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ABSTRACT Software Defect Prediction (SDP) is essential for improving software quality during testing. As software systems 

grow more complex, accurately predicting defects becomes increasingly challenging. One of the challenges faced is dealing 

with imbalanced class distributions, where the number of defective instances is significantly lower than non-defective ones. 

To tackle the imbalanced class issue, use the SMOTE technique. Random Forest as a classification algorithm is due to its 

ability to handle non-linear data, its resistance to overfitting, and its ability to provide information about the importance of 

features in classification. This research aims to evaluate important features and measure accuracy in SDP using the 

SMOTE+RFE+Random Forest technique. The dataset used in this study is NASA MDP D", which included 12 data sets. The 

method used combines SMOTE, RFE, and random forest techniques. This study is conducted in two stages of approach. The 

first stage uses the RFE+Random Forest technique; the second stage involves adding the SMOTE technique before RFE and 

Random Forest to measure the accurate data from NASA MDP. The result of this study is that the use of the SMOTE technique 

enhances accuracy across most datasets, with the best performance achieved on the MC1 dataset with an accuracy of 0.9998. 

Feature importance analysis identifies "maintenance severity" and "cyclomatic density" as the most crucial features in data 

modeling for SDP. Therefore, the SMOTE+RFE+RF technique effectively improves prediction accuracy across various 

datasets and successfully addresses class imbalance issues. 

INDEX TERMS Software Defect Prediction, Important Features, SMOTE, RFE, Random Forest 

I. INTRODUCTION 

In today's technology-driven world, software quality and 

reliability are becoming increasingly important. Defective 

software can result in significant economic losses and 

endanger user safety. Therefore, minimizing defects in 

software is a top priority for software companies. The goal of 

any software company is to produce software that has no 

defects at all [1]. Software Defect Prediction (SDP) utilizes 

historical data mined from software repositories to determine 

the quality and reliability of software modules for software 

quality assurance. Software Defect Prediction (SDP)  is the 

most crucial task throughout the testing stage of the software 

development process because it might be challenging to 

identify modules prone to defects. Software Defect Prediction 

(SDP)  is most helpful during the testing phase [2]. A class 

label and a set of metrics define each software module or 

component. The status of a module is indicated by its class 

label, which is either non-faulty or defective [3]. SDP models 

are constructed using the obtained metric values. Identifying 

and repairing defects takes a lot of time and resources, so it is 

almost impossible to eliminate all the defects. However, it is 

possible to reduce the number of defects that exist. The quality 

and reliability of the software are enhanced by standard 

practices and techniques such as unit testing and code 

inspection [1], [4]. The publicly available NASA dataset 

consists of two sources: the NASA MDP (Metrics Data 

Program) repository and the Predictor Models in Software 

Engineering (PROMISE) repository. NASA MDP is a 
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software metric for data frequently used in software defect 

prediction research [4]. This study uses NASA‘s clean 

software defect datasets for experiments, including CM1, 

JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, 

and PC5. 

Machine learning algorithms encounter challenges when 

exposed to imbalanced data sets. Imbalanced data means that 

data samples from one class far outnumber data samples from 

another class, thus hindering most software defect prediction 

techniques. The forecasts have deceiving accuracy and are 

skewed. This is due to a lack of information about the minority 

class. Machine learning algorithms often classify every test 

case sample into the majority class to increase the accuracy 

metric since they assume that data sets are balanced with equal 

class weights. The application of sampling techniques is one 

potential fix for this issue. Studies have demonstrated that for 

many base classifiers, an imbalanced data set results in a worse 

overall classification than a balanced data set [5], [6]. 

 Resampling procedures are frequently employed in 

imbalanced datasets to correct class distribution imbalances. 

One possible solution to the issue of class imbalance is to 

employ sampling techniques, namely oversampling and 

undersampling. Oversampling causes overfitting because it 

duplicates the same minority class, whereas undersampling 

eliminates the majority class until the distribution is balanced. 

Synthetic Minority Over-sampling Technique (SMOTE) is a 

popular method that balances datasets by synthesizing 

minority class examples [6]. Through the removal of 

redundant, noisy, irrelevant, or non-beneficial predictor 

variables from the training dataset or feature space, feature 

selection techniques are frequently used in remote sensing 

analyses to increase the prediction accuracy and 

interpretability of machine learning classification algorithms. 

Typically, this is done by identifying and selecting the best 

feature combination that maximizes the accuracy of a 

particular classification model of interest as measured using an 

accuracy metric [7]. 

