
Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 4, October 2024, pp: 416-428;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              416               

RESEARCH ARTICLE  OPEN ACCESS 
 
Manuscript received May 5, 2024; revised August 2, 2024; accepted August 5, 2024; date of publication October 20, 2024 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v6i4.466 
Copyright © 2024 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
How to cite: Muhammad Noor, Radityo Adi Nugroho, Setyo Wahyu Saputro, Rudy Herteno , and Friska Abadi, “Optimization of Backward 
Elimination for Software Defect Prediction with Correlation Coefficient Filter Method  ”, Journal of Electronics, Electromedical Engineering, and 
Medical Informatics, vol. 6, no. 4, pp. 397-404, October 2024.  

Optimization of Backward Elimination for 
Software Defect Prediction with Correlation 
Coefficient Filter Method   

Muhammad Noor , Radityo Adi Nugroho , Setyo Wahyu Saputro , Rudy Herteno , and Friska Abadi  
 
Computer Science Department, Lambung Mangkurat University, Banjar Baru, South Kalimantan, Indonesia' 
Corresponding author: radityo.adi@ulm.ac.id  
 

ABSTRACT Detecting software defects is a crucial step for software development not only to reduce cost and save time, but 

also to mitigate more costly losses. Backward Elimination is one method for detecting software defects. Notably Backward 

Elimination may remove features that may later become significant to the outcome affecting the performance of Backward 

Elimination. The aim of this study is to improve Backward Elimination performance. In this study, several features were 

selected based on their correlation coefficient, with the selected feature applied to improve Backward Elimination final model 

performance. The final model was validated using cross validation with Naïve Bayes as the classification method on the NASA 

MDP dataset to determine the accuracy and Area Under the Curve (AUC) of the final model. Using top 10 correlation feature 

and Backward Elimination achieve an average result of 86.6% accuracy and 0.797 AUC, while using top 20 correlation feature 

and Backward Elimination achieved an average result of 84% accuracy and 0.812 AUC. Compare to using Backward 

Elimination and Naïve Bayes respectively the improvement using top 10 correlation feature as follows: AUC:1.52%, 13.53% 

and Accuracy: 13%, 12.4% while the improvement using top 20 correlation feature as follows: AUC:3.43%, 15.66% and 

Accuracy: 10.4%, 9.8%. Results showed that selecting the top 10 and top 20 feature based on its correlation before using 

Backward Elimination have better result than only using Backward Elimination. This result shows that combining Backward 

Elimination with correlation coefficient feature selection does improve Backward Elimination’s final model and yielding good 

results for detecting software defects. 

INDEX TERMS Backward Elimination, Correlation Coefficient, Software Defect Prediction. 

I. INTRODUCTION 

In the software development lifecycle finding software defect 

at during testing stage is highly important. developers should 

ideally find all software defects, during this stage[1]. Once a 

flawed system is implemented, it becomes substantially more 

expensive to identify and rectify defects within the system 

compared to during the software development phase[2]. 

Therefore, to find defects more efficiently, software defect 

prediction is used. Software defect prediction helps reduce 

cost and save time, also to mitigating more costly losses [2]. 

Money and time spent on fixing software can be instead be 

spend improving core functionality. Defects can range from 

impeding correct function of code, to introduction of 

vulnerabilities which may be exploited by malicious entities. 

Therefore, predicting unknown defects in software can assist 

developers and programmers in obtaining critical information 

about the type and location of defects to enhance the 

availability and reliability of the software. Currently, machine 

learning techniques are considered the most promising for 

predicting defects in software[3], [4].  

Some factors that affect the performance of software defect 

prediction is redundant data, and irrelevant features in the 

dataset. Feature Selection (FS) is one way to address this issue. 

The objective of feature selection is to determine relevant 

features while removing irrelevant and redundant ones [5], [6]. 

Feature Selection methods are categorized into three types: 

Embedded, Filter, and Wrapper. Wrapper methods produces 

more accurate results than the Filter methods, but the 

performance of the Wrapper method depends on its specific 

algorithm implementation. It notably requires more 

computational power than Filter methods[7]. 
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Wrapper feature selection methods selects the feature subset 

based on a given criteria. Wrapper methods determines the 

best subset of features using machine learning, features 

selected based on the accuracy result of a classification 

algorithm, wrapper method can be sequential or random [8], 

[9]. Filter feature selection assigns a scoring value to each 

feature using statistical measures. Feature weighting is a 

technique that assigns weights to different features based on 

their relevance or importance in a machine learning model. By 

assigning each feature a weight, it can be used for feature 

selection using the filter method to select subset features [10]. 

Backward Elimination (BE) is an example of a wrapper 

feature selection method. Backward Elimination removes one 

feature at a time that is considered irrelevant to the outcome of 

the model[11]. The feature selection process repeats until the 

result meets the parameter set by user, the parameter usually 

is set if the result become significant. The combination of 

several features can yield significant results, however the 

effectiveness of this varies for given combinations. Notably, 

when Backward Elimination removes a feature, it cannot be 

added back into the final model. These removed features may 

potentially improve the performance of the final model if 

added or present [12]. This drawback is referred to as Omitted 

Variable Bias [13]. 

Correlation coefficient is an example of a filter feature 

selection method. Correlation coefficient models calculate the 

level of relevance of features based on their correlation, which 

can be converted into weights to be ranked [14]. Correlation-

based feature selection (CFS), or feature selection based on 

correlation coefficient, is consider by some to be the best-

performing feature selection technique in previous 

research[15], [16].  

