
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 416

RESEARCH ARTICLE OPEN ACCESS

Manuscript received May 5, 2024; revised August 2, 2024; accepted August 5, 2024; date of publication October 20, 2024
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v6i4.466
Copyright © 2024 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
How to cite: Muhammad Noor, Radityo Adi Nugroho, Setyo Wahyu Saputro, Rudy Herteno , and Friska Abadi, “Optimization of Backward
Elimination for Software Defect Prediction with Correlation Coefficient Filter Method ”, Journal of Electronics, Electromedical Engineering, and
Medical Informatics, vol. 6, no. 4, pp. 397-404, October 2024.

Optimization of Backward Elimination for
Software Defect Prediction with Correlation
Coefficient Filter Method

Muhammad Noor , Radityo Adi Nugroho , Setyo Wahyu Saputro , Rudy Herteno , and Friska Abadi

Computer Science Department, Lambung Mangkurat University, Banjar Baru, South Kalimantan, Indonesia'
Corresponding author: radityo.adi@ulm.ac.id

ABSTRACT Detecting software defects is a crucial step for software development not only to reduce cost and save time, but

also to mitigate more costly losses. Backward Elimination is one method for detecting software defects. Notably Backward

Elimination may remove features that may later become significant to the outcome affecting the performance of Backward

Elimination. The aim of this study is to improve Backward Elimination performance. In this study, several features were

selected based on their correlation coefficient, with the selected feature applied to improve Backward Elimination final model

performance. The final model was validated using cross validation with Naïve Bayes as the classification method on the NASA

MDP dataset to determine the accuracy and Area Under the Curve (AUC) of the final model. Using top 10 correlation feature

and Backward Elimination achieve an average result of 86.6% accuracy and 0.797 AUC, while using top 20 correlation feature

and Backward Elimination achieved an average result of 84% accuracy and 0.812 AUC. Compare to using Backward

Elimination and Naïve Bayes respectively the improvement using top 10 correlation feature as follows: AUC:1.52%, 13.53%

and Accuracy: 13%, 12.4% while the improvement using top 20 correlation feature as follows: AUC:3.43%, 15.66% and

Accuracy: 10.4%, 9.8%. Results showed that selecting the top 10 and top 20 feature based on its correlation before using

Backward Elimination have better result than only using Backward Elimination. This result shows that combining Backward

Elimination with correlation coefficient feature selection does improve Backward Elimination’s final model and yielding good

results for detecting software defects.

INDEX TERMS Backward Elimination, Correlation Coefficient, Software Defect Prediction.

I. INTRODUCTION

In the software development lifecycle finding software defect

at during testing stage is highly important. developers should

ideally find all software defects, during this stage[1]. Once a

flawed system is implemented, it becomes substantially more

expensive to identify and rectify defects within the system

compared to during the software development phase[2].

Therefore, to find defects more efficiently, software defect

prediction is used. Software defect prediction helps reduce

cost and save time, also to mitigating more costly losses [2].

Money and time spent on fixing software can be instead be

spend improving core functionality. Defects can range from

impeding correct function of code, to introduction of

vulnerabilities which may be exploited by malicious entities.

Therefore, predicting unknown defects in software can assist

developers and programmers in obtaining critical information

about the type and location of defects to enhance the

availability and reliability of the software. Currently, machine

learning techniques are considered the most promising for

predicting defects in software[3], [4].

Some factors that affect the performance of software defect

prediction is redundant data, and irrelevant features in the

dataset. Feature Selection (FS) is one way to address this issue.

The objective of feature selection is to determine relevant

features while removing irrelevant and redundant ones [5], [6].

Feature Selection methods are categorized into three types:

Embedded, Filter, and Wrapper. Wrapper methods produces

more accurate results than the Filter methods, but the

performance of the Wrapper method depends on its specific

algorithm implementation. It notably requires more

computational power than Filter methods[7].

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v6i4.466
https://creativecommons.org/licenses/by-sa/4.0/
mailto:radityo.adi@ulm.ac.id
https://orcid.org/0009-0003-8759-4031
https://orcid.org/0000-0002-7326-7668
https://orcid.org/0009-0007-9250-7704
https://orcid.org/0000-0003-0637-8090
https://orcid.org/0000-0002-9449-8000

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 417

Wrapper feature selection methods selects the feature subset

based on a given criteria. Wrapper methods determines the

best subset of features using machine learning, features

selected based on the accuracy result of a classification

algorithm, wrapper method can be sequential or random [8],

[9]. Filter feature selection assigns a scoring value to each

feature using statistical measures. Feature weighting is a

technique that assigns weights to different features based on

their relevance or importance in a machine learning model. By

assigning each feature a weight, it can be used for feature

selection using the filter method to select subset features [10].

Backward Elimination (BE) is an example of a wrapper

feature selection method. Backward Elimination removes one

feature at a time that is considered irrelevant to the outcome of

the model[11]. The feature selection process repeats until the

result meets the parameter set by user, the parameter usually

is set if the result become significant. The combination of

several features can yield significant results, however the

effectiveness of this varies for given combinations. Notably,

when Backward Elimination removes a feature, it cannot be

added back into the final model. These removed features may

potentially improve the performance of the final model if

added or present [12]. This drawback is referred to as Omitted

Variable Bias [13].

Correlation coefficient is an example of a filter feature

selection method. Correlation coefficient models calculate the

level of relevance of features based on their correlation, which

can be converted into weights to be ranked [14]. Correlation-

based feature selection (CFS), or feature selection based on

correlation coefficient, is consider by some to be the best-

performing feature selection technique in previous

research[15], [16].

The study by Balogun et al. [17] introduce the hybrid feature

selection (HFS) method that they called rank aggregation-

based hybrid multifilter wrapper feature selection

(RAHMFWFS). It is used for selection of relevant and

irredundant feature from software defect prediction dataset.

HFS method is a combination of Wrapper feature selection

and Filter feature selection. Balogun et al. combine rank

aggregation-based multifilter feature selection (RFMS)

method and enhanced wrapper feature selection (EWFS).

They found that the RAHFWFS method had a greater positive

impact on prediction performance of Naïve Bayes and

Decision Tree with the following result Naïve Bayes with

average accuracy value of 82.67%, AUC value of 0.802 and

Decision Tree average accuracy result value of 83.8%, AUC

value of 0.732

The study by Zhang et al.[18] introduced a new feature

selection method that they refer to as a large margin hybrid

algorithm for feature selection (LMFS), LMFS combines filter

method and wrapper method approaches. They used a

weighted bootstrapping search to find subset candidates, then

a distance-based evaluation to optimize the selection from all

the subset candidate and find the final model bases on that.

The result of their method is it performed better for

classification and model interpretation compare to only using

a wrapper method or filter method only.

The study by Shantal et al. [19] proposed a method that they

call correlation coefficients with Min-max weighted (CCWP)

for data preprocessing. This method was used for improving

the performance primarily model accuracy. They used K-

Nearest Neighbor (KNN), Support Vector Machine (SVM),

Logistic Regression (LR), Neural Network (NN), and Naive

Bayesian classifiers (NB) to evaluate their model focusing on

its accuracy. They found that only the accuracy results of KNN

as classifier were unsuitable, while other classifiers method

that were used in the study to evaluate the model

outperformance the normal Min-Max normalization method

in 40% of the dataset that they used. However other weighting

and normalization method outperformed CCWP in most

cases.

