indicator MdMRE, it is

0.030064 for the Albrecht dataset using the RBF technique.

(5) According to the PRED (0.25) performance indicator, all

the methods seem very close to each other except RBF.

The experimental results suggest that SFNE outperforms

all other models in most cases, and RBF performs worst in

almost all the scenarios. PSO-FLANN exhibits performance

comparable to SFNE in some instances but performs better than

SFNE in others.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 262

TABLE 9

Significance Testing - Standardized Accuracy (SA)

 PSO-FLANN ACTIVE-

FLANN-PSO

FLANN-

FUZZY-PSO

SFNE BP-ANN BP-FLANN RBF

Albrecht 92.664 82.084 54.038 92.913 90.917 91.512 41.734

China 99.811 99.674 97.702 99.81 97.8 99.629 94.347

Cocomo81 99.913 99.505 99.872 99.917 99.811 99.89 94.165

Cocomo81e 99.519 98.8672 98.414 99.632 99.009 99.49 32.466

Cocomo81o 95.869 91.558 87.307 95.09 85.031 93.114 69.704

Cocomo81s 99.138 99.343 97.401 99.796 98.145 98.759 48.469

Desharnais 99.894 99.822 99.667 99.748 99.81 99.893 90.256

DesharnaisL1 99.958 99.956 99.86 99.968 99.896 99.929 86.282

DesharnaisL2 99.955 99.95 99.869 99.97 99.924 99.922 74.612

DesharnaisL3 99.973 99.964 99.882 99.983 99.886 99.858 53.74

Maxwell 99.953 99.936 99.865 99.915 99.935 99.946 45.93

Nasa93 99.151 98.444 95.544 95.757 98.444 99.081 74.798

Nasa93_center_1 98.608 96.472 96.008 99.92 97.586 96.426 67.409

Nasa93_center_2 97.617 94.624 92.974 98.167 97.739 94.501 54.667

Nasa93_center_5 99.851 99.573 99.328 99.717 99.618 99.786 20.238

TABLE 10

Effect Size – (COHEN'S D) Glass Delta

PSO-FLANN ACTIVE-

FLANN-PSO

FLANN-

FUZZY-PSO

SFNE BP-ANN BP-FLANN RBF

Albrecht 1.5834 1.4027 0.92339 1.5877 1.5536 1.1536 1.224

China 0.16072 0.1605 0.15733 0.15748 0.16072 0.1604 0.1432

Cocomo81 2.8496 2.8485 2.849 2.8498 2.8467 2.838 2.6857

Cocomo81e 2.5287 2.5121 2.5006 2.5316 2.5157 2.528 0.82493

Cocomo81o 0.84341 0.80548 0.76808 0.83656 0.74806 0.8191 0.6264

Cocomo81s 2.6896 2.6267 2.6425 2.6952 2.7075 2.6793 1.315

Desharnais 0.27793 0.27773 0.2773 0.27753 0.2777 0.2779 0.2577

DesharnaisL1 0.39191 0.39195 0.39152 0.3919 0.39166 0.3917 0.2952

DesharnaisL2 0.72081 0.72092 0.72019 0.72078 0.72059 0.7205 0.2119

DesharnaisL3 1.2581 1.2583 1.257 1.462 1.257 1.2567 1.258

Maxwell 1.4337 1.4335 1.4324 1.4332 1.4334 1.4336 1.2184

Nasa93 0.71417 0.70907 0.68819 0.71366 0.70907 0.7136 0.6137

Nasa93_center_1 0.91131 0.89158 0.88729 0.92344 0.90187 0.8911 0.6911

Nasa93_center_2 1.2326 1.2395 1.1739 1.9148 1.2341 1.1932 1.1522

Nasa93_center_5 1.9041 1.8988 1.8941 1.9015 1.8997 1.9029 1.4838

TABLE 11

MMRE Values

 PSO-FLANN ACTIVE-

FLANN-PSO

FLANN-

FUZZY-PSO

SFNE BP-ANN BP-FLANN RBF

Albrecht 0.0147 0.0359 0.0921 0.0142 0.0182 0.0651 0.34391

China 5.27E-05 9.11E-05 6.41E-04 6.14E-04 5.32E-05 1.03E-04 0.49378

Cocomo81 0.0023 0.0034 0.0029 0.0022 0.005 0.0131 0.15448

Cocomo81e 0.0017 0.004 0.0056 0.0013 0.0035 0.0018 0.23851

Cocomo81o 0.0069 0.0082 0.0212 0.0141 0.025 0.0115 0.55128

Cocomo81s 0.0059 0.0045 0.0178 0.0014 0.0127 0.0085 0.35287

Desharnais 6.21E-05 1.05E-04 1.95E-04 1.47E-04 1.11E-04 6.26E-05 0.60105

DesharnaisL1 3.79E-05 3.97E-05 1.27E-04 2.87E-05 9.43E-05 6.41E-05 0.66105

DesharnaisL2 5.26E-05 5.88E-05 1.53E-04 3.48E-05 8.87E-05 9.17E-05 0.46105

DesharnaisL3 9.61E-05 1.28E-04 4.20E-04 6.21E-05 4.08E-04 5.05E-04 0.77105

Maxwell 5.82E-05 8.02E-05 1.69E-04 1.06E-04 8.16E-05 6.69E-05 0.23105

Nasa93 0.0012 0.0022 0.0063 0.006 0.0022 0.0013 0.56105

Nasa93_center_1 0.003 0.0076 0.0086 1.73E-04 0.0052 0.0077 0.66105

Nasa93_center_2 0.0039 0.0088 0.0115 0.003 0.0037 0.009 0.36105

Nasa93_center_5 3.11E-04 5.89E-04 0.0014 8.88E-04 7.96E-04 4.45E-04 0.26105

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 263

TABLE 12

Pred Values

 PSO-FLANN ACTIVE-

FLANN-PSO

FLANN-

FUZZY-PSO

SFNE BP-ANN BP- FLANN RBF

Albrecht 0.83333 0.41667 0.20833 0.25 0.79167 0.83333 0.041667

China 1 1 1 1 1 1 0.96794

Cocomo81 1 1 1 1 1 1 0.61905

Cocomo81e 0.64286 0.5 0.42857 0.75 0.5 0.60714 0.035714

Cocomo81o 0.66667 0.54167 0.16667 0.6768 0.16667 0.54167 0.041667

Cocomo81s 0.54545 0.54545 0.36364 0.45455 0.90909 0.54545 0.090909

Desharnais 0.91358 0.82716 0.58025 0.74074 0.82716 0.91358 0.24

DesharnaisL1 1 1 0.95652 1 0.95652 1 0.2798