The study by Balogun et al. [17] introduce the hybrid feature 

selection (HFS) method that they called rank aggregation-

based hybrid multifilter wrapper feature selection 

(RAHMFWFS). It is used for selection of relevant and 

irredundant feature from software defect prediction dataset. 

HFS method is a combination of Wrapper feature selection 

and Filter feature selection. Balogun et al. combine rank 

aggregation-based multifilter feature selection (RFMS) 

method and enhanced wrapper feature selection (EWFS). 

They found that the RAHFWFS method had a greater positive 

impact on prediction performance of Naïve Bayes and 

Decision Tree with the following result Naïve Bayes with 

average accuracy value of 82.67%, AUC value of 0.802 and 

Decision Tree average accuracy result value of 83.8%, AUC 

value of 0.732 

The study by Zhang et al.[18] introduced a new feature 

selection method that they refer to as a large margin hybrid 

algorithm for feature selection (LMFS), LMFS combines filter 

method and wrapper method approaches. They used a 

weighted bootstrapping search to find subset candidates, then 

a distance-based evaluation to optimize the selection from all 

the subset candidate and find the final model bases on that. 

The result of their method is it performed better for 

classification and model interpretation compare to only using 

a wrapper method or filter method only.  

The study by Shantal et al. [19] proposed a method that they 

call correlation coefficients with Min-max weighted (CCWP) 

for data preprocessing. This method was used for improving 

the performance primarily model accuracy. They used K-

Nearest Neighbor (KNN), Support Vector Machine (SVM), 

Logistic Regression (LR), Neural Network (NN), and Naive 

Bayesian classifiers (NB) to evaluate their model focusing on 

its accuracy. They found that only the accuracy results of KNN 

as classifier were unsuitable, while other classifiers method 

that were used in the study to evaluate the model 

outperformance the normal Min-Max normalization method 

in 40% of the dataset that they used. However other weighting 

and normalization method outperformed CCWP in most 

cases. 

In recent study by Rahman et al. [20] proposed a method 

they call multi correlation-based feature selection (MCFS). 

MCFS integrates two feature selection techniques: 

Correlation-Based Feature Selection (CFS) and Correlation 

Matrix-Based Feature Selection (CMFS). This method aims to 

reduce data dimensionality, eliminate noisy attributes, and 

enhance the predictive performance of the Particle Swarm 

Optimization (PSO) algorithm. The study found that PSO 

combined with MCFS outperformed other methods, achieving 

an average AUC of 0.891. In contrast, when PSO was applied 

independently, the AUC was 0.827. Additionally, the 

combination of PSO with CFS improved the AUC to 0.836, 

while combining PSO with CMFS resulted in a further 

increase to 0.839. 

Previous studies show that combining feature selection can 

yield better result and improve its performance. The aim in this 

study to improve performance of Backward Elimination for 

detecting software defect, features of the dataset will be 

selected, with subsequent application of Backward 

Elimination. The features will be determined using correlation 

coefficients to assess their relevance as shown from previous 

studies using correlation coefficients to determined relevant 

feature can improve performance. Utilization of using 

Backward Elimination in conjunction Correlation feature 

selection filter method for software defect prediction has not 

been attempted, it is anticipated that by using alternative 

approaches to evaluate the relevance of features and removal 

of identified irrelevant features, the limitations of Backward 

Elimination can be mitigated, improving the prediction 

performance of the final Backward Elimination model. The 

findings of this study are expected to provide contributions 

such as:  

1. Introducing another filter feature selection method to 

improve Backward Elimination performance for software 

defect prediction. 

2. To further the research studying creation more optimal 

methods for software defects prediction. 

3. Introducing additional methods to mitigate drawbacks of 

Backward Elimination. 
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II. MATERIAL AND METHOD 

The proposed method of this research is, firstly determined 

relevant features from the dataset using correlation coefficient. 

Once all features have been ranked or weighted by their 

correlation coefficient value, selection of the top 20 and/ or top 

10 relevant features based on their correlation coefficient 

value. This decision is based on the large number of different 

features in the NASA MDP dataset as show at TABLE . For 

datasets with 22 features, the top 10 (±50%) of the relevant 

features were selected, while datasets with 37-40 features will 

use the top 20 (±50%) and top 10 (±25%) relevant features. 

This standardization in feature selection is implemented for 

the stability and ease of research experimentation. 

After selecting the features from the dataset, Backward 

Elimination was used to get the final model. Using Naïve 

Bayes as classification method to detect software defects and 

cross validation to evaluate the final model and to find the 

accuracy and Area under the curve (AUC). FIGURE 1 

represents the research flow conducted in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1. Research method Flowchart 

A. DATASET 

The NASA MDP dataset is a frequently used dataset by 

researchers conducting software defect prediction 

experiments [21], [22].Nasa MDP dataset is a collection of 

NASA Corpus which contains a diverse collection of real 

software projects spanning various domains and programming 

languages, including Java, C, and C++. This dataset features a 

wide range of code sizes, complexities, and functionalities, 

providing a comprehensive view of software development 

challenges. It includes numerous software metrics, such as 

lines of code, cyclomatic complexity, and other metric which 

offer valuable insights into the characteristics of software 

components. The primary aim of this dataset is to support the 

evaluation and development of predictive models designed to 

identify potentially defective software components early in the 

development process[23].  The Nasa MDP dataset used in this 

study was the cleaned version. 