In recent study by Rahman et al. [20] proposed a method

they call multi correlation-based feature selection (MCFS).

MCFS integrates two feature selection techniques:

Correlation-Based Feature Selection (CFS) and Correlation

Matrix-Based Feature Selection (CMFS). This method aims to

reduce data dimensionality, eliminate noisy attributes, and

enhance the predictive performance of the Particle Swarm

Optimization (PSO) algorithm. The study found that PSO

combined with MCFS outperformed other methods, achieving

an average AUC of 0.891. In contrast, when PSO was applied

independently, the AUC was 0.827. Additionally, the

combination of PSO with CFS improved the AUC to 0.836,

while combining PSO with CMFS resulted in a further

increase to 0.839.

Previous studies show that combining feature selection can

yield better result and improve its performance. The aim in this

study to improve performance of Backward Elimination for

detecting software defect, features of the dataset will be

selected, with subsequent application of Backward

Elimination. The features will be determined using correlation

coefficients to assess their relevance as shown from previous

studies using correlation coefficients to determined relevant

feature can improve performance. Utilization of using

Backward Elimination in conjunction Correlation feature

selection filter method for software defect prediction has not

been attempted, it is anticipated that by using alternative

approaches to evaluate the relevance of features and removal

of identified irrelevant features, the limitations of Backward

Elimination can be mitigated, improving the prediction

performance of the final Backward Elimination model. The

findings of this study are expected to provide contributions

such as:

1. Introducing another filter feature selection method to

improve Backward Elimination performance for software

defect prediction.

2. To further the research studying creation more optimal

methods for software defects prediction.

3. Introducing additional methods to mitigate drawbacks of

Backward Elimination.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 418

II. MATERIAL AND METHOD

The proposed method of this research is, firstly determined

relevant features from the dataset using correlation coefficient.

Once all features have been ranked or weighted by their

correlation coefficient value, selection of the top 20 and/ or top

10 relevant features based on their correlation coefficient

value. This decision is based on the large number of different

features in the NASA MDP dataset as show at TABLE . For

datasets with 22 features, the top 10 (±50%) of the relevant

features were selected, while datasets with 37-40 features will

use the top 20 (±50%) and top 10 (±25%) relevant features.

This standardization in feature selection is implemented for

the stability and ease of research experimentation.

After selecting the features from the dataset, Backward

Elimination was used to get the final model. Using Naïve

Bayes as classification method to detect software defects and

cross validation to evaluate the final model and to find the

accuracy and Area under the curve (AUC). FIGURE 1

represents the research flow conducted in this study

FIGURE 1. Research method Flowchart

A. DATASET

The NASA MDP dataset is a frequently used dataset by

researchers conducting software defect prediction

experiments [21], [22].Nasa MDP dataset is a collection of

NASA Corpus which contains a diverse collection of real

software projects spanning various domains and programming

languages, including Java, C, and C++. This dataset features a

wide range of code sizes, complexities, and functionalities,

providing a comprehensive view of software development

challenges. It includes numerous software metrics, such as

lines of code, cyclomatic complexity, and other metric which

offer valuable insights into the characteristics of software

components. The primary aim of this dataset is to support the

evaluation and development of predictive models designed to

identify potentially defective software components early in the

development process[23]. The Nasa MDP dataset used in this

study was the cleaned version.

The criteria set in this study are dataset with a minimum

sample size above 250, but not exceeding 2000 with defect

percentages less than 13%, and a minimum of 20 defects. The

dataset that meets these criteria are CM1, MC1, MW1, PC1,

and PC3 as show in TABLE 1. These criteria are established

to reduce required computational power, and overfitting which

may occur if the sample data is too large, this is one of the

detrimental characteristics of feature selection wrapper

methods [6], [24], [25]. The Nasa MDP dataset has two class

label Y and N. Class label Y is for defective attribute and class

label N for non-defective attribute, in data preprocessing stage

Label Y and N are converted to values of 1 and 0 respectively

[26].

TABLE 1

NASA MDP DATASET

Dataset
Number of

features
Sample

size

Number of

defects

Defect %

CM1 38 327 42 12.8

JM1 22 7720 1612 20.8

KC1 22 1162 294 25.3

KC3 40 194 36 18.5

MC1 38 1988 46 2.3

MC2 40 124 44 35.4

MW1 38 253 27 10.7

PC1 38 705 61 9.7

PC2 37 722 16 2.2

PC3 38 1077 134 12.4

PC4 38 1270 176 13.8

PC5 39 1694 458 27.0

B. FEATURE SELECTION

1. CORELLATION COEFFICIENT

Correlation coefficient is one of the simple filter algorithms,

using a heuristic evaluation function to rank the feature subset

based on their significance, which is determined by their high

correlation. After identifying significant features from the

dataset, these features are then ranked using various feature

ranking techniques [27]. After the dataset is prepared, we

calculate the correlation coefficient of each dataset feature to

the target variable. Correlation Coefficient was used because

it can address Naïve Bayes key weakness through

determination of which features are relevant for software

defect prediction.[15], [16].

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 419

It should be noted that though correlation coefficient is one

method of determining feature relevancy, it has the risk

because as some features may have high relevancy for the

target variable, but doesn’t mean it will good predictor of

defect.

Nonetheless it a useful tool for defect prediction and can

easily be implemented. Since we used correlation coefficient

with Backward Elimination it should help mitigate the risk.
Backward Elimination can help mitigated the risk by

removing less significant feature, which may also reduce

correlations among the remaining variables.

There are several methods to find the correlation coefficient

of features, however as the dataset utilized contains

binomial/dichotomous labels denoted as 'N' and 'Y' (or 0 and

1), equation (1) [28] is used to calculate the correlation feature

of the dataset. TABLE 2 is the pseudocode to find the

correlation coefficient of each feature (Eq. (1)).

𝑟𝑝𝑏 =

𝑀1−𝑀0

𝑠𝑛
 √

𝑛1𝑛0

𝑛2 (1)

𝑀1 denotes the mean value on the constant variable 𝑥 for all

data points in group 1, and 𝑀0 denote the mean values of

group 2. The dataset is grouped by their label, 𝑛1 and 𝑛0

which denotes the number of totals in group 1 and 2. 𝑛 denotes

the total of the sample size, and 𝑠𝑛 is the standard deviation.

Equation (2) [28] is used to calculate standard deviation (Eq.

(20)).

𝑠𝑛 = √

1

𝑛
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 (2)

 After calculating the correlation coefficient of each feature,

the result can be ranked. The closer the result is to zero the

lower its rank, from this ranking we can choose how many

features should be removed or selected for Backward

Elimination. In this study we select the top 20 and top 10

feature.
TABLE 2

Correlation Coefficient pseudocode

Correlation Coefficients

Initialize:

Dataset with feature X (binary: Y or N) and target variable Y

(continuous)

Calculate the mean of Y as Y_mean

Calculate the standard deviation of Y as Y_std (Equation 2)
Calculate the mean of X as X_mean

Calculate the standard deviation of X as X_std (equation 2)

Calculate the Point-Biserial Correlation coefficient (equation 1) for

feature X and target variable Y:
For each data point in the dataset:

 Calculate the biserial correlation coefficient r_biserial as (mean of

Y where X = 1 - mean of Y where X = 0) / Y_std
 Calculate the point-biserial correlation coefficient r_pb as r_biserial

* sqrt(count(X=1) *count(X=0) / (count(X)-1))

Return the average or final value of r_pb as the Point-Biserial

Correlation coefficient for X and Y

2. BACKWARD ELIMINATION

Backward Elimination (BE) is a comparatively simpler

variable/feature selection method. The main advantages of

Backward Elimination are initial removal of the least

important features and guaranteed retention of the most

important features in the model. Some disadvantages include

the removed features cannot be added back into the model

which might improve the performance result [12]. Improving

the performance of Backward Elimination for software defect

prediction makes this method a promising option, as it

produces favorable results and is simple to implement.

