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ABSTRACT Artificial intelligence-assisted medical diagnosis is enhancing accuracy with the contribution of several state 
of the art technologies such as Deep Learning (DL), Machine Learning (ML) and Image Processing (IP). From the detection 
of diseases to the selection of proper treatment plans, AI-powered assistance is effectively employed by healthcare 
professionals. Despite these advancements, the application of AI in animal healthcare is lagging behind, presenting a 
significant scope for AI adoption in veterinary medical diagnostics. This study addresses this gap by focusing on the 
automated diagnosis of canine Babesia infection, a parasitic disease that affects red blood cells (RBC). Our research 
contributed by developing a labeled dataset of microscopic images of red blood cells of infected and uninfected cases. During 
this work, four AI models are developed for automated classification: a custom Convolutional Neural Network (CNN), two 
pre-trained models (VGG16 ,DenseNet121) and a hybrid model (DenseNet121 + Support Vector Machine (SVM)). The 
performance of these models was 96.88%, 94%, 96.37% and 95.50% respectively. To further enhance the accuracy, a 
weighted average ensemble technique was employed. The ensemble model achieved an improved accuracy of 97.75%, 
demonstrating its potential. The enhanced performance of the ensemble model highlights the effectiveness of our method, 
significantly outperforming traditional methods and providing veterinarians with an efficient early diagnosis tool. This study 
is one of the few to address disease detection from microscopic images in animals using the potential of Artificial Intelligence. 
 
INDEX TERMS Canine Babesiosis, CNN, Deep Learning, Machine Learning, Transfer Learning

I. INTRODUCTION 
Babesia species such as Babesiacanis, Babesiagibsoni, 
Babesiaroi and Babesiavogeli invade mammalian red blood cells 
(RBCs) causing anemia and posing a serious threat to dogs 
across the world[1]-[4]. Babesiosis is primarily spread through 
the bites of infected ticks with evidence of direct animal-to-
animal transmission. The traditional diagnostic process involves 
microscopic examination of Giemsa or Wright’s stained 
peripheral blood smear. However, other diagnostic tests such as 
the Rapid Antigen Test (RAT), ELISA (enzyme-linked 
immunosorbent assay) and molecular assays like PCR 
(polymerase chain reaction) [4] are seldom used.AI is utilized in 
several medical problems for its ability to provide accurate, 
consistent and rapid diagnostic results, enhancing the efficiency 
and reliability of disease detection. In human disease diagnosis, 
AI-powered applications are already demonstrating high 
accuracy in various diagnostic tasks. However, the application 

of AI in animal healthcare remains underexplored, presenting a 
significant opportunity for innovation. 
   One of the most successful applications of CNNs is in the field 
of quantitative microscopy. Convolutional Neural Network 
(CNN) has enabled models to learn by emulating the human 
visual systems’ functionality and structure. In several 
paradigms such as intelligent medical treatments[5],speech 
recognition[6], face detection[7], object detection [8], self-
driving or autonomous cars[9], handwritten character 
recognition [10], cancer detection[11],malaria parasite 
detection[12],[13] and in various other fields CNNs’ 
performances are attaining quite promising results. 

For this study, we collaborated with veterinary pathology 
laboratories to create a custom dataset. We build and retrain 
two (02) pre-trained CNN models, a custom CNN model and 
one hybrid model. Initially VGG16[14] and 
DenseNet121[15]were deployed in a non-trainable setting, 
with all weights imported as configured during training on the 
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ImageNet dataset. During the transfer learning approach, the 
top layers after the flattened layer were removed and replaced 
with customized neural networks for our desired binary 
classification. An ensemble approach was adopted by 
combining the predictions of these four models, which is less 
susceptible to errors or biases present in any single model. The 
successful development of such a system could result in a 
rapid, cost-effective, automated system that requires minimum 
human intervention and accurately assists pathologists. 
Through the integration of these fields, we fill a fundamental 
void in veterinary diagnostics by demonstrating how deep 
ensemble learning may greatly improve animal wellness. 

The findings of this research works are expected to 
contribute in the following ways: 

a. As there is no dataset available in public domain for 
babesia infected RBC images, the dataset generated for 
this research will yield a new repository for upcoming 
researchers.  

b. The results of this study will lead to a new way for 
diagnosing babesia that is fast, accurate, automated and 
cost effective using deep learning strategies 

c. Attract several researchers to work on problems related 
to animal healthcare and diagnostics 
 

The remainder of the paper is structured as follows: Section 
2 briefly discusses related works published in recent years. 
Section 3 covers the materials and methods used in this study, 
highlighting the data acquisition and pre-processing steps, 
along with a discussion on the theoretical background of the 
strategies used, including an overview of CNNs and the 
transfer learning approach. Section 4 and 5 proposes the new 
ensemble learning scheme and presents the results and 
discussion. Finally, the paper concludes with the findings and 
future scope.  