Pre-processing tasks, such as feature selection, have been 

recognized as crucial components of the prediction process 

because they improve the data quality, increasing the 

prediction models' efficiency. Subsets of the original 

software's features that can most accurately depict the original 

features without devaluing them are the focus of feature 

selection. Feature selection approaches use labeled datasets to 

identify a collection of germane features and assess the 

qualities of the accessible features. Consequently, the 

significant dimensionality issue in SDP datasets can be 

lessened by implementing feature selection approaches in 

SDP processes [8]. Recursive Feature Elimination (RFE) is a 

wrapper-style feature selection technique that generates many 

classification models and iteratively eliminates features that 

do not increase classification accuracy to find the best feature 

combinations. Recursive Feature Elimination (RFE)  uses 

backward selection, which means that after starting with the 

entire feature set, it iteratively removes characteristics that 

either improve or decrease the classification's accuracy until 

the best possible feature combination is discovered [7]. 

Machine learning used to predict is usually C4.5, Support 

Vector Machine (SVM), Naïve Bayes, K-nearest Neighbors 

(KNN), Decision Tree, Random Forest, and others. An 

ensemble learning method known as Random Forest (RF) has 

a track record of performing exceptionally well. High 

accuracy, processing of thousands of input variables, and 

integrated metrics of varying importance are only a few of its 

many positive attributes. Furthermore, Random Forest (RF)  is 

resistant to noise and outliers. The computing procedure is 

quick, and the RF parameter adjustment is straightforward. RF 

has excelled [9], [10]. 

This research [9] investigated the potential of the Random 

Forest (RF) method for extracting and mapping five forest 

types found in Yanqing, north China, using multi-source data. 

One hundred twenty-five features were obtained using the 

DEM, GF-1 WFV pictures, Google Earth photos, and forest 

inventory data. The recursive feature elimination (RFE) 

method chose thirty-two characteristics for mapping five 

forest types. The findings yielded an overall accuracy rate of 

87.06% and a Kappa coefficient of 0.833.  

In other research, Metric Data Program (MDP) datasets 

from NASA were used for the experiments. Software defect 

history logs based on multiple complexity indicators are 

available in the NASA MDP. However, the NASA MDP has 

an uneven distribution of modules that are and are not 

malfunctioning. The percentage of faulty modules in the 

distribution is lower than zero. It may lower the effectiveness 

of software defect detection. It is necessary to duplicate the 

distribution of the faulty module. The distribution between 

defective and non-defective modules is balanced in this study 

by applying the Synthetic Minority Oversampling Technique 

(SMOTE). On the NASA MDP dataset, software defect 

identification using fuzzy association rule mining (FARM) in 

conjunction with dataset balance using SMOTE and CFS 

complexity metric selection yields accuracy and sensitivity of 

91.63% and 85.51%, respectively [11].  

The research by [12] presents a Decision Tree (DT) 

classification technique to examine the risk factors associated 

with cervical cancer. SMOTETomek, a combination of under 

and oversampling techniques, was used with recursive feature 

elimination (RFE) and most minor absolute shrinkage and 

selection operator (LASSO) feature selection strategies. A 

comparative analysis of the suggested model has been carried 

out to demonstrate the efficacy of feature selection and class 

imbalance based on the classifier's accuracy, sensitivity, and 

specificity. The DT using the chosen features from 

SMOTETomek and RFE performs better, achieving 100% 

sensitivity and 98.72% accuracy. When features are 

decreased, and a significant class imbalance is handled, the DT 

classifier performs better when addressing classification 

problems. 

In this research, the SMOTE-MCT variant will be used to 

balance the data, recursive feature elimination (RFE) will be  
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used for feature selection, and random forest will be used for 

classification models. Based on the previous explanation, this 

research was carried out to find out about the most important 

features and measure the level of accuracy and AUC-ROC in 

SDP by integrating feature selection techniques such as the 

SMOTE-MCT variant, RFE, and the RF algorithm. By 

combining these techniques, this research can provide deeper 

insight into the importance of specific features in SDP 

predictions and improve the quality of the classification 

models built. 