The next step after selecting the top 20 and/or top 10

features based on their correlation is to use Backward

Elimination to find the final model of the dataset. Backward

Elimination is a machine learning algorithm for feature

selection from a dataset. The few advantages of Backward

Elimination are improved performance and accuracy if not

using any feature selection method, and decreasing

complexity/ simplification of the model[29]. In general,

Backward Elimination starts with a complete set of features,

removing it’s the least important variable feature repeatably

until the desired parameter value is reached [8], [30].

The step of Backward Elimination involves the following:

1. Start with a Full Model: Begin with a model that includes

all potential predictor variables.

2. Fit the Model: Use a statistical modeling technique to fit

the full model to the data.

3. Identify the Least Significant Variable: Determine the

variable with the highest p-value

4. Remove the Variable: If the variable identified in step 3

has a p-value above a specified significance level (e.g.,

0.05), remove it from the model.

5. Refit the Model: Re-estimate the model without the

removed variable. Repeat the Process: Continue steps 3-

5 until all remaining variables in the model are

statistically significant.

6. Repeat the Process: Continue steps 3-5 until all remaining

variables in the model are statistically significant.

TABLE 3 is pseudocode of a typical Backward Elimination

algorithm. The P-value or the parameter value can be set to

anything, however usually it is set to 0.05. In this research the

Backward Elimination stops when then next model has a

decreasing performance result and/or stops after 10 features

are removed. The stop condition can be changed, for example

stopping if the accuracy result decrease by significant value of

0.03.
TABLE 3

Backward Elimination pseudocode

Backward Elimination

Initialize:

List of all features F = [f1, f2, ..., fn]
Selected features S = F

Significance level alpha

Model M

while True:

 Train the model M using features in S
 Calculate the p-values for each feature in S

 Identify the feature with the largest p-value p_max

 if p_max > alpha:

 Remove the feature with p_max from S
 else:

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 420

 Break the loop as all remaining features are significant

 Return: Selected features S

end

D. CLASSIFICATION

1. NAÏVE BAYES

Naïve Bayes (NB) is a classification technique based on

Bayes’ theory. It assumes all feature are independent to one

another, this “naive” assumption hence why it is called Naïve

Bayes [31]. It falls under the generative learning algorithm

family, meaning it model input distribution for a given class

or category. Naïve Bayes calculates the highest probability

value and assigns the test data to the most appropriate category

based on this result [31]. It is an efficient algorithm that

achieves good accuracy with large dataset [2].

Naïve Bayes is considered a popular and effective method

for supervised machine learning not only due to its simplicity,

but also being high performance and robust [31], [32].

Moreover, leveraging feature selection with Naïve Bayes can

significantly enhance its performance[3]. It is simple to

implement, and often yields better performance than

comparatively more complex classification methods[1], [33].

However Naïve Bayes assumes that all features are equally

important, which may not always be accurate as different

features serve different purposes. Additionally, not all are

reliable indicators of software defects[1]. An alternative to

address this uses weighting if the features based on their

importance, this approach known as weighted Naïve Bayes

(WNB). [34], [35].

Naïve Bayes is a frequently used classification method in

software defect prediction. It used because of its high

prediction efficiency and potential to handle imbalanced

datasets[2], [22], [36]. Eq. (3) [2] is Naïve Bayes algorithm for

prediction/classification in a dataset.

𝑃(ℎ|𝐷) =

𝑃(𝐷|ℎ)𝑃(ℎ)

𝑃(𝐷)
 (3)

In this equation D represents data with an unknown class,

while H denote the hypothesis that D belongs to a specific

class. P(h) denote the prior probability, while P(D|h) denotes

the posterior probability, providing the probability of the data

given the hypothesis. Additionally, P(D) denotes the

probability of the data or predictors prior probability. TABLE

4 is the Naïve Bayes algorithm in pseudocode.
TABLE 4

Naïve Bayes algorithm pseudocode

Naïve Bayes algorithm

Start

Input training dataset

Separate the dataset by class labels

Calculate the prior probability of each class label

 For each feature in the dataset:
 a. Calculate the likelihood of the feature given each class label

 b. Calculate the conditional probability of each class label given

the feature

Input test dataset
 For each instance in the test dataset:

 a. Calculate the posterior probability of each class label given the

instance
 b. Predict the class label with the highest posterior probability

 Output the predicted class labels for the test dataset

End

E. MODEL EVALUATION

1. K-FOLD CROSS VALIDATION

After selecting relevant features and applying Backward

Elimination to find the final model, the performance of the

final model can be assessed using cross validation. Cross

validation is a testing system for machine learning algorithm

[37]. Cross-validation is a technique used to assess and

improve the performance of a model while reducing

systematic errors. It works by dividing the data into multiple

subsets. In k-fold cross-validation, the dataset is split into k

equal-sized folds (e.g., 𝑘=10). Each fold serves as a test set

once, while the remaining k−1 folds are combined to form the

training set. This process is repeated k times, with each fold

being used as the test set exactly once. By averaging the results

from these multiple iterations, cross-validation provides a

more reliable estimate of the model’s performance and helps

to prevent overfitting. In this study, we will use 10-fold cross-

validation. The data will be divided into ten subsets, with each

subset containing instances from the same class. [23], [38].

2. AREA UNDER THE ROC CURVE

After the final model is tested by cross validation, equation (4)

and equation (5) [4] are used to check the model accuracy and

Area under the curve (AUC). Accuracy represents the

proportion of correctly predictive data by the model on the test

set, covering both positive and negative result. several

researchers have corroborated that accuracy can be

insufficient and even a misleading performance metric when

dealing with imbalanced datasets. In our case, the dataset is

imbalance. To handle this imbalance, we have used AUC, a

metric used to evaluate the performance of classification

models [39]. AUC is a metric used to evaluate the performance

of classification models [40]. It quantifies the model's ability

to distinguish between positive and negative classes, with

values ranging from 0 to 1. AUC measures the separability

between the true positive rate and the false positive rate across

different threshold settings. Essentially, a higher AUC

indicates better model performance in distinguishing between

classes [23].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

𝐴𝑈𝐶 =

1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅

2
 (5)

TP is true positive where positive cases correctly classify as

positive, FP is false positive where negative cases incorrectly

classify as positive, TN is true negative where negative cases

correctly classify as negative, and FN is false negative where

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 421

positive cases incorrectly classify as negative. To find this

information, matrix confusion is used. Equation (6) and

equation (7) [41]used to find TPR and FPR , TPR is true

positive rate and FPR is false positive rate[41].

𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (7)

TABLE 5 is the pseudocode step for final model evaluation.

