
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 289

RESEARCH ARTICLE OPEN ACCESS

Manuscript received May 2, 2024; revised May 23, 2024; accepted May 27, 2024; date of publication July 8, 2024
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v6i3.455
Copyright © 2024 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
How to cite: Wildan Nur Hidayatullah, Rudy Herteno, Mohammad Reza Faisal, Radityo Adi Nugroho, Setyo Wahyu Saputro, and Zarif Bin
Akhtar, “A Comparative Analysis of Polynomial-fit-SMOTE Variations with Tree-Based Classifiers on Software Defect Prediction”, Journal of
Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 3, pp. 289-301, July 2024.

A Comparative Analysis of Polynomial-fit-
SMOTE Variations with Tree-Based Classifiers
on Software Defect Prediction

Wildan Nur Hidayatullah1, Rudy Herteno1 , Mohammad Reza Faisal1 , Radityo Adi Nugroho1 , Setyo
Wahyu Saputro1 , and Zarif Bin Akhtar2

1 Department of Computer Science, Mathematics and Natural Science Faculty, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia
2 Department of Engineering, University of Cambridge, Cambridge, United Kingdom

Corresponding author: rudy.herteno@ulm.ac.id

ABSTRACT Software defects present a significant challenge to the reliability of software systems, often resulting in

substantial economic losses. This study examines the efficacy of polynomial-fit SMOTE (pf-SMOTE) variants in combination

with tree-based classifiers for software defect prediction, utilising the NASA Metrics Data Program (MDP) dataset. The

research methodology involves partitioning the dataset into training and test subsets, applying pf-SMOTE oversampling, and

evaluating classification performance using Decision Trees, Random Forests, and Extra Trees. Findings indicate that the

combination of pf-SMOTE-star oversampling with Extra Tree classification achieves the highest average accuracy (90.91%)

and AUC (95.67%) across 12 NASA MDP datasets. This demonstrates the potential of pf-SMOTE variants to enhance

classification effectiveness. However, it is important to note that caution is warranted regarding potential biases introduced

by synthetic data. These findings represent a significant advancement over previous research endeavors, underscoring the

critical role of meticulous algorithm selection and dataset characteristics in optimizing classification outcomes. Noteworthy

implications include advancements in software reliability and decision support for software project management. Future

research may delve into synergies between pf-SMOTE variants and alternative classification methods, as well as explore the

integration of hyperparameter tuning to further refine classification performance.

INDEX TERMS Polynomial-Fit-SMOTE, Decision Tree, Random Forest, Extra Trees, Software Defect

Prediction.

I. INTRODUCTION

The increasing complexity of modern software in the current

era has heightened the importance of software reliability due

to the frequent occurrence of defects and potential failures [1].

Software defects, manifesting as bugs, errors, and

inconsistencies in the source code, requirements, or design,

can severely compromise software quality and reliability [2].

Defects in software can lead to failures that prevent desired

outcomes and cause significant economic losses to

organizations [3]. These losses can result in substantial

financial losses for the company or even threaten the safety of

human lives [4]. Throughout the development and

implementation of a software project, project managers

employ software quality assurance techniques, such as

software testing and code inspection, with the objective of

identifying and rectifying as many defects as possible [3]. It is

estimated that more than 80% of the costs associated with

software development and maintenance are dedicated solely

to defect correction alone, which could be reduced if software

defects could be detected early without requiring additional

cost and effort [4]. For instance, NASA's $125 million Mars

Climate Orbiter (MCO) spacecraft crashed in 1998 due to a

minor data conversion error [5] or unit of measure

inconsistency, marking one of the most disastrous incidents in

the history of the software industry [6]. Such incidents

underscore the critical need for effective software defect

prediction techniques to ensure the timely delivery of reliable

and cost-effective software products.

Software defect prediction is prediction techniques that use

models that combine software modules and their labels

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v6i3.455
https://creativecommons.org/licenses/by-sa/4.0/
mailto:rudy.herteno@ulm.ac.id
https://orcid.org/0000-0003-0637-8090
https://orcid.org/0000-0001-5748-7639
https://orcid.org/0000-0002-7326-7668
https://orcid.org/0009-0007-9250-7704
https://orcid.org/0009-0004-5498-6458

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 290

(defective or non-defective) to predict defects, intending to

increase software reliability and reduce development costs [7].

The software defect prediction process involves three primary

steps: collecting a historical defect data set, training a

regression or classification model using deep learning or

machine learning techniques on the historical data, and using

the trained model to predict the number or probability of

software defects [8]. Machine learning models, including

Naïve Bayes (NB), decision trees (DT), K-nearest Neighbors

(k-NN), Support Vector Machines (SVM), and Artificial

Neural Networks (ANN), are frequently employed to identify

software defects, leveraging their automated defect pattern

recognition capabilities within software data [9]. Furthermore,

recent investigations have explored the integration of tree-

based ensemble learning methods, such as Extra Trees (ET),

and Random Forest (RF), to enhance software defect

prediction within machine learning classifiers [10].

However, highly imbalanced datasets can disrupt

algorithmic classification by prioritizing the majority class

with high data weights, resulting in poor performance on

minority sets [11]. An imbalanced dataset occurs when the

number of samples in one class (minority class) is three times

smaller than the number of samples in another class

(majority class). To address this issue, resampling techniques

are employed, such as oversampling (the addition of samples

from the minority class) or undersampling (the removal of

samples from the majority class), in order to achieve

balanced data and to improve classification performance

[12]. SMOTE, the most prevalent oversampling technique,

has been demonstrated to be an effective approach for

addressing data imbalance, and it is a primary approach for

tackling imbalanced learning problems [2], [3], [9] - [30].

In Research [31], the K2 algorithm, which employs a

greedy approach for automating Bayesian Network structure

learning, achieved accuracies of 0.9183 on CM1, 0.8079 on

JM1, and 0.8483 on KC1. The hill-climbing algorithm,

which began with a randomly generated Bayesian network,

yielded comparable accuracies of 0.9183 on CM1, 0.8079 on

JM1, and 0.8862 on KC1. The TAN algorithm, a tree-

augmented naïve Bayesian network, yielded accuracies of

0.92 on CM1, 0.8236 on JM1, and 0.8815 on KC1. Another

study [9] optimized algorithms with hyperparameter tuning,

random search, PCA for dimensionality reduction, and

SMOTE oversampling. The k-nearest neighbor (k-NN)

model achieved accuracies of 0.9649 on CM1, 0.7791 on

JM1, and 0.791 on KC1. The SVM model achieved 0.9766

on CM1, 0.6735 on JM1, and 0.7184 on KC1, while the

SHL-MLP model reached 0.9708 on CM1, 0.7109 on JM1,

and 0.7337 on KC1. In a separate study [10], applying

SMOTE oversampling, the Decision Tree model

demonstrated an accuracy of 0.8228, 0.7808, 0.691, 0.9768,

and 0.8859 and AUC of 0.82, 0.78, 0.69, 0.98, and 0.89 on

CM1, JM1, KC1, MC1, and PC1, respectively. The Random

Forest model demonstrated accuracies of 0.9123, 0.8392,

0.7255, 0.9897, and 0.9379, accompanied by AUCs of 0.97,

0.91, 0.79, 1, and 0.99. The Extra Trees model achieved

accuracies of 0.9053, 0.8319, 0.7307, 0.9928, and 0.9519,

with AUCs of 0.98, 0.91, 0.8, 1, and 0.99 on the same

datasets.

In a comprehensive analysis of 85 minority oversampling

techniques across 104 imbalanced datasets, Kovacs [16]

identified the top 10 oversampling techniques based on their

combined performance scores. The methods mentioned above

include Polynom-fit-SMOTE [17], ProWSyn [18], SMOTE-

IPF [19], Lee [20], SMOBD [21], G-SMOTE [22], CCR [23],

LVQ-SMOTE [24], Assembled-SMOTE [25], and SMOTE-

TomekLinks [26]. It is regrettable that despite its ranking

among the top ten, the detailed results of the four approaches

proposed by the polynomial-fit-SMOTE method [17],

including star topology, bus topology, polynomial curve

topology, and mesh topology, were not presented in the

research [16] or in several other comparative evaluations that

assessed oversampling methods [27], [28], [29].