In previous research, the main focus was on using random 

forests for mapping forest types in Yanqing [9]. In contrast, 

other studies utilized SMOTE and FARM to enhance software 

defect detection on the NASA MDP dataset [11]. However, in 

this study, we integrate the RFE feature selection technique 

with a variant of SMOTE-MCT to improve prediction 

accuracy and AUC-ROC and understand the important 

features of SDP. We employ Random Forest as our 

classification model and identify the pivotal features 

contributing to SDP predictions. The primary goal of this 

research is to enhance the accuracy of SDP predictions by 

combining the RFE feature selection technique, SMOTE-

MCT variants, and the Random Forest algorithm. 

Additionally, we strive to pinpoint the most influential 

features in SDP to deepen our understanding of software 

quality and reliability. Research Contributions: 

• Integrates SMOTE-MCT, RFE, and RF variants to improve 

SDP prediction accuracy and AUC-ROC. 

• Handling class imbalance problems more effectively 

compared to previous methods. 

• Identifying important features influencing software defect 

prediction provides deeper insight into software quality and 

reliability. 

With this approach, this research contributes to improving 

the accuracy and AUC-ROC of SDP predictions and better 

understanding the important features in software defect 

detection. 

II. MATERIAL AND METHODS 

In general, the research process include data collection, 

splitting data into training and test sets, model testing, and 

evaluation. The proposed model can be seen in FIGURE 1. In 

essence, this research was carried out in two stages: the first 

used the RFE + RF technique, and the second used the 

SMOTE + RFE + RF technique. The research process began 

with the collection of 12 NASA MDP datasets. After 

collecting the data, preprocessing was done, including coding 

and handling missing values. The data was then split into a 

70:30 ratio, with 70% used for training and 30% for testing. 

Additionally, the SMOTE + RFE + RF process used stratified 

10-fold cross-validation to ensure balanced class distribution 

in each fold. 

In the first stage, important features were identified using 

the Recursive Feature Elimination (RFE) technique combined 

with the Random Forest (RF) algorithm. The second stage 

applied the Synthetic Minority Over-sampling Technique 

(SMOTE) before the RFE + RF process to handle a class 

imbalance in the data. The results from both stages were then 

evaluated by comparing the levels of accuracy and the Area 

Under the Curve (AUC-ROC). Furthermore, the important 

features identified in both stages were compared to understand 

the effectiveness of each method in the context of this 

research. 

 

FIGURE 1. Research methods 

A. DATASET 

The data used in this research come from the Facility Metrics 

Data Program (MDP) repository of the National Aeronautics 

and Space Administration (NASA), accessible at NASA 

MDP|Fighshare, known by the acronym NASA MDP. MDP 

is widely used in the field of software defect prediction [13]. 

The NASA MDP datasets are utilized to assess our approach. 

Numerous software defect history logs based on Branch 

Count, McCabe, and Halstead metrics are available in NASA 

MDP datasets. This publicly available dataset has been the 

subject of numerous prior studies. In this study, 12 datasets 

were used, namely CM1, JM1, KC1, KC3, MC1, MC2, MW1, 

PC1, PC2, PC3, PC4, and PC5. 

TABLE 1 

Dataset NASA MDP D” 

Dataset number of features amount of data 

CM1 38 327 

JM1 22 7720 

KC1 22 1162 
KC3 40 194 

MC1 39 1952 

MC2 40 124 
MW1 38 250 

PC1 38 679 

PC2 37 722 
PC3 38 1053 

PC4 38 1270 

PC5 39 1694 

https://jeeemi.org/index.php/jeeemi/index
https://figshare.com/search?q=NASA+MDP
https://figshare.com/search?q=NASA+MDP


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 2, April 2024, pp: 276-288;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              279               

B. PREPROCESSING DATA 

Data preprocessing is a critical task in data mining. The data 

must be optimal, making it appropriate for various ML models 

[14]. Data preprocessing is a series of steps or stages on raw 

data before the data is used for analysis or model development. 

The main goal of data preprocessing is to improve data quality, 

guarantee accurate analysis results, and overcome problems or 

deficiencies that may arise with raw data. The purpose of 

preprocessing datasets is to get them ready for algorithmic 

processing. The data is balanced now, and null values are 

verified and fixed. Anything that now affects the machine 

learning model's performance can be managed more deftly 

[15]. Data preprocessing is the label encoding process, which 

converts each table containing string or text data into 

numerical form. 

Moreover, label encoding values are transformed into 

numerical form using label encoding so that machine learning 

algorithms can handle them more efficiently [15], [16]. This 

prepares the data for machine learning by converting the labels 

into a proper numeric format. In this study, the label "Y" was 

changed to "1" and the label "N" to "0." This label change can 

be seen in one of the datasets, namely CM1 TABLE 2 and 

TABLE 3. 

