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ABSTRACT Software defects present a significant challenge to the reliability of software systems, often resulting in 

substantial economic losses. This study examines the efficacy of polynomial-fit SMOTE (pf-SMOTE) variants in combination 

with tree-based classifiers for software defect prediction, utilising the NASA Metrics Data Program (MDP) dataset. The 

research methodology involves partitioning the dataset into training and test subsets, applying pf-SMOTE oversampling, and 

evaluating classification performance using Decision Trees, Random Forests, and Extra Trees. Findings indicate that the 

combination of pf-SMOTE-star oversampling with Extra Tree classification achieves the highest average accuracy (90.91%) 

and AUC (95.67%) across 12 NASA MDP datasets. This demonstrates the potential of pf-SMOTE variants to enhance 

classification effectiveness. However, it is important to note that caution is warranted regarding potential biases introduced 

by synthetic data. These findings represent a significant advancement over previous research endeavors, underscoring the 

critical role of meticulous algorithm selection and dataset characteristics in optimizing classification outcomes. Noteworthy 

implications include advancements in software reliability and decision support for software project management. Future 

research may delve into synergies between pf-SMOTE variants and alternative classification methods, as well as explore the 

integration of hyperparameter tuning to further refine classification performance. 

INDEX TERMS Polynomial-Fit-SMOTE, Decision Tree, Random Forest, Extra Trees, Software Defect 

Prediction. 

I. INTRODUCTION 

The increasing complexity of modern software in the current 

era has heightened the importance of software reliability due 

to the frequent occurrence of defects and potential failures [1]. 

Software defects, manifesting as bugs, errors, and 

inconsistencies in the source code, requirements, or design, 

can severely compromise software quality and reliability [2]. 

Defects in software can lead to failures that prevent desired 

outcomes and cause significant economic losses to 

organizations [3]. These losses can result in substantial 

financial losses for the company or even threaten the safety of 

human lives [4]. Throughout the development and 

implementation of a software project, project managers 

employ software quality assurance techniques, such as 

software testing and code inspection, with the objective of 

identifying and rectifying as many defects as possible [3]. It is 

estimated that more than 80% of the costs associated with 

software development and maintenance are dedicated solely 

to defect correction alone, which could be reduced if software 

defects could be detected early without requiring additional 

cost and effort [4]. For instance, NASA's $125 million Mars 

Climate Orbiter (MCO) spacecraft crashed in 1998 due to a 

minor data conversion error [5] or unit of measure 

inconsistency, marking one of the most disastrous incidents in 

the history of the software industry [6].  Such incidents 

underscore the critical need for effective software defect 

prediction techniques to ensure the timely delivery of reliable 

and cost-effective software products. 

Software defect prediction is prediction techniques that use 

models that combine software modules and their labels 
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(defective or non-defective) to predict defects, intending to 

increase software reliability and reduce development costs [7]. 

The software defect prediction process involves three primary 

steps: collecting a historical defect data set, training a 

regression or classification model using deep learning or 

machine learning techniques on the historical data, and using 

the trained model to predict the number or probability of 

software defects [8].  Machine learning models, including 

Naïve Bayes (NB), decision trees (DT), K-nearest Neighbors 

(k-NN), Support Vector Machines (SVM), and Artificial 

Neural Networks (ANN), are frequently employed to identify 

software defects, leveraging their automated defect pattern 

recognition capabilities within software data [9]. Furthermore, 

recent investigations have explored the integration of tree-

based ensemble learning methods, such as Extra Trees (ET), 

and Random Forest (RF), to enhance software defect 

prediction within machine learning classifiers [10].  

However, highly imbalanced datasets can disrupt 

algorithmic classification by prioritizing the majority class 

with high data weights, resulting in poor performance on 

minority sets [11]. An imbalanced dataset occurs when the 

number of samples in one class (minority class) is three times 

smaller than the number of samples in another class 

(majority class). To address this issue, resampling techniques 

are employed, such as oversampling (the addition of samples 

from the minority class) or undersampling (the removal of 

samples from the majority class), in order to achieve 

balanced data and to improve classification performance 

[12]. SMOTE, the most prevalent oversampling technique, 

has been demonstrated to be an effective approach for 

addressing data imbalance, and it is a primary approach for 

tackling imbalanced learning problems [2], [3], [9] - [30]. 

In Research [31], the K2 algorithm, which employs a 

greedy approach for automating Bayesian Network structure 

learning, achieved accuracies of 0.9183 on CM1, 0.8079 on 

JM1, and 0.8483 on KC1. The hill-climbing algorithm, 

which began with a randomly generated Bayesian network, 

yielded comparable accuracies of 0.9183 on CM1, 0.8079 on 

JM1, and 0.8862 on KC1. The TAN algorithm, a tree-

augmented naïve Bayesian network, yielded accuracies of 

0.92 on CM1, 0.8236 on JM1, and 0.8815 on KC1. Another 

study [9] optimized algorithms with hyperparameter tuning, 

random search, PCA for dimensionality reduction, and 

SMOTE oversampling. The k-nearest neighbor (k-NN) 

model achieved accuracies of 0.9649 on CM1, 0.7791 on 

JM1, and 0.791 on KC1. The SVM model achieved 0.9766 

on CM1, 0.6735 on JM1, and 0.7184 on KC1, while the 

SHL-MLP model reached 0.9708 on CM1, 0.7109 on JM1, 

and 0.7337 on KC1. In a separate study [10], applying 

SMOTE oversampling, the Decision Tree model 

demonstrated an accuracy of 0.8228, 0.7808, 0.691, 0.9768, 

and 0.8859 and AUC of 0.82, 0.78, 0.69, 0.98, and 0.89 on 

CM1, JM1, KC1, MC1, and PC1, respectively. The Random 

Forest model demonstrated accuracies of 0.9123, 0.8392, 

0.7255, 0.9897, and 0.9379, accompanied by AUCs of 0.97, 

0.91, 0.79, 1, and 0.99. The Extra Trees model achieved 

accuracies of 0.9053, 0.8319, 0.7307, 0.9928, and 0.9519, 

with AUCs of 0.98, 0.91, 0.8, 1, and 0.99 on the same 

datasets. 