The objective of this research is to examine the

effectiveness of variations of Polynomial-fit-SMOTE when

employed in conjunction with tree-based classifiers. The

tree-based algorithms utilized in this study encompass

Decision Tree, Random Forest, and Extra Trees, as all three

algorithms are rooted in the tree structure. Additionally, the

Random Forest and Extra Trees algorithms, which are

ensembles of several decision tree algorithms, are included

in this investigation. This research direction is motivated by

the prominence of Polynomial-fit-SMOTE, its first ranking

among the top 10 oversampling techniques in the study [16],

and the lack of detailed exploration of its methods. This

investigation addresses the aforementioned gap by

examining in detail the performance of Polynomial-fit-

SMOTE when combined with tree-based classifiers. The

smote-variants package [30], which provides Python

implementations of 85 oversampling techniques, was used to

facilitate this research.

The study aims to enhance software defect prediction

accuracy and AUC metrics by integrating various methods.

The anticipated outcomes include:

a. Determining the optimal tree-based classifier in

conjunction with polynomial-fit-SMOTE oversampling,

offering valuable insights into effective classification

strategies for software defect prediction.

b. Investigating the impact of oversampling techniques on

dataset characteristics and predictive performance,

particularly focusing on the NASA MDP dataset pre- and

post-oversampling with polynomial-fit-SMOTE.

c. Providing a comprehensive analysis of the combined

performance of Polynomial-fit-SMOTE and Tree-Based

Classifiers in enhancing classification accuracy and AUC

metrics.

d. Exploring the potential implementation of these methods

in software defect prediction to achieve more specific and

optimal results.

II. MATERIAL AND METHODS

The proposed research methodology, as depicted in FIGURE

1, employs a machine learning model that utilizes tree-based

classification techniques, including Decision Tree, Random

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 291

Forest, and Extra Trees, to address data imbalances. The three

algorithms are classified as tree-based classification

algorithms due to their similar classification performance

characteristics and utilization of tree structures in their

methodologies. This is achieved by employing variations of

the polynomial-fit-SMOTE (pf-SMOTE) algorithm based on

network topology, namely polynomial-fit-SMOTE-Bus (pf-

SMOTE-Bus), polynomial-fit-SMOTE-Mesh (pf-SMOTE-

Mesh), polynomial-fit-SMOTE-Poly (pf-SMOTE-Poly), and

polynomial-fit-SMOTE-Star (pf-SMOTE-Star). The

procedural workflow commences with the partitioning of the

NASA MDP dataset version D'' [32], detailed in TABLE 1

into distinct training and testing subsets, distributed randomly

at an 8:2 ratio. Subsequently, the training dataset undergoes

two scenarios: scenario 1 for classification without data

balancing, and scenario 2 for classification combined with pf-

SMOTE Variation. Subsequently, the performance of the

classifiers is evaluated through repeated stratified k-fold cross-

validation with 5 splits and 3 repeats, following the

methodology proposed by [16], [27]. The assessment

encompasses cross-validation with four pf-SMOTE variants

and the three tree-based classifiers. The evaluation metrics

utilized to compare the outcomes include accuracy and AUC

values.

FIGURE 1. Flowchart of Research Methods

A. DATASET

This research employs the NASA Metrics Data Program

(MDP) dataset, which was selected due to its status as a

standard dataset in software defect prediction research. This

dataset encompasses a range of software metrics features that

are pertinent for the identification of defect-prone modules.

Each dataset comprises features and corresponding output

classes, categorised as positive (defect-prone) or negative

(defect-free). The dataset utilized is an enhanced version,

designated as DS'' or D'', obtained from the [32]

https://github.com/klainfo/NASADefectDataset. However, it

should be noted that this dataset is subject to certain

limitations. These include the presence of noisy attributes, the

high dimensionality of the dataset, and the imbalanced class

records, whereby one class is significantly more numerous

than the other. These factors can lead to biased models that

perform poorly on minority class prediction [33].

TABLE 1
NASA MDP D’’ Datasets [32]

Dataset Attributes Modules Defective Non-

Defective

Defective

(%)

CM1 38 327 42 285 12.8

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

KC3 40 194 36 158 18.5
MC1 39 1,952 36 1,916 1.8

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 38 679 55 624 8.1

PC2 37 722 16 706 2.2

PC3 38 1,053 130 923 12.3

PC4 38 1,270 176 1,094 13.8
PC5 39 1,694 458 1,236 27.0

B. POLYNOMIAL-FIT-SMOTE OVERSAMPLING

Introduced in 2008 [17], the Polynomial-Fit-SMOTE (pf-

SMOTE) algorithm provides multiple oversampling

approaches tailored to the underlying network topologies of

the minority class. Synthetic instances are produced using the

Curve Fitting Method to determine coefficients for the

polynomial 𝑝(𝑥) of degree 𝑛, aligning with the minority

instances. This algorithm presents four specific network

topologies used to synthesize samples [18], which will be

detailed as follows:

1. BUS TOPOLOGY

In the bus topology method (FIGURE 2a), pathways linking

minority data points to their nearest neighbors are constructed

using straight lines. These pathways are utilized to choose

synthetic samples along this line. Initially, a straight line

connecting one minority data point to the next is plotted for

each feature of the minority class matrix. The line connecting

two consecutive data points is described by the following

linear function (Eq. (1)) [17] :

𝑓𝑖(𝑥) = 𝑎𝑥 + 𝑏 (1)

Subsequently, the coefficients “𝑎” and “𝑏” are determined

such that the function 𝑓(𝑥) accurately fits the data. Then, a set

of 𝑘 linearly-spaced value 𝑥𝑘 (𝑘 ∈ [−1,1]) is generated

based on the oversampling rate. Finally, new synthetic

minority samples are generated between each pair of

consecutive data points by evaluating the value of the function

𝑓𝑖 at 𝑥𝑘 [17].

2. MESH TOPOLOGY

In the mesh topology approach (FIGURE 2b), synthetic

samples are generated by plotting straight lines connecting

https://jeeemi.org/index.php/jeeemi/index
https://github.com/klainfo/NASADefectDataset

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 292

each minority data point to all others within the minority class

matrix. This process is analogous to that employed in the bus

topology, where synthetic data is added along each line

connecting two consecutive data points but with more

connecting lines [17].

3. POLYNOMIAL CURVE TOPOLOGY

In the polynomial curve topology approach (FIGURE 2c),

each feature within the minority class matrix is fitted to a

polynomial curve that best represents the “trend curve”

observed in the instances, and generates synthetic samples

along this curve. This process involves computing the

coefficients of a polynomial p(x) of degree 𝑛 using the method

of least square error using Eq. (2) [17].

𝑝(𝑥) = 𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 + 𝑝3𝑥𝑛−2 + ⋯ + 𝑝𝑛𝑥𝑛 + 𝑝𝑛+1 (2)

Subsequently, synthetic samples are generated along the curve

of these polynomials, with the polynomial degree empirically

determined to optimize the true positive (TP) rate [17].

4. STAR TOPOLOGY

In star topology approach (FIGURE 2d), involves generating

synthetic samples along straight lines that connect each

minority class data point to the mean of all the data points. In

this method, a matrix of size 𝑛 × 𝑚, representing 𝑛 feature

values and 𝑚 instances, is considered. Next, a group of linear

functions 𝑓𝑖(𝑥) is defined to connect each feature value to the

Eq. (3) [17]

mean of all ones: {
𝑓𝑖(𝑥) = 𝑎1𝑥 + 𝑏1

⋯
𝑓𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛

 (3)

The coefficients 𝑎𝑖 and 𝑏𝑖 are then determined such that each

function 𝑓𝑖(𝑥) accurately fits the mean value and the

corresponding data points. Following this, 𝑘 linearly-spaced

value 𝑥𝑘 (𝑘 ∈ [−1,1]) is generated according to the

oversampling rate, and the new synthetic minority samples are

generated by evaluating the value of the function 𝑓𝑖 at each 𝑥𝑘.