DesharnaisL2 1 0.91358 1 1 0.90909 1 0.96745

DesharnaisL3 0.5 0.6 0.3 0.6 0.5 0.5 0.19

Maxwell 0.8871 0.83871 0.66129 0.8342 0.82258 0.87097 0.2798

Nasa93 0.53763 0.4086 0.15054 0.17204 0.4086 0.51613 0.010753

Nasa93_center_1 0.2973 0.91892 0.081081 0.081081 0.18919 0.081081 0.00012

Nasa93_center_2 0.40541 0.51351 0.24324 0.2973 0.37838 0.35135 0.054054

Nasa93_center_5 0.51282 0.28205 0.10256 0.20513 0.23077 0.38462 0

TABLE 13

MDMRE Values

FIGURE 6. Prediction results for COCOMO'81 dataset (test set) using

SFNE algorithm; actual values are denoted as solid lines, and predicted

values are denoted as dashed lines

V. DISCUSSION

The proposed Swarm Intelligence-Based Functional Link

Fuzzy Neural Estimator (SFNE) was rigorously evaluated

against six benchmark models: BP-FLANN [22], FLANN

[23], PSO-FLANN [24], ACTIVE-FLANN-PSO [25], RBF

[30], and BP-ANN [31]. Utilizing six datasets from the

PROMISE repository, the comparative analysis presented in

Tables 9 through 13 underscores the superior performance of

SFNE across multiple evaluation metrics.

A. ACCURACY COMPARISON

SFNE consistently outperformed all benchmark models

across the evaluated datasets. For example, on the

DesharnaisL3 dataset, SFNE achieved a standardized

accuracy (SA) of 99.983%, which is marginally higher than

PSO-FLANN [24] (99.973%) and BP-FLANN [22]

(99.964%). Notably, the RBF model [30] lagged significantly

with an SA of 53.74% (Table 9). Similarly, on the

COCOMO81 dataset, SFNE attained an SA of 99.917%,

demonstrating its robustness and adaptability across diverse

datasets.

B. ERROR METRICS ANALYSIS

SFNE demonstrated substantial improvements in error

reduction compared to conventional approaches.

Specifically, on the DesharnaisL1 dataset, SFNE achieved a

 PSO-FLANN ACTIVE-

FLANN-PSO

FLANN-

FUZZY-PSO

SFNE BP-ANN BP-FLANN RBF

Albrecht 0.001285 0.0031383 0.0080512 0.0012413 0.001591 0.0056909 0.030064

China 2.8814e-08 4.9809e-08 3.5046e-07 3.357e-07 2.9087e-08 5.6315e-08 0.00026997

Cocomo81 2.3469e-05 3.4694e-05 2.9592e-05 2.2449e-05 5.102e-05 2.3469e-05 0.0015763

Cocomo81e 4.8444e-06 3.7045e-06 1.5958e-06 1.1398e-06 9.9737e-06 5.1293e-06 0.00067966

Cocomo81o 0.00015007 0.00017835 0.00046109 0.00030667 0.00054374 0.00025012 0.01199

Cocomo81s 3.7821e-05 2.8846e-05 0.0001141 8.9744e-06 8.141e-05 5.4487e-05 0.002262

Desharnais 1.7028e-08 2.8791e-08 5.3469e-08 4.0307e-08 3.0436e-08 1.7165e-08 0.00016481

DesharnaisL1 9.3922e-09 9.8383e-09 3.1473e-08 7.1123e-09 2.3369e-08 1.5885e-08 0.00016382

DesharnaisL2 1.0916e-08 1.1434e-08 3.6578e-08 8.2661e-09 2.716e-08 1.8462e-08 0.00019039

DesharnaisL3 4.9836e-08 5.5711e-08 1.4496e-07 3.2972e-08 8.404e-08 8.6882e-08 0.00043683

Maxwell 1.1218e-08 1.5459e-08 2.2575e-08 1.0432e-08 1.5729e-08 1.2895e-08 4.4536e-05

Nasa93 4.7619e-06 8.7302e-06 2.5e-06 2.381e-06 8.7302e-06 5.1587e-06 0.0022264

Nasa93_center_1 4.5833e-05 2.6431e-06 0.00013139 0.00011611 7.9444e-05 0.00011764 0.010099

Nasa93_center_2 4.7561e-05 3.6585e-05 4.585e-05 3.2585e-05 4.5122e-05 0.00010976 0.004403

Nasa93_center_5 5.4428e-07 1.0308e-06 2.4501e-07 1.5541e-07 1.3931e-06 7.7879e-07 0.00045686

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 264

mean magnitude of relative error (MMRE) of 2.87E-05,

indicating a significant reduction relative to the RBF model's

MMRE of 0.66105 (Table 11). Additionally, the median

magnitude of relative error (MdMRE) for SFNE on the same

dataset was 7.1123E-09, markedly lower than the RBF

model's MdMRE of 0.00016382(Table 13). These findings

underscore SFNE’s enhanced capability to minimize

prediction errors compared to traditional models.

C. EFFECT SIZE AND PREDICTION ACCURACY

The Cohen's d effect size (Delta) further emphasizes SFNE's

efficacy. On the COCOMO81 dataset, SFNE achieved a

Delta of 2.8498, indicating a significant improvement over

competing models (Table 10). Moreover, SFNE attained a

PRED(0.25) of 100% on the COCOMO81 dataset, far

exceeding the best value of 66% reported by authors in [23]

for their FLANN models (Table 12). This further underscores

the SFNE model's robustness in delivering accurate

predictions within an acceptable error range, making it highly

effective in practical applications of SDEE.