In a comprehensive analysis of 85 minority oversampling 

techniques across 104 imbalanced datasets, Kovacs [16] 

identified the top 10 oversampling techniques based on their 

combined performance scores. The methods mentioned above 

include Polynom-fit-SMOTE [17], ProWSyn [18], SMOTE-

IPF [19], Lee [20], SMOBD [21], G-SMOTE [22], CCR [23], 

LVQ-SMOTE [24], Assembled-SMOTE [25], and SMOTE-

TomekLinks [26]. It is regrettable that despite its ranking 

among the top ten, the detailed results of the four approaches 

proposed by the polynomial-fit-SMOTE method [17], 

including star topology, bus topology, polynomial curve 

topology, and mesh topology, were not presented in the 

research [16] or in several other comparative evaluations that 

assessed oversampling methods [27], [28], [29]. 

The objective of this research is to examine the 

effectiveness of variations of Polynomial-fit-SMOTE when 

employed in conjunction with tree-based classifiers. The 

tree-based algorithms utilized in this study encompass 

Decision Tree, Random Forest, and Extra Trees, as all three 

algorithms are rooted in the tree structure. Additionally, the 

Random Forest and Extra Trees algorithms, which are 

ensembles of several decision tree algorithms, are included 

in this investigation. This research direction is motivated by 

the prominence of Polynomial-fit-SMOTE, its first ranking 

among the top 10 oversampling techniques in the study [16], 

and the lack of detailed exploration of its methods.  This 

investigation addresses the aforementioned gap by 

examining in detail the performance of Polynomial-fit-

SMOTE when combined with tree-based classifiers. The 

smote-variants package [30], which provides Python 

implementations of 85 oversampling techniques, was used to 

facilitate this research.  

The study aims to enhance software defect prediction 

accuracy and AUC metrics by integrating various methods. 

The anticipated outcomes include: 

a. Determining the optimal tree-based classifier in 

conjunction with polynomial-fit-SMOTE oversampling, 

offering valuable insights into effective classification 

strategies for software defect prediction.  

b. Investigating the impact of oversampling techniques on 

dataset characteristics and predictive performance, 

particularly focusing on the NASA MDP dataset pre- and 

post-oversampling with polynomial-fit-SMOTE. 

c. Providing a comprehensive analysis of the combined 

performance of Polynomial-fit-SMOTE and Tree-Based 

Classifiers in enhancing classification accuracy and AUC 

metrics. 

d. Exploring the potential implementation of these methods 

in software defect prediction to achieve more specific and 

optimal results. 

 
II. MATERIAL AND METHODS 

The proposed research methodology, as depicted in FIGURE 

1, employs a machine learning model that utilizes tree-based 

classification techniques, including Decision Tree, Random 
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Forest, and Extra Trees, to address data imbalances. The three 

algorithms are classified as tree-based classification 

algorithms due to their similar classification performance 

characteristics and utilization of tree structures in their 

methodologies. This is achieved by employing variations of 

the polynomial-fit-SMOTE (pf-SMOTE) algorithm based on 

network topology, namely polynomial-fit-SMOTE-Bus (pf-

SMOTE-Bus), polynomial-fit-SMOTE-Mesh (pf-SMOTE-

Mesh), polynomial-fit-SMOTE-Poly (pf-SMOTE-Poly), and 

polynomial-fit-SMOTE-Star  (pf-SMOTE-Star). The 

procedural workflow commences with the partitioning of the 

NASA MDP dataset version D'' [32], detailed in TABLE 1 

into distinct training and testing subsets, distributed randomly 

at an 8:2 ratio. Subsequently, the training dataset undergoes 

two scenarios: scenario 1 for classification without data 

balancing, and scenario 2 for classification combined with pf-

SMOTE Variation. Subsequently, the performance of the 

classifiers is evaluated through repeated stratified k-fold cross-

validation with 5 splits and 3 repeats, following the 

methodology proposed by [16], [27]. The assessment 

encompasses cross-validation with four pf-SMOTE variants 

and the three tree-based classifiers. The evaluation metrics 

utilized to compare the outcomes include accuracy and AUC 

values. 

 

FIGURE 1. Flowchart of Research Methods 

A. DATASET 

This research employs the NASA Metrics Data Program 

(MDP) dataset, which was selected due to its status as a 

standard dataset in software defect prediction research. This 

dataset encompasses a range of software metrics features that 

are pertinent for the identification of defect-prone modules. 

Each dataset comprises features and corresponding output 

classes, categorised as positive (defect-prone) or negative 

(defect-free). The dataset utilized is an enhanced version, 

designated as DS'' or D'', obtained from the [32] 

https://github.com/klainfo/NASADefectDataset. However, it 

should be noted that this dataset is subject to certain 

limitations. These include the presence of noisy attributes, the 

high dimensionality of the dataset, and the imbalanced class 

records, whereby one class is significantly more numerous 

than the other. These factors can lead to biased models that 

perform poorly on minority class prediction [33]. 