The criteria set in this study are dataset with a minimum 

sample size above 250, but not exceeding 2000 with defect 

percentages less than 13%, and a minimum of 20 defects. The 

dataset that meets these criteria are CM1, MC1, MW1, PC1, 

and PC3 as show in TABLE 1. These criteria are established 

to reduce required computational power, and overfitting which 

may occur if the sample data is too large, this is one of the 

detrimental characteristics of feature selection wrapper 

methods [6], [24], [25]. The Nasa MDP dataset has two class 

label Y and N. Class label Y is for defective attribute and class 

label N for non-defective attribute, in data preprocessing stage 

Label Y and N are converted to values of 1 and 0 respectively 

[26].  

 
TABLE 1 

NASA MDP DATASET 

Dataset 
Number of 

features 
Sample 

size 

Number of 

defects 

Defect % 

CM1 38 327 42 12.8 

JM1 22 7720 1612 20.8 

KC1 22 1162 294 25.3 

KC3 40 194 36 18.5 

MC1 38 1988 46 2.3 

MC2 40 124 44 35.4 

MW1 38 253 27 10.7 

PC1 38 705 61 9.7 

PC2 37 722 16 2.2 

PC3 38 1077 134 12.4 

PC4 38 1270 176 13.8 

PC5 39 1694 458 27.0 

B. FEATURE SELECTION  

1. CORELLATION COEFFICIENT  

Correlation coefficient is one of the simple filter algorithms, 

using a heuristic evaluation function to rank the feature subset 

based on their significance, which is determined by their high 

correlation. After identifying significant features from the 

dataset, these features are then ranked using various feature 

ranking techniques [27]. After the dataset is prepared, we 

calculate the correlation coefficient of each dataset feature to 

the target variable. Correlation Coefficient was used because 

it can address Naïve Bayes key weakness through 

determination of which features are relevant for software 

defect prediction.[15], [16].
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It should be noted that though correlation coefficient is one 

method of determining feature relevancy, it has the risk 

because as some features may have high relevancy for the 

target variable, but doesn’t mean it will good predictor of 

defect.  

Nonetheless it a useful tool for defect prediction and can 

easily be implemented. Since we used correlation coefficient 

with Backward Elimination it should help mitigate the risk. 
Backward Elimination can help mitigated the risk by 

removing less significant feature, which may also reduce 

correlations among the remaining variables. 

There are several methods to find the correlation coefficient 

of features, however as the dataset utilized contains 

binomial/dichotomous labels denoted as 'N' and 'Y' (or 0 and 

1), equation (1) [28] is used to calculate the correlation feature 

of the dataset. TABLE 2 is the pseudocode to find the 

correlation coefficient of each feature (Eq. (1)).  

 
𝑟𝑝𝑏 =

𝑀1−𝑀0

𝑠𝑛
 √

𝑛1𝑛0

𝑛2   (1) 

𝑀1 denotes the mean value on the constant variable 𝑥 for all 

data points in group 1, and 𝑀0  denote the mean values of 

group 2. The dataset is grouped by their label, 𝑛1  and 𝑛0  

which denotes the number of totals in group 1 and 2. 𝑛 denotes 

the total of the sample size, and 𝑠𝑛 is the standard deviation. 

Equation (2)  [28] is used to calculate standard deviation (Eq. 

(20)). 

 
𝑠𝑛 =  √

1

𝑛
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1   (2) 

 After calculating the correlation coefficient of each feature, 

the result can be ranked. The closer the result is to zero the 

lower its rank, from this ranking we can choose how many 

features should be removed or selected for Backward 

Elimination. In this study we select the top 20 and top 10 

feature.  
TABLE 2 

Correlation Coefficient pseudocode 

Correlation Coefficients  

Initialize: 

Dataset with feature X (binary: Y or N) and target variable Y 

(continuous) 
 

Calculate the mean of Y as Y_mean 

Calculate the standard deviation of Y as Y_std (Equation 2) 
Calculate the mean of X as X_mean 

Calculate the standard deviation of X as X_std (equation 2) 

 
Calculate the Point-Biserial Correlation coefficient (equation 1) for 

feature X and target variable Y: 
For each data point in the dataset: 

    Calculate the biserial correlation coefficient r_biserial as (mean of 

Y where X = 1 - mean of Y where X = 0) / Y_std  
    Calculate the point-biserial correlation coefficient r_pb as r_biserial 

* sqrt(count(X=1) *count(X=0) / (count(X)-1)) 

 
Return the average or final value of r_pb as the Point-Biserial 

Correlation coefficient for X and Y 

2. BACKWARD ELIMINATION 

Backward Elimination (BE) is a comparatively simpler 

variable/feature selection method. The main advantages of 

Backward Elimination are initial removal of the least 

important features and guaranteed retention of the most 

important features in the model.  Some disadvantages include 

the removed features cannot be added back into the model 

which might improve the performance result [12]. Improving 

the performance of Backward Elimination for software defect 

prediction makes this method a promising option, as it 

produces favorable results and is simple to implement. 

The next step after selecting the top 20 and/or top 10 

features based on their correlation is to use Backward 

Elimination to find the final model of the dataset. Backward 

Elimination is a machine learning algorithm for feature 

selection from a dataset. The few advantages of Backward 

Elimination are improved performance and accuracy if not 

using any feature selection method, and decreasing 

complexity/ simplification of the model[29].  In general, 

Backward Elimination starts with a complete set of features, 

removing it’s the least important variable feature repeatably 

until the desired parameter value is reached [8], [30]. 

The step of Backward Elimination involves the following:  

1. Start with a Full Model: Begin with a model that includes 

all potential predictor variables. 

2. Fit the Model: Use a statistical modeling technique to fit 

the full model to the data. 

3. Identify the Least Significant Variable: Determine the 

variable with the highest p-value 

4. Remove the Variable: If the variable identified in step 3 

has a p-value above a specified significance level (e.g., 

0.05), remove it from the model. 