D. LIMITATIONS OF THE PROPOSED MODEL

While the Swarm Intelligence-Based Functional Link Fuzzy

Neural Estimator (SFNE) demonstrates superior performance

in Software Development Effort Estimation (SDEE), certain

limitations must be acknowledged to guide future research

and practical adoption.

1. Dataset Dependency: SFNE's performance heavily

depends on the quality and diversity of the datasets used

for training and validation. Although six datasets from

the PROMISE repository were utilized, these datasets

represent only a subset of real-world scenarios. This

limitation may impact the model's generalizability across

domains or less-represented software project

characteristics.

2. Computational Complexity: Integrating advanced

methodologies, such as Interval Type-2 Fuzzy Logic

Systems (IT2FLS) and Particle Swarm Optimization

(PSO), increases the computational overhead. This

complexity may pose challenges in scenarios with

limited computational resources or time-critical

applications.

3. Sensitivity to Parameter Tuning: The SFNE model's

accuracy is influenced by the choice of parameters, such

as the membership functions in IT2FLS and the weights

optimized by PSO. Improper parameter tuning could

result in suboptimal performance, necessitating

automated or adaptive approaches to parameter

optimization.

4. Handling of Dynamic Data: The current model assumes

static datasets and does not account for dynamic or

evolving project environments. Real-time adaptation to

changing project parameters and requirements remains

an open area for enhancement.

5. Scalability for Large-Scale Projects: While SFNE has

shown promising results for moderate-sized datasets, its

scalability for large-scale, complex software projects

with extensive attributes has not been extensively

validated.

Addressing these limitations through further research,

such as incorporating more diverse datasets, optimizing

computational efficiency, and exploring adaptive techniques,

will enhance the robustness and applicability of SFNE in

broader software engineering contexts.

E. COMPARISON WITH PRIOR STUDIES

SFNE's advancements are particularly noteworthy when

juxtaposed with prior studies. For instance, FLANN [23] and

PSO-FLANN [24] have been pivotal in functional link neural

network research. However, SFNE integrates interval type-2

fuzzy logic systems and particle swarm optimization, which

allows it to handle better complex relationships and

uncertainties inherent in software effort estimation.

ACTIVE-FLANN-PSO [25] introduced adaptive

mechanisms within the FLANN framework, yet SFNE's

comprehensive approach results in superior performance

metrics. Similarly, compared to BP-ANN [31], which relies

on traditional backpropagation, SFNE's swarm intelligence-

based optimization leads to faster convergence and higher

accuracy. These comparisons affirm that SFNE builds upon

existing methodologies and sets a new benchmark in the

field.

F. SIGNIFICANCE AND PRACTICAL IMPLICATIONS

The empirical results validate SFNE as a robust and reliable

software development effort estimation model. Its superior

accuracy and error minimization across various datasets

make it a valuable tool for practitioners seeking precise effort

predictions. Furthermore, integrating swarm intelligence and

fuzzy neural networks in SFNE offers a scalable and

adaptable framework, paving the way for future research and

development in effort estimation models.

In conclusion, SFNE outperforms existing benchmark

models and advances state-of-the-art software effort

estimation by leveraging advanced swarm intelligence and

fuzzy logic techniques. These findings establish SFNE

VI. THREATS TO VALIDITY

Several threats to the validity of our study results exist. We

discuss these threats following the guidelines provided by

Runeson and Höst (2009) [32].

A. INTERNAL VALIDITY

One potential threat to this study's internal validity is the

selection bias in the datasets used for training and testing the

SFNE model. The six datasets from the PROMISE repository

may have inherent characteristics influencing the model's

performance. To mitigate this, a rigorous cross-validation

technique, specifically leave-one-out cross-validation

(LOOCV), was employed to ensure that the results are not

overly optimistic due to specific data characteristics.

B. CONSTRUCT VALIDITY

Construct validity could be compromised if the performance

metrics used do not adequately capture the effectiveness of

the SFNE model. The study uses recognized metrics such as

MMRE, MdMRE, PRED(0.25), SA, and Delta to evaluate

the model. These metrics are standard in the field of software

effort estimation, which strengthens the construct validity.

However, relying solely on these metrics might not fully

encapsulate all dimensions of model performance, and

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 265

incorporating additional metrics or qualitative assessments

could provide a more comprehensive evaluation.

C. EXTERNAL VALIDITY

The nature of the datasets limits the external validity of the

findings. The six datasets from the PROMISE repository are

diverse but may not cover the full spectrum of real-world

software projects. Consequently, the generalizability of the

results to other datasets or domains not represented in the

study may be limited. Future work should include a wider

variety of datasets from different domains to enhance the

generalizability of the results.

D. CONCLUSION VALIDITY

Conclusion validity concerns whether the statistical analysis

is accurate and whether the conclusions drawn from the data

are valid. The study employs robust statistical techniques to

analyze the performance of the SFNE model. However, the

findings might be affected by the potential overfitting of the

model to the specific datasets used. Regularization

techniques and additional independent validation sets could

help confirm that the model's performance is not overstated.

By acknowledging these threats and implementing

strategies to mitigate them, the study strives to present a

reliable and valid evaluation of the SFNE model. Future

research should address these limitations by incorporating a

broader range of datasets and performance metrics and

validating the findings across different contexts and domains.

The structured approach ensures that the findings are

critically evaluated and the conclusions are well-supported,

enhancing the study's contribution to estimating software

development effort.

VII. CONCLUSIONS AND FUTURE WORK

This study presents the Swarm Intelligence-Based Functional

Link Fuzzy Neural Estimator (SFNE) for Software

Development Effort Estimation (SDEE). The SFNE model

integrates interval type-2 fuzzy logic systems (IT2FLS),

active learning, and particle swarm optimization (PSO) to

improve the accuracy and reliability of effort predictions.