TABLE 1 
NASA MDP D’’ Datasets [32] 

Dataset Attributes Modules Defective Non-

Defective 

Defective 

(%) 

CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

KC3 40 194 36 158 18.5 
MC1 39 1,952 36 1,916 1.8 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1,053 130 923 12.3 

PC4 38 1,270 176 1,094 13.8 
PC5 39 1,694 458 1,236 27.0 

B. POLYNOMIAL-FIT-SMOTE OVERSAMPLING 

Introduced in 2008 [17], the Polynomial-Fit-SMOTE (pf-

SMOTE) algorithm provides multiple oversampling 

approaches tailored to the underlying network topologies of 

the minority class. Synthetic instances are produced using the 

Curve Fitting Method to determine coefficients for the 

polynomial 𝑝(𝑥) of degree 𝑛, aligning with the minority 

instances. This algorithm presents four specific network 

topologies used to synthesize samples [18], which will be 

detailed as follows: 

1. BUS TOPOLOGY 

In the bus topology method (FIGURE 2a), pathways linking 

minority data points to their nearest neighbors are constructed 

using straight lines. These pathways are utilized to choose 

synthetic samples along this line. Initially, a straight line 

connecting one minority data point to the next is plotted for 

each feature of the minority class matrix. The line connecting 

two consecutive data points is described by the following 

linear function (Eq. (1)) [17] :  

𝑓𝑖(𝑥) = 𝑎𝑥 + 𝑏 (1) 

Subsequently, the coefficients “𝑎” and “𝑏” are determined 

such that the function 𝑓(𝑥) accurately fits the data. Then, a set 

of 𝑘 linearly-spaced value 𝑥𝑘  (𝑘 ∈ [−1,1]) is generated 

based on the oversampling rate. Finally, new synthetic 

minority samples are generated between each pair of 

consecutive data points by evaluating the value of the function 

𝑓𝑖 at 𝑥𝑘 [17]. 

2. MESH TOPOLOGY 

In the mesh topology approach (FIGURE 2b), synthetic 

samples are generated by plotting straight lines connecting 
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each minority data point to all others within the minority class 

matrix. This process is analogous to that employed in the bus 

topology, where synthetic data is added along each line 

connecting two consecutive data points but with more 

connecting lines [17]. 

3. POLYNOMIAL CURVE TOPOLOGY 

In the polynomial curve topology approach (FIGURE 2c), 

each feature within the minority class matrix is fitted to a 

polynomial curve that best represents the “trend curve” 

observed in the instances, and generates synthetic samples 

along this curve. This process involves computing the 

coefficients of a polynomial p(x) of degree 𝑛 using the method 

of least square error using Eq. (2) [17]. 

𝑝(𝑥) = 𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 + 𝑝3𝑥𝑛−2 + ⋯ + 𝑝𝑛𝑥𝑛 + 𝑝𝑛+1 (2) 

Subsequently, synthetic samples are generated along the curve 

of these polynomials, with the polynomial degree empirically 

determined to optimize the true positive (TP) rate [17]. 

4. STAR TOPOLOGY 

In star topology approach (FIGURE 2d), involves generating 

synthetic samples along straight lines that connect each 

minority class data point to the mean of all the data points. In 

this method, a matrix of size 𝑛 × 𝑚, representing 𝑛 feature 

values and 𝑚 instances, is considered. Next, a group of linear 

functions 𝑓𝑖(𝑥) is defined to connect each feature value to the 

Eq. (3) [17] 

mean of all ones: {
𝑓𝑖(𝑥) = 𝑎1𝑥 + 𝑏1

⋯
𝑓𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛

 (3) 

The coefficients 𝑎𝑖 and 𝑏𝑖 are then determined such that each 

function 𝑓𝑖(𝑥) accurately fits the mean value and the 

corresponding data points. Following this, 𝑘 linearly-spaced 

value 𝑥𝑘  (𝑘 ∈ [−1,1]) is generated according to the 

oversampling rate, and the new synthetic minority samples are 

generated by evaluating the value of the function 𝑓𝑖 at each 𝑥𝑘. 

[17]. 

 

 
(a)      (b) 

 
(c)      (d) 

FIGURE 2. Polynom-fit-SMOTE oversampling base on network 
topologies using: (a) Bus topology, (b) Mesh topology, (c) Polynomial 

Curve topology, and (d) Star topologyls [17]. 

The selected techniques were chosen for their superiority 

to other oversampling techniques, including Polynomial-fit-

SMOTE, which ranked first among the top 10 oversampling 

techniques in this study [16]. Polynomial-fit-SMOTE was 

selected for its ability to generate synthetic samples that are 

more representative of minority groups, reduce the risk of 

overfitting, and improve classification performance under 

imbalanced data conditions. 

C. CLASSIFICATION 

Supervised machine learning methods rely on established 

training datasets to forecast class labels for novel data. In the 

context of defect prediction, this approach involves the 

discernment of flawed systems by categorizing modules as 

either defect-prone or not [34]. This research uses three 

classifiers with their performance characteristics based on tree 

structures in their methodology, Tree-based classifiers, 

include Decision Trees (DT), Random Forests (RF), and Extra 

Trees (ET) for the analysis.. 

 

1. DECISION TREE CLASSIFICATION 

The Decision Tree (DT) method is a logic-driven learning 

approach that arranges instances based on their feature values 

using a tree-shaped structure (see FIGURE 3) [35]. Each node 

in the tree represents a feature in an instance for classification, 

while each branch indicates a potential value for that feature. 

Instance classification begins at the root node, organizing 

instances according to their feature values. Visual 

demonstrations of the Decision Tree algorithm are provided in 

FIGURE 4.  

