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ABSTRACT Post-Translational Modification (PTM) denotes a biochemical alteration observed in an amino acid, playing 

crucial roles in protein activity, functionality, and the regulation of protein structure. The recognition of associated PTMs serves 

as a fundamental basis for understanding biological processes, therapeutic interventions for diseases, and the development of 

pharmaceutical agents. Using computational approaches (in silico) offers an efficient and cost-effective means to identify PTM 

sites swiftly. The exploration of protein classification commences with extracting protein sequence features that are 

subsequently transformed into numerical features for utilization in classification algorithms. Feature extraction methodologies 

involve using protein descriptors like Amino Acid Composition (AAC) and Dipeptide Composition (DC). Yet, these 

approaches exhibit a limitation by neglecting crucial amino acid sequence details. Moreover, both descriptor techniques 

generate a limited number of 1-dimensional (1D) features, which may not be ideal for processing through the Convolutional 

Neural Network (CNN) classification method. This investigation presents a novel approach to enhance feature diversity through 

protein sequence segmentation techniques, employing adjacent and overlapping segment strategies. Furthermore, the study 

illustrates the organization of features into 1D and 2D formats to facilitate processing through 1D CNN and 2D CNN 

classification methodologies. The findings of this research endeavour highlight the potential for enhancing the accuracy of 

acetylation classification in lysine proteins through the multiplication of protein sequence segments in a 2D configuration. The 

highest accuracy achieved for AAC and DC-based feature extraction methods is 77.39% and 76.75%, respectively. The findings 

of this research demonstrate the capability of extracting 2D protein characteristics to enhance the overall efficiency of protein 

categorization, particularly in the context of identifying acetylation in lysine proteins. 

INDEX TERMS classification of acetylation, lysine proteins, protein segmentation, protein descriptor, 

convolutional neural network. 

I. INTRODUCTION 

Post-Translational Modification (PTM) constitutes a crucial 

mechanism essential for protein constituents. After the 

translation process, a chemical alteration occurs in the protein, 

thereby diversifying a finite pool of amino acids through PTM. 

This expands 20 amino acids to an infinite array of potential 

residues. Modifications are necessary to facilitate cell growth, 

transcription regulation, and metabolic activities vital for daily 

sustenance. [1], [2], [3]. Among the indispensable PTMs is the 

process of acetylation, acknowledged as one of the most 

significant post-translational protein modifications, exerting a 

pivotal influence on a myriad of cellular functions [4]. 
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Typically observed at lysine residues, acetylation proves 

beneficial in aiding calcium absorption, hormone synthesis, 

collagen formation, and antibody production, contributing to 

repair of DNA damage, transcription, and gene expression. 

Predicting PTM within protein sequences through in vitro 

experiments demands considerable time and effort, mainly 

when identifying extensive data [5], [6]. A feasible approach 

to streamline this process involves the utilization of in silico 

methods, leveraging algorithms and computational tools [7], 

[8], [9]. In the realm of in silico research on classification 

scenarios, the methodology generally encompasses two 

primary phases: feature extraction and classification. 

In the initial phase, the focus lies on feature extraction, 

transforming unstructured data into structured data comprising 

numerical values, thereby rendering it amenable for 

processing by classification algorithms. Unstructured data, 

such as audio[10], images [11], [12], text [13], [14], and 

others, necessitates passage through the feature extraction 

process. 

Protein sequence data resembles text data, where each 

instance comprises a sequence of characters. In text data, the 

configuration of characters culminates in the construction of 

words and sentences in natural human language. In contrast, 

protein sequence data embodies an assemblage of characters 

symbolizing the sequence of amino acids. Currently, the 

prevalent technique for feature extraction in text data involves 

word-based embedding methods [13], [14]. Analogously, 

word-based embedding strategies find application in 

processing protein sequence data by segmenting a sequence 

and subjecting each segment to computation using the word 

embedding model [15], [16].  

Another widely employed approach for extracting features 

from protein sequence data involves the utilization of protein 

descriptor-based techniques. Over time, various protein 

descriptors have been devised employing diverse calculation 

methodologies. Noteworthy among these are descriptors, such 

as AAC, DC, and TC [17] , based on composition calculations. 