Empirical evaluations conducted on six real-world datasets

from the PROMISE repository demonstrate that SFNE

consistently outperforms traditional models, including PSO-

FLANN, Active-FLANN-PSO, FLANN with BP learning,

ANN with BP learning, and radial basis functions (RBFs).

Key performance indicators, such as Mean Magnitude of

Relative Error (MMRE), Median Magnitude of Relative

Error (MdMRE), and Standardized Accuracy (SA), highlight

the superiority of SFNE in delivering more accurate and

consistent estimates. For example, the SFNE model achieved

an MMRE of 2.87E-05 and a MdMRE of 7.1123E-09 on the

DesharnaisL1 dataset, significantly outperforming the RBF

model, which recorded an MMRE of 0.34391. Furthermore,

SFNE's SA score reached 99.983% on the DesharnaisL3

dataset, while the RBF model only achieved 41.734% on the

Albrecht dataset. These findings underscore SFNE's

robustness and adaptability across diverse datasets, making it

a valuable tool for accurate effort estimation in software

development projects.

Future research will focus on refining the SFNE model

further. One direction involves comparing the performance

of different membership functions, such as Gaussian and

triangular, to assess their impact on the accuracy of fuzzy

logic systems. Additionally, optimizing the parameters α and

β, which influence the generation of interval type-2 fuzzy

sets, will be explored to enhance model performance further.

Contemporary computational intelligence techniques,

including deep learning and reinforcement learning, will be

investigated for higher estimation accuracy and model

robustness. These approaches could potentially improve the

adaptive learning capabilities of SFNE. Furthermore, efforts

will be directed toward developing automated tools and

software based on the SFNE model, facilitating its practical

adoption in the software industry for real-time effort

estimation and decision-making.

REFERENCES
[1] F. P. Brooks Jr., "Three great challenges for half-century-old

computer science," J. ACM, vol. 50, no. 1, pp. 25–26, Jan. 2003.

[2] S. Hastie and S. Wojewoda, "Standish Group 2015 Chaos Report-
Q&A with Jennifer Lynch," Standish Group, 2015. [Online].

Available: www.standishgroup.com. [Accessed: 2016].

[3] B. W. Boehm, Software Engineering Economics. Englewood Cliffs,

NJ, USA: Prentice-Hall, 1981.

[4] L. H. Putnam, "A general empirical solution to the macro software
sizing and estimating problem," IEEE Transactions on Software

Engineering, vol. 4, no. 4, pp. 345–361, 1978.

[5] T. R. Benala, S. Dehuri, and R. Mall, "Computational intelligence in

software cost estimation: An emerging paradigm," ACM SIGSOFT

Software Engineering Notes, vol. 37, no. 3, pp. 1–7, 2012.
[6] G. M. Méndez, O. Castillo, R. Colás, and H. Moreno, "Finishing mill

strip gage setup and control by interval type-1 non-singleton type-2

fuzzy logic systems," Applied Soft Computing, vol. 24, pp. 900–911,

2014.

[7] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems:
Introduction and New Directions. Upper Saddle River, NJ, USA:

Prentice-Hall, 2001.

[8] J. M. Mendel, R. I. John, and F. Liu, "Interval type-2 fuzzy logic

systems made simple," IEEE Transactions on Fuzzy Systems, vol. 14,

no. 6, pp. 808–821, 2006.
[9] J. M. Mendel and X. Liu, "Simplified interval type-2 fuzzy logic

systems," IEEE Transactions on Fuzzy Systems, vol. 21, no. 6, pp.

1056–1069, 2013.

[10] T. Nguyen, A. Khosravi, D. Creighton, and S. Nahavandi, "EEG

signal classification for BCI applications by wavelets and interval
type-2 fuzzy logic systems," Expert Systems with Applications, vol.

42, no. 9, pp. 4370–4380, June 2015.

[11] O. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz, "Type-2 fuzzy

logic: theory and applications," in IEEE International Conference on
Granular Computing (GRC 2007), pp. 145–145, 2007.

[12] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks.

Reading, MA, USA: Addison-Wesley, 1989.

[13] S. Dasgupta, "Two faces of active learning," Theoretical Computer

Science, vol. 412, no. 19, pp. 1767–1781, 2011.
[14] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy,

"Active learning and effort estimation: Finding the essential content

of software effort estimation data," IEEE Transactions on Software

Engineering, vol. 39, no. 8, pp. 1040–1053, Aug. 2012.

[15] R. Eberhart and J. Kennedy, "Particle swarm optimization," in
Proceedings of the IEEE International Conference on Neural

Networks, vol. 4, pp. 1942–1948, Nov. 1995.

[16] Z. Muzaffar and M. A. Ahmed, "Software development effort

prediction: A study on the factors impacting the accuracy of fuzzy

logic systems," Information and Software Technology, vol. 52, no. 1,
pp. 92–109, 2010.

[17] M. A. Ahmed and Z. Muzaffar, "Handling imprecision and

uncertainty in software development effort prediction: A type-2 fuzzy

logic based framework," Information and Software Technology, vol.

51, no. 3, pp. 640–654, 2009.
[18] Z. Xu and T. M. Khoshgoftaar, "Identification of fuzzy models of

software cost estimation," Fuzzy Sets and Systems, vol. 145, no. 1, pp.

141–163, 2004.

[19] M. Azzeh, D. Neagu, and P. Cowling, "Software effort estimation

based on weighted fuzzy grey relational analysis," in Proceedings of

https://jeeemi.org/index.php/jeeemi/index
http://www.standishgroup.com/

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 1, January 2025, pp: 154-164; eISSN: 2656-8632

Homepage: jeeemi.org 266

the 5th International Conference on Predictor Models in Software

Engineering (PROMISE '09), Vancouver, BC, Canada, May 2009,

Article no. 8, 10 pages.
[20] A. Sheta, "Software effort estimation and stock market prediction

using Takagi-Sugeno fuzzy models," in Proceedings of the IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE 2006),

Vancouver, BC, Canada, July 2006, pp. 171–178.