DT algorithm is among the top ten in machine learning and 

has several enhanced versions, including CART, CHAIR, 

ID3, and C4.5, all of which are derived from the fundamental 

DT algorithm [36]. C4.5, in particular, is widely utilized. In 

the context of C4.5, let 𝑆 denote the training dataset, and |𝑆| 
represent the number of samples within it. The term 

𝑓𝑟𝑒𝑞(𝐶𝑗, 𝑆) signifies the count of samples belonging to class 

𝑗 within 𝑆. The average information entropy for a given class 

is expressed using Eq (4) [36]: 

𝐼𝑛𝑓𝑜(𝑆) =  − ∑
𝑓𝑟𝑒𝑞(𝐶𝑗,𝑆)

|𝑆|
∗ 𝑙𝑜𝑔2(

𝑓𝑟𝑒𝑞(𝐶𝑗,𝑆)

|𝑆|
)𝑘

𝑗=1  (4) 

Hence, for the attribute 𝐴, the requisite information to partition 

the dataset 𝑆 into 𝑛 distinct subsets {𝑆𝑗} is determined using 

Eq (5) [36]: 

𝐼𝑛𝑓𝑜(𝐴, 𝑆) =  ∑
|𝑆𝑖|

|𝑆|
∗ 𝐼𝑛𝑓𝑜(𝑆𝑖)

𝑛
𝑖=1  (5) 

The Information Gain Ratio is computed using Eq (6) [36]: 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =  
𝐺𝑎𝑖𝑛 (𝐴)

𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴)
 =  

𝐼𝑛𝑓𝑜(𝐴)−𝐼𝑛𝑓𝑜(𝐴,𝑆)

𝑠𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴,𝑆)
 (6) 

The optimal attribute can be identified by assessing the 

information entropy ratio and the gain ratio of potential 

attributes. This allows the generation of a branch for each 

possible attribute while selecting the root node, employing the 

maximum gain ratio as a split criterion. 
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FIGURE 3. Decision tree algorithm illustration [37]. 

 

 

FIGURE 4. Decision tree algorithm example [37]. 

 

Decision trees, characterized by their straightforward yet 

resilient tree structure, are pervasively employed in domains 

such as machine learning [37]. Despite their efficacy in 

addressing nonlinear relationships, they are susceptible to 

noisy data and prone to overfitting [35]. 

 

2. RANDOM FOREST CLASSIFICATION 

Random Forest (RF) classifier, introduced by Leo Breiman in 

2001 [38], is a set of tree-based classifiers {ℎ(𝒙, Θ𝑘), 𝑘 =
 1, . . . , } where the {Θ𝑘} are independent and identically 

distributed random vectors. Each tree contributes a single vote 

for the most prevalent class at input x [38]. RF is a collection 

of small decision trees assembled into an ensemble, where 

each tree is constructed using random subsets of the dataset 

[10]. RF is renowned for its stability and effective handling of 

imbalanced data because rather than using the original sample, 

multiple decision trees are constructed using bootstrap 

samples, a technique referred to as bootstrap aggregating or 

bagging. This enhances generalization and minimizes 

overfitting [39]. The general model of the random forest is 

illustrated in FIGURE 5. 
 

 

FIGURE 5. Random Forest Structure illustration [40]. 

 

The algorithm functions as follows in TABLE 2: 

 
TABLE 2 

Random Forest Algorithm [39] 

for 𝑖 ← 1  to 𝐵 do 

bootstrap_sample ← draw_bootstrap_sample(𝑁, training_data); 

while node_size ! = minimum_node_size do 

predictor_subset ← randomly_select_predictor_subset(𝑚, 𝑝); 

for 𝑗 ← 1  to 𝑚 do 

if 𝑗th_predictor_optimizes_splitting_criterion(𝑗, 
predictor_subset) then 

split_internal_node_into_two_child_nodes(); 
break; 

end 

end 

end 

end 

return ensemble_tree_of_all_𝐵_subtrees_generated(); 
 

3. EXTRA TREES CLASSIFICATION 

The Extra Trees (ET), Extremely Randomized Trees 

algorithm, introduced by Pierre Geurts et al. in 2006 [41], 

builds an ensemble by creating a series of unpruned decision 

or regression trees using traditional top-down methods. It 

integrates the selection of attributes and cutpoints during node 

splitting in a highly randomized manner, potentially resulting 

in the generation of fully randomized trees with structures 

unrelated to the original values of the training sample [42]. ET 

algorithm consists of multiple decision trees, each tree having 

a root node, split nodes, and leaf nodes, as shown in FIGURE 

6 [43]. Given a data set 𝑋, ET starts at the root node, where it 

selects a splitting criterion based on a random subset of 

features and a partially random cutoff point. This process 

continues at each child node until a leaf node is reached. In 

addition, the key parameters of ET include the number of trees 

in the ensemble (𝑘), the number of randomly selected 

attributes/features (𝑓), and the minimum number of 

samples/instances required to split a node (𝑛𝑚𝑖𝑛). 
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FIGURE 6. Extra Trees Structure illustration [43]. 

 

ET algorithm, along with the methods for splitting the nodes 

for both numeric and categorical attributes, is shown in detail 

in TABLE 3. 
TABLE 3 

Extra Trees Algorithm [41] 

BuildExtraTreeEnsemble(𝑆). 

Input: training set 𝑆. 

Output: a tree ensemble 𝑇 = {𝑡1, … , 𝑡𝑚} 

for 𝑖 = 1to 𝑀 

Generate a tree: 𝑡𝑖 = BuildExtraTree(𝑆); 

end 

return 𝑇 

BuildExtraTree(𝑆). 

Input: training set 𝑆. 