AAC yields 20 features, with each feature value computed by 

comparing the frequency of occurrence of an amino acid 

against the total amino acids in the sequence. DC is predicated 

on dipeptide ratios within the sequence, while TC hinges on 

tripeptide comparisons in the sequence. These two descriptors 

generate more features than AAC, amounting to 400 and 8000, 

respectively. Feature extraction based on AAC and DC and 

four machine learning algorithms, including Support Vector 

Machines (SVM), K-Nearest Neighbor, Random Forest, and 

Naïve Bayes, were applied to discriminate psychrophilic 

enzymes [18]. Results indicated the superior performance of 

AAC over DC and the combined AAC and DC features. In the 

context of acetylation classification in lysine proteins, AAC 

and DC-based feature extraction were employed in 

conjunction with the SVM classification algorithm [3]. 

Findings from this investigation demonstrated the superior 

performance of DC over AAC. Despite variations in protein 

sequence lengths, all three descriptors yield a fixed number of 

features and uniformly produce 1-dimensional (1D) structured 

data. However, the limitation of the protein descriptors' output 

lies in its absence of amino acid sequence information 

regarding the sequence.  

Other protein descriptors, such as Autocorrelation 

Descriptors [19], [20], Composition/Transition/Distribution 

(CTD) Descriptor [19], [21] and Quasi-sequence-order 

descriptors [22]. The quantity of structured data features each 

protein descriptor produces is detailed in  

TABLE 1. 
 

TABLE 1 
Commonly Used Descriptors 

Descriptor Name Features 

Amino Acid Composition 20 

Dipeptide Composition  400 
Tripeptide Composition  8000 

Normalised Moreau-Broto Autocorrelation  240 

Moran Autocorrelation  240 

Geary Autocorrelation  240 

CTD  147 

Conjoint Triad  343 
Sequence-Order-Coupling Number  60 

Quasi-Sequence-Order Descriptors  100 
Pseudo-Amino Acid Composition  50 

Amphiphilic Pseudo-Amino Acid Composition 80 

 

Another protein descriptor identified is the Position-

Specific Scoring Matrix (PSSM) profile, which exhibits 

distinct characteristics compared to previously mentioned 

descriptors [17], [23], [24]. The PSSM profile generates 2-

dimensional (2D) data represented as an L x 20 matrix, where 

L denotes the sequence length, producing varied outputs for 

sequences of different lengths, necessitating dimension 

equalization through zero-vector padding techniques [25], 

[26]. 

The subsequent stage involves processing structured data 

utilizing classification algorithms. Machine learning 

algorithms like Support Vector Machine (SVM), Naïve Bayes, 

K-Nearest Neighbors (KNN), and Random Forest are utilized 

for 1D data classification, while deep learning-based 

algorithms like Deep Neural Network (DNN), Convolutional 

Neural Network (CNN), and Long Short Term Memory 

(LSTM) are gaining popularity for outperforming machine 

learning algorithms [17], [27], [28]. A study [17] compared 

classification performance between models constructed using 

the DNN algorithm and result-structured data from 

composition-based protein descriptors with PSSM profiles, 

indicating that models incorporating composition-based 

extraction features like AAC and DC exhibit superior DNN 

classification performance compared to those utilizing 

structured data from PSSM Profile based feature extraction. 

Although other deep learning algorithms such as CNN and 

LSTM were explored, input from composition-based protein 

descriptors was not used due to limited features in the 

descriptor structured data, rendering it suboptimal for 

processing by both algorithms.  

Building upon the rationale above, this study undertook a 

distinct case classification analysis focusing on acetylation 

classification in lysine proteins employing composition-based 

feature extraction and a CNN classification algorithm. The 
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investigation centred on two protein descriptors, AAC and 

DC. However, structured data derived from AAC based 

feature extraction yielded insufficient structured data, 

hindering CNN from producing an optimal classification 

model. To address this limitation, the study suggests 

employing feature extraction techniques like adjacent and 

overlapped segmentation methods to augment the feature 

count. This segmentation approach not only overcomes the 

constraints of composition-based protein descriptors in 

obtaining amino acid sequence information but also expands 

the features for input to CNN, an algorithm capable of 

accommodating inputs beyond 1D, yet unexplored in protein 

sequence classification studies utilizing composition-based 

descriptors [3], [29]. 