[17].

(a) (b)

(c) (d)

FIGURE 2. Polynom-fit-SMOTE oversampling base on network
topologies using: (a) Bus topology, (b) Mesh topology, (c) Polynomial

Curve topology, and (d) Star topologyls [17].

The selected techniques were chosen for their superiority

to other oversampling techniques, including Polynomial-fit-

SMOTE, which ranked first among the top 10 oversampling

techniques in this study [16]. Polynomial-fit-SMOTE was

selected for its ability to generate synthetic samples that are

more representative of minority groups, reduce the risk of

overfitting, and improve classification performance under

imbalanced data conditions.

C. CLASSIFICATION

Supervised machine learning methods rely on established

training datasets to forecast class labels for novel data. In the

context of defect prediction, this approach involves the

discernment of flawed systems by categorizing modules as

either defect-prone or not [34]. This research uses three

classifiers with their performance characteristics based on tree

structures in their methodology, Tree-based classifiers,

include Decision Trees (DT), Random Forests (RF), and Extra

Trees (ET) for the analysis..

1. DECISION TREE CLASSIFICATION

The Decision Tree (DT) method is a logic-driven learning

approach that arranges instances based on their feature values

using a tree-shaped structure (see FIGURE 3) [35]. Each node

in the tree represents a feature in an instance for classification,

while each branch indicates a potential value for that feature.

Instance classification begins at the root node, organizing

instances according to their feature values. Visual

demonstrations of the Decision Tree algorithm are provided in

FIGURE 4.

DT algorithm is among the top ten in machine learning and

has several enhanced versions, including CART, CHAIR,

ID3, and C4.5, all of which are derived from the fundamental

DT algorithm [36]. C4.5, in particular, is widely utilized. In

the context of C4.5, let 𝑆 denote the training dataset, and |𝑆|
represent the number of samples within it. The term

𝑓𝑟𝑒𝑞(𝐶𝑗, 𝑆) signifies the count of samples belonging to class

𝑗 within 𝑆. The average information entropy for a given class

is expressed using Eq (4) [36]:

𝐼𝑛𝑓𝑜(𝑆) = − ∑
𝑓𝑟𝑒𝑞(𝐶𝑗,𝑆)

|𝑆|
∗ 𝑙𝑜𝑔2(

𝑓𝑟𝑒𝑞(𝐶𝑗,𝑆)

|𝑆|
)𝑘

𝑗=1 (4)

Hence, for the attribute 𝐴, the requisite information to partition

the dataset 𝑆 into 𝑛 distinct subsets {𝑆𝑗} is determined using

Eq (5) [36]:

𝐼𝑛𝑓𝑜(𝐴, 𝑆) = ∑
|𝑆𝑖|

|𝑆|
∗ 𝐼𝑛𝑓𝑜(𝑆𝑖)

𝑛
𝑖=1 (5)

The Information Gain Ratio is computed using Eq (6) [36]:

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛 (𝐴)

𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴)
 =

𝐼𝑛𝑓𝑜(𝐴)−𝐼𝑛𝑓𝑜(𝐴,𝑆)

𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴,𝑆)
 (6)

The optimal attribute can be identified by assessing the

information entropy ratio and the gain ratio of potential

attributes. This allows the generation of a branch for each

possible attribute while selecting the root node, employing the

maximum gain ratio as a split criterion.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 293

FIGURE 3. Decision tree algorithm illustration [37].

FIGURE 4. Decision tree algorithm example [37].

Decision trees, characterized by their straightforward yet

resilient tree structure, are pervasively employed in domains

such as machine learning [37]. Despite their efficacy in

addressing nonlinear relationships, they are susceptible to

noisy data and prone to overfitting [35].

2. RANDOM FOREST CLASSIFICATION

Random Forest (RF) classifier, introduced by Leo Breiman in

2001 [38], is a set of tree-based classifiers {ℎ(𝒙, Θ𝑘), 𝑘 =
 1, . . . , } where the {Θ𝑘} are independent and identically

distributed random vectors. Each tree contributes a single vote

for the most prevalent class at input x [38]. RF is a collection

of small decision trees assembled into an ensemble, where

each tree is constructed using random subsets of the dataset

[10]. RF is renowned for its stability and effective handling of

imbalanced data because rather than using the original sample,

multiple decision trees are constructed using bootstrap

samples, a technique referred to as bootstrap aggregating or

bagging. This enhances generalization and minimizes

overfitting [39]. The general model of the random forest is

illustrated in FIGURE 5.

FIGURE 5. Random Forest Structure illustration [40].

The algorithm functions as follows in TABLE 2:

TABLE 2

Random Forest Algorithm [39]

for 𝑖 ← 1 to 𝐵 do

bootstrap_sample ← draw_bootstrap_sample(𝑁, training_data);

while node_size ! = minimum_node_size do

predictor_subset ← randomly_select_predictor_subset(𝑚, 𝑝);

for 𝑗 ← 1 to 𝑚 do

if 𝑗th_predictor_optimizes_splitting_criterion(𝑗,
predictor_subset) then

split_internal_node_into_two_child_nodes();
break;

end

end

end

end

return ensemble_tree_of_all_𝐵_subtrees_generated();

3. EXTRA TREES CLASSIFICATION

The Extra Trees (ET), Extremely Randomized Trees

algorithm, introduced by Pierre Geurts et al. in 2006 [41],

builds an ensemble by creating a series of unpruned decision

or regression trees using traditional top-down methods. It

integrates the selection of attributes and cutpoints during node

splitting in a highly randomized manner, potentially resulting

in the generation of fully randomized trees with structures

unrelated to the original values of the training sample [42]. ET

algorithm consists of multiple decision trees, each tree having

a root node, split nodes, and leaf nodes, as shown in FIGURE

6 [43]. Given a data set 𝑋, ET starts at the root node, where it

selects a splitting criterion based on a random subset of

features and a partially random cutoff point. This process

continues at each child node until a leaf node is reached. In

addition, the key parameters of ET include the number of trees

in the ensemble (𝑘), the number of randomly selected

attributes/features (𝑓), and the minimum number of

samples/instances required to split a node (𝑛𝑚𝑖𝑛).

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 294

FIGURE 6. Extra Trees Structure illustration [43].

ET algorithm, along with the methods for splitting the nodes

for both numeric and categorical attributes, is shown in detail

in TABLE 3.
TABLE 3

Extra Trees Algorithm [41]

BuildExtraTreeEnsemble(𝑆).

Input: training set 𝑆.

Output: a tree ensemble 𝑇 = {𝑡1, … , 𝑡𝑚}

for 𝑖 = 1to 𝑀

Generate a tree: 𝑡𝑖 = BuildExtraTree(𝑆);

end

return 𝑇

BuildExtraTree(𝑆).

Input: training set 𝑆.

Output: a tree 𝑡

Return a leaf labeled by class frequencies in 𝑆 if

(i) |𝑆| < 𝑛𝑚𝑖𝑛 , or

(ii) all candidate attributes are constant in 𝑆,or

(iii) the output variable is constant in 𝑆

Otherwise:

1. Select randomly 𝐾 attributes, {𝑎1, … , 𝑎𝑘}, without

replacement, among all (non constant in 𝑆) candidate

attributes;

2. Generate 𝐾 splits {𝑠1, … , 𝑠𝑘}, where 𝑠𝑖 =

PickRandomSplit(𝑆, 𝑎𝑖), ∀𝑖= 1, … , 𝐾;

3. Select a split 𝑠∗ such that Score(𝑠∗, 𝑆) = 𝑚𝑎𝑥𝑖=1,…,𝐾

Score(𝑠𝑖 , 𝑆) ;

4. Split 𝑆 into subsets 𝑆𝑙 and 𝑆𝑟 according to the test 𝑠∗;

5. Build 𝑡𝑙 = BuildExtraTree(𝑆𝑙) and 𝑡𝑟 = BuildExtraTree(𝑆𝑟)

from these subsets;

6. Create a node with the split 𝑠∗, attach 𝑡𝑙 and 𝑡𝑟 as left and right

subtrees of this node and return the resulting tree 𝑡.