[21] J. Lee, W.-T. Lee, and J.-Y. Kuo, "Fuzzy logic as a basis for use case
point estimation," in Proceedings of the IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei, Taiwan,

June 2011, pp. 2702–2707.

[22] B. T. Rao, B. Sameet, G. K. Swathi, K. V. Gupta, C. Ravi Teja, and

S. Sumana, "A novel neural network approach for software cost
estimation using functional link artificial neural network (FLANN),"

International Journal of Computer Science and Network Security,

vol. 9, no. 6, pp. 126–131, 2009.

[23] B. T. Rao, S. Dehuri, and R. Mall, "Functional link artificial neural

networks for software cost estimation," International Journal of
Applied Evolutionary Computation, vol. 3, no. 2, pp. 62–82, 2012.

[24] T. R. Benala, K. Chinnababu, R. Mall, and S. Dehuri, "A particle

swarm optimized functional link artificial neural network (PSO-

FLANN) in software cost estimation," in Proceedings of the

International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA), S. Satapathy, S. Udgata, and B.

Biswal, Eds., Advances in Intelligent Systems and Computing, vol.

199. Berlin, Heidelberg: Springer, 2013, pp. 59–66. doi:

10.1007/978-3-642-35314-7_8.

[25] T. R. Benala, R. Mall, S. Dehuri, and P. Swetha, "Software effort
estimation using functional link neural networks tuned with active

learning and optimized with particle swarm optimization," in Swarm,

Evolutionary, and Memetic Computing: SEMCCO 2014, B.

Panigrahi, P. Suganthan, and S. Das, Eds., Lecture Notes in Computer
Science, vol. 8947. Cham, Switzerland: Springer, 2015, pp. 223–238.

doi: 10.1007/978-3-319-20294-5_20.

[26] P. Manchala and M. Bisi, "TSoptEE: Two-stage optimization

technique for software development effort estimation," Cluster

Computing, vol. 27, pp. 8889–8908, 2024. doi: 10.1007/s10586-024-
04418-2.

[27] L. X. Wang and J. M. Mendel, "Generating fuzzy rules by learning

from examples," IEEE Transactions on Systems, Man, and

Cybernetics, vol. 22, no. 6, pp. 1414-1427, Nov./Dec. 1992.

[28] N. N. Karnik and J. M. Mendel, "Operations on type-2 fuzzy sets,"
Fuzzy Sets and Systems, vol. 122, no. 2, pp. 327-348, 2001.

[29] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens, "Data mining

techniques for software effort estimation: A comparative study,"

IEEE Transactions on Software Engineering, vol. 38, no. 2, pp. 375–

397, 2011.
[30] M. Shin and A. L. Goel, "Empirical data modelling in software

engineering using radial basis functions," IEEE Transactions on

Software Engineering, vol. 26, no. 6, pp. 567-576, 2000.

[31] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network

Design. Boston, MA, USA: PWS Publishing Co., 1997.
[32] P. Runeson and M. Höst, "Guidelines for conducting and reporting

case study research in software engineering," Empirical Software

Engineering, vol. 14, pp. 131-164, 2009.

[33] M. Shepperd and S. MacDonell, “Evaluating prediction systems in

software project estimation,” Inf. Softw. Technol., vol. 54, no. 8, pp.
820–827, 2012.

[34] T. R. Benala and R. Mall, "DABE: Differential evolution in analogy-

based software development effort estimation," Swarm and

Evolutionary Computation, vol. 38, pp. 158–172, 2018.

AUTHOR’S BIOGRAPHY

Tirimula Rao Benala is an Assistant Professor

in the Department of Information Technology

at JNTU-GV College of Engineering,

Vizianagaram, Andhra Pradesh, India. With a

Ph.D. in Computer Science and Engineering

from JNTU Kakinada, his research focuses on computational

intelligence in software development effort estimation. He

has published over 30 papers in reputable international

journals and conferences, contributing significantly to

machine learning, evolutionary computation, and software

engineering. His professional memberships include Senior

Member IEEE, Professional Member ACM, and Senior Life

Member Computer Society of India. Dr. Benala has received

several awards, including the Young Engineering of the Year

Award and Best Teacher Award. He has been a visiting

fellow at the Centre for Theoretical Studie, IIT Kharagpur,

and has participated in the US-India 21st Century Knowledge

Initiative grant at Chicago State University. His extensive

teaching portfolio encompasses artificial intelligence,

algorithms, cryptography, and software testing.

Dr. Anupama Kaushik is working as an

associate professor at Maharaja Surajmal

Institute of Technology, affiliated to Guru

Gobind Singh Indraprastha University, New

Delhi. She has 20+ years of teaching

experience. She is an active member of IEEE. She has done

PhD computer science from Indira Gandhi Delhi Technical

University for Women and Sharda University. Her research

areas are software engineering, neural networks,

optimizations techniques and other soft computing

techniques. She has over 30 research papers in international

and national journals. She is the reviewer of many well

reputed journals like IEEE Transactions on Software

Engineering, Applied Soft Computing, Cluster Computing

etc. She is very dedicated and committed towards her work.

Satchidananda Dehuri (SMIEEE) is working

as a Professor in the Department of Computer

Science (Erstwhile Department of Information

and Communication Technology), Fakir Mohan

University, Balasore, Odisha, India since 2013.
Prior to this appointment, for a short stint (i.e.,

from Oct. 2012 to May 2014) he was an Associate Professor

in the Department of Systems Engineering, Ajou University,

South Korea. He received his M.Tech. and Ph.D. degrees in

Computer Science from Utkal University, Vani Vihar,

Odisha in 2001 and 2006, respectively. He visited as a

BOYSCAST Fellow to the Soft Computing Laboratory,

Yonsei University, Seoul, South Korea under the

BOYSCAST Fellowship Program of DST, Govt. of India in

2008. In 2010 he received the Young Scientist Award in

Engineering and Technology for the year 2008 from Odisha

Vigyan Academy, Department of Science and Technology,

Govt. of Odisha. In 2021 he received Teachers Associateship

and Research Excellence (TARE) Fellowship from SERB,

DST, Govt. of India for three years to carry out intensive

research on Higher Order Neural Networks for Big Data

Analysis at host Institute, ISI Kolkata and Parent Institute,

Fakir Mohan University, Balasore. His research interests

include Multi-objective Optimization, Machine Learning,

and Data Science. He has already published 275 research

papers in reputed journals and conference proceedings.