 
II.  RELATED WORK AND PROBLEM STATEMENT  
 
Deep Neural Network models are nonlinear methods that are 
highly flexible, able to learn complex relationships between 
variables and approximate any mapping function. Due to this 
flexibility, these models have high variance, which can be 
addressed by ensemble deep learning approaches. These 
approaches involve training multiple deep models for the 
problem and combining their predictions. Various researchers 
have utilized ensemble learning in combination with deep 
learning techniques. Given the potential benefits, it is crucial 
to explore how strategies employed in other fields could be 
adapted to veterinary contexts. Therefore, we have chosen to 
review publications that utilize deep ensemble learning 
strategies in diverse application areas. Following are the most 
significant model proposed in last few years using ensemble 
learning strategies (shown in TABLE 1). 

III. MATERIAL AND METHODS 

A. PROPOSED METHODOLOGY 

The proposed approach seeks to create a model with high 
classification accuracy for distinguishing between infected and 
uninfected cells. Initially, four different models are examined 
separately. We take into account models from various 
categories: two pre-trained models are deployed, one self-
created custom CNN model (trained from scratch) and one 
hybrid model that uses DL for feature extraction and ML for 
classification (DenseNet121+SVM). Each model is used for the 
classification on the same dataset and the accuracies are 
recorded. To enhance accuracy and robustness, we applied 
average ensemble learning by combining the predictions of all 
four models. Later, we implemented weighted ensemble 
learning. The appropriate weight for which the weighted 
ensemble model delivers the highest accuracy is determined by 
grid search. FIGURE 1 demonstrates the proposed classification 
technique.  
 

 

FIGURE 1. The proposed deep ensemble model for classification 
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A. DATA ACQUISITION  

Data collection for this work is carried out with the help of 
laboratories that have expertise in animal pathology, such as the 
laboratory of the Veterinary Clinical Complex of the College of 
Veterinary Science, Khanapara, Assam. Suspected canine 
babesiosis blood samples are collected at the laboratory and 
blood smears are prepared on glass slides as per standard 

protocol. Each microscope has a mounted camera that can be 
used for capturing microscopic slide images. These slides are 
observed under a microscope (SENSI i4000, Labovision) under 
the oil immersion objective (100X). In the case of babesia 
infection, a pear-shaped, round, oval, pleomorphic or signet 
ring-shaped spot[32] is visible in the red blood cell, which is 
used as an indicator. The appearance of the spot indicates an 
infected cell. 

 
TABLE 1 

Summary of recent models 
 

Author(s) Proposed Method Datasets 
 

Díaz et al. (2009)[16] Quantification and classification of malaria infection 
 

450 malaria images 
Specificity of 99.7% and 
sensitivity of 94%. 

Anggraini et al. (2011)[17] Novel image processing algorithm to detect malaria Giemsa-stained peripheral 
blood Samples 

Das et al. (2015)[18] Image characterization and classification framework for 
malaria-infected stage detection. 

Microscopic images of thin 
blood smears 
Specificity: 97.29%-98.64%, 
Sensitivity: 100%, PPV: 
99.46%-99.73%, Overall 
accuracy: 96.73%-96.84%. 

Liang et al. (2016)[19] Robust ML CNN-based image analysis for malaria 
diagnosis. 

27,578 single cell images 
accuracy of 97.37%. 

Bashir et al. (2017)[20] Feature-based malaria detection using ANN classifier. 
 

Centre for Disease Control 
(CDC) website. 

Rajaraman et al. (2018)[21] Evaluation of pre-trained CNN-based DL models as feature 
extractors for classifying parasitized and uninfected cells. 

National Library of Medicine 
(IRB#12972) 

Kora et al.(2019)[22] Meta-learning ensemble method fusing baseline DL models 
with 2 tiers of meta-classifiers. 

Arabic tweets, AJGT, IMDB 
review, SemEval 2017 Task 4, 
COVID19 fake news detection, 
ArSarcasm 

Fuhad et al., (2020)[13] CNN-based model for malaria diagnosis from blood smear 
images using autoencoder. 

Microscopic blood smear 
images 
Accuracy of 99.23%. 

Livieris et al. (2021)[23] Two ensemble prediction models exploiting WCNNs using 
Bagging and Boosting. 
 

30 datasets from UCI 
Machine Learning Repository 
(Dua and Karra Taniskidou) 

Alharbi et al., (2021)[24] Sentiment analysis DL-based model to predict opinion 
polarity and sentiments. 

LABR,HTL,RES, 
PROD,ArTwitter, ASTD 
Accuracy of 81.11% to 94.32% 

Mohammadi et al. (2022)[25] Four DL models (CNN, LSTM, BiLSTM, GRU) combined 
using stacking ensemble with logistic regression as meta-
learner. 

SemEval2016(SE-ABSA 2016) 
Increase in accuracy of aspect-
based prediction by 5% to 20% 
compared to basic DL methods. 
 

Bhuiyan et al (2023)[26] Ensemble learning-based DL model using VGG16, VGG19, 
and DenseNet201 for malaria parasite identification. 