TABLE 5

Model Evaluation pseudocode

Model Evaluation

Start
Function to calculate True Positive (TP), True Negative (TN), False

Positive (FP), False Negative (FN)

def calculate_confusion_matrix(actual_values, predicted_values):

 TP = 0

 TN = 0
 FP = 0

 FN = 0

 for i in range(len(actual_values)):

 if actual_values[i] == 1 and predicted_values[i] == 1:

 TP += 1
 elif actual_values[i] == 0 and predicted_values[i] == 0:

 TN += 1

 elif actual_values[i] == 0 and predicted_values[i] == 1:
 FP += 1

 else:

 FN += 1

 return TP, TN, FP, FN

Function to calculate Accuracy / (Equation (4)

def calculate_accuracy(TP, TN, FP, FN):

 accuracy = (TP + TN) / (TP + TN + FP + FN)
 return accuracy

Function to calculate AUC

def calculate (actual_values, predicted_values):

 # Calculate True Positive Rate (TPR) / Equation (6) and False
Positive Rate (FPR) / Equation (7)

 for threshold in range (0, 101):
 threshold = threshold / 100.0

 TP, TN, FP, FN = calculate_confusion_matrix(actual_values, [1

if val >= threshold else 0 for val in predicted_values])

 tpr = TP / (TP + FN)

 fpr = FP / (FP + TN)

 tpr_list.append(tpr)

 fpr_list.append(fpr)

 # Calculate AUC/Equation (5)

AUC = 0
AUC = (1+TPR-FPR)/2

 return auc

III. RESULTS

This section shows result after using cross validation with

Naïve Bayes as prediction algorithm to find the result of

accuracy and Area Under the Curve (AUC) on the final model

from each data set. Results are divided into several tables that

shows the accuracy result and AUC result of Naïve Bayes

only, Backward Elimination only, top 20 feature based on its

correlation coefficient with Backward Elimination, and top 10

feature based on its correlation coefficient feature with

Backward Elimination.

TABLE 6

Naïve Bayes Accuracy Result

Dataset Naïve Bayes

CM1 81%

MC1 90%

MW1 79%

PC1 88%

PC3 33%

Average 74.2%

TABLE 6 is the accuracy result of Naïve Bayes

classification without selecting feature with correlation or

using Backward Elimination. From the table the results are

follows: CM1: 81%, MC1: 90%, MW1: 79%, PC1: 88% and

PC3: 33%. MC1 had the highest accuracy and PC3 had the

lowest accuracy. The average accuracy is 74.2%. Overall

using Naïve Bayes for software defect prediction yielded good

results, however from the table we can see the results for PC3

was poor, hence why for software defect prediction feature

selection is needed.
TABLE 1

Backward Elimination Accuracy Result

Dataset Backward Elimination

CM1 81%

MC1 91%

MW1 79%

PC1 87%

PC3 30%

Average 73.6%

TABLE 7 is the accuracy result of Backward Elimination

with Naïve Bayes classification as its prediction algorithm to

dataset. From the table the results are: CM1: 81%, MC1:

91%, MW1: 79%, PC1: 87%, and PC3: 30%. The highest

result was MC1, the lowest was PC3, and with the average

result was 73.6% accuracy. There were some improvements

for one dataset however this was minimal, and there were 2

datasets showing decreased accuracy making the average

result poorer than only using Naïve Bayes. This means using

Backward Elimination only is unideal accurate software

defect prediction as it only improved one of dataset accuracy

out of the five tested.
TABLE 2

Backward Elimination with top 20 Accuracy Result

Dataset
Top 20 with Backward

Elimination

CM1 82%

MC1 92%

MW1 81%

PC1 89%

PC3 76%

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 422

Average 84%

TABLE 8 is the accuracy result of selecting top 20 features

based on their correlation with Backward Elimination to

further select from the top 20 selected feature and using Naïve

Bayes as its prediction algorithm. From the table, the result is

as follows: CM1: 82%, MC1: 92%, MW1: 81%, PC1: 89%,

and PC3: 76%, with the highest result from MC1, the lowest

from PC3 with and an average result of 84% accuracy. It is

apparent from the result table we can see a substantial

improvement for PC3 accuracy using top 20 with Backward

Elimination, and other datasets also increased accuracy also

increased slightly, resulting in a higher average result compare

to the other two methods tested.

TABLE 9

Backward Elimination with top 10 Accuracy Result

Dataset
Top 10 with Backward

Elimination

CM1 83%

MC1 92%

MW1 83%

PC1 88%

PC3 84%

Average 86%

 TABLE 9 is the accuracy result of selecting the top 10

features based on their correlation with Backward Elimination

to further select from the top 10 selected features, using Naïve

Bayes as its prediction algorithm. From the table the result is

as follows: CM1: 83%, MC1: 92%, MW1: 83%, PC1: 88%,

and PC3: 84% with the highest result being MC1, the lowest

being CM1 and an average result of 86% accuracy.

FIGURE 2. Average Accuracy Comparison

As show in FIGURE 2 and FIGURE 3 the accuracy result

that this far shown from each dataset used in this study, it is

evident from testing that top 10 with Backward Elimination

yielded the best result of accuracy from methods tested as

indicated by higher average accuracy, and also individual

accuracy results. This mean top 10 with Backward

Elimination has better accuracy performance when compare

to other methods used in this study.
TABLE 10

Naïve Bayes AUC Result

Dataset Naïve Bayes

CM1 0.688

MC1 0.7

MW1 0.556

PC1 0.802

PC3 0.762

Average 0.702

TABLE 10 is the AUC result of each dataset using Naïve

Bayes classification. Naïve Bayes AUC yielded the following

results: CM1: 0.688, MC1: 0.7, MW1: 0.556, PC1: 0.802,

PC3: 0.762 with an average result of 0.702. The highest AUC

was PC1, and the lowest AUC result was MW1.

TABLE 11

Backward Elimination AUC Result

Dataset Backward Elimination

CM1 0.756

MC1 0.774

MW1 0.791

PC1 0.81

PC3 0.793

Average 0.785

 TABLE 11 is the AUC result of each dataset using

Backward Elimination and Naïve Bayes classification.

Backward Elimination AUC yielded the following results:

CM1: 0.756, MC1: 0.774, MW1: 0.791, PC1: 0.81, PC3:

0.793 with an average result of 0.785. The highest AUC was

FIGURE 3. Average AUC Comparison

PC1 and the lowest AUC result was CM1. From the result

it shows that Backward Elimination not only improved each

0.702

0.785

0.812
0.797

0.64
0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84

A
U

C

Average

Naïve Bayes

Backward Eliminiation

Backward Eliminiation with Correlation Top (20)

Backward Eliminiation with Correlation Top (10)

74.2 73.6

84
86

66
68
70
72
74
76
78
80
82
84
86
88

A
cc

u
ra

cy

Average

Naïve Bayes

Backward Eliminiation

Backward Eliminiation with Correlation Top (20)

Backward Eliminiation with Correlation Top (10)

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 423

dataset AUC result, but its overall result compared to when

only using Naïve Bayes.

TABLE 12

Backward Elimination with top 20 AUC Result

Dataset
Top 20 with Backward

Elimination

CM1 0.786

MC1 0.815

MW1 0.824

PC1 0.813

PC3 0.821

Average 0.812

TABLE 12 is the AUC result of each dataset using

Backward Elimination with the top 20 features and Naïve

Bayes classification. Backward Elimination with top 20 AUC

yielded the following results: CM1: 0.786, MC1: 0.815,

MW1: 0.824, PC1: 0.813, PC3: 0.821 with the average result

0.812. The highest AUC was MW1 and the lowest AUC result

was CM1. It is apparent that selecting top 20 with Backward

Elimination yields improved individual and overalls results,

the higher AUC result.