5. Refit the Model: Re-estimate the model without the 

removed variable. Repeat the Process: Continue steps 3-

5 until all remaining variables in the model are 

statistically significant. 

6. Repeat the Process: Continue steps 3-5 until all remaining 

variables in the model are statistically significant. 

TABLE 3 is pseudocode of a typical Backward Elimination 

algorithm. The P-value or the parameter value can be set to 

anything, however usually it is set to 0.05. In this research the 

Backward Elimination stops when then next model has a 

decreasing performance result and/or stops after 10 features 

are removed. The stop condition can be changed, for example 

stopping if the accuracy result decrease by significant value of 

0.03. 
TABLE 3 

Backward Elimination pseudocode 

Backward Elimination 

Initialize:  

List of all features F = [f1, f2, ..., fn] 
Selected features S = F 

Significance level alpha 

Model M 
 

while True: 

    Train the model M using features in S 
    Calculate the p-values for each feature in S 

    Identify the feature with the largest p-value p_max 

     
    if p_max > alpha: 

        Remove the feature with p_max from S 
    else: 
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        Break the loop as all remaining features are significant 

        Return: Selected features S 
 

end 

D. CLASSIFICATION 

1. NAÏVE BAYES 

Naïve Bayes (NB) is a classification technique based on 

Bayes’ theory. It assumes all feature are independent to one 

another, this “naive” assumption hence why it is called Naïve 

Bayes [31]. It falls under the generative learning algorithm 

family, meaning it model input distribution for a given class 

or category. Naïve Bayes calculates the highest probability 

value and assigns the test data to the most appropriate category 

based on this result [31]. It is an efficient algorithm that 

achieves good accuracy with large dataset [2]. 

Naïve Bayes is considered a popular and effective method 

for supervised machine learning not only due to its simplicity, 

but also being high performance and robust [31], [32]. 

Moreover, leveraging feature selection with Naïve Bayes can 

significantly enhance its performance[3]. It is simple to 

implement, and often yields better performance than 

comparatively more complex classification methods[1], [33]. 

However Naïve Bayes assumes that all features are equally 

important, which may not always be accurate as different 

features serve different purposes. Additionally, not all are 

reliable indicators of software defects[1]. An alternative to 

address this uses weighting if the features based on their 

importance, this approach known as weighted Naïve Bayes 

(WNB). [34], [35]. 

Naïve Bayes is a frequently used classification method in 

software defect prediction. It used because of its high 

prediction efficiency and potential to handle imbalanced 

datasets[2], [22], [36]. Eq. (3) [2] is Naïve Bayes algorithm for 

prediction/classification in a dataset.  

 
𝑃(ℎ|𝐷) =

𝑃(𝐷|ℎ)𝑃(ℎ)

𝑃(𝐷)
  (3) 

In this equation D represents data with an unknown class, 

while H denote the hypothesis that D belongs to a specific 

class. P(h) denote the prior probability, while P(D|h) denotes 

the posterior probability, providing the probability of the data 

given the hypothesis. Additionally, P(D) denotes the 

probability of the data or predictors prior probability. TABLE 

4 is the Naïve Bayes algorithm in pseudocode. 
TABLE 4 

Naïve Bayes algorithm pseudocode 

Naïve Bayes algorithm 

Start 

 

Input training dataset 
 

Separate the dataset by class labels 

 
Calculate the prior probability of each class label 

 

 For each feature in the dataset: 
     a. Calculate the likelihood of the feature given each class label 

     b. Calculate the conditional probability of each class label given 

the feature 

 

Input test dataset 
 For each instance in the test dataset: 

     a. Calculate the posterior probability of each class label given the 

instance 
     b. Predict the class label with the highest posterior probability 

 Output the predicted class labels for the test dataset 

 
End 

E. MODEL EVALUATION 

1. K-FOLD CROSS VALIDATION 

After selecting relevant features and applying Backward 

Elimination to find the final model, the performance of the 

final model can be assessed using cross validation. Cross 

validation is a testing system for machine learning algorithm 

[37]. Cross-validation is a technique used to assess and 

improve the performance of a model while reducing 

systematic errors. It works by dividing the data into multiple 

subsets. In k-fold cross-validation, the dataset is split into k 

equal-sized folds (e.g., 𝑘=10). Each fold serves as a test set 

once, while the remaining k−1 folds are combined to form the 

training set. This process is repeated k times, with each fold 

being used as the test set exactly once. By averaging the results 

from these multiple iterations, cross-validation provides a 

more reliable estimate of the model’s performance and helps 

to prevent overfitting. In this study, we will use 10-fold cross-

validation. The data will be divided into ten subsets, with each 

subset containing instances from the same class. [23], [38]. 

 

2. AREA UNDER THE ROC CURVE 

After the final model is tested by cross validation, equation (4) 

and equation (5) [4] are used to check the model accuracy and 

Area under the curve (AUC). Accuracy represents the 

proportion of correctly predictive data by the model on the test 

set, covering both positive and negative result. several 

researchers have corroborated that accuracy can be 

insufficient and even a misleading performance metric when 

dealing with imbalanced datasets. In our case, the dataset is 

imbalance. To handle this imbalance, we have used AUC, a 

metric used to evaluate the performance of classification 

models [39]. AUC is a metric used to evaluate the performance 

of classification models [40]. It quantifies the model's ability 

to distinguish between positive and negative classes, with 

values ranging from 0 to 1. AUC measures the separability 

between the true positive rate and the false positive rate across 

different threshold settings. Essentially, a higher AUC 

indicates better model performance in distinguishing between 

classes [23].  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

 
𝐴𝑈𝐶 =

1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅

2
 (5) 

TP is true positive where positive cases correctly classify as 

positive, FP is false positive where negative cases incorrectly 

classify as positive, TN is true negative where negative cases 

correctly classify as negative, and FN is false negative where 
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positive cases incorrectly classify as negative. To find this 

information, matrix confusion is used. Equation (6) and 

equation (7) [41]used to find TPR  and FPR , TPR is true 

positive rate and FPR is false positive rate[41]. 