 
TABLE 2 

Before preprocessing 

TABLE 3 

After preprocessing 

 

C.SPLIT DATA 

After the dataset undergoes preprocessing stages involving 

normalization and handling of missing values, the data is split 

using Stratified K-Fold Cross Validation with k=10. This 

process ensures that the data split remains at a 70:30 ratio 

between training and testing data while ensuring the target 

classes are balanced within each cross-validation fold. 

In each iteration of the K-Fold Cross Validation process, the 

training data comprises 70% of the total data, and the testing 

data comprises 30%. This division is done while maintaining 

the proportions of the target classes in each fold to ensure a 

balanced representation of these classes in both the training 

and validation sets. In FIGURE 2, you can see the illustration 

of stratified K-fold cross validation. 
 

FIGURE 2. Illustration of Stratified K-flod Cross Validation 

 

 

 

id 
LOC_ 

BLANK 
BRANCH_ 

OUT 
CALL_ 
PAIRS 

… NUMBER_OF_ 
LINES 

PERCENT_ 
COMMENTS 

LOC_ 
TOTAL 

Defective 

1 2 3 0 … 9 47.06 9 N 
2 3 3 0 … 19 26.67 13 N 

3 38 35 4 … 218 41.90 109 N 

4 1 7 5 … 68 22.64 41 Y 
5 9 15 4 … 73 57.14 41 N 

… … … … … … … … … 

323 67 29 10 … 228 42.50 119 N 
324 9 3 5 … 40 40.00 18 N 

325 3 3 1 … 18 21.43 12 N 

326 6 9 3 … 61 59.26 32 N 
327 1 3 4 … 12 0.00 10 N 

id 
LOC_ 

BLANK 

BRANCH_ 

OUT 

CALL_ 

PAIRS 

… NUMBER_OF_ 

LINES 

PERCENT_ 

COMMENTS 

LOC_ 

TOTAL 
Defective 

1 2 3 0 … 9 47.06 9 0 

2 3 3 0 … 19 26.67 13 0 
3 38 35 4 … 218 41.90 109 0 

4 1 7 5 … 68 22.64 41 1 

5 9 15 4 … 73 57.14 41 0 
… … … … … … … … … 

323 67 29 10 … 228 42.50 119 0 

324 9 3 5 … 40 40.00 18 0 
325 3 3 1 … 18 21.43 12 0 

326 6 9 3 … 61 59.26 32 0 

327 1 3 4 … 12 0.00 10 0 
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D. SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE 

(SMOTE) 

A condition where the class distribution is imbalanced in a 

dataset occurs when the majority class (majority class) has a 

larger amount of data than the minority class (minority class) 

[17] [18]. Sampling methods are very popular for balancing 

the class distribution. Methodologies for oversampling and 

undersampling have drawn a lot of interest in mitigating the 

impact of imbalanced data sets. Therefore, the goal of 

applying oversampling techniques is to match the number of 

samples from the majority class with the number of samples 

from the minority class. To create a balanced dataset using the 

over-sampling technique, instances from the minority class are 

randomly duplicated until the required ratio is reached. One of 

the benefits of over-sampling is that no information is lost. 

Nevertheless, oversampling can lead to overfitting and may 

not be useful in enhancing minority class detection, even 

though it is commonly utilized [19], [20], [21], [22]. The 

difference between a sample's feature vector and that of its 

closest neighbor must first be computed to create synthetic 

samples using the SMOTE approach. Subsequently, the 

acquired disparity is multiplied by a value chosen at random 

from the 0 to 1 range [23] and appended to the feature vector 

of the sample under consideration. The new point that is 

generated at random along the line segment that links two 

features is the outcome of this operation. Stated differently, the 

utilization of this methodology broadens the minority class's 

decision-making domain. The SMOTE algorithm operates in 

the following manner: FIGURE 3 [24], [25]. The SMOTE 

technique formula is as follows [18], [26], [27]: 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + (𝑋𝑘𝑛𝑛 − 𝑋𝑖) ×  𝛿    (1) 

In the data synthesis process, X_new represents the 

synthesized data, while Xi is the original data to be replicated. 

X_knn denotes the data point closest to Xi in the feature space. 

During synthesis, the algorithm analyzes Xi and its nearest 

neighbor, X_knn, to generate X_new, maintaining the original 

dataset's patterns. The degree of variation in the synthesized 

data is controlled by the random parameter δ, sampled from a 

uniform distribution between 0 and 1. This approach ensures 

the creation of additional data points that closely resemble the 

original dataset, contributing to tasks such as machine learning 

model training or data quality assessment. 