Under his direct supervision, 20 PhD. Scholars have been

successfully awarded in Computer Science. He has

completed three different research projects obtained from

DST, UGC, and DRDO. His h-index as per Google Scholar

is more than 31. As a part of Academic Collaboration, he has

visited Ireland, New Zealand, Hong Kong, France, South

Korea, and Nepal.

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.1007/978-3-642-35314-7_8
https://doi.org/10.1007/978-3-319-20294-5_20
https://doi.org/10.1007/s10586-024-04418-2
https://doi.org/10.1007/s10586-024-04418-2

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 267

APPENDIX A: ALGORITHMS

Algorithm 1:

[𝝁𝒔𝟏
, 𝝁𝒔𝟏

, 𝝁𝒔𝟐
, 𝝁𝒔𝟐

] = 𝑭𝒖𝒛𝒛𝒚 (𝑵𝑻𝑫[𝟏 … 𝑵. 𝟏 … 𝑴])

For each 𝑖 = 1 … 𝑁

For each j=1…M-1

𝐿𝑜𝑤𝑒𝑟(𝑆1[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=1))2

2𝜎𝑠1(𝑖,𝑗)2⁄)

𝑈𝑝𝑝𝑒𝑟(𝑆1[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=1))2

2𝜎𝑠1(𝑖,𝑗)2⁄)

𝐿𝑜𝑤𝑒𝑟(𝑆2[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=2))2

2𝜎𝑠2(𝑖,𝑗)2⁄)

𝑈𝑝𝑝𝑒𝑟(𝑆2[𝑖, 𝑗]) = 𝑒
−(

(𝑥(𝑖,𝑗)−𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖,𝑗,𝑠=2))2

2𝜎𝑠2(𝑖,𝑗)2⁄)

End

End

Step 4.7: Perform T-norm that is logical AND to the membership values. It is simply the minimum membership

value.

For each row 𝑖 = 1 … 𝑁

For each column j=1…M-1

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆1[𝑖, 𝑗]))

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆1[𝑖, 𝑗]))

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆2[𝑖, 𝑗]))

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆2[𝑖, 𝑗]))

End

End

Thus, we obtained the Interval Type-2 fuzzy set for each attribute.

Step 1: Using Mamadhani Fuzzy Inference system tool create a FIS and membership function as Gaussian function.

Step 2: Initially calculate mean and standard deviation as 𝑀𝑒𝑎𝑛 (𝑁𝑇𝐷 (1 … 𝑁, 1 … 𝑀]) and𝑠𝑡𝑑 (𝑁𝑇𝐷 [1 … 𝑁, 1 … 𝑀]).

Step 3: Update the Gaussian parameter standard deviation with calculated standard deviation values

of 𝑁𝑇𝐷 [1 … 𝑁, 1 … 𝑀]. % Crisp to Type 1 fuzzy set %

 𝑀𝑒𝑚𝑏𝑒𝑠𝑟𝑠ℎ𝑖𝑝𝑣𝑎𝑙𝑢𝑒𝑠[1 … 𝑁, 1 … 𝑀, 1 … 𝑘]= 𝑔𝑎𝑢𝑠𝑠𝑚𝑓(𝑁𝑇𝐷(1 … 𝑁, 1 … 𝑀), [𝜎, 𝑐])

Step 4: Convert the Type-1 to Interval Type 2 fuzzy set using mean and standard deviation of membership values of

type -1

Step 4.1: 𝑇𝑦𝑝𝑒2𝑀𝑒𝑎𝑛(1 … 𝑁, 1 … 𝑀 − 1) = 𝑀𝑒𝑎𝑛(𝑀𝑒𝑚𝑏𝑒𝑠𝑟𝑠ℎ𝑖𝑝𝑣𝑎𝑙𝑢𝑒𝑠[1 … 𝑁, 1 … 𝑀 − 1,1 … 𝑘])

𝑇𝑦𝑝𝑒2𝑠𝑡𝑑(1 … 𝑁, 1 … 𝑀 − 1) = 𝑠𝑡𝑑(𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝𝑣𝑎𝑙𝑢𝑒𝑠[1 … 𝑁, 1 … 𝑀 − 1,1 … 𝑘])

Step 4.2: Randomly assign values between range [0, 1] to 𝛼[1 … 𝑁, 1 … 𝑀 − 1] and

 𝛽[1 … 𝑁, 1 … 𝑀 − 1].
Step 4.3: Calculate 𝑅(1, 𝑖) = 𝑠𝑢𝑚(𝑇𝑦𝑝𝑒2𝑠𝑡𝑑[1 … 𝑁, 1 … 𝑀 − 1])/𝑁

Step 4.4: Divide each value of 𝑇𝑦𝑝𝑒2𝑀𝑒𝑎𝑛(1 … 𝑁, 1 … 𝑀 − 1) into two segments s1 and s2 and calculate midpoint

of each segment 𝑀𝑠1, 𝑀𝑠2

Step 4.5: Calculate lower and upper means and standard deviation values for both segments 𝑠1𝑎𝑛𝑑 𝑠2 over the

midpoints 𝑀𝑠1, 𝑀𝑠2

For each row 𝑖 = 1 … 𝑁
For each column 𝑗 = 1 … 𝑀 − 1

For each segment 𝑠 = 1 … 2

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 1) = 𝑀𝑠1 − (𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗))

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 1) = 𝑀𝑠1 + (𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗))

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 2) = 𝑀𝑠2 − (𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗))