Output: a tree 𝑡  

Return a leaf labeled by class frequencies in 𝑆 if 

(i) |𝑆|  <  𝑛𝑚𝑖𝑛 , or 

(ii) all candidate attributes are constant in 𝑆,or 

(iii) the output variable is constant in 𝑆 

Otherwise: 

1. Select randomly 𝐾 attributes, {𝑎1, … , 𝑎𝑘}, without 

replacement, among all (non constant in 𝑆) candidate 

attributes; 

2. Generate 𝐾 splits {𝑠1, … , 𝑠𝑘}, where 𝑠𝑖 = 

PickRandomSplit(𝑆, 𝑎𝑖  ), ∀𝑖= 1, … , 𝐾;  

3. Select a split 𝑠∗ such that Score(𝑠∗, 𝑆) = 𝑚𝑎𝑥𝑖=1,…,𝐾 

Score(𝑠𝑖 , 𝑆) ; 

4. Split 𝑆 into subsets 𝑆𝑙 and 𝑆𝑟  according to the test 𝑠∗; 

5. Build 𝑡𝑙 = BuildExtraTree(𝑆𝑙) and 𝑡𝑟 = BuildExtraTree(𝑆𝑟) 

from these subsets; 

6. Create a node with the split 𝑠∗, attach 𝑡𝑙 and 𝑡𝑟 as left and right 

subtrees of this node and return the resulting tree 𝑡. 

PickRandomSplit (𝑆, 𝑎) 

Input: training set 𝑆 and attribute 𝑎. 

Output: a split 

if the attribute 𝑎 is numerical: 

Compute the maximal and minimal value of 𝑎 in 𝑆, denoted 

respectively by 𝑎𝑚𝑖𝑛
𝑠  and 𝑎𝑚𝑎𝑥

𝑠 ; 

Draw a cut-point 𝑎𝑐 uniformly in [𝑎𝑚𝑖𝑛
𝑠 , 𝑎𝑚𝑎𝑥

𝑠 ]; 
return the split [𝑎 < 𝑎𝑐]. 

if the attribute 𝑎 is categorical (denote by 𝐴 its set of possible values): 

Compute 𝐴𝑠 the subset of 𝐴 of values of 𝑎 that appear in 𝑆; 

Randomly draw a proper non empty subset 𝐴1 of 𝐴𝑠 and a subset 𝐴2 of 

𝐴\𝐴𝑠; 

return the split [𝑎 ∈ 𝐴1 ∪ 𝐴2] 
end 

As shown in FIGURE 5 and FIGURE 6, while RF and ET may 

appear similar based on algorithm illustrations, ET differs 

from RF by increasing randomness in two aspects: (1) it uses 

the entire dataset to construct each decision tree, and (2) it 

randomly selects splits at each node [10]. The three algorithms 

in question offer a satisfactory balance between 

interpretability, accuracy, and computational efficiency, 

rendering them well-suited for software defect prediction 

tasks. 

D. EVALUATION 

1. CONFUSION MATRIX 

The Confusion Matrix serves as a central tool for evaluating 

the effectiveness and accuracy of classification algorithms, 

which is critical for understanding their performance in the 

face of model building and data preprocessing challenges, 

especially in high-dimensional data sets [44]. To illustrate the 

performance of the classifiers, a confusion matrix was used for 

the binary classification model, which provides a concise 

summary of the model's prediction results. The matrix is 

shown in TABLE 4 [40]. 

 
TABLE 4 

Confusion Matrix [40] 

 Actually Positive Actually Negative 

Predicted Positive True Positive (𝑇𝑃) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

 

Using the confusion matrix, various evaluation metrics 

including the Accuracy in Eq. (9) and AUC in Eq.(11) can be 

calculated using the formula [45], [46], [47]. 

• Sensitivity (SN) (Eq. (7)) [45], also called True Positive 

Rate (TPR) or Recall, measures the ability of a model to 

predict positive cases, calculated as the ratio of true positive 

predictions to the total number of actual positive cases. 

𝑆𝑁 =  𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

• Specificity (SP) (Eq. (8)) [45], also called True Negative 

Rate (TNR), refers to the ability of the model to predict 

negative cases, calculated as the ratio of true negative 

predictions to the total number of actual negative cases. 

𝑆𝑃 = 𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (8) 

• Accuracy (ACC) (Eq. (9)) [46], is the percentage of correct 

predictions and indicates the ability of the classifier to 

predict a condition effectively. 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (9) 

• False Positive Rate (FPR) (Eq. (10)) [46], is a measure of 

how often a classification model incorrectly predicts 

positive cases. It is calculated as the ratio of false positive 

predictions to the total number of actual negative cases.. 

𝐹𝑃𝑅 = 1 − 𝑆𝑃 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
  (10) 

 

2. AREA UNDER CURVE (AUC) 

Area Under the Curve (AUC) (Eq. (11)) [45], a metric for 

comparing classifiers, quantifies the area under the receiver 

operating characteristic (ROC) curve in ROC space, where the 

curve plots sensitivity versus specificity relative to a 

discrimination threshold [45]. ROC curve shown in FIGURE 

7 [46] uses the False Positive Rate (FPR) as the X-axis and the 
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True Positive Rate (TPR) as the Y-axis. Different decision 

thresholds are required at each point to produce different FPR 

and TPR values. 

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
  (11) 

 

 

FIGURE 7. ROC curve where both TP and FP will change when the 
decision threshold is adjusted. [46]. 

 

Here is a reference for categorizing test accuracy based on the 

AUC value [44]. The classification of AUC values is shown 

in TABLE 5. 

 

 

 

TABLE 5 
Classification score accuracy is based on auc value [44] 

AUC Value Category 

0.90 – 1.00 Excellent classification 

0.80 – 0.90 Good classification 

0.70 – 0.80 Fair classification 

0.60 – 0.70 Poor classification 

0.50 – 0.60 Failure classification 

III. RESULTS 

This study employs tree-based classification approach on the 

NASA MDP dataset, which includes 12 modules. The 

evaluation combines these classifiers with four Polynomial-

fit-SMOTE variations, assessing each combination based on 

Accuracy and AUC metrics. 