TABLE 4 

Dataset after SMOTE-MCT 

Dataset 
Before SMOTE After SMOTE 

0 1 0 1 

CM1 199 29 199 199 

JM1 4276 1128 4276 4276 
KC1 607 206 607 607 

KC3 110 25 110 110 

MC1 1341 25 1341 1341 
MC2 55 31 55 55 

MW1 157 18 157 157 

PC1 437 38 437 437 
PC2 494 11 494 494 

PC3 646 91 646 646 

PC4 766 123 766 766 

PC5 865 320 865 865 

In TABLE 4, you can see the change in the number of 

minority data points, symbolized by the label "1," after using 

the synthetic minority oversampling techniques (SMOTE) 

method for the MCT variant. The amount of data with the label 

"1" is balanced by adjusting the amount of data in the majority, 

namely the label "0." As in the example in TABLE 3, in the 

CM1 dataset, the amount of data before SMOTE shows that 

the "0" label is 199 and the "1" label is 29, so after SMOTE, 

the amount of data on the "1" label changes to 199, adjusting 

to the number of "0" labels. As with all datasets on NASA 

MDP D", after SMOTE is carried out, the amount of data on 

label "1" is adjusted to the amount of data on label "0" so that 

all data is balanced. 

 

FIGURE 3. Illustration of SMOTE algorithm 

D. RECURSIVE FEATURE ELIMINATION (RFE) 

Many previous studies employed feature selection to improve 

the model’s prediction accuracy [28]. The best feature subset 

can be found using the wrapper-based feature-ranking 

technique known as recursive feature elimination (RFE). In 

essence, it involves repeatedly building a model until the ideal 

feature subset is chosen [29]. Depending on how many 

features we desire, RFE will choose the best features. RFE also 

functions by first fitting the model, after which it determines 

how important each feature is. Subsequently, the least 

significant feature will be removed from the feature set, and a 

new model fitting and feature importance calculation will be 

initiated based on the remaining features, with the least 

significant feature being removed [30]. The calculation stops 

when the feature set reaches a predefined number of features 

[31]. 

Recursive Feature Elimination (RFE) with a Random Forest 

estimator will be used as the main method for feature 

selection. This decision was based on considerations of 

computational time efficiency, where research results showed 

that RFE-RF required a shorter time than RFE with Support 

Vector Machines (SVM). Although the use of RFE-SVM is 

more common in the literature. In this study, RFE-RF was 

chosen because of its better computational time efficiency, 

thus allowing the analysis to be carried out more efficiently 

and effectively. 
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Algorithm RFE 

1. Initialization: Initialize the dataset 𝐷 ={𝑋,𝑦}, where 𝑋 is the feature 

matrix, and 𝑦 is the target vector. 

2. Model Building: Perform model building on the dataset 𝐷 to learn 

patterns or relationships between features and the target. 

3. Feature Assessment: Evaluate the relative importance of each feature 

in the dataset 𝐷, and determine the most important features for 

classification or prediction purposes. 

4. Feature Selection: Based on the previous assessment, select a subset 

of the most important features using algorithms such as Recursive 

Feature Elimination (RFE). 

5. Stop Condition Checking: Check if the stopping criteria have been 

met, such as reaching the desired number of features or achieving 

adequate model performance. 

E. RANDOM FOREST (RF) 

Random forest (RF), a powerful machine-learning method 

[32] based on the theory of decision trees [33], [34] which was 

proposed in 2001, is composed of multiple decision trees. 

Based in FIGURE 4, Random Forest combines many Decision 

Trees based on the bagging technique [35]. According to the 

theory behind ensemble learning, each learner should be 

"good but different," meaning that they should have a 

comparatively high recognition rate that sets them apart from 

the rest. Nevertheless, the number of decision trees is 

predetermined when choosing a single decision tree [33], [36]. 