TABLE 13

Backward Elimination with top 10 AUC Result

Dataset
Top 10 with Backward

Elimination

CM1 0.767

MC1 0.826

MW1 0.8

PC1 0.777

PC3 0.814

Average 0.797

TABLE 13 is the AUC result of each dataset using the top

10 features with Backward Elimination and Naïve Bayes

classification. Backward Elimination with top 10 AUC

yielded the following results: CM1: 0.767, MC1: 0.826,

MW1: 0.8, PC1: 0.777, PC3: 0.814 with an average result of

0.797. The highest AUC was MC1 and the lowest AUC result

was PC1. As show in FIGURE 3 and FIGURE 5, when

comparing against previous AUC results, it is apparent top 10

with Backward Elimination yielded better individual and

average result than Backward Elimination alone, however

poorer result compared to top 20 with Backward Elimination

this variation suggests the number feature that were selected

prior to applying Backward Elimination. Specially, selecting a

small subset of top feature (e.g., the top 10) may not capture

sufficient relevant information, leading to less optimal results.

In contrast, incorporating a larger number of features (e.g., the

top 20) before applying Backward Elimination appears to

provide a more comprehensive representation of the dataset,

thereby improving the AUC performance.

Therefore, the results highlight that the effectiveness of

Backward Elimination can be highly dependent on the number

of features initially selected. A larger feature set before

applying Backward Elimination generally yields better

performance, suggesting that more features can help in

capturing the relevant patterns and improving model accuracy.

This finding underscores the importance of carefully

considering the feature selection process and the number of

features used in conjunction with Backward Elimination to

optimize performance.

TABLE 14 to TABLE 17 display the confusion matrix

results for each method used in this study. The rows labeled

"Pred N" and "Pred Y" represent the number of times the

model predicted "N" or "Y," respectively. The columns

labeled "True N" and "True Y" show the actual number of

instances where the true class was "N" or "Y". In these tables,

the number at the intersection of the "Pred N" row and the

"True N" column indicates how many times the method

correctly predicted "N" when the true class was also "N".

Conversely, the number at the intersection of the "Pred N" row

and the "True Y" column shows how many times the method

predicted "N" when the true class was actually "Y", indicating

a misclassification.

TABLE 14

Naïve Bayes Confusion Matrix Result

Dataset TRUE N True Y

CM1
Pred N 255 29

Pred Y 30 13

 True N True Y

MC1
Pred N 1780 32

Pred Y 162 14

 True N True Y

MW1
Pred N 187 12

Pred Y 39 15

 True N True Y

PC1
Pred N 603 39

Pred Y 41 22

 True N True Y

PC3
Pred N 238 13

Pred Y 705 121

TABLE 14 is the Confusion Matrix Result of Naïve Bayes

yielded the following result: CM1: 268 correct predictions and

incorrect predictions 59, MC1: 1794 correct predictions and

194 incorrect predictions, MW1: 202 correct predictions and

51 incorrect predictions, PC1: 625 correct predictions and 80

incorrect predictions, PC3: 359 correct predictions and 715

incorrect predictions. Overall, using Naïve Bayes only yield a

decent result except for PC3 which is reflected to the result on

TABLE 6.
TABLE 15

Backward Elimination Confusion Matrix Result

Dataset True N True Y

CM1
Pred N 253 30

Pred Y 32 12

 True N True Y

MC1
Pred N 1803 33

Pred Y 139 13

 True N True Y

MW1
Pred N 185 11

Pred Y 41 16

 True N True Y

PC1
Pred N 598 39

Pred Y 46 22

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 424

 True N True Y

PC3
Pred N 204 8

Pred Y 739 126

TABLE 15 is the Confusion Matrix Result of Naïve Bayes

yielded the following result: CM1: 265 correct predictions and

incorrect predictions 62, MC1: 1816 correct predictions and

172 incorrect predictions, MW1: 201 correct predictions and

52 incorrect predictions, PC1: 620 correct predictions and 85

incorrect predictions, PC3: 330 correct predictions and 747

incorrect predictions. Compared to Table 14 results, there is

minimal improvement in performance. In particular, the

performance for PC3 has deteriorated, as indicated by the

significantly higher number of incorrect predictions. This

decline in performance is further reflected in the average

accuracy results presented in TABLE 7, suggesting a general

decrease in the classifier's effectiveness.

TABLE 16
Backward Elimination with top 20 Confusion Matrix Result

Dataset TRUE N True Y

CM1
Pred N 253 28

Pred Y 32 14

 True N True Y

MC1
Pred N 1824 36

Pred Y 118 10

 True N True Y

MW1
Pred N 192 12

Pred Y 34 15

 True N True Y

PC1
Pred N 608 39

Pred Y 36 22

 True N True Y

PC3
Pred N 737 43

Pred Y 206 91

TABLE 16 is the Confusion Matrix Result of Naïve Bayes

yielded the following result: CM1: 267 correct predictions and

incorrect predictions 60, MC1: 1834 correct predictions and

154 incorrect predictions, MW1: 207 correct predictions and

46 incorrect predictions, PC1: 630 correct predictions and 75

incorrect predictions, PC3: 829 correct predictions and 249

incorrect predictions. Compare to Table 15 result, there are

several improvements, notably the number of correct

predictions for PC3 increase from 330 to 829 correct

prediction this result also reflected at TABLE 8, indicating a

positive trend in the performance.
TABLE 17

Backward Elimination with top 10 Confusion Matrix Result

Dataset TRUE N True Y

CM1
Pred N 261 29

Pred Y 24 13

 True N True Y

MC1
Pred N 1830 35

Pred Y 112 11

 True N True Y

MW1
Pred N 196 12

Pred Y 30 15

 True N True Y

PC1
Pred N 605 39

Pred Y 39 22

 True N True Y

PC3
Pred N 859 88

Pred Y 84 46

TABLE 17 is the Confusion Matrix Result of Naïve Bayes

yielded the following result: CM1: 274 correct predictions and

incorrect predictions 53, MC1: 1841 correct predictions and

147 incorrect predictions, MW1: 211 correct predictions and

42 incorrect predictions, PC1: 627 correct predictions and 85

incorrect predictions, PC3: 905 correct predictions and 172

incorrect predictions. Compare to TABLE 16, these results

show an overall improvement which also reflected to TABLE

9 result.

Based on the results presented in TABLE 6 to 13, we can

make several observations. TABLE 7 shows that Backward

Elimination yields only 30% accuracy for the PC3 dataset,

indicating that it is not an effective method for this dataset. In

contrast, TABLES 8 and 9 demonstrate that the proposed

method achieves accuracies of 76% and 84%, respectively,

suggesting that using correlation coefficient feature selection

improves the performance of Backward Elimination and this

suggest that the performance of Backward Elimination can be

affected if the feature didn’t get remove. This result

highlighted that Backward Elimination may not be sufficient

and could benefit from combining with other method to select

better feature for the final model.