PickRandomSplit (𝑆, 𝑎)

Input: training set 𝑆 and attribute 𝑎.

Output: a split

if the attribute 𝑎 is numerical:

Compute the maximal and minimal value of 𝑎 in 𝑆, denoted

respectively by 𝑎𝑚𝑖𝑛
𝑠 and 𝑎𝑚𝑎𝑥

𝑠 ;

Draw a cut-point 𝑎𝑐 uniformly in [𝑎𝑚𝑖𝑛
𝑠 , 𝑎𝑚𝑎𝑥

𝑠];
return the split [𝑎 < 𝑎𝑐].

if the attribute 𝑎 is categorical (denote by 𝐴 its set of possible values):

Compute 𝐴𝑠 the subset of 𝐴 of values of 𝑎 that appear in 𝑆;

Randomly draw a proper non empty subset 𝐴1 of 𝐴𝑠 and a subset 𝐴2 of

𝐴\𝐴𝑠;

return the split [𝑎 ∈ 𝐴1 ∪ 𝐴2]
end

As shown in FIGURE 5 and FIGURE 6, while RF and ET may

appear similar based on algorithm illustrations, ET differs

from RF by increasing randomness in two aspects: (1) it uses

the entire dataset to construct each decision tree, and (2) it

randomly selects splits at each node [10]. The three algorithms

in question offer a satisfactory balance between

interpretability, accuracy, and computational efficiency,

rendering them well-suited for software defect prediction

tasks.

D. EVALUATION

1. CONFUSION MATRIX

The Confusion Matrix serves as a central tool for evaluating

the effectiveness and accuracy of classification algorithms,

which is critical for understanding their performance in the

face of model building and data preprocessing challenges,

especially in high-dimensional data sets [44]. To illustrate the

performance of the classifiers, a confusion matrix was used for

the binary classification model, which provides a concise

summary of the model's prediction results. The matrix is

shown in TABLE 4 [40].

TABLE 4

Confusion Matrix [40]

 Actually Positive Actually Negative

Predicted Positive True Positive (𝑇𝑃) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

Using the confusion matrix, various evaluation metrics

including the Accuracy in Eq. (9) and AUC in Eq.(11) can be

calculated using the formula [45], [46], [47].

• Sensitivity (SN) (Eq. (7)) [45], also called True Positive

Rate (TPR) or Recall, measures the ability of a model to

predict positive cases, calculated as the ratio of true positive

predictions to the total number of actual positive cases.

𝑆𝑁 = 𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7)

• Specificity (SP) (Eq. (8)) [45], also called True Negative

Rate (TNR), refers to the ability of the model to predict

negative cases, calculated as the ratio of true negative

predictions to the total number of actual negative cases.

𝑆𝑃 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (8)

• Accuracy (ACC) (Eq. (9)) [46], is the percentage of correct

predictions and indicates the ability of the classifier to

predict a condition effectively.

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (9)

• False Positive Rate (FPR) (Eq. (10)) [46], is a measure of

how often a classification model incorrectly predicts

positive cases. It is calculated as the ratio of false positive

predictions to the total number of actual negative cases..

𝐹𝑃𝑅 = 1 − 𝑆𝑃 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 (10)

2. AREA UNDER CURVE (AUC)

Area Under the Curve (AUC) (Eq. (11)) [45], a metric for

comparing classifiers, quantifies the area under the receiver

operating characteristic (ROC) curve in ROC space, where the

curve plots sensitivity versus specificity relative to a

discrimination threshold [45]. ROC curve shown in FIGURE

7 [46] uses the False Positive Rate (FPR) as the X-axis and the

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 295

True Positive Rate (TPR) as the Y-axis. Different decision

thresholds are required at each point to produce different FPR

and TPR values.

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (11)

FIGURE 7. ROC curve where both TP and FP will change when the
decision threshold is adjusted. [46].

Here is a reference for categorizing test accuracy based on the

AUC value [44]. The classification of AUC values is shown

in TABLE 5.

TABLE 5
Classification score accuracy is based on auc value [44]

AUC Value Category

0.90 – 1.00 Excellent classification

0.80 – 0.90 Good classification

0.70 – 0.80 Fair classification

0.60 – 0.70 Poor classification

0.50 – 0.60 Failure classification

III. RESULTS

This study employs tree-based classification approach on the

NASA MDP dataset, which includes 12 modules. The

evaluation combines these classifiers with four Polynomial-

fit-SMOTE variations, assessing each combination based on

Accuracy and AUC metrics.

A. POLYNOM-FIT-SMOTE PROCESS

The oversampling procedure uses four pf-SMOTE variants,

applied to the training data divided into two sets: Training

Data and Testing Data, with an 80:20 ratio. Detailed results of

the dataset, both before and after oversampling, are shown in

TABLE 6. The Minority Sample and Majority Sample sets

shown represent training data samples before implementing

pf-SMOTE.

TABLE 6
Detailed results of 12 Nasa MDP datasets before and after applying each each pf-SMOTE variation.

Data Sample CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Minority Sample (before) 34 1337 251 29 37 35 22 49 13 107 142 337

Majority Sample (before) 227 4888 695 126 1553 65 180 515 583 754 887 991

Minority sample after applying oversampling

Pf-SMOTE-Bus 232 5345 751 113 1513 69 169 529 541 743 847 1129

pf-SMOTE-Mesh 227 4888 695 126 1553 65 180 515 583 754 887 991

pf-SMOTE-Poly 227 4888 695 126 1553 65 180 515 583 754 887 991

pf-SMOTE-Star 238 5348 753 116 1554 70 176 539 585 749 852 1131

FIGURE 8. Comparison results from 12 datasets are provided both before and after applying each pf-SMOTE variation.

B. PERFORMANCE OF TREE-BASE CLASSIFICATION

The tree-based classification model is run on a dataset

oversampled with pf-SMOTE. Accuracy values are shown in

TABLE 7, while AUC values are shown in TABLE 8,

1

20

400

8000

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Minority Sample Majority Sample Pf-SMOTE-Bus pf-SMOTE-Mesh pf-SMOTE-Poly pf-SMOTE-Star

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 296

illustrating the performance of Decision Tree, Random Forest,

and Extra Trees before and after oversampling with pf-

SMOTE. The first three rows show the classification

performance of Decision Trees, Random Forests and Extra

Trees without pf-SMOTE, indicating the performance without

data balancing. TABLE 7 and TABLE 8 show the

improvements in accuracy and AUC for the three tree-based

classifiers when the data set is balanced with four pf-SMOTE

variants. Several instances in the tables show similar or

identical accuracy and AUC values for different classifications

combined with pf-SMOTE variations.