 

 
𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (7) 

 

TABLE 5 is the pseudocode step for final model evaluation.  

 
TABLE 5 

Model Evaluation pseudocode 

Model Evaluation 

Start 
# Function to calculate True Positive (TP), True Negative (TN), False 

Positive (FP), False Negative (FN) 

 
def calculate_confusion_matrix(actual_values, predicted_values): 

    TP = 0 

    TN = 0 
    FP = 0 

    FN = 0 

     
    for i in range(len(actual_values)): 

        if actual_values[i] == 1 and predicted_values[i] == 1: 

            TP += 1 
        elif actual_values[i] == 0 and predicted_values[i] == 0: 

            TN += 1 

        elif actual_values[i] == 0 and predicted_values[i] == 1: 
            FP += 1 

        else: 

            FN += 1 
 

    return TP, TN, FP, FN 

 
# Function to calculate Accuracy / (Equation (4) 

def calculate_accuracy(TP, TN, FP, FN): 

    accuracy = (TP + TN) / (TP + TN + FP + FN) 
    return accuracy 

 
# Function to calculate AUC 

def calculate (actual_values, predicted_values): 

    # Calculate True Positive Rate (TPR) / Equation (6) and False 
Positive Rate (FPR) / Equation (7) 

     

   for threshold in range (0, 101): 
        threshold = threshold / 100.0 

        TP, TN, FP, FN = calculate_confusion_matrix(actual_values, [1 

if val >= threshold else 0 for val in predicted_values]) 

         

        tpr = TP / (TP + FN) 

        fpr = FP / (FP + TN) 
         

        tpr_list.append(tpr) 

        fpr_list.append(fpr) 
     

    # Calculate AUC/Equation (5) 

AUC = 0 
AUC = (1+TPR-FPR)/2  

 

    return auc 

 

III. RESULTS 

This section shows result after using cross validation with 

Naïve Bayes as prediction algorithm to find the result of 

accuracy and Area Under the Curve (AUC) on the final model 

from each data set. Results are divided into several tables that 

shows the accuracy result and AUC result of Naïve Bayes 

only, Backward Elimination only, top 20 feature based on its 

correlation coefficient with Backward Elimination, and top 10 

feature based on its correlation coefficient feature with 

Backward Elimination. 

 
TABLE 6 

Naïve Bayes Accuracy Result 

Dataset Naïve Bayes 

CM1 81% 

MC1 90% 

MW1 79% 

PC1 88% 

PC3 33% 

Average 74.2% 

 

TABLE 6 is the accuracy result of Naïve Bayes 

classification without selecting feature with correlation or 

using Backward Elimination. From the table the results are 

follows: CM1: 81%, MC1: 90%, MW1: 79%, PC1: 88% and 

PC3: 33%. MC1 had the highest accuracy and PC3 had the 

lowest accuracy. The average accuracy is 74.2%. Overall 

using Naïve Bayes for software defect prediction yielded good 

results, however from the table we can see the results for PC3 

was poor, hence why for software defect prediction feature 

selection is needed. 
TABLE 1 

Backward Elimination Accuracy Result 

Dataset Backward Elimination 

CM1 81% 

MC1 91% 

MW1 79% 

PC1 87% 

PC3 30% 

Average 73.6% 

TABLE 7 is the accuracy result of Backward Elimination 

with Naïve Bayes classification as its prediction algorithm to 

dataset. From the table the results are: CM1: 81%, MC1: 

91%, MW1: 79%, PC1: 87%, and PC3: 30%. The highest 

result was MC1, the lowest was PC3, and with the average 

result was 73.6% accuracy. There were some improvements 

for one dataset however this was minimal, and there were 2 

datasets showing decreased accuracy making the average 

result poorer than only using Naïve Bayes. This means using 

Backward Elimination only is unideal accurate software 

defect prediction as it only improved one of dataset accuracy 

out of the five tested. 
TABLE 2 

Backward Elimination with top 20 Accuracy Result 

Dataset 
Top 20 with Backward 

Elimination 

CM1 82% 

MC1 92% 

MW1 81% 

PC1 89% 

PC3 76% 
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Average 84% 

 

TABLE 8 is the accuracy result of selecting top 20 features 

based on their correlation with Backward Elimination to 

further select from the top 20 selected feature and using Naïve 

Bayes as its prediction algorithm. From the table, the result is 

as follows: CM1: 82%, MC1: 92%, MW1: 81%, PC1: 89%, 

and PC3: 76%, with the highest result from MC1, the lowest 

from PC3 with and an average result of 84% accuracy. It is 

apparent from the result table we can see a substantial 

improvement for PC3 accuracy using top 20 with Backward 

Elimination, and other datasets also increased accuracy also 

increased slightly, resulting in a higher average result compare 

to the other two methods tested. 

 
TABLE 9 

Backward Elimination with top 10 Accuracy Result 

Dataset 
Top 10 with Backward 

Elimination  

CM1 83% 

MC1 92% 

MW1 83% 

PC1 88% 

PC3 84% 

Average 86% 

 

 TABLE 9 is the accuracy result of selecting the top 10 

features based on their correlation with Backward Elimination 

to further select from the top 10 selected features, using Naïve 

Bayes as its prediction algorithm. From the table the result is 

as follows: CM1: 83%, MC1: 92%, MW1: 83%, PC1: 88%, 

and PC3: 84% with the highest result being MC1, the lowest 

being CM1 and an average result of 86% accuracy. 