Red blood cell images 
accuracy  of 97.92% 

Jameela et al. (2022)[27] Automated diagnosis to evaluate parasitemia using CNN 
models (ResNet50, ResNet34, VGG-16, VGG-19). 

N/A 

Alnussairi & İbrahim (2022)[28] Deep CNN to improve malaria diagnosis accuracy using 
VGG19, ResNet50, and MobileNetV2. 

NIH Malaria Dataset  

Madhu et al. (2023)[29] Deep-learning approach to distinguish between malaria-
parasitized and uninfected cells. 

N/A 

Wang et al. (2023)[30] Deep learning algorithm based on YOLOv7 for identifying 
and classifying Plasmodium species in thin blood smears. 
 

Thin blood smears 

Jorwal et al. (2024)[31] DL model for malaria detection using blood smear images. Blood smear images 
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B. IMAGE PRE-PROCESSING 

For our experiment, instead of processing the whole slide 
images, we decided to crop single red blood cell images from the 
slides. This approach can highly reduce processing costs and 
optimize resource utilization.  To crop the blood cells from the 
microscopic slide images, various image pre-processing 
techniques are applied, such as resizing the image to a standard 
size of 512 x 512 and converting the image to grayscale. The 
noise of the image is removed using Gaussian blur, adaptive 
thresholding to convert the grayscale image to a binary image. 
Otsu’s method automatically determines the optimal threshold 
value. Finally, morphological operations are performed to 
improve the quality of the binary image, particularly in 
separating connected components and removing noise. A 
morphological opening operation is performed, which is a 
combination of two morphological operations called erosion 

followed by dilation. Next, we find the contours that detect the 
boundaries of the cells in the binary image. The contours create 
individual masks, and these masks are then applied to the 
original image, allowing the extraction of distinct cells. FIGURE 
2 (a),(b),(c) show the samples of a slides, and Negative and 
Positive cropped cells respectively. 
The process saves each cropped cell as a separate image in an 
output folder.  

C. DATA AUGMENTATION 

Data augmentation is used to increase the number of images 
in the dataset and to provide generalization in the training 
process by reducing the problem of overfitting. It involves 
applying various transformations to the existing data to create 
new, slightly altered versions of the original data.  For this 
work, we have included rotation (randomly between -10 and 
10 degrees), zooming images with a probability of 0.3, 
flipping (left to right, top to bottom) with a probability of 0.5, 
shearing (randomly between -10 and 10 degrees), adjusting 
brightness and contrast (both are randomly chosen between 
0.5 and 1.5 with a probability of 0.5). Also, images are flipped 
left-right and top-bottom, along with a shear and zoom 

probability of 0.2. These will help to increase the diversity of 
the training dataset to improve robustness and model 
generalization. For this experiment, we decided to set the 
augmented dataset to 4000 images saved in separate folder. 
The dimensions of the augmented images are 128x128 pixels 
each. 

D. CONVOLUTIONAL NEURAL NETWORK(CNN) AND 

TRANSFER LEARNING APPROACH 

Convolutional Neural Networks (CNNs) have gained 
tremendous attention for their ability to automatically learn 
hierarchical features from images, which can solve various 
computer vision-based problems such as image classification, 
segmentation, and object detection. The CNN architecture is 
designed to mimic the functionality of the human visual system. 
There are several convolutional blocks[33] in a CNN 
architecture, and each block contains convolutional filters that 
extract features from the input images[34]. These filters are 
followed by pooling and Normalization layers to reduce the 
spatial dimensions and normalize the activations[35],[36]. 
FIGURE 3 presents a basic CNN architecture and Eq. (1), (2), 
(5)[37], Eq. (3)[38], Eq. (4), Eq. (6)[39] represents the basic 
mathematical model for CNN architecture.  The convolution 
operation between an input image and filter is given by Eq. (1). 

𝑂(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗). 𝐹(𝑖, 𝑗)	!"#
$%&

'"#
(%&             (1) 

 
where 𝑂(𝑥, 𝑦)  is the output feature map.,𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) is the 
input image,𝐹(𝑖, 𝑗) is the filter, 𝑚, 𝑛 are the dimensions of the 
filter. 
The Rectified Linear Unit (ReLU) activation function is 
defined as Eq. (2) 

𝑅𝑒𝐿𝑈(𝑥) = max	(0, 𝑥)      (2) 
where 𝑥	is the input to the activation function, max	(0, 𝑥) is a 
mathematical operation that returns the larger of the two values 
if 𝑥 is less than or equal to zero, max(0, 𝑥)	returns 0 
if 𝑥 is greater than zero, max(0, 𝑥)	returns 0 𝑥 

 
1. POOLING OPERATION (MAX POOLING) 
Pooling helps in managing spatial dimensions, enhance 
computational efficiency and improve generalization abilities in 
Convolutional Neural Networks (CNNs). The pooling layer 
summarizes the features present in a region of the feature map 
generated by a convolution layer. It reduces the spatial 
dimensions (height and width) of feature maps, which decreases 
the number of parameters, lessens the computational load and 
reduces the risk of overfitting. Max Pooling selects the 
maximum value from a defined region of the feature map. It 
produces a down sampled feature map, retaining the most 
prominent features while discarding less important information, 
effectively downsampling the input (Eq. (3)). 
 