TABLE 7
Accuracy of Tree-base classification without and with polynomial-fit-SMOTE variant

Classifier

Dataset

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Decision

Tree (base)
0.811026 0.699963 0.682791 0.744086 0.963857 0.718000 0.839675 0.867752 0.961639 0.822831 0.867663 0.712419

Random

Forest (base)
0.847615 0.793842 0.749734 0.790538 0.975975 0.719333 0.898959 0.916334 0.974846 0.867826 0.888713 0.774121

Extra Trees

(base)
0.848882 0.792675 0.747544 0.798280 0.975639 0.721333 0.895382 0.921522 0.976513 0.870923 0.886447 0.773776

pf-SMOTE-

Bus + DT
0.833660 0.769145 0.717851 0.797872 0.968143 0.707217 0.852008 0.898473 0.970053 0.863058 0.900032 0.758805

pf-SMOTE-

Bus + RF
0.899817 0.841233 0.776633 0.846543 0.989671 0.781671 0.901656 0.944458 0.986951 0.906261 0.940410 0.828774

pf-SMOTE-

Bus + ET
0.907748 0.829473 0.779860 0.854905 0.993585 0.771985 0.910283 0.952763 0.991692 0.912705 0.941371 0.831761

pf-SMOTE-

Mesh + DT
0.824510 0.748943 0.716067 0.798954 0.959219 0.692308 0.840741 0.883172 0.973984 0.844833 0.900974 0.752284

pf-SMOTE-

Mesh + RF
0.881115 0.829821 0.780096 0.850536 0.986157 0.751282 0.884259 0.933333 0.985425 0.893895 0.940625 0.817869

pf-SMOTE-

Mesh + ET
0.886203 0.819422 0.791127 0.846562 0.988303 0.748718 0.875926 0.934951 0.987419 0.904509 0.934614 0.826950

pf-SMOTE-

Poly + DT
0.883272 0.809602 0.778657 0.837542 0.980147 0.746154 0.897222 0.929773 0.974557 0.896109 0.913005 0.801553

pf-SMOTE-

Poly + RF
0.912617 0.869579 0.837410 0.884837 0.988625 0.794872 0.936111 0.955663 0.985131 0.926167 0.933487 0.847465

pf-SMOTE-

Poly + ET
0.912617 0.868420 0.834293 0.884889 0.988303 0.794872 0.930556 0.957605 0.983127 0.924398 0.935930 0.844442

pf-SMOTE-

Star + DT
0.845161 0.818158 0.787072 0.822307 0.983693 0.711111 0.904564 0.928540 0.977457 0.886898 0.906847 0.817630

pf-SMOTE-

Star + RF
0.901075 0.877230 0.843924 0.871882 0.988414 0.809877 0.943845 0.953517 0.988297 0.922367 0.932147 0.853281

pf-SMOTE-

Star + ET
0.916129 0.875538 0.838877 0.870493 0.992383 0.800000 0.931716 0.960788 0.994291 0.932798 0.942115 0.853915

TABLE 8

AUC of Tree-base classification without and with polynomial-fit-SMOTE variant

Classifier

Dataset

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Decision Tree

(base)
0.620777 0.571692 0.595859 0.559495 0.622316 0.672635 0.564938 0.636430 0.565847 0.611604 0.724994 0.642860

Random

Forest (base)
0.762092 0.699264 0.682074 0.673454 0.842881 0.733758 0.669527 0.868803 0.837087 0.807795 0.926217 0.790883

Extra Trees

(base)
0.746579 0.703265 0.694113 0.683030 0.864259 0.747748 0.662848 0.878868 0.831202 0.823515 0.918524 0.795944

pf-SMOTE-

Bus+DT
0.840854 0.766693 0.716809 0.800771 0.968960 0.708473 0.840341 0.901284 0.970081 0.864504 0.897559 0.759530

pf-SMOTE-

Bus+RF
0.965392 0.908969 0.855994 0.925812 0.999216 0.857354 0.958797 0.987160 0.999119 0.970722 0.983839 0.908916

pf-SMOTE-

Bus+ET
0.972701 0.899993 0.856077 0.929730 0.999597 0.881002 0.964606 0.992289 0.999944 0.977290 0.988010 0.912242

pf-SMOTE-

Mesh+DT
0.812486 0.745025 0.713113 0.833352 0.956507 0.727380 0.815600 0.894152 0.978029 0.840836 0.893709 0.742063

pf-SMOTE-

Mesh+RF
0.948859 0.897014 0.848173 0.942237 0.998479 0.853012 0.940300 0.980892 0.999557 0.961465 0.981525 0.899318

pf-SMOTE-

Mesh+ET
0.953447 0.886729 0.848836 0.939109 0.998457 0.860371 0.945819 0.984910 0.999722 0.964949 0.984549 0.901147

pf-SMOTE-

Poly+DT
0.877178 0.811947 0.779514 0.835942 0.979984 0.753457 0.891232 0.929622 0.970460 0.896433 0.912904 0.800078

pf-SMOTE-

Poly+RF
0.967392 0.917782 0.889822 0.937227 0.996633 0.861266 0.963453 0.984659 0.996518 0.973772 0.987855 0.920086

pf-SMOTE-

Poly+ET
0.964451 0.918473 0.892049 0.939450 0.996722 0.873882 0.964497 0.986338 0.996860 0.975416 0.986934 0.921334

pf-SMOTE-

Star+DT
0.847905 0.817174 0.788011 0.808912 0.983049 0.714620 0.896590 0.929626 0.977218 0.886892 0.908135 0.814316

pf-SMOTE-

Star+RF
0.963215 0.924613 0.895187 0.933239 0.997304 0.861625 0.965983 0.988684 0.997928 0.975051 0.986435 0.928094

pf-SMOTE-

Star+ET
0.970487 0.927317 0.898596 0.939566 0.998877 0.879500 0.974462 0.991938 0.999721 0.981597 0.987942 0.930666

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 297

TABLE 7 shows that using training data balanced with pf-

SMOTE achieves a higher average accuracy compared to not

using pf-SMOTE, where pf-SMOTE-Star + ET achieves the

highest accuracy on the PC2 dataset compared to other

variations of pf-SMOTE with an accuracy value of 99.43%.

This is followed by the combination of pf-SMOTE-Bus + ET

on MC1, pf-SMOTE-Poly + RF on MC1, and pf-SMOTE-

Mesh + ET on MC1 with accuracy values of 99.36%, 98.86%,

and 98.83%, respectively. Meanwhile, the highest AUC

results as shown in TABLE 8 were achieved by the pf-

SMOTE-Bus + ET combination with an accuracy value of

99.99%. This is followed by pf-SMOTE-Mesh + ET, pf-

SMOTE-Star + ET, and then pf-SMOTE-Poly + ET with

AUC values of 99.9722%, 99.9721%, and 99.69%,

respectively. The highest overall AUC results are found in the

same data set, namely PC2.

(a)

(b)

FIGURE 9. Comparison of the performance of tree-based classification without and with oversampling using different pf-SMOTE variants, including (a)
accuracy performance and (b) AUC performance.

IV. DISCUSSION

TABLE 9 shows that the combination of pf-SMOTE-Star

oversampling with ET classification on 12 Nasa MDP datasets

achieved the highest average accuracy and AUC compared to

all other tree-based classification and oversampling models,

namely 90.91% and 95.67% for the oversampling method and

other tree-based classifications. Then pf-SMOTE-Poly with

RF achieved an average accuracy of 90.60% and with ET an

average AUC of 95.14% compared to other classifications. pf-

SMOTE-Mesh with ET achieved an average accuracy of

87.87% and with the same classification an AUC of 93.90%

compared to other classifications. And pf-SMOTE-Bus with

ET obtained the highest average accuracy of 88.98% and with

0.650000

0.700000

0.750000

0.800000

0.850000

0.900000

0.950000

1.000000

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Dataset

A
cc

u
ra

cy

Decision Tree Random Forest Extra Trees pf-SMOTE-Bus+DT pf-SMOTE-Bus+RF

pf-SMOTE-Bus+ET pf-SMOTE-Mesh+DT pf-SMOTE-Mesh+RF pf-SMOTE-Mesh+ET pf-SMOTE-Poly+DT

pf-SMOTE-Poly+RF pf-SMOTE-Poly+ET pf-SMOTE-Star+DT pf-SMOTE-Star+RF pf-SMOTE-Star+ET

0.650000

0.700000

0.750000

0.800000

0.850000

0.900000

0.950000

1.000000

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Dataset

A
U

C

Decision Tree Random Forest Extra Trees pf-SMOTE-Bus+DT pf-SMOTE-Bus+RF

pf-SMOTE-Bus+ET pf-SMOTE-Mesh+DT pf-SMOTE-Mesh+RF pf-SMOTE-Mesh+ET pf-SMOTE-Poly+DT

pf-SMOTE-Poly+RF pf-SMOTE-Poly+ET pf-SMOTE-Star+DT pf-SMOTE-Star+RF pf-SMOTE-Star+ET

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 298

the same classification obtained the highest AUC of 94.78%

compared to other classifications. This shows that on average,

the combination classification model of pf-SMOTE variations

with ET classification has a higher performance value. Even

when comparing the ET classification before and after using

pf-SMOTE-Star, the average accuracy value increased by

5.83% from the initial value of 85.07% and the average AUC

increased by 17.76% from the initial value of 77.92%.