The primary objective of this study was to develop an 

optimal classification model for acetylation in lysine proteins. 

To achieve this objective, a series of experiments were 

conducted to address the following research questions: 

1. What is the accuracy of the 1D CNN classification model 

using the original input? 

2. What is the accuracy of the 1D CNN classification model 

with 1D structured data input sequence segmentation 

results? 

3. What is the accuracy of the 2D CNN classification model 

with 2D structured data input sequence segmentation 

results? 

The study findings contributed to: 

1. Establishment of 2D structured data through sequence 

segmentation techniques and composition-based protein 

descriptors. 

2. Using the CNN algorithm, developing an optimal 

classification model for acetylation in lysine proteins. 

 

 

FIGURE 1. Research flow. 

 
II.    MATERIAL AND METHODS 

The research flow of this research can be seen in FIGURE 1. 

A. DATASET 

The datasets utilized in this investigation consist of acetylated 

(Positive) and unacetylated (Negative) lysine proteins, which 

are displayed in TABLE 2 [3]. 

 
TABLE 2 
Dataset 

Positive Negative Total 

8701 8701 17402 

TABLE 2 presents a dataset that includes two label classes, 

namely positive and negative. The positive class comprises 

8701 protein sequences, while the negative class also contains 

8701 protein sequences. The total number of protein 

sequences amounts to 17402. This data reveals that the 

quantity of both classes is equal, indicating that the 

classification scenario addressed in this study is a balanced 

data classification. This dataset encompasses protein 

sequences, some examples of which are visible in TABLE 3. 

The initial column displays the sequential number of the 

protein sequence; this column was excluded during the 

development of the classification model. The subsequent 

column presents the textual representation of the protein 

sequence. Lastly, the third column indicates the label class 

corresponding to each record.  
TABLE 3 

Protein Sequence 

No Protein sequence Label 

1 RKDAAEHTLTAYKAAQDIANS Negative 
2 DKIVVCCVTGSTTAGILAGMA Negative 

… … … 

8701 EQPVVLHTWTKESAHNYENNC Negative 
8702 FFDIDTKYYTKELHKAAFVLP Positive 

… … … 

17401 RKDAAEHTLTAYKAAQDIANS Positive 
17402 MLTCNKAGSRMVVDAANSNGP Positive 

In the second column of TABLE 3, each protein sequence 

exhibits a uniform character count, specifically comprising 21 

characters. Each character serves as a representation of a 

distinct amino acid. The elucidation of each amino acid 

symbol employed within the protein sequence is detailed in 

the accompanying description in TABLE 4. The second 

column of TABLE 4 presents the amino acid symbols, which 

consist of an abbreviation represented in character form 

alongside a corresponding word. The third column delineates 

the full nomenclature of the amino acid.    
TABLE 4 

Amino Acid  

No Symbol Amino Acid 

1 L Leu Leucine 

2 A Ala Alanine 

3 P Pro Proline 
4 V Val Valine 

5 G Gly Glycine 

6 Y Tyr Tyrosine 
7 I Ile Isoleucine 

8 M Met Methionine 

9 F Phe Phenylalanine 
10 W Trp Tryptophan 

11 S Ser Serine 

12 T Thr Threonine 
13 C Cys Cysteine 

14 N Asn Asparagine 

15 Q Gln Glutamine 
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No Symbol Amino Acid 
16 D Asp Aspartate 

17 K Lys Lysine 

18 H His Histidine 
19 R Arg Arginine 

20 E Glu Glutamate 

 
B. SEGMENTATION 
The primary stage of the research workflow involves 

segmentation. This segmentation methodology is designed 

to partition protein sequences into k segments of identical 

length to extract novel insights. Two categories of segments 

exist, namely adjacent and overlapped segments [3], [29]. 

Adjacent segments divide the protein sequence length into 

k sections, where k = 3. For example, in a sequence like  

“DKIVVCCVTGSTTAGILAGMA” with a length of 21, the 

first segment is computed with a length of 7 from the sequence 

start, yielding "DKIVVCC" as the first segment, "VTGSTTA" 

as the second segment, and "GILAGMA" as the third segment 

calculated from the end of the initial sequence. An illustrative 

depiction of creating adjacent segments can be observed in 

FIGURE 2. 