𝑝$,'=max	(ℎ$,('"#),-.)                        (3) 
 

where 𝑚-th max-polled band is composed of 𝑗 related filters 
𝑝', 𝑁	 ∈ {1,… . , 𝑅} is a pooling shift. 
 

  
a) Slide Image 

 

  
b) Negative Cropped cell image         
 

c) Positive Cropped cell images 
 

FIGURE 2. Blood Cells Images(a) Slide Image; (b) Negative Cropped cell images; 
(c) Positive Cropped cell images 
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2. FLATTENING 
Flattening is the process of converting the multi-dimensional 
output of the convolutional and pooling layers into a single one-
dimensional vector. The feature maps from the pooling and 
convolutional and are flattened into a one-dimensional vector 
that are fed to the next layer i.e. Fully Connected Layer as input 
which performs high-level reasoning based on the extracted 
features. To make a final decision regarding the input data, it 
enables the network to integrate and make use of all the spatial 
features that were learned throughout the convolutional layers. 
The fully connected layers take the flattened vector and process 
it to predict the final output as shown in Eq. (4). 
 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑𝑆𝑖𝑧𝑒 = 𝑂/(012	X	𝑂23(421	X 	𝑂526!!378          (4) 
 

where 𝑂/(012 is the width of the feature map, 𝑂23(421 is the 
height of the feature map and 𝑂526!!378	is the number of 
channels. 
3. FULLY CONNECTED LAYER 
Dense layers or fully linked layers are an essential part of 
convolutional neural networks (CNNs) and other neural network 
architectures. Usually located at the end of the network design 
these layers are in charge of merging the features that were 
retrieved previously in order to produce final predictions, such 
classifying an image or producing a regression output. 
 Fully connected layers are vital, particularly in classification 
tasks, where the objective is to categorize the input image into 
different classes according to the features learned. In a fully 
connected layer, each neuron receives input from every neuron 
in the preceding layer, combining these inputs in various ways 
to make predictions (Eq. (5)). 

𝑦 = 𝑓(𝑥.𝑤)        (5) 
 
where 𝑤	is the weight matrix.,𝑥	is the input vector,𝑓 is the 
activation function,𝑦	is the output vector 

 

4. SOFTMAX ACTIVATION (FOR CLASSIFICATION) 

A set of logits is produced by the last fully connected layer, also 
referred to as the output layer, following the convolutional, 
pooling, and fully connected layers. Each of these real-valued 
logits represents the network's score for a particular class. These 
logits are converted into probabilities using the Softmax method. 
The function successfully highlights the class with the highest 
projected score by emphasizing the greatest logits and 
suppressing smaller ones. A probability distribution is the 
Softmax function's output. The probability that an input image 
belongs to a specific class is represented by each value. It’s an 
essential part of the final layer in many classification-based 
CNN architectures (Eq. (6)). 
 

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)= 3!"
∑ 3!#$
#%&

                                     (6) 

 
where Softmax function 𝑧 = [𝑧#, 𝑧;, … 𝑧!], 𝑧(  is the score of 
class 𝑖, 𝑒	is the Euler’s number. 
After the last convolutional block, the complex feature maps are 
flattened into a one-dimensional array and fed into fully 
connected (dense) layers. These dense layers may consist of 
varying numbers of layers and neurons, depending on the 
complexity of the task. The final output layer has a number of 
neurons equal to the number of classes in the classification 
problem. The output of the model is given in terms of the 
probability of each class, with the highest probability chosen as 
the prediction result. The advantage of using CNN over Neural 
Network is in its reduced processing overhead. As all deep 
learning (DL) models are data-hungry, convolutional neural 
networks (CNNs) are no exception and require a massive 

amount of meticulously labeled data for training. In most 
scenarios, it is difficult to obtain such annotated data. Even if 
such a huge amount of data is available, training a CNN from 
scratch often requires massive processing power and time, which 
is challenging in resource-constrained environments. This 
problem can be addressed by adopting a transfer learning 
approach. Instead of training a CNN from scratch, pre-trained 

 
FIGURE 3. Basic CNN-architecture 
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CNN models can be used to fine-tune weights. In this strategy, 
the already trained weights on large datasets can be directly used 
for our models. Several renowned pre-trained models, such as 
VGG16, VGG19, AlexNet, DenseNet, ResNet,Inception etc., 
are trained on extensive datasets like ImageNet. Depending on 
the requirement, one can freeze and unfreeze any number of 
convolutional blocks. These pre-trained models capture low-
level features like edges and textures, which are generally 
applicable across different visual recognition tasks. The fully 
connected layers are replaced with custom neural network layers 
with any number of layers and neurons. The output layer should 
have neurons equal to the number of classes in the classification 
problem. By using a transfer learning approach, a model can 
deliver high accuracy with a limited dataset size and converge 
faster, resulting in faster training. 