FIGURE 2. Average Accuracy Comparison 

 

As show in FIGURE 2 and FIGURE 3 the accuracy result 

that this far shown from each dataset used in this study, it is 

evident from testing that top 10 with Backward Elimination 

yielded the best result of accuracy from methods tested as 

indicated by higher average accuracy, and also individual 

accuracy results. This mean top 10 with Backward 

Elimination has better accuracy performance when compare 

to other methods used in this study. 
TABLE 10 

Naïve Bayes AUC Result 

Dataset Naïve Bayes 

CM1 0.688 

MC1 0.7 

MW1 0.556 

PC1 0.802 

PC3 0.762 

Average 0.702 

 

TABLE 10 is the AUC result of each dataset using Naïve 

Bayes classification. Naïve Bayes AUC yielded the following 

results: CM1: 0.688, MC1: 0.7, MW1: 0.556, PC1: 0.802, 

PC3: 0.762 with an average result of 0.702. The highest AUC 

was PC1, and the lowest AUC result was MW1. 

 
TABLE 11 

Backward Elimination AUC Result 

Dataset Backward Elimination 

CM1 0.756 

MC1 0.774 

MW1 0.791 

PC1 0.81 

PC3 0.793 

Average 0.785 

 

 TABLE 11 is the AUC result of each dataset using 

Backward Elimination and Naïve Bayes classification. 

Backward Elimination AUC yielded the following results: 

CM1: 0.756, MC1: 0.774, MW1: 0.791, PC1: 0.81, PC3: 

0.793 with an average result of 0.785. The highest AUC was  

FIGURE 3. Average AUC Comparison  

 

PC1 and the lowest AUC result was CM1. From the result 

it shows that Backward Elimination not only improved each 
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dataset AUC result, but its overall result compared to when 

only using Naïve Bayes. 

 
TABLE 12 

Backward Elimination with top 20 AUC Result 

Dataset 
Top 20 with Backward 

Elimination 

CM1 0.786 

MC1 0.815 

MW1 0.824 

PC1 0.813 

PC3 0.821 

Average 0.812 

 

TABLE 12 is the AUC result of each dataset using 

Backward Elimination with the top 20 features and Naïve 

Bayes classification. Backward Elimination with top 20 AUC 

yielded the following results: CM1: 0.786, MC1: 0.815, 

MW1: 0.824, PC1: 0.813, PC3: 0.821 with the average result 

0.812. The highest AUC was MW1 and the lowest AUC result 

was CM1. It is apparent that selecting top 20 with Backward 

Elimination yields improved individual and overalls results, 

the higher AUC result. 

 
TABLE 13 

Backward Elimination with top 10 AUC Result 

Dataset 
Top 10 with Backward 

Elimination  

CM1 0.767 

MC1 0.826 

MW1 0.8 

PC1 0.777 

PC3 0.814 

Average 0.797 

 

TABLE 13 is the AUC result of each dataset using the top 

10 features with Backward Elimination and Naïve Bayes 

classification. Backward Elimination with top 10 AUC 

yielded the following results: CM1: 0.767, MC1: 0.826, 

MW1: 0.8, PC1: 0.777, PC3: 0.814 with an average result of 

0.797. The highest AUC was MC1 and the lowest AUC result 

was PC1. As show in FIGURE 3 and FIGURE 5, when 

comparing against previous AUC results, it is apparent top 10 

with Backward Elimination yielded better individual and 

average result than Backward Elimination alone, however 

poorer result compared to top 20 with Backward Elimination 

this variation suggests the number feature that were selected 

prior to applying Backward Elimination. Specially, selecting a 

small subset of top feature (e.g., the top 10) may not capture 

sufficient relevant information, leading to less optimal results. 

In contrast, incorporating a larger number of features (e.g., the 

top 20) before applying Backward Elimination appears to 

provide a more comprehensive representation of the dataset, 

thereby improving the AUC performance. 

Therefore, the results highlight that the effectiveness of 

Backward Elimination can be highly dependent on the number 

of features initially selected. A larger feature set before 

applying Backward Elimination generally yields better 

performance, suggesting that more features can help in 

capturing the relevant patterns and improving model accuracy. 

This finding underscores the importance of carefully 

considering the feature selection process and the number of 

features used in conjunction with Backward Elimination to 

optimize performance. 

TABLE 14 to TABLE 17 display the confusion matrix 

results for each method used in this study. The rows labeled 

"Pred N" and "Pred Y" represent the number of times the 

model predicted "N" or "Y," respectively. The columns 

labeled "True N" and "True Y" show the actual number of 

instances where the true class was "N" or "Y". In these tables, 

the number at the intersection of the "Pred N" row and the 

"True N" column indicates how many times the method 

correctly predicted "N" when the true class was also "N". 

Conversely, the number at the intersection of the "Pred N" row 

and the "True Y" column shows how many times the method 

predicted "N" when the true class was actually "Y", indicating 

a misclassification. 