 
FIGURE 2. Adjacent segment. 

Overlapped segments combine half of the last segment with 

half of the initial segment. They introduce a new sequence 

feature by combining the latter half of the first segment with 

the former half of the second segment and the latter half of the 

second segment with the initial half of the third segment 

resulting in "VCCVTGS" and "TTAGILA" as overlapped 

segments in the sequence. Features derived from overlapped 

segments encompass the amalgamation of the original 

sequence, adjacent segments 1, 2, 3, overlapped segments 1, 

and 2. An illustration of generating overlapped segments can 

be seen in FIGURE 3. 

 
FIGURE 3. Overlapped segment. 

 
C. PROTEIN DESCRIPTOR 

A protein descriptor is a technique to convert the textual 

representation of a protein sequence into a numerical value. 

Various methods can be employed for this conversion 

process, including Amino Acid Composition (AAC) and 

Dipeptide Composition (DC) techniques. 

Amino Acid Composition (AAC) quantifies the 

proportion of each amino acid type in a protein sequence. 

The fraction of all 20 amino acids is shown in Eq. (1)[30] . 

𝑓(𝑟) =
𝑁𝑟

𝑁
   𝑟 = 1,2,3 …  20 (1) 

Where Nr represents the number of amino acid types r, 

and N is the sequence length.  

Dipeptide Composition (DC) furnishes a 400-feature 

descriptor, defined in Eq. (2) [30]. 

𝑓(𝑟,𝑠) =
𝑁𝑟𝑠

𝑁−1
   𝑟, 𝑠 = 1,2,3 …  20  (2) 

Where 𝑁𝑟𝑠  denotes the number of dipeptides formed by 

r type dan tipe s type. 

The implementation of the protein descriptor in this 

study utilizes the protr package developed in the R 

programming language  [31]. The extracTAAC() function 

is used for transforming protein sequence text with AAC, 

while the extracDC() function is employed for DC. 

 
D. FEATURE EXTRACTION 

Feature extraction in this study leverages segmentation 

techniques and protein descriptors as previously elucidated. 

Two categories of structured data, namely 1D and 2D, were 

generated. 

 
FIGURE 4. Feature extraction generates 1D structured data. 

The formation process of 1D structured data based on prior 

experiments [29], [3], is illustrated in FIGURE 4. The original 

sequence undergoes processing by the protein descriptor, 

resulting in 1D structured data with a specific number of 

corresponding features. Subsequently, the protein descriptor 

processes each adjacent and overlapped segment derived from 

the segmentation process. Each 1D structured data is 

sequentially merged as depicted in FIGURE 4. 

For 1D data, the features outlined in Eq. (3) are produced. 

Where 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒  represents the resultant feature, 𝑘 signifies 

the number of adjacent segments, and 𝑛 denotes the number 

of features generated by the protein descriptor. 

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 2𝑘 × 𝑛                                     (3) 

The 2D structured data formation proposed in our study 

follows a sequential process, but the data combination occurs 

concurrently, as illustrated in FIGURE 5. The resultant 2D 

data forms a matrix with 𝑚 × 𝑛 dimensions where 𝑚 

represents the row and 𝑛 signifies the column. The values 𝑚 =
2𝑘,  𝑘 denote the number of adjacent segments, while 𝑛 

indicates the quantity of features produced by the protein 

descriptor. 
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FIGURE 5. Feature extraction generates 2D structured data. 

 

E. DATA SPLIT 

Developing a classification model involves data training and 

testing using the holdout method. The dataset is split into an 

80:20 ratio, where 80% is allocated for training and 20% for 

testing. Data sharing entails random sampling based on the 

distribution of label classes within the dataset. 

 
F. TRAIN AND TESTING 

The learning process entails constructing a classification 

model utilizing a specific algorithm, such as the Convolutional 

Neural Network (CNN) used in this research. CNN is an 

artificial neural network designed to analyze grid-format data, 

comprising key layers like the convolution layer for feature 

learning, the pooling layer for dimension reduction, and the 

fully connected (dense) layer for final classification output 

[32], [33]. CNN accommodates data of varying dimensions, 

including 1D, 2D, and 3D [34].  