TABLE 9

Average performance across all datasets

Classifier
Performance

Accuracy AUC

Decision Tree 0.8076 0.6158

Random Forest 0.8498 0.7745

Extra Trees 0.8507 0.7792

pf-SMOTE-Bus+DT 0.8364 0.8363

pf-SMOTE-Bus+RF 0.8870 0.9434

pf-SMOTE-Bus+ET 0.8898 0.9478

pf-SMOTE-Mesh+DT 0.8280 0.8294

pf-SMOTE-Mesh+RF 0.8779 0.9376

pf-SMOTE-Mesh+ET 0.8787 0.9390

pf-SMOTE-Poly+DT 0.8706 0.8699

pf-SMOTE-Poly+RF 0.9060 0.9497

pf-SMOTE-Poly+ET 0.9050 0.9514

pf-SMOTE-Star+DT 0.8658 0.8644

pf-SMOTE-Star+RF 0.9072 0.9514

pf-SMOTE-Star+ET 0.9091 0.9567

Table 10 presents a comparison between the model utilized in

this research and that employed in a previous study. The

earlier investigation involved a comparative assessment with

three classification models: K2, Hill Climbing, and TAN.

Furthermore, other research endeavors have utilized models

that underwent hyperparameter tuning, random search, PCA

for dimensionality reduction, and SMOTE oversampling.

These models encompass k-NN, SVM, and SHL-MLP. The

datasets CM1, JM1, and KC1 were utilized in this study.

TABLE 10

Comparison with other research

Research Method
Datasets (Accuracy%)

CM1 JM1 KC1

[31]

K2 0.9183 0.8079 0.8483

Hill Climbing 0.9183 0.8079 0.8862

TAN 0.92 0.8239 0.8815

[9]

Optimized k-NN 0.9649 0.7791 0.7931

Optimized SVM 0.9766 0.6735 0.7184

 Optimized SHL-MLP 0.9708 0.7109 0.7337

Proposed

Research

pf-SMOTE-star + DT 0.8452 0.8182 0.7871

pf-SMOTE-star + RF 0.9011 0.8772 0.8439

pf-SMOTE-star + ET 0.9161 0.8755 0.8389

A comparison of the three preceding investigations reveals

that each study demonstrates proficiency in a particular

dataset. For instance, in [31] the Hill Climbing model attained

the highest accuracy of 0.8862 on KC1. Similarly, [9]
achieved the highest accuracy on CM1 with the optimized

SVM model, recording a value of 0.9766. In contrast, the

present study achieved the highest accuracy of 0.8772 on JM1

through data oversampling using pf-SMOTE-Star with the

Random Forest classification model. In addition, Table 10 also

illustrates that in [9], the optimized model achieved the highest

average results on CM1 across all classifications.

Table 11 presents a comparison of the performance of the

model utilized in this study with those from previous research.

Previous studies have employed various methodologies,

including Decision Trees (DT), Random Forests (RF), and

Extra Trees (ET), in conjunction with SMOTE for

oversampling. These studies have been conducted using the

PC1, PC2, PC3, and PC4 datasets.

TABLE 11
Comparison with previous research

 Other Research Method with SMOTE [10] Proposed Research with pf-SMOTE-Star

Datasets Performance DT RF ET DT RF ET

PC1
Accuracy 0.8859 0.9379 0.9519 0.9285 0.9535 0.9608

AUC 0.89 0.99 0.99 0.9296 0.9887 0.9919

PC2
Accuracy 0.9678 0.9849 0.987 0.9775 0.9883 0.9943

AUC 0.97 1 1 0.9772 0.9979 0.9997

PC3
Accuracy 0.8579 0.9051 0.9062 0.8869 0.9224 0.9328

AUC 0.86 0.96 0.97 0.8869 0.9751 0.9816

PC4
Accuracy 0.9144 0.955 0.9577 0.9068 0.9321 0.9421

AUC 0.91 0.99 1 0.9081 0.9864 0.9879

A comparison of the two previous studies indicates that

different SMOTE techniques can significantly impact the

performance of classification models. The use of pf-SMOTE-

Star demonstrates a superior ability to address data imbalance,

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 299

potentially matching or enhancing the classification accuracy

seen in earlier research. However, this improvement is not

consistent across all datasets; for instance, the highest

accuracy and AUC for the PC4 dataset were achieved by prior

studies using SMOTE with the Extra Trees (ET) classification.

The comparison presented in TABLES 10 and TABLES 11

indicates that the utilization of pf-SMOTE-Star with tree-

based classification does not universally outperform other

methods, suggesting potential limitations. These constraints

are, in part, attributed to the dataset's characteristics, which

may hinder the findings' generalizability to broader software

development contexts. Furthermore, the outcomes of the pf-

SMOTE oversampling approach demonstrate a discrepancy in

performance across methodologies, particularly between the

topology-based and star topology approaches. This

discrepancy may be attributed to various factors, including an

uneven distribution of classes, sensitivity to algorithm

parameter settings, or incomplete model coverage. These

findings underscore the limitations of the framework and

necessitate further validation to confirm their validity and

evaluate their relevance in diverse software development

contexts.

V. CONCLUSION

This study has investigated various oversampling techniques

in conjunction with tree-based classification models for

software defect prediction. The findings indicate that

oversampling methods, such as pf-SMOTE-Star, pf-SMOTE-

Poly, pf-SMOTE-Mesh, and pf-SMOTE-Bus, can

significantly enhance classification performance. In particular,

the combination of pf-SMOTE-Star oversampling with ET

classification demonstrated promising results, achieving the

highest average accuracy and AUC across multiple datasets,

reaching 90.91% and 95.67%, respectively. However, it is

important to note that the effectiveness of these techniques

may vary depending on the characteristics of the dataset and

the classification model used. The study also identified

potential limitations, such as performance imbalances across

different oversampling methodologies. Future research

endeavors should concentrate on addressing these limitations

and further validating the findings in diverse software

development contexts. Furthermore, the integration of

hyperparameter tuning techniques with pf-SMOTE-ET

requires further investigation to achieve higher levels of

classification performance. Overall, this study contributes to

advancing the understanding of software defect prediction

techniques and offers valuable insights for practitioners

seeking to improve the reliability of software development

projects.

ACKNOWLEDGMENT

We extend our profound gratitude to the entire community of

the Computer Science department at Lambung Mangkurat

University's Faculty of Mathematics and Natural Sciences for

their generous support and invaluable resources, which greatly

facilitated the completion of this study. Furthermore, we

express our gratitude to our project colleagues for their

dedication and teamwork, which were instrumental in the

successful completion of this research endeavor.

REFERENCES
[1] G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software Defect

Prediction via Attention-Based Recurrent Neural Network,” Sci

Program, vol. 2019, 2019, doi: 10.1155/2019/6230953.

[2] A. Alsaeedi and M. Z. Khan, “Software Defect Prediction Using
Supervised Machine Learning and Ensemble Techniques: A

Comparative Study,” Journal of Software Engineering and

Applications, vol. 12, no. 05, pp. 85–100, 2019, doi:
10.4236/jsea.2019.125007.

[3] X. Chen, D. Zhang, Y. Zhao, Z. Cui, and C. Ni, “Software defect

number prediction: Unsupervised vs supervised methods,” Inf Softw
Technol, vol. 106, pp. 161–181, Feb. 2019, doi:

10.1016/j.infsof.2018.10.003.

[4] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect

prediction with deep forest,” Inf Softw Technol, vol. 114, pp. 204–216,

Oct. 2019, doi: 10.1016/j.infsof.2019.07.003.

[5] S. Goyal, “Handling Class-Imbalance with KNN (Neighbourhood)
Under-Sampling for Software Defect Prediction,” Artif Intell Rev, vol.