A. POLYNOM-FIT-SMOTE PROCESS 

The oversampling procedure uses four pf-SMOTE variants, 

applied to the training data divided into two sets: Training 

Data and Testing Data, with an 80:20 ratio. Detailed results of 

the dataset, both before and after oversampling, are shown in 

TABLE 6.   The Minority Sample and Majority Sample sets 

shown represent training data samples before implementing 

pf-SMOTE. 

 

TABLE 6 
Detailed results of 12 Nasa MDP datasets before and after applying each each pf-SMOTE variation. 

Data Sample CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Minority Sample (before) 34 1337 251 29 37 35 22 49 13 107 142 337 

Majority Sample (before) 227 4888 695 126 1553 65 180 515 583 754 887 991 

Minority sample after applying oversampling 

Pf-SMOTE-Bus 232 5345 751 113 1513 69 169 529 541 743 847 1129 

pf-SMOTE-Mesh 227 4888 695 126 1553 65 180 515 583 754 887 991 

pf-SMOTE-Poly 227 4888 695 126 1553 65 180 515 583 754 887 991 

pf-SMOTE-Star 238 5348 753 116 1554 70 176 539 585 749 852 1131 

 

FIGURE 8. Comparison results from 12 datasets are provided both before and after applying each pf-SMOTE variation. 

 

B. PERFORMANCE OF TREE-BASE CLASSIFICATION 

The tree-based classification model is run on a dataset 

oversampled with pf-SMOTE. Accuracy values are shown in 

TABLE 7, while AUC values are shown in TABLE 8, 

1

20

400

8000

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Minority Sample Majority Sample Pf-SMOTE-Bus pf-SMOTE-Mesh pf-SMOTE-Poly pf-SMOTE-Star
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illustrating the performance of Decision Tree, Random Forest, 

and Extra Trees before and after oversampling with pf-

SMOTE. The first three rows show the classification 

performance of Decision Trees, Random Forests and Extra 

Trees without pf-SMOTE, indicating the performance without 

data balancing. TABLE 7 and TABLE 8 show the 

improvements in accuracy and AUC for the three tree-based 

classifiers when the data set is balanced with four pf-SMOTE 

variants. Several instances in the tables show similar or 

identical accuracy and AUC values for different classifications 

combined with pf-SMOTE variations. 

 
 

TABLE 7 
Accuracy of Tree-base classification without and with polynomial-fit-SMOTE variant 

Classifier 

Dataset 

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Decision 

Tree (base) 
0.811026 0.699963 0.682791 0.744086 0.963857 0.718000 0.839675 0.867752 0.961639 0.822831 0.867663 0.712419 

Random 

Forest (base) 
0.847615 0.793842 0.749734 0.790538 0.975975 0.719333 0.898959 0.916334 0.974846 0.867826 0.888713 0.774121 

Extra Trees 

(base) 
0.848882 0.792675 0.747544 0.798280 0.975639 0.721333 0.895382 0.921522 0.976513 0.870923 0.886447 0.773776 

pf-SMOTE-

Bus + DT 
0.833660 0.769145 0.717851 0.797872 0.968143 0.707217 0.852008 0.898473 0.970053 0.863058 0.900032 0.758805 

pf-SMOTE-

Bus + RF 
0.899817 0.841233 0.776633 0.846543 0.989671 0.781671 0.901656 0.944458 0.986951 0.906261 0.940410 0.828774 

pf-SMOTE-

Bus + ET 
0.907748 0.829473 0.779860 0.854905 0.993585 0.771985 0.910283 0.952763 0.991692 0.912705 0.941371 0.831761 

pf-SMOTE-

Mesh + DT 
0.824510 0.748943 0.716067 0.798954 0.959219 0.692308 0.840741 0.883172 0.973984 0.844833 0.900974 0.752284 

pf-SMOTE-

Mesh + RF 
0.881115 0.829821 0.780096 0.850536 0.986157 0.751282 0.884259 0.933333 0.985425 0.893895 0.940625 0.817869 

pf-SMOTE-

Mesh + ET 
0.886203 0.819422 0.791127 0.846562 0.988303 0.748718 0.875926 0.934951 0.987419 0.904509 0.934614 0.826950 

pf-SMOTE-

Poly + DT 
0.883272 0.809602 0.778657 0.837542 0.980147 0.746154 0.897222 0.929773 0.974557 0.896109 0.913005 0.801553 

pf-SMOTE-

Poly + RF 
0.912617 0.869579 0.837410 0.884837 0.988625 0.794872 0.936111 0.955663 0.985131 0.926167 0.933487 0.847465 

pf-SMOTE-

Poly + ET 
0.912617 0.868420 0.834293 0.884889 0.988303 0.794872 0.930556 0.957605 0.983127 0.924398 0.935930 0.844442 

pf-SMOTE-

Star + DT 
0.845161 0.818158 0.787072 0.822307 0.983693 0.711111 0.904564 0.928540 0.977457 0.886898 0.906847 0.817630 

pf-SMOTE-

Star + RF 
0.901075 0.877230 0.843924 0.871882 0.988414 0.809877 0.943845 0.953517 0.988297 0.922367 0.932147 0.853281 

pf-SMOTE-

Star + ET 
0.916129 0.875538 0.838877 0.870493 0.992383 0.800000 0.931716 0.960788 0.994291 0.932798 0.942115 0.853915 

 
TABLE 8 

AUC of Tree-base classification without and with polynomial-fit-SMOTE variant 

Classifier  

Dataset 

CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Decision Tree 

(base) 
0.620777 0.571692 0.595859 0.559495 0.622316 0.672635 0.564938 0.636430 0.565847 0.611604 0.724994 0.642860 

Random 

Forest (base) 
0.762092 0.699264 0.682074 0.673454 0.842881 0.733758 0.669527 0.868803 0.837087 0.807795 0.926217 0.790883 