FIGURE 6 shows the general CNN architecture. CNN is 

divided into two parts, namely feature learning and classifier. 

Feature learning is the ability of a model to extract important 

features from input automatically. This extraction operation 

begins with a convolution operation carried out by the 

convolution layer. The result of the convolutional operation is 

a feature map. The ReLU activation function is applied to each 

value in the feature maps. Next, the pooling layer reduces the 

spatial dimensions of the feature map. The classification 

begins by converting the feature map into a one-dimensional 

vector by a flatten layer. Then, the vector is received by the 

dense layer to be processed with linear and non-linear 

operations. The output layer produces predictions [35], [36].  

1D CNN algorithms are applicable in diverse classifications 

like machine crack signals, cardiac electrical signals, and text 

categorization [37], [38], [39]. Additionally, 1D CNN is 

relevant for protein classification tasks [40].  The architectural 

configuration of 1D CNN utilized in this study is detailed in 

TABLE 5 and the architecture is shown in FIGURE 7. 
TABLE 5 

1D CNN Architecture 

Layer (type) Output Shape Number of Param 

conv1d (Convd1D (None, 118, 64) 256 

dropout (Dropout) (None, 118, 64) 0 

conv1d_1 (Convd1D (None, 118, 

128) 

24704 

dropout_1 (Dropout) (None, 118, 128 0 

max_pooling1d 

(Maxpooling1D) 

(None, 59, 128) 0 

flatten (Flatten) (None, 7552) 0 

dense (Dense) (None, 768) 5800704 

dropout_2 (Dropout) (None, 768) 0 

dense_1 (Dense) (None, 256) 196864 

dropout_3 (Dropout) (None, 256) 0 

dense_2 (Dense) (None, 1) 257 

Total params: 6,022,785 
Trainable params: 6,022,785 

Non-trainable params: 0 

 

 
FIGURE 7. Plot model for 1D CNN architecture. 

 

FIGURE 6.  Common CNN architecture 
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FIGURE 7. Plot model for 2D CNN architecture 

 

While 2D CNN is commonly utilized for image 

classification purposes [41],  it can also be deployed for text 

and protein classification tasks [42], [43]. The input for 2D 

CNN comprises 2D data presented in matrix form with rows 

and columns. The 2D CNN architecture utilized in this study 

is outlined in TABLE 6 and the architecture is shown in 

FIGURE 8. The classification algorithm processes the training 

data to establish a classification model, which is then 

employed in the testing stage to predict class labels for the 

testing data. The classification model's performance is 

evaluated by comparing these predictions with the actual class 

labels, utilizing metrics like accuracy, sensitivity, and 

specificity [10], [44]. 

 
TABLE 6 

2D CNN Architecture 

Layer (type) Output Shape Number of Param 

conv2d (Convd1D (None, 4, 18, 

64) 

640 

dropout (Dropout) (None, 4, 18, 

64) 

0 

conv2d_1 (Convd1D (None, 4, 18, 
128) 

73856 

dropout_1 (Dropout) (None, 4, 18, 

128 

0 

max_pooling2d 
(Maxpooling2D) 

(None, 2, 59, 
128) 

0 

flatten (Flatten) (None, 2304) 0 

dense (Dense) (None, 768) 1770240 

dropout_2 (Dropout) (None, 768) 0 

dense_1 (Dense) (None, 256) 196864 

dropout_3 (Dropout) (None, 256) 0 

dense_2 (Dense) (None, 1) 257 

Total params: 6,022,785 

Trainable params: 6,022,785 

Non-trainable params: 0 

 

III.   RESULTS 
A. FEATURE EXTRACTION RESULTS 

In this investigation, feature extraction was conducted 

utilizing a segmentation methodology with varying values of 

k, specifically 3, 4, and 5, and subsequently analyzed with 

descriptor proteins AAC and DC. The outcomes of this feature 

extraction are presented in TABLE 7. Within the table, the 

initial column provides data regarding the dimensions, each 

associated with two protein descriptors showcased in the 

second column. The quantity of secured segmentations is 

detailed in the third column. Subsequent columns, namely the 

fourth, fifth, and sixth, sequentially display the counts of 

adjacent segments, overlapped segments, and the total number 

of features. For instance, the first row illustrates the creation 

of 1D structured data employing the protein descriptor AAC 

and a segment number of 𝑘 = 3. This process yields six 

sequences comprising three adjacent segments, two 

overlapped segments, and an original segment. Following the 

processing and combination of each sequence with AAC, a 

total of 120 features are generated, calculated as 6 × 20 =
120 features. 