RF establishes numerous decision trees, which improves 

generalization performance as an ensemble learning 

technique. N sample sets must be created to train each decision 

tree in an RF with N trees [33]. Independent sample vector 

values, distributed identically across each tree in the model, 

are used to build each decision tree. Random forests can 

improve model performance by combining predictions from 

these trees [37]. The Random Forest classifier was chosen 

primarily for its ability to manage high-dimensional data's 

complexity and provide robust predictions. The Random 

Forest technique formula is as follows [15]: 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐷) = 1 − ∑ 𝑃𝑖
2

𝑚

𝑖=1
              (2) 

Where 𝑃𝑖 is the proportion of the number of attributes in 

each class, and m is the number of each attribute. The feature 

that has the lowest total Gini Index value will be the root node 

in the tree. The total Gini Index at an internal node (e.g., K) is 

calculated in the following equation (3). 

𝑇𝑜𝑡. 𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 (𝐾) =  
𝑇1

𝑇
 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐷1) + 

𝑇2

𝑇
 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐷2)  (3) 

Where 𝑇1 is the total records belonging to the first class, 𝑇2 

is the total records belonging to the second class, and T is the 

total records of all classes. This process continues with the 

formation of child nodes until all nodes in the tree cannot be 

split. After the entire tree is formed, the classification stage 

continues using the voting method [15]. The following are 

some of the steps involved in the random forest [38]:  

• Random forest selects random records from a data set of k 

records.  

• A distinct decision tree is constructed for each sample.  

• Each decision tree yields a result.  

• In classification, the final result is determined by majority 

voting. 

 
FIGURE 4. Illustration of How Random Forest Works 

F. PERFORMANCE EVALUATION 

In this research, the evaluation of the results was carried out 

with accuracy and Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC). Evaluation metrics should 

be appropriately selected to assess machine learning models' 

performance accurately. Accurate is the most commonly used 

metric for evaluating classification models [39]. Accuracy is 

one of many metrics that may be used to assess classification 

methods. The percentage of accurate forecasts among all 

feasible guesses is known as accuracy. According to the 

suggested model, accuracy is a gauge of how well the model 

can predict a consumer's opinion of a product—whether they 

would like it or not [40]. In classification, the evaluation 

metrics are calculated from true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN) [39]. TP 

indicates the number of clean software instances correctly 

classified as clean, while TN indicates the number of defective 

software instances. FP indicates the number of clean software 

instances correctly classified as clean, and FN indicates the 

number of software instances incorrectly classified as 

defective. Several problematic software instances were 

mistakenly considered clean [41]. The accuracy can be 

calculated by using Equations [42], [43] 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
    (4) 

Besides accuracy, the Area Under the Receiver Operating 

Characteristic Curve (AUC-ROC) was also used as a 

performance metric. The AUC-ROC metric provides a 

comprehensive measure of a model’s ability to distinguish 

between classes across all classification thresholds. It is 

particularly useful for evaluating models on imbalanced 
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datasets as it considers both the true positive rate (sensitivity) 

and the false positive rate, offering a balanced view of the 

model’s performance. The categories for the range of AUC 

values can be seen in TABLE 5 [23]. 

𝐴𝑈𝐶 =   
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
) 𝑥 (

𝑇𝑁

𝑇𝑁+𝐹𝑃
)

2
   (5) 

TABLE 5 

Category on AUC Values 

Category AUC Values 

Excellent 0.90 -1.00 

Good 0.80 -0.90 
Fair 0.70 -0.80 

Poor 0.60 -0.70 

Failure 0.50 -0.60 

III. RESULT 

This research is conducted in two steps: RFE+RF and 

SMOTE+RFE+RF. In the first stage, the research focused on 

calculating the level of accuracy of NASA MDP data using 

the recursive feature elimination (RFE) technique and random 

forest (RF) classification. Then, in the second stage, additional 

testing was carried out to calculate the level of accuracy of 

NASA MDP data using synthetic minority over-sampling 

technique (SMOTE), followed by applying the Recursive 

Feature Elimination (RFE) technique and Random Forest 

classification. The test results in this research focus on 

identifying important features using RFE method and then 

comparing the level of accuracy and AUC-ROC that has been 

carried out in the two previous stages. In this way, important 

features in the calculations can be identified. 

In analyzing the dataset after implementing SMOTE-MCT, 

this study used several important statistical tests to determine 

the significance level and evaluate the results. First, this 

research applies RFE, a feature selection technique that aims 

to improve model performance by selecting the most relevant 

features. RFE removes the least important features based on 

the importance determined by a base model such as Random 

Forest (RF) and then builds a model with the remaining 

features, repeating this process until the desired number of 

features is reached. After selecting the most relevant features 

using RFE, this research builds a classification model with 

Random Forest (RF). Random Forest is an ensemble learning 

algorithm used for classification and regression. In the context 

of this analysis, RF is used for classification by building many 

decision trees during training. The output is the mode of the 

class (classification) of each tree. This research uses SMOTE 

(Synthetic Minority Over-sampling Technique) to overcome 

the problem of class imbalance in the dataset. SMOTE aims to 

balance the dataset by creating synthetic samples from 

minority classes through interpolation between existing 

minority samples so that the model has a better chance of 

learning patterns from minority classes. This study compares 

two approaches: RFE+RF and SMOTE+RFE+RF. In the 

RFE+RF approach, RFE is used first to select the most 

relevant features from the dataset; then Random Forest is used 

to build a classification model. 