Extra Trees 

(base) 
0.746579 0.703265 0.694113 0.683030 0.864259 0.747748 0.662848 0.878868 0.831202 0.823515 0.918524 0.795944 

pf-SMOTE-

Bus+DT 
0.840854 0.766693 0.716809 0.800771 0.968960 0.708473 0.840341 0.901284 0.970081 0.864504 0.897559 0.759530 

pf-SMOTE-

Bus+RF 
0.965392 0.908969 0.855994 0.925812 0.999216 0.857354 0.958797 0.987160 0.999119 0.970722 0.983839 0.908916 

pf-SMOTE-

Bus+ET 
0.972701 0.899993 0.856077 0.929730 0.999597 0.881002 0.964606 0.992289 0.999944 0.977290 0.988010 0.912242 

pf-SMOTE-

Mesh+DT 
0.812486 0.745025 0.713113 0.833352 0.956507 0.727380 0.815600 0.894152 0.978029 0.840836 0.893709 0.742063 

pf-SMOTE-

Mesh+RF 
0.948859 0.897014 0.848173 0.942237 0.998479 0.853012 0.940300 0.980892 0.999557 0.961465 0.981525 0.899318 

pf-SMOTE-

Mesh+ET 
0.953447 0.886729 0.848836 0.939109 0.998457 0.860371 0.945819 0.984910 0.999722 0.964949 0.984549 0.901147 

pf-SMOTE-

Poly+DT 
0.877178 0.811947 0.779514 0.835942 0.979984 0.753457 0.891232 0.929622 0.970460 0.896433 0.912904 0.800078 

pf-SMOTE-

Poly+RF 
0.967392 0.917782 0.889822 0.937227 0.996633 0.861266 0.963453 0.984659 0.996518 0.973772 0.987855 0.920086 

pf-SMOTE-

Poly+ET 
0.964451 0.918473 0.892049 0.939450 0.996722 0.873882 0.964497 0.986338 0.996860 0.975416 0.986934 0.921334 

pf-SMOTE-

Star+DT 
0.847905 0.817174 0.788011 0.808912 0.983049 0.714620 0.896590 0.929626 0.977218 0.886892 0.908135 0.814316 

pf-SMOTE-

Star+RF 
0.963215 0.924613 0.895187 0.933239 0.997304 0.861625 0.965983 0.988684 0.997928 0.975051 0.986435 0.928094 

pf-SMOTE-

Star+ET 
0.970487 0.927317 0.898596 0.939566 0.998877 0.879500 0.974462 0.991938 0.999721 0.981597 0.987942 0.930666 
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TABLE 7 shows that using training data balanced with pf-

SMOTE achieves a higher average accuracy compared to not 

using pf-SMOTE, where pf-SMOTE-Star + ET achieves the 

highest accuracy on the PC2 dataset compared to other 

variations of pf-SMOTE with an accuracy value of 99.43%. 

This is followed by the combination of pf-SMOTE-Bus + ET 

on MC1, pf-SMOTE-Poly + RF on MC1, and pf-SMOTE-

Mesh + ET on MC1 with accuracy values of 99.36%, 98.86%, 

and 98.83%, respectively. Meanwhile, the highest AUC 

results as shown in TABLE 8 were achieved by the pf-

SMOTE-Bus + ET combination with an accuracy value of 

99.99%. This is followed by pf-SMOTE-Mesh + ET, pf-

SMOTE-Star + ET, and then pf-SMOTE-Poly + ET with 

AUC values of 99.9722%, 99.9721%, and 99.69%, 

respectively. The highest overall AUC results are found in the 

same data set, namely PC2.  

 

(a) 

 

(b) 

FIGURE 9. Comparison of the performance of tree-based classification without and with oversampling using different pf-SMOTE variants, including (a) 
accuracy performance and (b) AUC performance. 

 

 

IV. DISCUSSION 

TABLE 9 shows that the combination of pf-SMOTE-Star 

oversampling with ET classification on 12 Nasa MDP datasets 

achieved the highest average accuracy and AUC compared to 

all other tree-based classification and oversampling models, 

namely 90.91% and 95.67% for the oversampling method and 

other tree-based classifications. Then pf-SMOTE-Poly with 

RF achieved an average accuracy of 90.60% and with ET an 

average AUC of 95.14% compared to other classifications. pf-

SMOTE-Mesh with ET achieved an average accuracy of 

87.87% and with the same classification an AUC of 93.90% 

compared to other classifications. And pf-SMOTE-Bus with 

ET obtained the highest average accuracy of 88.98% and with 
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the same classification obtained the highest AUC of 94.78% 

compared to other classifications. This shows that on average, 

the combination classification model of pf-SMOTE variations 

with ET classification has a higher performance value. Even 

when comparing the ET classification before and after using 

pf-SMOTE-Star, the average accuracy value increased by 

5.83% from the initial value of 85.07% and the average AUC 

increased by 17.76% from the initial value of 77.92%. 

 
TABLE 9 

Average performance across all datasets 

Classifier 
Performance 

Accuracy AUC 

Decision Tree 0.8076 0.6158 

Random Forest 0.8498 0.7745 

Extra Trees 0.8507 0.7792 

pf-SMOTE-Bus+DT 0.8364 0.8363 

pf-SMOTE-Bus+RF 0.8870 0.9434 

pf-SMOTE-Bus+ET 0.8898 0.9478 

pf-SMOTE-Mesh+DT 0.8280 0.8294 

pf-SMOTE-Mesh+RF 0.8779 0.9376 

pf-SMOTE-Mesh+ET 0.8787 0.9390 

pf-SMOTE-Poly+DT 0.8706 0.8699 

pf-SMOTE-Poly+RF 0.9060 0.9497 

pf-SMOTE-Poly+ET 0.9050 0.9514 

pf-SMOTE-Star+DT 0.8658 0.8644 

pf-SMOTE-Star+RF 0.9072 0.9514 

pf-SMOTE-Star+ET 0.9091 0.9567 

 

Table 10 presents a comparison between the model utilized in 

this research and that employed in a previous study. The 

earlier investigation involved a comparative assessment with 

three classification models: K2, Hill Climbing, and TAN. 