 
TABLE 7 

Feature Extraction Results 

Data 

Dimension 

Protein 

Descriptor 

k # 

Adjacent 

# 

Overlapped 

# 

Features 

1D AAC 3 3 2 120 
  4 4 3 160 

  5 5 4 200 

 DC 3 3 2 2400 
  4 4 3 3200 

  5 5 4 4000 

2D AAC 3 3 2 6 × 20 

  4 4 3 8 × 20 

  5 5 4 10 × 20 

 DC 3 3 2 6 × 400 

  4 4 3 6 × 400 

  5 5 4 6 × 400 

 

The feature extraction procedure in this investigation 

yielded 12 structured data, encompassing six 1D data and six 

2D data. These data sets were processed utilizing a CNN 

algorithm that generated 12 classification models.  
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B. EVALUATION RESULTS 

Any residual data generated was utilized to construct a 

classification model and assess its performance. Initially, the 

execution of the CNN algorithm in this study involved specific 

parameters that are batch size: 256, Epoch: 20, and Learning 

rate: 0.001. 

 
FIGURE 8. Model accuracy. 

The selection of epoch values was based on preliminary 

experiments, setting epoch values at 80. The outcomes are 

depicted in FIGURE 9, illustrating that the model's accuracy 

remains constant or does not improve beyond 20 epochs. 

TABLE 8 showcases the classification performance using 1D 

structured data processed by 1D CNN, with the highest 

accuracy recorded at 77.16% from models utilizing inputs 

from AAC-based feature extraction with segmentation using 

𝑘 = 5. 
TABLE 8 

Performance of 1D CNN 

Protein 

Descriptor 

k Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AAC 3 76.18 83.50 80.70 

 4 77.04 78.76 78.25 

 5 77.16 79.97 79.03 

DC 3 75.61 79.94 78.05 

 4 75.84 79.08 77.64 

 5 76.50 81.78 79.64 

TABLE 9 exhibits the classification performance utilizing 

2D structured data processed by 2D CNNs, with the highest 

accuracy achieved at 77.39% from models employing inputs 

from AAC-based feature extraction with segmentation using 

𝑘 = 5. 
TABLE 9 

Performance of 2D CNN 

Protein 

Descriptor 

k Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AAC 3 77.27 81.14 79.57 

 4 76.98 83.33 81.15 

 5 77.39 80.67 79.55 

DC 3 76.27 79.94 78.36 
 4 75.26 79.65 77.70 

 5 76.75 81.89 79.83 

 

IV.   DISCUSSION 

The classification performance results are compared based on 

the protein descriptor group and the classification algorithm 

employed.   

FIGURE 9. Classification performance of AAC and 1D CNN model 

 

FIGURE 9 and FIGURE 12 indicate a consistent increase 

in model performance as the value of k rises in the 1D CNN 

algorithm. In contrast, FIGURE 11 and FIGURE 13 display a 

similar performance enhancement in models constructed with 

the 2D CNN algorithm as k increases, except for a decline in 

performance at 𝑘 = 2. 