E. ENSEMBLE LEARNING 

In ensemble approaches the stability and prediction capacity 
of the final model are increased by combining individual 
models using bagging[40], boosting[41] or stacking[42] 
strategies. To arrive at the final choice, the predictions of 
multiple simple models are merged, rather than learning a 
single sophisticated model[43],[44]. When compared to the 
accuracy of the individual models, it yields a composite 
prediction whose final accuracy is higher. These methods can 
be divided into two groups: sequential ensemble methods and 
parallel ensemble methods. In sequential ensemble methods, 
base learners are generated consecutively. The basic 
motivation of sequential methods is to use the dependence 
between the base learners; by giving higher weight to 
previously mislabeled examples, the overall performance of 
the model can be boosted. Parallel ensemble methods are 
applied when the base learners are generated in parallel, such 
as in random forests.  

Deep ensemble techniques involve creating a collection of 
multiple deep learning models, each trained independently on 
the same dataset (or slightly modified versions of the dataset). 
These individual models are then combined to make a final 
prediction. A weighted average ensemble leverages predictions 
from multiple models, but instead of simply voting or averaging 
the predictions, each model's contribution to the final prediction 
is weighted according to its perceived accuracy. FIGURE 4 
demonstrates the working of Ensemble learning. The 
performances of the models are quantified with the help of 
metrics called accuracy, recall, precision, specificity and F1-
Score.Each of which are depicted in Eq.(7), (8), (9), (10), 
(11)[45], [46] respectively. 
 

Accuracy = <=-<,
<=->=-<,->,

    (7) 
 

Precision = <=
<=->=

     (8) 
 

Sensitivity (Recall) = <=
<=->,

   (9) 
 

Specificity = <=
<,->=

    (10) 
 

F1- score = 2 X =.35(8(?!	@	A35677
=.35(8(?!-A35677

   (11) 

 
FIGURE 4. Working of Ensemble Learning 
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TP (True Positive) is the number of instances that are 
positive and correctly predicted as positive.TN (True 
Negative) is the number of instances that are negative and 
correctly predicted as negative. FP (False Positive) is the 
number of instances that are actually negative but incorrectly 
predicted as positive. And FN (False Negative) is the number 
of instances that are actually positive but incorrectly 
predicted as negative. 

IV. RESULTS 

A. EXPERIMENTAL SETUP   

As the experiments were conducted in a resource-constrained 
environment, the personal computer resources were only used 
for support purposes. We completely relied on the Google cloud 
environment called Google Colab Pro for all training and testing 

activities. The testing and training are performed using T4 Tesla 
GPU and an Intel Xeon 2.20 GHz CPU with 16 GB RAM. The 
platform provided by TensorFlow with Keras 2.3.1 API is used 
for implementing neural networks. Python 3 is used for all 
programming in this project. For the training 80% of total 
images are used whereas for testing 20% is reserved. After 
employing augmentation 4000 images are generated out of 
which 3200 images i.e. 80% of total images are used for training 
whereas 800 images (20%) are reserved for testing or validation. 

B. EXPERIMENT 1: CUSTOM CNN MODEL FOR 

CLASSIFICATION 

A custom CNN model is designed with a total of three 
convolutional blocks. The input shape of the model is set to 
(128,128,3). The first convolutional layer has 32 filters, followed 
by MaxPooling and BatchNormalization. The second 
convolutional layer has 64 filters, and the third convolutional 

  
(a) (b) 

 
                                                                                     (c) 

FIGURE5. Graph of Custom CNN: (a) Loss graph of Custom CNN, (b) Accuracy graph of Custom CNN, (c) Confusion Matrix of Custom 
CNN 
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layer consists of 128 filters. The fully connected layer is fed the 
flattened output of the third convolutional block after a dropout 
of 50%. In the proposed architecture, one dense layer is added at 
the top. Dense layer 1 has 256 nodes and the output layer has 2 
nodes (indicating a binary classification problem). The model 
has 7,633,090 (29.1 MB) parameters, of which 7,632,642 are 
trainable and 448 are non-trainable. The model achieves a high 
accuracy of 96.88% in 100 epochs. The precision, recall, and F1-
score of the model are 96%, 98% and 97% respectively. The 
‘Adam’ optimizer is used with a learning rate of 0.0001, and the 
loss function is sparse_categorical_crossentropy. The model 
summary is shown in TABLE 2. The loss and accuracy graphs 
for training and testing are demonstrated in FIGURE 5(a) and 
FIGURES 5(b) respectively. Performance of the model is 
recorder in TABLE 4. From the confusion matrix shown in 
FIGURE 5(c), it is prominent that the model is able to correctly 
classify 775 images out of 800 validation images. 8 numbers of 
negative images are misclassified as positive image whereas 17 
positive images are wrongly predicted as negative.  