 
TABLE 14 

Naïve Bayes Confusion Matrix Result 

Dataset  TRUE N True Y 

CM1 
Pred N 255 29 

Pred Y 30 13 

  True N True Y 

MC1 
Pred N 1780 32 

Pred Y 162 14 

  True N True Y 

MW1 
Pred N 187 12 

Pred Y 39 15 

  True N True Y 

PC1 
Pred N 603 39 

Pred Y 41 22 

  True N True Y 

PC3 
Pred N 238 13 

Pred Y 705 121 

 

TABLE 14 is the Confusion Matrix Result of Naïve Bayes 

yielded the following result: CM1: 268 correct predictions and 

incorrect predictions 59, MC1: 1794 correct predictions and 

194 incorrect predictions, MW1: 202 correct predictions and 

51 incorrect predictions, PC1: 625 correct predictions and 80 

incorrect predictions, PC3: 359 correct predictions and 715 

incorrect predictions. Overall, using Naïve Bayes only yield a 

decent result except for PC3 which is reflected to the result on 

TABLE 6. 
TABLE 15 

Backward Elimination Confusion Matrix Result 

Dataset True N True Y  

CM1 
Pred N 253 30 

Pred Y 32 12 

  True N  True Y 

MC1 
Pred N 1803 33 

Pred Y 139 13 

  True N  True Y 

MW1 
Pred N 185 11 

Pred Y 41 16 

  True N  True Y 

PC1 
Pred N 598 39 

Pred Y 46 22 
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  True N  True Y 

PC3 
Pred N 204 8 

Pred Y 739 126 

TABLE 15 is the Confusion Matrix Result of Naïve Bayes 

yielded the following result: CM1: 265 correct predictions and 

incorrect predictions 62, MC1: 1816 correct predictions and 

172 incorrect predictions, MW1: 201 correct predictions and 

52 incorrect predictions, PC1: 620 correct predictions and 85 

incorrect predictions, PC3: 330 correct predictions and 747 

incorrect predictions. Compared to Table 14 results, there is 

minimal improvement in performance. In particular, the 

performance for PC3 has deteriorated, as indicated by the 

significantly higher number of incorrect predictions. This 

decline in performance is further reflected in the average 

accuracy results presented in TABLE 7, suggesting a general 

decrease in the classifier's effectiveness. 
 

TABLE 16 
Backward Elimination with top 20 Confusion Matrix Result 

Dataset  TRUE N  True Y 

CM1 
Pred N 253 28 

Pred Y 32 14 

  True N  True Y 

MC1 
Pred N 1824 36 

Pred Y 118 10 

  True N  True Y 

MW1 
Pred N 192 12 

Pred Y 34 15 

  True N  True Y 

PC1 
Pred N 608 39 

Pred Y 36 22 

  True N  True Y 

PC3 
Pred N 737 43 

Pred Y 206 91 

 

TABLE 16 is the Confusion Matrix Result of Naïve Bayes 

yielded the following result: CM1: 267 correct predictions and 

incorrect predictions 60, MC1: 1834 correct predictions and 

154 incorrect predictions, MW1: 207 correct predictions and 

46 incorrect predictions, PC1: 630 correct predictions and 75 

incorrect predictions, PC3: 829 correct predictions and 249 

incorrect predictions. Compare to Table 15 result, there are 

several improvements, notably the number of correct 

predictions for PC3 increase from 330 to 829 correct 

prediction this result also reflected at TABLE 8, indicating a 

positive trend in the performance. 
TABLE 17 

Backward Elimination with top 10 Confusion Matrix Result 

Dataset  TRUE N  True Y 

CM1 
Pred N 261 29 

Pred Y 24 13 

  True N  True Y 

MC1 
Pred N 1830 35 

Pred Y 112 11 

  True N  True Y 

MW1 
Pred N 196 12 

Pred Y 30 15 

  True N  True Y 

PC1 
Pred N 605 39 

Pred Y 39 22 

  True N  True Y 

PC3 
Pred N 859 88 

Pred Y 84 46 

TABLE 17 is the Confusion Matrix Result of Naïve Bayes 

yielded the following result: CM1: 274 correct predictions and 

incorrect predictions 53, MC1: 1841 correct predictions and 

147 incorrect predictions, MW1: 211 correct predictions and 

42 incorrect predictions, PC1: 627 correct predictions and 85 

incorrect predictions, PC3: 905 correct predictions and 172 

incorrect predictions. Compare to TABLE 16, these results 

show an overall improvement which also reflected to TABLE 

9 result. 

Based on the results presented in TABLE 6 to 13, we can 

make several observations. TABLE 7 shows that Backward 

Elimination yields only 30% accuracy for the PC3 dataset, 

indicating that it is not an effective method for this dataset. In 

contrast, TABLES 8 and 9 demonstrate that the proposed 

method achieves accuracies of 76% and 84%, respectively, 

suggesting that using correlation coefficient feature selection 

improves the performance of Backward Elimination and this 

suggest that the performance of Backward Elimination can be 

affected if the feature didn’t get remove. This result 

highlighted that Backward Elimination may not be sufficient 

and could benefit from combining with other method to select 

better feature for the final model.  

Overall, the proposed method outperforms both Backward 

Elimination and the Naïve Bayes which are the baseline 

model. For a visual representation results comparison of the 

baseline model to the proposed method, refer to FIGURE 2,3,4 

and 5, which graphically depict the data from TABLE 6 to 13. 

FIGURE 2 and 3 show the average results for each method, 

while FIGURE 4 and 5 present a detailed comparison of 

results across different datasets as well as average results for 

each method. 