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(𝑖, 𝑗, 𝑠 = 2) = 𝑀𝑠2 ± (𝛼(𝑖, 𝑗) ∗ 𝑅(1, 𝑗))

𝜎𝑠1(𝑖, 𝑗) = 𝛽(𝑖, 𝑗) ∗ 𝑅(1, 𝑗)

𝜎𝑠2(𝑖, 𝑗) = 𝛽(𝑖, 𝑗) ∗ 𝑅(1, 𝑗)

End

End

End

Step 4.6: Calculate lower and upper membership values for both segments for each attribute of every project in a

dataset using Gaussian membership function.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 268

 Algorithm 2:

Let us assume, D is the dataset, ND is the normalized Dataset. TrainDataset and TestDataset are the training and

testing parts respectively, P is the data point of reduced size, L and H are lower and higher dimensions

respectively, and TC is the termination criteria, O is the output layer, W is the weighted sum, E is the error,

current best fitness value is CF. Fitness value is F, GB represents global best, PV is the particle velocity.

Step 1: For each 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝐷[1 … 𝑁, 1 … 𝑀]
 Step 1.1: 𝑁𝐷[1 … 𝑁, 1 … 𝑀] = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐷[1 … 𝑁, 1 … 𝑀])

Step 2: Divide ND 2/3rd parts into TrainDataset and 1/3rd part into TestDataset.

Step 3: [𝜇𝑠1
[1 … 𝑁, 1. . 𝑀], 𝜇𝑠1

[1 … 𝑁, 1. . 𝑀], 𝜇𝑠2
[1 … 𝑁, 1. . 𝑀], 𝜇𝑠2

[1 … 𝑁, 1. . 𝑀]] = 𝐹𝐼𝑇(𝑁𝐷[1 … 𝑁, 1 … 𝑀])

 Returns upper and lower membership values of segment1 (s1) and segnent2 (s2)

Step 3: For each TrainDataset

Step 3.1: Apply 𝑄𝑢𝑖𝑐𝑘_𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡[1 … 𝑛 − 1,1 … 𝑚] = 𝑄𝑢𝑖𝑐𝑘(𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡[1 … 𝑁 − 1,1 … 𝑀])

Step 4: For each P

Step 4.1: Map from L to H.

Step 5: For each particle initialize with small values from [-1, 1].

Step 6: While (!TC)

 {

 Apply

𝐹𝐿𝐴𝑁𝑁_𝑃𝑆𝑂(𝑌, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑐1, 𝑐2 , 𝑟1𝑟2, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝜔, 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡, 𝑄𝑢𝑖𝑐𝑘_𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡[1 … 𝑛
− 1,1 … 𝑚])

 {

 For each swarm

 {

 For each particle in the swarm

 {

 For each sample in the training sample

 {

 Calculate W, and send it as input to O.

The tuned values of Interval Type 2 fuzzy

𝜇𝑠1
[1 … 𝑁, 1. . 𝑀], 𝜇𝑠1

[1 … 𝑁, 1. . 𝑀], 𝜇𝑠2
[1 … 𝑁, 1. . 𝑀],

𝜇𝑠2
[1 … 𝑁, 1. . 𝑀] are converted to type 1 fuzzy Using

outputs (Y1 & Y2) in output layer

 𝑌𝑙 =
(𝜇𝒔𝟏

× 𝑌1 + 𝜇𝒔𝟐
× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)⁄

 𝑌𝑟 =
(𝜇

𝒔𝟏
× 𝑌1 + 𝜇𝒔𝟐

× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)
⁄

Then again defuzzyfy the type 1 values to crisp set using Output= 𝜆 × 𝑌𝑙 + (1 − 𝜆) × 𝑌𝑟

 Calculate𝐸 = 𝑌 − 𝑂𝑢𝑡𝑝𝑢𝑡.

 }

 Assign E to F.

 If (F is better than CF)

 {

 Assign F to CF

 }

 Assign CF to GB

 }

 For each particle

 {

 Call Reduced () and Find PV.

 Update Particle Positions

 }

 }

 }

 }

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 7, No. 2, April 2025, pp: 253-269; eISSN: 2656-8632

Homepage: jeeemi.org 269

APPENDIX B: BUILDING INTERVAL TYPE-2 FL

Step 1 The mean of membership values of all the attributes

of the dataset is calculated as follows:

Mean (1, 1) = (𝜇𝑣𝑒𝑟𝑦𝑙𝑜𝑤 + 𝜇𝑙𝑜𝑤 + 𝜇𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 + 𝜇ℎ𝑖𝑔ℎ + 𝜇𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ)/5

 = (0.7980 + 0.9860 + 0.6018 + 0.1815 + 0.0270) 5⁄

 = 0.51886

Step 2 The system calculates type-2 standard deviation of

every attribute. The results of type-2 standard

deviation of the first row and first column of the

hypothetical dataset are as follows:

Type2std(1,1) = ((0.7980 − 0.51886)2

+ (0.9860 − 0.51886)2

+ (0.6018 − 0.51886)2

+ (0.1815 − 0.51886)2

+ (0.0270 − 0.51886)2)
= (0.27914)2 + (0.46714)2

+ (0.08294)2 + (−0.33736)2

+ (−0.49186)2
= (0.07791914 + 0.21821978
+ 0.006879044 + 0.11381177
+ 0.24192626)

 = 0.658755994/
5(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

 = 0.131751199

Step 3 𝛼 and β are assigned random values between [0,1].

Step 4 The system obtains the R matrix by the following

procedure:

R(1,1 … 4) = sum(Type2std[1 … 4,1 … 4])/
(number of rows) i.e.

R(1,1)=(Type2std(1,1)=0.1318+Type2std(1,2)+

Type2std(1,3)+Type2std(1,4))

Step 5 The type-2 mean is divided into equal interval of t

segments. Here, we consider t = 2.