TABLE 2 
 Model Summary for the proposed Custom CNN model  

 
Layer Size Kernel 

Size 
Stride Act 

Convolutional 1 128x128x32 5x5 1 ReLU 
Pooling 1 63x63x32 3x3 2 - 

Normalization 63x63x32 - - - 
Convolutional 2 63x63x64 5x5 1 ReLU 

Pooling 2 31x31x64 3x3 2 - 
Normalization 31x31x64 - - - 

Convolutional 3 31x31x128 5x5 1 ReLU 
Pooling 3 15x15x128 3x3 2 - 

Normalization 15x15x128 - - - 
Fully Connected  256 - - ReLU 

Output 2 - - Softmax 

C. EXPERIMENT 2: CLASSIFICATION USING 
TRANSFER LEARNING 

In the pre-trained models, VGG16 and DenseNet121, the top 
layers are removed and replaced with a fully connected layer. 
The input size is set to (128,128,3), which is the same as the 
input image dimensions. The dense network consists of two 
layers. The first layer has 256 nodes, and the activation 
function used is ReLU. The output layer has 2 nodes, and the 
activation function used is SoftMax. The models are compiled 
with a learning rate of 0.0001 using the Adam optimizer, and 
sparse_categorical_crossentropy is used as the loss function. 
The accuracy of the VGG16 model is 94% for 100 epochs, and 
similarly, DenseNet121 achieves 96.37% accuracy for 100 
epochs. The loss and accuracy graphs for training and testing 
of VGG16 and DenseNet121 are demonstrated in FIGURE 6 
(a), FIGURE 6(b), FIGURE6 (c) and FIGURE6 (d) 
respectively. FIGURE 7(a) and FIGURE 7(b) shows the 
confusion matrix of VGG16 and DenseNet121. Table 4 
depicts the performance of the two models. 

D. EXPERIMENT 3: HYBRID MODEL (DENSENET121 AND 

SVM) 

Using a hybrid model that combines deep learning (DL) and 
machine learning (ML) techniques offers several advantages. 
One significant benefit is the ability to leverage the strengths of 
both approaches: DL's capacity to automatically extract intricate 
and high-dimensional features from raw data, and ML’s 
efficiency in making predictions with lower computational 
overhead. This approach helps environment with limited 
computational resources. For instance, while Convolutional 
Neural Networks (CNNs) can handle the complex task of feature 
extraction from large datasets, traditional ML classifiers can 
then be used to process these extracted features, providing robust 
predictions with reduced training time. Additionally, this hybrid 
approach can mitigate the need for extensive labeled datasets. 
Overall, hybrid models offer a balanced solution, optimizing 
both feature extraction and predictive accuracy. 
In our previous work, we already examined several CNN+ML 
combinations, and the performances were recorded. We used 
four pre-trained models: VGG16, ResNet50, DenseNet121 and  
Inception-V3 for feature extraction purposes, and we used 
several ML models such as Support Vector Machine (SVM), 
Random Forest (RF), Extreme Gradient Boost Classifier  
(XGBoost) and Adaptive Boosting (AdaBoost) for 
classification. In total, 16 combinations of models are evaluated 
on the same dataset. The hybrid models along with the accuracy 
are shown in TABLE 3.  
 

TABLE 3 
Performance of different hybrid models 

SL.NO Hybrid Model Accuracy (%) 

1 VGG16 + RF 83.82 
2 VGG16 + SVM 86.46 
3 VGG16 + AdaBoost 82.30 
4 VGG16 + XGBoost 81.95 
5 ResNet50 + RF 82.70 
6 ResNet50 + SVM 81.57 
7 ResNet50 + AdaBoost 81.95 
8 ResNet50 + XGBoost 83.83 
9 DenseNet121 + RF 91.35 

10 DenseNet121 + SVM 95.50 
11 DenseNet121 + AdaBoost 92.48 
12 DenseNet121 + XGBoost 90.92 
13 Inception-V3+ RF 92.10 
14 Inception-V3+ SVM 92.20 
15 Inception-V3+ AdaBoost 91.35 
16 Inception-V3+ XGBoost 90.97 

It is clear that DenseNet121 with SVM is able to deliver highest 
accuracy of 95.50%, therefore in our work we decided to 
consider this model for ensemble.  
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Confusion Matrix of DenseNet121 with SVM Hybrid Model is 
shown in FIGURE 8. To compare the performances of all the 
CNN based model the graphs of training loss, training accuracy, 
validation loss, validation accuracy are plotted against epochs is 
illustrated in FIGURE 9(a) – FIGURE 9(d).  

A. EXPERIMENT 3: ENSEMBLE OF MODELS FOR 
CLASSIFICATION 

 
Individually, four models were investigated to detect Babesia 
parasites from microscopic images. All of the models showed 
decent performance, each with certain advantages over the 
others. An ensemble learning strategy was employed to combine 
the advantages of all the models. Initially, an average ensemble 
learning method was implemented, achieving 96.97% accuracy. 
To further increase accuracy, a weighted average ensemble was 
employed, achieving 97.75% accuracy with weights of 0.2, 0.1, 
0.2, and 0.1. These weights were applied to the predictions of the 
respective models: 0.2 to the custom CNN model, 0.1 to the 
VGG16 model, 0.2 to the DenseNet121 model, and 0.1 to the 
hybrid model (DenseNet121+SVM). TABLE 4 shows the 

performance achieved by the different models. The weight of 
each model was calculated using Eq. (12)[47]. 
 