Furthermore, other research endeavors have utilized models 

that underwent hyperparameter tuning, random search, PCA 

for dimensionality reduction, and SMOTE oversampling. 

These models encompass k-NN, SVM, and SHL-MLP. The 

datasets CM1, JM1, and KC1 were utilized in this study. 

 
TABLE 10 

Comparison with other research 

Research Method 
Datasets (Accuracy%) 

CM1 JM1 KC1 

[31] 

K2 0.9183 0.8079 0.8483 

Hill Climbing 0.9183 0.8079 0.8862 

TAN 0.92 0.8239 0.8815 

[9] 

Optimized k-NN  0.9649 0.7791 0.7931 

Optimized SVM 0.9766 0.6735 0.7184 

 Optimized SHL-MLP  0.9708 0.7109 0.7337 

Proposed 

Research 

pf-SMOTE-star + DT 0.8452  0.8182  0.7871  

pf-SMOTE-star + RF 0.9011  0.8772  0.8439  

pf-SMOTE-star + ET 0.9161  0.8755  0.8389  

 

A comparison of the three preceding investigations reveals 

that each study demonstrates proficiency in a particular 

dataset. For instance, in [31] the Hill Climbing model attained 

the highest accuracy of 0.8862 on KC1. Similarly, [9] 
achieved the highest accuracy on CM1 with the optimized 

SVM model, recording a value of 0.9766. In contrast, the 

present study achieved the highest accuracy of 0.8772 on JM1 

through data oversampling using pf-SMOTE-Star with the 

Random Forest classification model. In addition, Table 10 also 

illustrates that in [9], the optimized model achieved the highest 

average results on CM1 across all classifications. 

Table 11 presents a comparison of the performance of the 

model utilized in this study with those from previous research. 

Previous studies have employed various methodologies, 

including Decision Trees (DT), Random Forests (RF), and 

Extra Trees (ET), in conjunction with SMOTE for 

oversampling. These studies have been conducted using the 

PC1, PC2, PC3, and PC4 datasets.

 

TABLE 11 
Comparison with previous research 

  Other Research Method with SMOTE [10] Proposed Research with pf-SMOTE-Star 

Datasets Performance DT RF ET DT RF ET 

PC1 
Accuracy 0.8859 0.9379 0.9519 0.9285  0.9535  0.9608  

AUC 0.89 0.99 0.99 0.9296  0.9887  0.9919  

PC2 
Accuracy 0.9678 0.9849 0.987 0.9775  0.9883  0.9943  

AUC 0.97 1 1 0.9772  0.9979  0.9997  

PC3 
Accuracy 0.8579 0.9051 0.9062 0.8869  0.9224  0.9328  

AUC 0.86 0.96 0.97 0.8869  0.9751  0.9816  

PC4 
Accuracy 0.9144 0.955 0.9577 0.9068  0.9321  0.9421  

AUC 0.91 0.99 1 0.9081  0.9864  0.9879  

 

 

A comparison of the two previous studies indicates that 

different SMOTE techniques can significantly impact the 

performance of classification models. The use of pf-SMOTE-

Star demonstrates a superior ability to address data imbalance, 
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potentially matching or enhancing the classification accuracy 

seen in earlier research. However, this improvement is not 

consistent across all datasets; for instance, the highest 

accuracy and AUC for the PC4 dataset were achieved by prior 

studies using SMOTE with the Extra Trees (ET) classification. 

The comparison presented in TABLES 10 and TABLES 11 

indicates that the utilization of pf-SMOTE-Star with tree-

based classification does not universally outperform other 

methods, suggesting potential limitations. These constraints 

are, in part, attributed to the dataset's characteristics, which 

may hinder the findings' generalizability to broader software 

development contexts. Furthermore, the outcomes of the pf-

SMOTE oversampling approach demonstrate a discrepancy in 

performance across methodologies, particularly between the 

topology-based and star topology approaches. This 

discrepancy may be attributed to various factors, including an 

uneven distribution of classes, sensitivity to algorithm 

parameter settings, or incomplete model coverage. These 

findings underscore the limitations of the framework and 

necessitate further validation to confirm their validity and 

evaluate their relevance in diverse software development 

contexts. 

V. CONCLUSION 

This study has investigated various oversampling techniques 

in conjunction with tree-based classification models for 

software defect prediction. The findings indicate that 

oversampling methods, such as pf-SMOTE-Star, pf-SMOTE-

Poly, pf-SMOTE-Mesh, and pf-SMOTE-Bus, can 

significantly enhance classification performance. In particular, 

the combination of pf-SMOTE-Star oversampling with ET 

classification demonstrated promising results, achieving the 

highest average accuracy and AUC across multiple datasets, 

reaching 90.91% and 95.67%, respectively. However, it is 

important to note that the effectiveness of these techniques 

may vary depending on the characteristics of the dataset and 

the classification model used. The study also identified 

potential limitations, such as performance imbalances across 

different oversampling methodologies. Future research 

endeavors should concentrate on addressing these limitations 

and further validating the findings in diverse software 

development contexts. Furthermore, the integration of 

hyperparameter tuning techniques with pf-SMOTE-ET 

requires further investigation to achieve higher levels of 

classification performance. Overall, this study contributes to 

advancing the understanding of software defect prediction 

techniques and offers valuable insights for practitioners 

seeking to improve the reliability of software development 

projects. 
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