TABLE 6 

Comparison of Different Techniques in Terms of Accuracy 

 

Dataset 
RFE+RF SMOTE+RFE+RF 

n_features Acc n_features Acc 

CM1 
2, 7, 8, 10, 

16 
0.8182 19, 21, 33 0.9833 

JM1 16, 18 0.8044 22 0.9228 
KC1 18 0.7908 8, 15, 16 0.8795 

KC3 22 0.7966 36 0.9545 

MC1 2, 34 0.9795 36 0.9988 
MC2 30, 38, 40 0.7895 12, 13, 20, 

22 

0.9091 

MW1 2-5, 7, 8, 
11, 13-38 

0.8667 5, 7, 12, 13, 
18, 19, 20, 

24, 25 

0.9895 

PC1 17, 18, 19, 
27, 38 

0.9559 17, 21, 27 0.9924 

PC2 23, 26 - 37 0.9862 3, 7, 15-37 0.9966 

PC3 21 0.8956 21 0.9871 

PC4 26 0.9160 30 0.9848 

PC5 31 0.8114  15, 26 0.8690 

 

FIGURE 5. Comparison visualization of different techniques in term of 
accuracy. 

Based on the results in FIGURE 5 and TABLE 6, after 

comparing the first and second stages of the research, it was 

found that the SMOTE effect could increase the accuracy 

values in all datasets. SMOTE increases the accuracy value in 

CM1 by 0.1735, JM1 by 0.1184, KC1 by 0.0887, KC3 by 

0.1579, MC1 by 0.0193, MC2 by 0.1196, MW1 by 0.1228, 

PC1 by 0.0365, PC2 by 0.0104, PC3S by 0.0889, PC4 by 

0.0688, and PC 5 is 0.0576. The best classification 

performance of RFE+Random Forest is on the PC2 dataset, 

with an accuracy of 0.9862. The best classification 

performance of SMOTE+RFE+Random Forest is on the MC1 

dataset, with an accuracy of 0.9988. Therefore, in the research 

above, SMOTE has a good effect in increasing accuracy. 

TABLE 7 

Comparison of Accuracy and AUC-ROC 

Dataset 

RFE+RF SMOTE+RFE+RF 

Acc AUC-
ROC 

Acc AUC-
ROC 

CM1 0.8182 0.6384 0.9917 1 
JM1 0.8044 0.7067 0.9228 0.9679 

KC1 0.7908 0.7081 0.8795 0.9592 

KC3 0.7966 0.6246 0.9545 0.9843 
MC1 0.9795 0.8431 0.9988 1 

MC2 0.7895 0.6811 0.9091 0.9148 

MW1 0.8667 0.8069 0.9895 1 
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PC1 0.9559 0.9338 0.9924 1 

PC2 0.9862 0.8691 0.9966 1 

PC3S 0.8956 0.7991 0.9845 1 

PC4 0.9160 0.9831 0.9848 0.9997 

PC5 0.8114 0.8241 0.8690 0.9527 

The level of significance in this analysis is seen from two 

primary metrics: Accuracy and AUC-ROC). Accuracy 

indicates the percentage of correct predictions out of the total 

predictions made by the model, with higher values indicating 

the model is better at making correct predictions. Meanwhile, 

AUC-ROC measures the model's ability to differentiate 

between positive and negative classes, with a higher value 

indicating a model better at distinguishing between these 

classes, where a value of 1 indicates a perfect model. 