 𝑊( =
B"

∑ B"'
(%&

         (12) 

 
𝑊(: The weight of the ith classifier in the ensemble. 
 
𝐶(: The confidence or performance score of the ith classifier. 
 
n: The total number of classifiers in the ensemble. 
 
After that, probability of parasitized class is determined using 
the formula given in the Eq. (13)[47].  
 

Prediction Probability=∑(%#! 𝑃( ∗ 𝑊(         (13) 
where 𝑃(=Probability assigned by the ith classifier 
𝑊(= ith classifier’s weight 

  
(a) (b) 

  
(c) (d) 

FIGURE 6. Graph of Custom VGG16 and DenseNet121: (a) Loss graph of VGG16, (b) Accuracy graph of VGG16, (c) Loss graph of DenseNet121, (d) 
Accuracy graph of DenseNet121 
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Where Wi represents the weight of ith model. ‘i’ is ranging from 
0 to ‘n’, ‘n’ being the total numbers of models participating. Pi 
is the probability assigned by ith model. The confusion matrix of 
Average Ensemble and Weighted Ensemble is shown in 
FIGURE 10(a) and FIGURE 10(b). From the confusion Matrix 
it is clear that the performance of weighted ensemble for w1=0.2, 
w2=0.1, w3=0.2, w4=0.1 demonstrated better performance over 
the Average Ensemble. In average ensemble model the 
misclassification is of 25 images out of total 800 images. 
Misclassification of positive cell image is higher than negative 

images. The weighted ensemble model showed improvement by 
reducing the miss classification rate. 12 positive cells images are 
misclassified as negative whereas 6 negative cells are 
misclassified as positive. The performance of the ensemble 
models is recorded in TABLE 4. 
 

V. DISCUSSION 
There are six (06) experiments described in the prior sections for 
classification of RBC images using VGG16, DenseNet121, 
Custom CNN, hybrid model, Average Ensemble and Weighted 
Average Ensemble along with their findings depicted in TABLE 
4. The visual comparison of precision, recall and f1-score of 
evaluation results of all six experiments are shown in 
FIGURE11-FIGURE 13. 
 

  
(a) (b) 

FIGURE 7.Confusion Matrix of Custom VGG16 and DenseNet121: (a) Confusion Matrix of VGG16, (b) Confusion Matrix of DenseNet121. 

 

 
TABLE 4 

Result performance of different models 
 

 
Model 

Precision Recall F1 Score 

A
C

C
U

R
A

C
Y

 (%
) 

Infected Infected Infected 

YES NO YES NO YES NO 
VGG16 0.95 0.96 0.96 0.95 0.95 0.96 94.00 

 
Custom 
CNN 
 

0.96 0.98 0.98 0.96 0.97 0.97 96.88 

DenseNet1
21+ 
SVM 
 

0.95 0.96 0.96 0.95 0.95 0.96 95.50 

DenseNet1
21 
 

0.95 0.98 0.98 0.95 0.96 0.96 96.37 

Average 
Ensemble 
 

0.96 
 

0.98 
 

0.98 
 

0.96 0.97 
 

0.97 
 

96.97 
 

Weighted 
Average 
Ensemble 

0.97 0.99 
 

0.98 
 

0.97 
 

0.98 0.98 97.75 

 

 
FIGURE 8: Confusion Matrix of DenseNet121 with SVM Hybrid Model 
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(a) (b) 

  
(c) (d) 

FIGURE 9. Training loss and Accuracy graph of three CNN based models: (a) Train loss of Custom CNN, VGG16 and DenseNet121, (b) Train accuracy 
of Custom CNN, VGG16 and DenseNet121, (c) Validation loss of Custom CNN, VGG16 and DenseNet121, (d) Validation accuracy of Custom CNN, 
VGG16 and DenseNet121 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

(a) (b) 
FIGURE10.Confusion Matrix of Ensemble: (a) Confusion Matrix of Avg Ensemble, (b) Confusion Matrix of Weighted Ensemble 
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FIGURE 11. Comparison of Precision of all six experiments 

 
The Weighted Average Ensemble model demonstrates the 
highest precision for both “Infected” and “Not Infected” 
classifications. All the models show high precision scores for 
“Not Infected” cases with the Weighted Average Ensemble 
achieving the highest scores whereas VGG16 model 
demonstrates lower precision (shown in FIGURE 11). 
FIGURE 12 shows the comparison of Recall of all six 
experiments. Most models demonstrate high recall scores for 
“Not Infected” classifications, indicating their ability to 
identify most of the true positive cases. 