Overall, the proposed method outperforms both Backward

Elimination and the Naïve Bayes which are the baseline

model. For a visual representation results comparison of the

baseline model to the proposed method, refer to FIGURE 2,3,4

and 5, which graphically depict the data from TABLE 6 to 13.

FIGURE 2 and 3 show the average results for each method,

while FIGURE 4 and 5 present a detailed comparison of

results across different datasets as well as average results for

each method.

FIGURE 4. Accuracy Result Comparison in graph data

IV. DISSCUSION

In this study we evaluated the effectiveness of selecting

relevant features based on the correlation coefficient of each

feature to the class feature, then using Backward Elimination

0

20

40

60

80

100

CM1 MC1 MW1 PC1 PC3 AVG

A
C

C
U

R
A

C
Y

METHOD
Naïve Bayes

Backward Elimination

Backward Elimination + Correlation Top (20)

Backward Elimination + Correlation Top (10)

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 425

to further select the relevant features. This was expected to

mitigate the drawbacks of Backward Elimination, improving

Backward Elimination performance for software defect

prediction. FIGURE 4 shows graphed accuracy result. and

FIGURE 5 shows graphed AUC result for easier visualization

and comparison of each methods results offering a clear

overview of the performance metrics. FIGURE 4 shows

almost the same Improvement as FIGURE 5, except when

using the top 10 features with Backward Elimination the

average result of the accuracy is better than using the top 20

with Backward Elimination. This suggests that the features

that were remove in test with top 10 and Backward

Elimination was better for the accuracy result but

comparatively worse for the AUC result.

FIGURE 5 shows that using Backward Elimination does

improve the average AUC result compared to using all feature

in the dataset. Additionally, selecting the top 20 or top 10

relevant features based on their correlation coefficient before

applying Backward Elimination improved the average AUC

result compared to only using Backward Elimination and

Naïve Bayes Only.

The average results of AUC from testing the top 20 features

and Backward Elimination were better that using the top 10

features and Backward Elimination. This suggests that some

of the features that were removed during the process selecting

top 10 relevant feature play a role in enhancing the AUC result

when they are included in the final model.

From both result its evident that the features that are selected

affect different results either it affects accuracy or AUC

depend by the features that were selected, meaning selecting

different subset feature before using Backward Elimination

can have better or worse performance result. Despite this,

using correlation coefficient feature selection with Backward

Elimination can improve the performance of accuracy and

AUC by a substantial amount around ±40% as seen in

FIGURE 4 PC3.

FIGURE 5. AUC Result Comparison in graph data

Another thing to note is that the result of accuracy and AUC

can be affected by the classification method used. Different

classification methods have their own weaknesses and

advantages that may affect the performance results or overall

model performance.

TABLE 18

AUC Result comparison of the Proposed Method with Other Studies

Method

 BE

with
top 20

Enchace

d WFS
[22]

RAHFM

WS [17]

HFS

BE
[30]

Dataset

CM1 0.786 0.722 0.744 0.746

MW1 0.824 0.756 0.782 0.92

PC1 0.784 0.826 0.792 0.795

PC3 0.821 0.806 0.806 0.782

Average 0.804 0.781 0.778 0.811

TABLE 18 show how the propose method compare to the

other method. The proposed method demonstrates

improvements over other two previous study method.

Although the proposed method did not yield overall results

compared to HFS_BE, the proposed method still yields better

result at CM1 and PC3 dataset. Our study did not explore other

classification algorithms or optimize correlation feature

selection. Although HFS_BE currently seems the best among

the methods compared, its effectiveness for software defect

prediction is still unclear based on the CM1 and PC3 results.

there are limitations in this study and for the propose method.

the limitations are as follow: our dependence on specific

datasets limits the generalizability of our findings.

Additionally, by focusing on the AUC metric and one

classification algorithms may overlook other important

aspects of evaluating model performance, our method does not

explore the potential benefits of reintroducing removed

features into the final model, which could potentially improve

performance. The results can also vary based on the number

of features selected before applying Backward Elimination,

and we did not consider the impact of removing top relevant

features, which might affect performance.

Despite these limitations, our study demonstrates that

Backward Elimination has potential for software defect

prediction, particularly when used with other methods. We

also show that correlation coefficient filter in conjunction with

other techniques, can enhance performance. Further research

is needed to determine the optimal methods for integrating

Backward Elimination to improve its effectiveness in software

defect prediction. This exploration could lead to the

development of more accurate and robust prediction models.

V. CONCLUSION

The aim of this study was to determine if selecting several

features that were considered relevant before applying

Backward Elimination can mitigate the drawbacks of

Backward Elimination whilst also improving the prediction

performance of the model. Hence, correlation coefficient is

used to determine which features are relevant or important for

software defect prediction. By choosing several features

0

0.2

0.4

0.6

0.8

1

CM1 MC1 MW1 PC1 PC3 AVG

A
U

C

METHOD
Naïve Bayes

Backward Eliminiation

Backward Eliminiation with Correlation Top (20)

Backward Eliminiation with Correlation Top (10)

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 426

before applying Backward Elimination, improvement of the

performance of Backward Elimination was observe.

The performance of the final model was evaluated with

cross validation using performance metric of accuracy and

AUC from the software defect prediction result. After testing,

it was found that the average result of selecting some relevant

features before using Backward Elimination outperformed

that only using Backward Elimination based on average AUC

and average accuracy results. Backward Elimination had

average AUC and accuracy results of 0.785 AUC, and 73.6%

accuracy. The average result for top 10 features with

Backward Elimination was 0,797 AUC, and 86.6% accuracy.

The average result of top 20 feature with Backward

Elimination was 0.812 AUC and 84% accuracy. While the

performance result may vary depending on the selected

features, overall, from the result it appears using correlation

coefficient to determine the relevant features does improve the

performance of the Backward Elimination, helping mitigate

the drawbacks of Backward Elimination.

For future studies, areas for further study include testing of

different methods for relevant features selection such as

weighted by Gain Ratio. Utilizing different method may

minorly, or significantly change the top relevant features,

yielding different performance results. Investigation of this to

determine the optimal feature selection method is expected to

be beneficial for achieving further improvement in defect

detection. Another area for consideration is utilization of

different classification methods like K-Nearest Neighbors

(KNN). usage of different classification method, is also

expected to prioritize different sets of features bring a new set

of weaknesses and advantages which may be more suitable for

defect detection. By using different methods to find relevant

features, and different classification methods, we hope that

further research can find the best method to pair with

Backward Elimination, improving its performance and

mitigating its drawback for better software defect prediction.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to the

individual from the Computer Sciences department at

Lambung Mangkurat University for their invaluable

contribution, their input and suggestion greatly enhance the

quality of our work. We also appreciate hard work and

cooperation of our project team member.

REFERENCES
[1] H. Ji, S. Huang, Y. Wu, Z. Hui, and C. Zheng, “A new weighted naive

Bayes method based on information diffusion for software defect

prediction,” Software Quality Journal, vol. 27, no. 3, pp. 923–968,

Sep. 2019, doi: 10.1007/s11219-018-9436-4.
[2] A. Rahim, Z. Hayat, M. Abbas, A. Rahim, and M. A. Rahim,

“Software Defect Prediction with Naïve Bayes Classifier,” in

Proceedings of 18th International Bhurban Conference on Applied
Sciences and Technologies, IBCAST 2021, Institute of Electrical and

Electronics Engineers Inc., Jan. 2021, pp. 293–297. doi:

10.1109/IBCAST51254.2021.9393250.
[3] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect

prediction techniques,” International Journal of Applied Science and

Engineering, vol. 17, no. 4, pp. 331–344, Jan. 2020, doi:
10.6703/IJASE.202012_17(4).331.