 

FIGURE 4. Accuracy Result Comparison in graph data 

IV. DISSCUSION  

In this study we evaluated the effectiveness of selecting 

relevant features based on the correlation coefficient of each 

feature to the class feature, then using Backward Elimination 
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to further select the relevant features. This was expected to 

mitigate the drawbacks of Backward Elimination, improving 

Backward Elimination performance for software defect 

prediction. FIGURE 4 shows graphed accuracy result. and 

FIGURE 5 shows graphed AUC result for easier visualization 

and comparison of each methods results offering a clear 

overview of the performance metrics. FIGURE 4 shows 

almost the same Improvement as FIGURE 5, except when 

using the top 10 features with Backward Elimination the 

average result of the accuracy is better than using the top 20 

with Backward Elimination. This suggests that the features 

that were remove in test with top 10 and Backward 

Elimination was better for the accuracy result but 

comparatively worse for the AUC result. 

FIGURE 5 shows that using Backward Elimination does 

improve the average AUC result compared to using all feature 

in the dataset. Additionally, selecting the top 20 or top 10 

relevant features based on their correlation coefficient before 

applying Backward Elimination improved the average AUC 

result compared to only using Backward Elimination and 

Naïve Bayes Only. 

The average results of AUC from testing the top 20 features 

and Backward Elimination were better that using the top 10 

features and Backward Elimination. This suggests that some 

of the features that were removed during the process selecting 

top 10 relevant feature play a role in enhancing the AUC result 

when they are included in the final model. 

From both result its evident that the features that are selected 

affect different results either it affects accuracy or AUC 

depend by the features that were selected, meaning selecting 

different subset feature before using Backward Elimination 

can have better or worse performance result. Despite this, 

using correlation coefficient feature selection with Backward 

Elimination can improve the performance of accuracy and 

AUC by a substantial amount around ±40% as seen in 

FIGURE 4 PC3. 

FIGURE 5. AUC Result Comparison in graph data 

Another thing to note is that the result of accuracy and AUC 

can be affected by the classification method used. Different 

classification methods have their own weaknesses and 

advantages that may affect the performance results or overall 

model performance.  

 
TABLE 18  

AUC Result comparison of the Proposed Method with Other Studies 

Method 

 BE 

with 
top 20 

Enchace

d WFS 
[22] 

RAHFM

WS [17] 

HFS 

BE 
[30] 

Dataset 

CM1 0.786 0.722 0.744 0.746 

MW1 0.824 0.756 0.782 0.92 

PC1 0.784 0.826 0.792 0.795 

PC3 0.821 0.806 0.806 0.782 

Average 0.804 0.781 0.778 0.811 

 

 

TABLE 18 show how the propose method compare to the 

other method. The proposed method demonstrates 

improvements over other two previous study method. 

Although the proposed method did not yield overall results 

compared to HFS_BE, the proposed method still yields better 

result at CM1 and PC3 dataset. Our study did not explore other 

classification algorithms or optimize correlation feature 

selection. Although HFS_BE currently seems the best among 

the methods compared, its effectiveness for software defect 

prediction is still unclear based on the CM1 and PC3 results. 

there are limitations in this study and for the propose method. 

the limitations are as follow: our dependence on specific 

datasets limits the generalizability of our findings. 

Additionally, by focusing on the AUC metric and one 

classification algorithms may overlook other important 

aspects of evaluating model performance, our method does not 

explore the potential benefits of reintroducing removed 

features into the final model, which could potentially improve 

performance. The results can also vary based on the number 

of features selected before applying Backward Elimination, 

and we did not consider the impact of removing top relevant 

features, which might affect performance. 

Despite these limitations, our study demonstrates that 

Backward Elimination has potential for software defect 

prediction, particularly when used with other methods. We 

also show that correlation coefficient filter in conjunction with 

other techniques, can enhance performance. Further research 

is needed to determine the optimal methods for integrating 

Backward Elimination to improve its effectiveness in software 

defect prediction. This exploration could lead to the 

development of more accurate and robust prediction models. 

V. CONCLUSION 

The aim of this study was to determine if selecting several 

features that were considered relevant before applying 

Backward Elimination can mitigate the drawbacks of 

Backward Elimination whilst also improving the prediction 

performance of the model. Hence, correlation coefficient is 

used to determine which features are relevant or important for 

software defect prediction. By choosing several features 
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before applying Backward Elimination, improvement of the 

performance of Backward Elimination was observe.  

The performance of the final model was evaluated with 

cross validation using performance metric of accuracy and 

AUC from the software defect prediction result. After testing, 

it was found that the average result of selecting some relevant 

features before using Backward Elimination outperformed 

that only using Backward Elimination based on average AUC 

and average accuracy results. Backward Elimination had 

average AUC and accuracy results of 0.785 AUC, and 73.6% 

accuracy. The average result for top 10 features with 

Backward Elimination was 0,797 AUC, and 86.6% accuracy. 

The average result of top 20 feature with Backward 

Elimination was 0.812 AUC and 84% accuracy. While the 

performance result may vary depending on the selected 

features, overall, from the result it appears using correlation 

coefficient to determine the relevant features does improve the 

performance of the Backward Elimination, helping mitigate 

the drawbacks of Backward Elimination.  

For future studies, areas for further study include testing of 

different methods for relevant features selection such as 

weighted by Gain Ratio. Utilizing different method may 

minorly, or significantly change the top relevant features, 

yielding different performance results. Investigation of this to 

determine the optimal feature selection method is expected to 

be beneficial for achieving further improvement in defect 

detection. Another area for consideration is utilization of 

different classification methods like K-Nearest Neighbors 

(KNN). usage of different classification method, is also 

expected to prioritize different sets of features bring a new set 

of weaknesses and advantages which may be more suitable for 

defect detection. By using different methods to find relevant 

features, and different classification methods, we hope that 

further research can find the best method to pair with 

Backward Elimination, improving its performance and 

mitigating its drawback for better software defect prediction. 
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