 
FIGURE 12.Comparison of Recall of all six experiments 

FIGURE 13 visually represents the F1 Score of all the 
experiments. Weighted Average Ensemble emerges as the 
most robust model with the highest F1 scores, indicating it 
effectively balances precision and recall for both infected 

and non-infected cells. Custom CNN and Average 
Ensemble are also top performers, offering a  

 

FIGURE 13. Comparison of F1-Score of all six experiments 

reliable balance, particularly in detecting infected cells, 
which is crucial in medical diagnostics. VGG16’s lower F1 
scores suggest it may not be the best choice for this task, as 
it struggles to balance precision and recall effectively. 
The Weighted Average Ensemble model outperforms all other 
models, achieving the highest accuracy of 97.75%. The 
Average Ensemble model follows closely with an accuracy of 
96.97%. Among individual models, the Custom CNN and 
DenseNet121 demonstrate strong performance with 
accuracies of 96.88% and 96.37%, respectively. DenseNet121 
combined with SVM shows a slightly lower accuracy of 
95.50%, while VGG16 has the lowest accuracy at 94.00%. 
The Weighted Average Ensemble model is the most 
recommended for the task of detecting and classifying infected 
and non-infected blood cells due to its superior balance of 
precision, recall, and F1 score. Custom CNN also suffers from 
underfitting issue. This comparison aims to assess the 
performance achieved in this study with previous studies. As 
of now we are unable to find much work in the field of 
microscopic level disease detection using AI in animal 
parasitic disease detection, we are considering malaria parasite 
detection in human medicinal research because of its close 
resemblance. The results of the comparison are presented in 
TABLE 5.  Data is a key component of any AI-based model, 
and the availability of ready-to-use data in the public domain 
is crucial for attracting upcoming researchers. Currently, there 
is no publicly available image dataset for Babesia, so this work 
makes an effort to generate an authentic labeled dataset by 
collecting digital slide samples from the Veterinary Clinical 
Complex, College of Veterinary Science, Khanapara, Assam. 
To maintain diversity in the dataset, we collected samples 
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from different breeds and age groups of canines. However, it 
might still lack diversity since all samples were collected from 
the same location.  Therefore, future research should focus on  

 
TABLE 5 

Comparison of accuracy result with previous research 
Author Technique Accuracy 
Nurcahyati et. al. 
[48] 
Year:2024 

Gray Level Co-
Occurrence Matrix 
(GLCM) and CNN 

87% 

CNN with AlexNet 92% 
 

Bhuiyan et al. 
(2023)[26] 
 

Ensemble learning-
based DL model 
using VGG16, 
VGG19, and 
DenseNet201  

 
97.92% 

Sohaib Asif et. al.[49]; 
2024 
 

MozzieNet 96.73% 

Proposed Model Average Ensemble 96.97 
 

Proposed Model Weighted Average 
Ensemble 

97.75 

developing a larger and more diverse dataset. Additionally, 
instead of classifying a single parasitic infection, future 
modelsshould be upgraded to identify multiple parasitic 
infections (multiclass classification). Despite these 
limitations, the proposed Weighted Average Ensemble model 
has achieved quite good results compared to other models. 
   To enhance the quality of life for animals and their owners, 
early intervention is critical when any disease symptoms arise. 
Rather than relying solely on a veterinarian's diagnosis, our 
model offers an advanced disease detection capability. Early 
diagnosis can significantly reduce the mortality risk and assist 
veterinarians in managing a higher volume of cases more 
efficiently, thereby reducing both costs and time. Accurate 
diagnosis enables targeted treatments, reducing the need for 
broad-spectrum medications that could contribute to drug 
resistance. Timely detection is particularly vital for zoonotic 
diseases, which pose a threat to human health as well. This 
research advocates for the integration of technology into 
animal healthcare.  

VI. CONCLUSION 

This paper aims to bridge the gap between AI-assisted 
diagnostics in veterinary medicine and the human healthcare 
system. We developed an image dataset of Babesia-infected 
blood smear slides in collaboration with several nearby 
laboratories. We deployed multiple CNN approaches, 
including a custom CNN model, pre-trained models, and a 
hybrid model (using CNN for feature extraction and machine 
learning for classification). Each classifier was evaluated and 
compared, showing good performance but also demonstrating 
some biases. 
   To enhance classifier performance, we proposed an ensemble 
learning-based deep neural network. We used both average 
ensemble and weighted average ensemble approaches, deriving 

appropriate weights through a grid search strategy. The proposed 
average ensemble learning model achieved an accuracy of 
96.97%, while the weighted average ensemble learning model 
delivered a slightly higher accuracy of 97.75%. 
We recognize the importance of diverse and extensive datasets 
for training deep learning models. To expand our image dataset, 
we are collaborating with several veterinary clinics from various 
regions. Additionally, we plan to explore other machine learning 
techniques, such as semi-supervised learning and unsupervised 
learning, to enhance detection accuracy and minimize false 
positives and negatives. Unsupervised learning models trained 
on unlabeled data will allow us to utilize un-annotated datasets 
effectively. A significant focus will also be on integrating the AI 
system with existing clinical tools, offering a seamless and user-
friendly interface for veterinarians to assist in diagnostics and 
treatment planning. 
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