[4] A. Iqbal et al., “Performance analysis of machine learning techniques

on software defect prediction using NASA datasets,” International
Journal of Advanced Computer Science and Applications, vol. 10, no.

5, pp. 300–308, 2019, doi: 10.14569/ijacsa.2019.0100538.

[5] T. M. P. Hà, T. M. H. Le, and T. B. Nguyen, “A Comparative Analysis
of Filter-Based Feature Selection Methods for Software Fault

Prediction,” Journal of Research and Development on Information

and Communication Technology, pp. 1–7, Jun. 2021, doi:
10.32913/mic-ict-research-vn.v2021.n1.969.

[6] U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection

algorithm: A review,” Apr. 01, 2022, King Saud bin Abdulaziz
University. doi: 10.1016/j.jksuci.2019.06.012.

[7] D. Singh and B. Singh, “Investigating the impact of data normalization

on classification performance,” Appl Soft Comput, vol. 97, Dec. 2020,
doi: 10.1016/j.asoc.2019.105524.

[8] B. Venkatesh and J. Anuradha, “A review of Feature Selection and its

methods,” Cybernetics and Information Technologies, vol. 19, no. 1,
pp. 3–26, 2019, doi: 10.2478/CAIT-2019-0001.

[9] R. K. Agrawal, B. Kaur, and S. Sharma, “Quantum based Whale

Optimization Algorithm for wrapper feature selection,” Applied Soft
Computing Journal, vol. 89, Apr. 2020, doi:

10.1016/j.asoc.2020.106092.

[10] D. Singh and B. Singh, “Investigating the impact of data normalization
on classification performance,” Appl Soft Comput, vol. 97, Dec. 2020,

doi: 10.1016/j.asoc.2019.105524.

[11] W. Sauerbrei et al., “State of the art in selection of variables and
functional forms in multivariable analysis—outstanding issues,”

Diagn Progn Res, vol. 4, no. 1, p. 3, Dec. 2020, doi: 10.1186/s41512-

020-00074-3.
[12] M. Z. I. Chowdhury and T. C. Turin, “Variable selection strategies and

its importance in clinical prediction modelling,” Fam Med Community

Health, vol. 8, no. 1, Feb. 2020, doi: 10.1136/fmch-2019-000262.
[13] J. R. Busenbark, H. Yoon, D. L. Gamache, and M. C. Withers,

“Omitted Variable Bias: Examining Management Research With the

Impact Threshold of a Confounding Variable (ITCV),” J Manage, vol.
48, no. 1, pp. 17–48, Jan. 2022, doi: 10.1177/01492063211006458.

[14] L. Jiang, L. Zhang, C. Li, and J. Wu, “A Correlation-Based Feature

Weighting Filter for Naive Bayes,” IEEE Trans Knowl Data Eng, vol.
31, no. 2, pp. 201–213, Feb. 2019, doi: 10.1109/TKDE.2018.2836440.

[15] M. Kondo, C. P. Bezemer, Y. Kamei, A. E. Hassan, and O. Mizuno,

“The impact of feature reduction techniques on defect prediction
models,” Empir Softw Eng, vol. 24, no. 4, pp. 1925–1963, Aug. 2019,

doi: 10.1007/s10664-018-9679-5.

[16] S. Ruan, B. Chen, K. Song, and H. Li, “Weighted naïve Bayes text
classification algorithm based on improved distance correlation

coefficient,” Neural Comput Appl, vol. 34, no. 4, pp. 2729–2738, Feb.

2022, doi: 10.1007/s00521-021-05989-6.
[17] A. O. Balogun et al., “A novel rank aggregation-based hybrid

multifilter wrapper feature selection method in software defect

prediction,” Comput Intell Neurosci, vol. 2021, 2021, doi:
10.1155/2021/5069016.

[18] J. Zhang, Y. Xiong, and S. Min, “A new hybrid filter/wrapper
algorithm for feature selection in classification,” Anal Chim Acta, vol.

1080, pp. 43–54, Nov. 2019, doi: 10.1016/j.aca.2019.06.054.

[19] M. Shantal, Z. Othman, and A. A. Bakar, “A Novel Approach for Data
Feature Weighting Using Correlation Coefficients and Min–Max

Normalization,” Symmetry (Basel), vol. 15, no. 12, Dec. 2023, doi:

10.3390/sym15122185.
[20] M. N. M. Rahman, R. A. Nugroho, M. R. Faisal, F. Abadi, and R.

Herteno, “Optimized multi correlation-based feature selection in

software defect prediction,” Telkomnika (Telecommunication
Computing Electronics and Control), vol. 22, no. 3, pp. 598–605, Jun.

2024, doi: 10.12928/TELKOMNIKA.v22i3.25793.

[21] Y. Liu, W. Zhang, G. Qin, and J. Zhao, “A comparative study on the
effect of data imbalance on software defect prediction,” in Procedia

Computer Science, Elsevier B.V., 2022, pp. 1603–1616. doi:

10.1016/j.procs.2022.11.349.
[22] A. O. Balogun et al., “Software defect prediction using wrapper

feature selection based on dynamic re-reranking strategy,” Symmetry

(Basel), vol. 13, no. 11, Nov. 2021, doi: 10.3390/sym13112166.
[23] Angga Maulana Akbar, R. Herteno, S. W. Saputro, M. R. Faisal, and

R. A. Nugroho, “Optimizing Software Defect Prediction Models:

Integrating Hybrid Grey Wolf and Particle Swarm Optimization for
Enhanced Feature Selection with Popular Gradient Boosting

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 427

Algorithm,” Journal of Electronics, Electromedical Engineering, and

Medical Informatics, vol. 6, no. 2, pp. 169–181, Apr. 2024, doi:
10.35882/jeeemi.v6i2.388.

[24] H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection method

for imbalanced data classification,” IEEE/CAA Journal of Automatica
Sinica, vol. 6, no. 3, pp. 703–715, May 2019, doi:

10.1109/JAS.2019.1911447.

[25] X. Ying, “An Overview of Overfitting and its Solutions,” in Journal
of Physics: Conference Series, Institute of Physics Publishing, Mar.

2019. doi: 10.1088/1742-6596/1168/2/022022.

[26] M. K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A.
Nugroho, “A Comparative Study of Various Hyperparameter Tuning

on Random Forest Classification with SMOTE and Feature Selection

Using Genetic Algorithm in Software Defect Prediction,” Journal of
Electronics, Electromedical Engineering, and Medical Informatics,

vol. 6, no. 2, pp. 137–147, Apr. 2024, doi: 10.35882/jeeemi.v6i2.375.

[27] C. B. Gokulnath and S. P. Shantharajah, “An optimized feature
selection based on genetic approach and support vector machine for

heart disease,” Cluster Comput, vol. 22, pp. 14777–14787, Nov. 2019,

doi: 10.1007/s10586-018-2416-4.
[28] D. G. Bonett, “Point-biserial correlation: Interval estimation,

hypothesis testing, meta-analysis, and sample size determination,”

British Journal of Mathematical and Statistical Psychology, vol. 73,
no. S1, pp. 113–144, Nov. 2020, doi: 10.1111/bmsp.12189.