55, no. 3, pp. 2023–2064, Mar. 2022, doi: 10.1007/s10462-021-

10044-w.
[6] L. Manservigi et al., “Detection of Unit of Measure Inconsistency in

gas turbine sensors by means of Support Vector Machine classifier,”

ISA Trans, vol. 123, pp. 323–338, Apr. 2022, doi:
10.1016/j.isatra.2021.05.034.

[7] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A Semantic LSTM

Model for Software Defect Prediction,” IEEE Access, vol. 7, pp.
83812–83824, 2019, doi: 10.1109/ACCESS.2019.2925313.

[8] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software

defect prediction,” Neurocomputing, vol. 385, pp. 100–110, Apr.
2020, doi: 10.1016/j.neucom.2019.11.067.

[9] M. Z. F. N. Siswantoro and U. L. Yuhana, “Software Defect Prediction

Based on Optimized Machine Learning Models: A Comparative

Study,” Teknika, vol. 12, no. 2, pp. 166–172, Jun. 2023, doi:

10.34148/teknika.v12i2.634.

[10] H. Aljamaan and A. Alazba, “Software defect prediction using tree-
based ensembles,” in PROMISE 2020 - Proceedings of the 16th ACM

International Conference on Predictive Models and Data Analytics in
Software Engineering, Co-located with ESEC/FSE 2020, Association

for Computing Machinery, Inc, Nov. 2020, pp. 1–10. doi:

10.1145/3416508.3417114.
[11] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data

imbalance in classification: Experimental evaluation,” Inf Sci (N Y),

vol. 513, pp. 429–441, Mar. 2020, doi: 10.1016/j.ins.2019.11.004.
[12] X. W. Liang, A. P. Jiang, T. Li, Y. Y. Xue, and G. T. Wang, “LR-

SMOTE — An improved unbalanced data set oversampling based on

K-means and SVM,” Knowl Based Syst, vol. 196, May 2020, doi:
10.1016/j.knosys.2020.105845.

[13] R. Malhotra and S. Kamal, “An empirical study to investigate

oversampling methods for improving software defect prediction using
imbalanced data,” Neurocomputing, vol. 343, pp. 120–140, May 2019,

doi: 10.1016/j.neucom.2018.04.090.

[14] D. Bajer, B. Zonć, M. Dudjak, and G. Martinović, “Performance
Analysis of SMOTE-based Oversampling Techniques When Dealing

with Data Imbalance,” 2019 International Conference on Systems,

Signals and Image Processing (IWSSIP), 2019, doi:
10.1109/IWSSIP.2019.8787306.

[15] A. Fernández, S. García, F. Herrera, and N. V Chawla, “SMOTE for

Learning from Imbalanced Data: Progress and Challenges, Marking
the 15-year Anniversary,” 2018.

[16] G. Kovács, “An empirical comparison and evaluation of minority

oversampling techniques on a large number of imbalanced datasets,”
Applied Soft Computing Journal, vol. 83, Oct. 2019, doi:

10.1016/j.asoc.2019.105662.

[17] S. Gazzah and N. E. Ben Amara, “New oversampling approaches
based on polynomial fitting for imbalanced data sets,” in DAS 2008 -

Proceedings of the 8th IAPR International Workshop on Document

Analysis Systems, 2008, pp. 677–684. doi: 10.1109/DAS.2008.74.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 300

[18] S. Barua, Md. M. Islam, and K. Murase, “ProWSyn: Proximity
Weighted Synthetic Oversampling Technique for Imbalanced Data

Set Learning,” Lecture Notes in Computer Science, vol. 7819, pp.

317–328, 2013, doi: https://doi.org/10.1007/978-3-642-37456-2_27.
[19] J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera, “SMOTE-IPF:

Addressing the noisy and borderline examples problem in imbalanced

classification by a re-sampling method with filtering,” Inf Sci (N Y),
vol. 291, no. C, pp. 184–203, 2015, doi: 10.1016/j.ins.2014.08.051.

[20] J. Lee, N. R. Kim, and J. H. Lee, “An over-sampling technique with

rejection for imbalanced class learning,” in ACM IMCOM 2015 -
Proceedings, Association for Computing Machinery, Inc, Jan. 2015.

doi: 10.1145/2701126.2701181.

[21] Q. Cao and S. Wang, “Applying over-sampling technique based on
data density and cost-sensitive SVM to imbalanced learning,” in

Proceedings - 2011 4th International Conference on Information

Management, Innovation Management and Industrial Engineering,
ICIII 2011, 2011, pp. 543–548. doi: 10.1109/ICIII.2011.276.

[22] T. Sandhan and J. Y. Choi, “Handling imbalanced datasets by partially

guided hybrid sampling for pattern recognition,” in Proceedings -
International Conference on Pattern Recognition, Institute of

Electrical and Electronics Engineers Inc., Dec. 2014, pp. 1449–1453.

doi: 10.1109/ICPR.2014.258.
[23] M. Koziarski and M. Wozniak, “CCR: A combined cleaning and

resampling algorithm for imbalanced data classification,”

International Journal of Applied Mathematics and Computer Science,
vol. 27, no. 4, pp. 727–736, Dec. 2017, doi: 10.1515/amcs-2017-0050.

[24] M. Nakamura, Y. Kajiwara, A. Otsuka, and H. Kimura, “LVQ-
SMOTE-Learning Vector Quantization based Synthetic Minority

Over-sampling Technique for biomedical data,” 2013. [Online].

Available: http://www.biodatamining.org/content/6/1/16
[25] B. Zhou, C. Yang, H. Guo, and J. Hu, “A Quasi-linear SVM Combined

with Assembled SMOTE for Imbalanced Data Classification,” in The

2013 International Joint Conference on Neural Networks (IJCNN),
2013. doi: 10.1109/IJCNN.2013.6707035.

[26] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A Study of the

Behavior of Several Methods for Balancing Machine Learning
Training Data,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1,

pp. 20–29, 2004, doi: https://doi.org/10.1145/1007730.1007735.

[27] A. Islam, S. B. Belhaouari, A. U. Rehman, and H. Bensmail,

“KNNOR: An oversampling technique for imbalanced

datasets[Formula presented],” Appl Soft Comput, vol. 115, Jan. 2022,

doi: 10.1016/j.asoc.2021.108288.
[28] S. Bej, K. Schulz, P. Srivastava, M. Wolfien, and O. Wolkenhauer, “A

Multi-Schematic Classifier-Independent Oversampling Approach for

Imbalanced Datasets,” IEEE Access, vol. 9, pp. 123358–123374,
2021, doi: 10.1109/ACCESS.2021.3108450.

[29] T. Watthaisong, K. Sunat, and N. Muangkote, “Comparative

Evaluation of Imbalanced Data Management Techniques for Solving
Classification Problems on Imbalanced Datasets,” Statistics,

Optimization and Information Computing, vol. 12, no. 2, pp. 547–570,

Mar. 2024, doi: 10.19139/soic-2310-5070-1890.
[30] G. Kovács, “Smote-variants: A python implementation of 85 minority

oversampling techniques,” Neurocomputing, vol. 366, pp. 352–354,

Nov. 2019, doi: 10.1016/j.neucom.2019.06.100.
[31] M. J. Hernández-Molinos, A. J. Sánchez-García, R. E. Barrientos-

Martínez, J. C. Pérez-Arriaga, and J. O. Ocharán-Hernández,

“Software Defect Prediction with Bayesian Approaches,”

Mathematics, vol. 11, no. 11, Jun. 2023, doi: 10.3390/math11112524.

[32] A. Iqbal et al., “Performance analysis of machine learning techniques

on software defect prediction using NASA datasets,” International
Journal of Advanced Computer Science and Applications, vol. 10, no.

5, pp. 300–308, 2019, doi: 10.14569/ijacsa.2019.0100538.

[33] M. N. M. Rahman, R. A. Nugroho, M. R. Faisal, F. Abadi, and R.
Herteno, “Optimized multi correlation-based feature selection in

software defect prediction,” Telkomnika (Telecommunication

Computing Electronics and Control), vol. 22, no. 3, pp. 598–605, Jun.
2024, doi: 10.12928/TELKOMNIKA.v22i3.25793.