  

FIGURE 10. Classification performance of AAC and 2D CNN model 

FIGURE 11. Classification performance of DC and 1D CNN model 

 

FIGURE 12. Classification performance of DC and 2D CNN model 

 

The proportional enhancement in performance with 

increasing k values suggests that the CNN algorithm can excel 

in data with numerous features and can select crucial features 

to enhance classification performance. Despite a decrease in 

accuracy observed in models utilizing segmentation inputs in 
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the 2D CNN algorithm, this algorithm can generate superior 

models compared to those created with 1D CNN, as evidenced 

in TABLE 10. 
TABLE 10 

Performance Comparison Base on Dimension 
 

Protein Descriptor 
 

k Accuracy (%) 

1D CNN 2D CNN 

AAC 5 77.16 77.39 

DC 5 76.50 76.75 

Upon comparing the values between the 1D CNN and 2D 

CNN columns, it is apparent that 2D CNN outperforms. For 

inputs based on AAC descriptor proteins, the performance 

enhancement was 0.23%, and for DC, it was 0.25%. Although 

the increment is modest, statistical testing using paired t-test 

yielded a two-tailed P-value of 0.0265, indicating statistical 

significance by conventional criteria. 

 
TABLE 11 

Performance Comparison Base On Segmentation 

 Accuracy (%) 

Protein Descriptor Original Segmentation 

AAC 49.64 77.39 

DC 73.88 76.75 

TABLE 11 compares the performance of classification 

models utilizing feature extraction outcomes from the original 

sequence alone and the feature extraction results employing 

the original sequence segmentation method. These findings 

successfully exhibit a rise of 27.75% and 2.87% for AAC and 

DC-based feature extraction. The outcomes of this evaluation 

indicate that the suggested segmentation method effectively 

enhances the performance of the CNN algorithm. 

TABLE 10 reveals that models constructed utilizing input 

from protein descriptor AAC-based feature extraction can 

exhibit superior performance even with fewer characteristics 

than DC. This issue arises due to using short-sized sequences 

in the dataset, while DC-based feature extraction generates 

400 attributes, resulting in sparse data. This situation worsens 

when the segmentation operation shortens the sequence, 

increasing zero values within the resultant structured data. 

Sparse data, which includes zero values, can influence the 

effectiveness of classification methodologies [45], [46]. 

According to these findings, it is evident that the segmentation 

method employed could reduce classification effectiveness 

when a protein descriptor is compositionally based on features 

commonly utilized for processing short sequences. 

The aforementioned elucidation delineates the potential 

limitations of inadequate feature extraction methods when 

dealing with concise protein sequences. This limitation arises 

from the constraint on the number of possible segmentations. 

The outcomes of subpar feature extraction undeniably impact 

the precision of the categorization process, resulting in an 

accuracy rate below 80%. Consequently, there exists a 

significant margin for enhancing the classification accuracy. 

The efficacy of this extraction method necessitates evaluation, 

especially in the context of protein classification involving 

lengthy sequence dimensions. 

The findings of this investigation propose that 

amalgamating protein sequence segmentation with 

composition-centric protein descriptors could be leveraged to 

generate numerous features amenable to processing through 

sophisticated algorithms like CNN. Furthermore, this study 

presents a methodology for configuring 2D features by 

organizing the protein descriptor outputs from individual 

segments into a two-dimensional array. 

V.    CONCLUSION 

The outcomes of this investigation indicate that the precision 

of the classification model utilizing the original sequence with 

AAC and DC feature extraction and 1D CNN classification 

approach was 49.64% and 73.88%, respectively. The 

precision of the 1D CNN classification model was enhanced 

to 77.16% and 76.50% after conducting segmentation with 

three segments on AAC and DC-based feature extraction. The 

study also showcased the effectiveness of the proposed feature 

extraction method in creating 2D structured data handled by 

the 2D CNN algorithm, resulting in optimal accuracies of 

77.39% and 76.75%. 

Nevertheless, our proposed feature extraction technique 

based on sequence segmentation and protein descriptor 

composition may have disadvantages when employing protein 

descriptors that yield high-dimensional features like DCs. In 

this research, a DC descriptor protein with a concise input 

sequence yields sparse data with numerous zero values, 

reducing classification efficacy. Moreover, the highest 

accuracy achieved in this study remains below 80%, indicating 

opportunities for further investigations to enhance accuracy. 

Considering the constraints of this study, future research 

endeavors aimed at enhancing accuracy could involve 

implementing 1D and 2D segmentation-based feature 

extraction on alternative types of descriptor proteins. 

Additional studies could explore the utilization of other deep 

learning algorithms such as LSTM and hybrid CNN LSTM, 

which exhibit proficiency in processing sequential data 

information. 
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