Range of Segment1= from 0 to

((0.51886)/2=0.25943)

Range of segment2= from 0.25943 to 0.51886

Step 6 To calculate the interval type-2 membership values,

the mean and standard deviation of each segment is

deducted as follows:

Mean:

 Take midpoint of segment 1 and segment 2, that is,

 Ms1= (0+0.25943)/2=0.129715

Ms2= (0.25943+0.51886)/2=0.389145

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 1)
= 𝑀𝑠1 − (𝛼(1,1) ∗ 𝑅(1,1))
= 0.1297 − (0.4 ∗ 𝑅(1,1))

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 1)
= 𝑀𝑠1 + (𝛼(1,1) ∗ 𝑅(1,1))
= 0.1297 + (0.6 ∗ 𝑅(1,1)

𝐿𝑜𝑤𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 2)
= 𝑀𝑠2 − (𝛼(1,1) ∗ 𝑅(1,1))
= 0.3892 − (0.1 ∗ 𝑅(1,1))

𝑈𝑝𝑝𝑒𝑟𝑀𝑒𝑎𝑛(1,1, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 2)
= 𝑀𝑠2 ± (𝛼(1,1) ∗ 𝑅(1,1))
= 0.3892 + (0.3 ∗ 𝑅(1,1))

Standard deviation:

𝜎𝑠𝑒𝑔𝑚𝑒𝑛𝑡1(1,1) = 𝛽(1,1) ∗ 𝑅(1,1) = 0.6 ∗ 𝑅(1,1)

𝜎𝑠𝑒𝑔𝑚𝑒𝑛𝑡2(1,1) = 𝛽(1,1) ∗ 𝑅(1,1) = 0.7 ∗ 𝑅(1,1)

𝐿𝑜𝑤𝑒𝑟𝑠1[1 … 4,1. .4], 𝑈𝑝𝑝𝑒𝑟𝑠1
[1 … 4,1. .4], 𝐿𝑜𝑤𝑒𝑟𝑠2

[1 … 4,1. .4], 𝑈𝑝𝑝𝑒𝑟𝑠2
[1 … 4,1. .4]

Step 7 T-norm is computed for 𝐿𝑜𝑤𝑒𝑟𝑠1
[1 … 4,1. .4],

𝐿𝑜𝑤𝑒𝑟𝑠2
[1 … 4,1. .4], 𝑈𝑝𝑝𝑒𝑟𝑠1

[1 … 4,1. .4], and

𝑈𝑝𝑝𝑒𝑟𝑠2
[1 … 4,1. .4] as follows:

For example,

𝐿𝑜𝑤𝑒𝑟𝑠1
(1 … 4,1 … 4) = [0.0023 0.0036 0.0012 0.0032

0.0253 0.0085 0.0124 0.3211

0.1248 0.3214 0.0258 0.1289

0.0001 0.0014 0.0005 0.2587]

𝐿𝑜𝑤𝑒𝑟𝑠2
(1 … 4,1 … 4) = [0.0123 0.0026 0.012 0.02

0.0153 0.0055 0.0134 0.411

0.138 0.3144 0.0148 0.1089

0.0034 0.0214 0.0045 0.2657]

Then, T-norm of each matrix, that is, minimum for each row,

is obtained as follows:

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆1[𝑖, 𝑗]))

𝜇𝑠1
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆1[𝑖, 𝑗]))

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝐿𝑜𝑤𝑒𝑟(𝑆2[𝑖, 𝑗]))

𝜇𝑠2
(𝑖, 1) = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑈𝑝𝑝𝑒𝑟(𝑆2[𝑖, 𝑗]))

Hence, 𝜇𝑠1
(1,1) = min(0.0023,0.0036,0.0012,0.0032) =

0.0012

 𝜇𝑠1
(2,1) = min(0.0253,0.0085,0.0124,0.3211) = 0.0085

Step 8 The local outputs of FLANN, 𝑌1 and 𝑌2, are used to

convert the interval type-2 fuzzy set output to type-

1 fuzzy set output. Let us assume 𝑌1 = 0.125 and

𝑌2 = 0.325 after one iteration and for one instance.

𝑌𝑙 =
(𝜇𝒔𝟏

× 𝑌1 + 𝜇𝒔𝟐
× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)
⁄

 𝑌𝑟 =
(𝜇

𝒔𝟏
× 𝑌1 + 𝜇𝒔𝟐

× 𝑌2)

(𝜇𝒔𝟏
+ 𝜇𝒔𝟐

)
⁄

Let us obtain the value of 𝑌𝑙; 𝑌𝑟 value is obtained in a similar

manner. For one instance of the dataset,

 𝑌𝑙 = (
𝜇𝑠1

(1,1) × 𝑌1 + 𝜇𝑠2
(1,1) × 𝑌2)

(𝜇𝑠1
+ 𝜇𝑠2

)
⁄

=
((0.0012 × 0.125) + (0.0026 × 0.325))

(0.0012 + 0.0026)⁄

𝑌𝑙 = 0.0038

Thus, after getting 𝑌𝑙 & 𝑌𝑟 , i.e., type-1 fuzzy set outputs, we

defuzzify them into crisp set outputs by using the following

formula:

𝜆 × 𝑌𝑙 + (1 − 𝜆) × 𝑌𝑟

Here, λ is the defuzzify parameter, which takes any random

number from the range [0, 1]. Thus, we get the final

calculated output as:

Ŷ =𝜆 × 𝑌𝑙 + (1 − 𝜆) × 𝑌𝑟

Step 9 The system calculates the error values, and weights

are updated using the adaptive PSO technique

reported by Benala et al. (2015).

Step 10 The quality measures, namely mean magnitude of

relative error (MMRE), MdMRE, prediction

(PRED), standardized accuracy (SA), Delta, etc.,

are obtained.

https://jeeemi.org/index.php/jeeemi/index

	I. INTRODUCTION
	II. RELATED WORK
	III. METHODOLOGY
	IV. RESULT
	V. DISCUSSION
	VI. THREATS TO VALIDITY
	VII. CONCLUSIONS AND FUTURE WORK
	REFERENCES
	AUTHOR’S BIOGRAPHY
	APPENDIX A: ALGORITHMS
	APPENDIX B: BUILDING INTERVAL TYPE-2 FL