[34] C. L. Prabha and N. Shivakumar, “Software Defect Prediction Using

Machine Learning Techniques,” in 2020 4th International Conference
on Trends in Electronics and Informatics (ICOEI)(48184), 2020. doi:

10.1109/ICOEI48184.2020.9142909.

[35] H. Alsawalqah et al., “Software defect prediction using heterogeneous
ensemble classification based on segmented patterns,” Applied

Sciences (Switzerland), vol. 10, no. 5, Mar. 2020, doi:
10.3390/app10051745.

[36] Z. Tian, J. Xiang, S. Zhenxiao, Z. Yi, and Y. Yunqiang, “Software

Defect Prediction based on Machine Learning Algorithms,” in 2019
IEEE 5th International Conference on Computer and

Communications (ICCC), IEEE, 2020. doi:

10.1109/ICCC47050.2019.9064412.
[37] B. Charbuty and A. Abdulazeez, “Classification Based on Decision

Tree Algorithm for Machine Learning,” Journal of Applied Science

and Technology Trends, vol. 2, no. 01, pp. 20–28, Mar. 2021, doi:
10.38094/jastt20165.

[38] L. Breiman, “Random Forests,” Mach Learn, vol. 45, pp. 5–32, 2001,

doi: https://doi.org/10.1023/A:1010933404324.
[39] M. Schonlau and R. Y. Zou, “The random forest algorithm for

statistical learning,” The Stata Journal: Promoting communications

on statistics and Stata, vol. 20, no. 1, pp. 3–29, Mar. 2020, doi:
10.1177/1536867X20909688.

[40] H. B. Kibria and A. Matin, “The Severity Prediction of The Binary

And Multi-Class Cardiovascular Disease -- A Machine Learning-
Based Fusion Approach,” Comput Biol Chem, vol. 98, Mar. 2022, doi:

https://doi.org/10.1016/j.compbiolchem.2022.107672.

[41] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach Learn, vol. 63, no. 1, pp. 3–42, Apr. 2006, doi: 10.1007/s10994-

006-6226-1.

[42] E. K. Ampomah, Z. Qin, and G. Nyame, “Evaluation of tree-based
ensemble machine learning models in predicting stock price direction

of movement,” Information (Switzerland), vol. 11, no. 6, Jun. 2020,
doi: 10.3390/info11060332.

[43] U. Saeed, S. U. Jan, Y. D. Lee, and I. Koo, “Fault diagnosis based on

extremely randomized trees in wireless sensor networks,” Reliab Eng
Syst Saf, vol. 205, Jan. 2021, doi: 10.1016/j.ress.2020.107284.

[44] M. Fawwaz Akbar, M. I. Mazdadi, H. Saragih, and F. Abadi,

“Implementation of Information Gain Ratio and Particle Swarm
Optimization in the Sentiment Analysis Classification of Covid-19

Vaccine Using Support Vector Machine,” Journal of Electronics,

Electromedical Engineering, and Medical informatics (JEEEMI), vol.
5, no. 4, pp. 261–270, 2023, doi: 10.35882/jeemi.v5i4.328.

[45] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two

SVM models through different metrics based on the confusion

matrix,” Comput Oper Res, vol. 152, Apr. 2023, doi:

10.1016/j.cor.2022.106131.

[46] C. Y. Lee and W. C. Lin, “Induction Motor Fault Classification Based
on ROC Curve and t-SNE,” IEEE Access, vol. 9, pp. 56330–56343,

2021, doi: 10.1109/ACCESS.2021.3072646.

[47] D. Chicco, N. Tötsch, and G. Jurman, “The matthews correlation
coefficient (Mcc) is more reliable than balanced accuracy, bookmaker

informedness, and markedness in two-class confusion matrix

evaluation,” BioData Min, vol. 14, pp. 1–22, 2021, doi:
10.1186/s13040-021-00244-z.

AUTHOR BIOGRAPHY

Wildan Nur Hidayatullah was born in Samuda,

Central Kalimantan, Indonesia. Since 2020, he has
been engaged in the academic world as a student at the

Department of Computer Science, Lambung

Mangkurat University. His current field of research is
in the field of software engineering. He selected this

area of special interest because of his interest in the

field of software engineering. Additionally, the project
ultimately involves research centered on software

defect prediction. The objective of this research is to assess the performance

of polynomial-fit-SMOTE using tree-based classification in the context of
software defects.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, July 2024, pp: 289-301; eISSN: 2656-8632

Homepage: jeeemi.org 301

Rudy Herteno was born in Banjarmasin, South
Kalimantan. After graduating from high school, he

pursued his undergraduate studies in the Computer

Science Department at Lambung Mangkurat
University and graduated in 2011. After completing his

undergraduate program, he worked as a software

developer to gather experience for several years. He
developed a lot of software, especially for local

governments. In 2017, He completed his master's

degree in Informatics from STMIK Amikom University. Currently, he is a
lecturer in the Faculty of Mathematics and Natural Science at Lambung

Mangkurat University. His research interests include software engineering,

software defect prediction, and deep learning..

Mohammad Reza Faisal was born in Banjarmasin.
Following his graduation from high school, he pursued

his undergraduate studies in the Informatics department

at Pasundan University in 1995, and later majored in
Physics at Bandung Institute of Technology in 1997.

After completing his bachelor's program, he gained

experience as a training trainer in the field of
information technology and software development.

Since 2008, he has been a lecturer in computer science at Universitas

Lambung Mangkurat, while also pursuing his master's program in
Informatics at Bandung Institute of Technology in 2010. In 2015, he

furthered his education by pursuing a doctoral degree in Bioinformatics at
Kanazawa University, Japan. To this day, he continues his work as a lecturer

in Computer Science at Universitas Lambung Mangkurat. His research

interests encompass Data Science, Software Engineering, and
Bioinformatics.

Radityo Adi Nugroho received his bachelor's degree in

Informatics from the Islamic University of Indonesia

and a master's degree in Computer Science from Gadjah
Mada University. Currently, he is an assistant professor

in the Department of Computer Science at Lambung

Mangkurat University. His research interests include

software defect prediction and computer vision. He is

also a practitioner in the field of information technology

as a project manager and systems analyst to develop software and
information systems used by universities.

Setyo Wahyu Saputro is a lecturer in the Computer

Science Department, Faculty of Mathematics and Natural

Science, Lambung Mangkurat University in Banjarbaru.
He received a bachelor’s degree also in Computer Science

from Lambung Mangkurat University and received his

master’s degree in Informatics from STMIK Amikom
University. His research interests include software

engineering and artificial intelligence applications

 Zarif Bin Akhtar studied at Master of Philosophy

(MPhil) in Machine Learning and Machine Intelligence

within the Department of Engineering at the University

of Cambridge, United Kingdom. His academic journey

was a bumpy road start during the timeline of his

undergrad studies. Initially selected and admitted into
The University of Dhaka (DU) at the Institute of

Information Technology (IIT) within the Software

Engineering (SE) Department for the BSSE program. Unfortunately, at the
time due to his dad's heart attack and stroke which ultimately was forwarded

into hospitalization and operation during that time, he had moved into The

American International University-Bangladesh (AIUB) into the Faculty of
Engineering (FE) within the Computer Engineering (CoE) Department for

the (B.Sc.) program. He had finished his 4-year undergrad studies from

AIUB where he had completed a total number of 198 credits which after
mapping was finalized into 159 credits with the awarded degree for

Bachelor of Science (B.Sc.) in Computer Engineering (CoE) with a Major

in Biomedical Engineering and a Minor in 3D Modeling and Animation. As
he was graduating, he had also received Honors which came in the form of

the Prestigious Vice-Chancellors (VC) Award and Deans Award for the
Best Project & Thesis along with, The Leadership Award at the 20th

convocation of AIUB that had taken place on 10 October 2021.

https://jeeemi.org/index.php/jeeemi/index