[29] F. Maulidina, Z. Rustam, S. Hartini, V. V. P. Wibowo, I. Wirasati, and

W. Sadewo, “Feature optimization using Backward Elimination and
Support Vector Machines (SVM) algorithm for diabetes

classification,” in Journal of Physics: Conference Series, IOP

Publishing Ltd, Mar. 2021. doi: 10.1088/1742-6596/1821/1/012006.
[30] Y. Jian, X. Yu, Z. Xu, and Z. Ma, “A hybrid feature selection method

for software fault prediction,” IEICE Trans Inf Syst, vol. E102D, no.

10, pp. 1966–1975, 2019, doi: 10.1587/transinf.2019EDP7033.
[31] Putri Nabella, Rudy Herteno, Setyo Wahyu Saputro, Mohammad Reza

Faisal, and Friska Abadi, “Impact of a Synthetic Data Vault for

Imbalanced Class in Cross-Project Defect Prediction,” Journal of
Electronics, Electromedical Engineering, and Medical Informatics,

vol. 6, no. 2, pp. 219–230, Apr. 2024, doi: 10.35882/jeeemi.v6i2.409.

[32] I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications,
variations and vulnerabilities: a review of literature with code snippets

for implementation,” Soft comput, vol. 25, no. 3, pp. 2277–2293, Feb.

2021, doi: 10.1007/s00500-020-05297-6.
[33] L. Jiang, L. Zhang, L. Yu, and D. Wang, “Class-specific attribute

weighted naive Bayes,” Pattern Recognit, vol. 88, pp. 321–330, Apr.

2019, doi: 10.1016/j.patcog.2018.11.032.
[34] S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selective naïve

Bayes algorithm,” Knowl Based Syst, vol. 192, Mar. 2020, doi:

10.1016/j.knosys.2019.105361.
[35] H. Zhang, L. Jiang, and L. Yu, “Attribute and instance weighted naive

Bayes,” Pattern Recognit, vol. 111, Mar. 2021, doi:

10.1016/j.patcog.2020.107674.
[36] A. O. Balogun et al., “Impact of feature selection methods on the

predictive performance of software defect prediction models: An
extensive empirical study,” Symmetry (Basel), vol. 12, no. 7, Jul.

2020, doi: 10.3390/sym12071147.

[37] O. Karal, “Performance comparison of different kernel functions in
SVM for different k value in k-fold cross-validation,” in Proceedings

- 2020 Innovations in Intelligent Systems and Applications

Conference, ASYU 2020, Institute of Electrical and Electronics
Engineers Inc., Oct. 2020. doi: 10.1109/ASYU50717.2020.9259880.

[38] Y. F. Zamzam, T. H. Saragih, R. Herteno, Muliadi, D. T. Nugrahadi,

and P. H. Huynh, “Comparison of CatBoost and Random Forest
Methods for Lung Cancer Classification using Hyperparameter

Tuning Bayesian Optimization-based,” Journal of Electronics,

Electromedical Engineering, and Medical Informatics, vol. 6, no. 2,
pp. 125–136, Apr. 2024, doi: 10.35882/jeeemi.v6i2.382.

[39] R. Malhotra, R. Kapoor, P. Saxena, and P. Sharma, “SAGA: A Hybrid

Technique to handle Imbalance Data in Software Defect Prediction,”
in ISCAIE 2021 - IEEE 11th Symposium on Computer Applications

and Industrial Electronics, Institute of Electrical and Electronics

Engineers Inc., Apr. 2021, pp. 331–336. doi:
10.1109/ISCAIE51753.2021.9431842.

[40] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two

SVM models through different metrics based on the confusion

matrix,” Comput Oper Res, vol. 152, Apr. 2023, doi:

10.1016/j.cor.2022.106131.
[41] C. S. Hong and T. G. Oh, “TPR-TNR plot for confusion matrix,”

Commun Stat Appl Methods, vol. 28, no. 2, pp. 161–169, 2021, doi:

10.29220/CSAM.2021.28.2.161.

BIBLIOGRAPHY

Muhammad Noor was born in Central

Kalimantan, Indonesia, after finishing high school,

he decided to pursue further study in Computer
Science. Since 2020, he has been pursuing his

studies at Universitas Lambung Mangkurat, where

his research primarily focuses on software
engineering. His academic work is concentrated on

predicting software defects, an area he explored in-

depth for his final project. he aims to contribute to advancements in software
reliability through his research, striving to enhance the accuracy and

effectiveness of software defect prediction methodologies in software

development. His ongoing work reflects a strong commitment to improving

software quality and engineering practices

Radityo Adi Nugroho holds a bachelor's degree

in Informatics from the Islamic University of
Indonesia and a master's degree in Computer

Science from Gadjah Mada University. Currently,
he is an assistant professor in the Department of

Computer Science at Lambung Mangkurat

University. His research interests include software
defect prediction and computer vision. In addition to

his academic role, he is also an IT practitioner with

substantial experience, serving as a project manager
and systems analyst. He has extensive experience in developing software

and information systems for universities. Radityo Adi Nugroho is available

for consultation and can be contacted at radityo.adi@ulm.ac.id.

Setyo Wahyu Saputro is a lecturer in Computer

Science Department, Faculty of Mathematics and

Natural Science, Lambung Mangkurat University in

Banjarbaru. He received bachelor’s degree also in
Computer Science from Lambung Mangkurat

University in 2011, and received his master’s degree

in Informatics from STMIK Amikom University in
2016. He is active as an information technology

practitioner and consultant, being a project manager

or systems analyst working on several projects in government and private
agencies in South Kalimantan province since 2017. His research interests

include software engineering, human computer interaction, and artificial

intelligence applications. He can be contacted at email:
setyo.saputro@ulm.ac.id

Rudy Herteno, was born in Banjarmasin, South

Kalimantan. After graduating from high school, he
pursued his undergraduate studies in the Computer

Science Department at Lambung Mangkurat

University and graduated in 2011. After completing
his undergraduate program, he worked as a software

developer to gather experience for several years. He

developed a lot of software, especially for local
governments. In 2017, He completed his master's

degree in Informatics from STMIK Amikom University. Currently, he is a

lecturer in the Faculty of Mathematics and Natural Science at Lambung
Mangkurat University. His research interests include software engineering,

software defect prediction, and deep learning. He can be contacted at email:

rudy.herteno@ulm.ac.id.

https://jeeemi.org/index.php/jeeemi/index
mailto:radityo.adi@ulm.ac.id
mailto:rudy.herteno@ulm.ac.id

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 4, October 2024, pp: 416-428; eISSN: 2656-8632

Homepage: jeeemi.org 428

Friska Abadi finished his bachelor's degree in

Computer Science from Lambung Mangkurat

University in 2011. Subsequently, in 2016, he
obtained his master's degree from the Department of

Informatics at STMIK Amikom, Yogyakarta.

Following that, he joined Lambung Mangkurat
University as a lecturer in Computer Science. As a

lecturer he teaches programming. Apart from that, he

also carries out research and community service. Other activities as an
application developer, whether using a web or mobile platform. Currently,

he holds the position of head of the software engineering laboratory. His

current area of research revolves around software engineering and also
interested in machine learning.

https://jeeemi.org/index.php/jeeemi/index