TABLE 8 

Confidence Interval for Model Performance Metrics 

Category SE ME 
CI 

Lower Upper 

Acc RFE+RF 0.022 0.0432 0.8244 0.9108 

AUC RFE+RF 0.033 0.0648 0.7201 0.8496 

Acc SMOTE+RFE+RF 0.0139 0.0273 0.9288 0.9834 
AUC SMOTE+RFE+RF 0.008 0.0156 0.9660 0.9971 

 

TABLE 8 displays the confidence intervals (CI) for the 

model performance metrics with four model categories 

evaluated, namely Acc RFE+RF, AUC RFE+RF, Acc 

SMOTE+RFE+RF, and AUC SMOTE+RFE+RF. The 

confidence interval for accuracy (Acc) and Area Under Curve 

(AUC) each indicate the range of values within which the 

model performance lies with 95% confidence. SE stands for 

Standard Error, which measures the accuracy with which a 

sample represents a population. ME stands for Margin of 

Error, the range within which the actual value is expected to 

fall. A smaller SE indicates a more precise estimate of the 

population parameter, while the ME provides the extent of the 

possible error in the estimate. The tight confidence intervals, 

reflected by small SE and ME values, suggest that the model 

performance metrics are estimated with a high level of 

precision and reliability. Based on the TABLE 8, the 

confidence intervals (CI) for the model performance metrics 

appear tight, indicating that the model performance estimates 

have a high degree of certainty. For example, for Acc 

RFE+RF, the accuracy range is between 0.8244 and 0.9108, 

while for AUC RFE+RF, the AUC range is between 0.7201 

and 0.8496. Similarly, Acc SMOTE+RFE+RF has an 

accuracy range between 0.9288 and 0.9834, while AUC 

SMOTE+RFE+RF has an AUC range between 0.9660 and 

0.9971. This CI indicates that these models have stable and 

reliable performance in predictions. The analysis results of 

important features in the research, as shown in TABLE 9, 

indicate that "MAINTENANCE_SEVERITY" and 

"CYCLOMATIC_DENSITY" are the most frequently 

appearing important features. Further examination reveals that 

features such as "CYCLOMATIC_DENSITY," 

"NORMALIZED_CYCLOMATIC_COMPLEXITY," and 

"MAINTENANCE_SEVERITY" consistently appear in both 

methods. These findings suggest that these features possess 

characteristics necessary for the modeling process, warranting 

further investigation. 

FIGURE 6. Visualization of important features 

TABLE 10 

List of Important Features 

No Important Features Occurrences 

1 CYCLOMATIC DENSITY 484 

2 MAINTENANCE SEVERITY 472 

3 ESSENTIAL DENSITY 441 

4 
NORMALIZED CYCLOMATIC 

COMPLEXITY 
411 

5 HALSTEAD LEVEL 281 

6 LOC CODE AND COMMENT 271 

7 DECISION DENSITY 217 

8 DESIGN DENSITY 215 

9 GLOBAL DATA DENSITY 187 

10 CYCLOMATIC COMPLEXITY 166 

 

Based on the results identified in the data above, FIGURE 

6 and TABLE 10 summarizes the ten important features with 

the highest occurrences. Notably, 

"CYCLOMATIC_DENSITY," with 484 occurrences, and 

"MAINTENANCE_SEVERITY," with 472 occurrences, 

emerge as the most critical features in data modeling. This 

underscores the significant role of cyclomatic complexity and 

maintenance severity in determining the predictive model's 

accuracy. These features offer valuable insights into pivotal 

factors requiring predictive model development consideration. 

Understanding and incorporating the roles of 

"CYCLOMATIC_DENSITY," 

"MAINTENANCE_SEVERITY," and other important 

features facilitate improved and more accurate decision-

making. 

 

 

CYCLOMATIC_DENSITY
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ESSENTIAL_DENSITY

NORMALIZED_CYLOMATIC_

COMPLEXITY
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TABLE 9 

Comparison of the appearance of features 

Data 

set 

RFE+RF 

Important features 

SMOTE+RFE+RF 

Important features 

number of 

occurrences Data 

set 

RFE+RF 

Important features 

SMOTE+RFE+RF 

Important features 

numb

er of 

occur

rences 

CM1 MAINTENANCE_SEV

ERITY 

CYCLOMATIC_ 

DENSITY 

38 MW1 DECISION_DENSITY ESSENTIAL_ 

DENSITY 

38 

CYCLOMATIC_ 

DENSITY 

HALSTEAD_ 

ERROR_EST 

37 LOC_CODE_AND_ 

COMMENT 

PARAMETER_ 

COUNT 

37 

NORMALIZED_ 

CYLOMATIC_COMP

LEXITY 

MODIFIED_ 

CONDITION_ 

COUNT 

36 MODIFIED_ 

CONDITION_ 

COUNT 

LOC_CODE_ 

AND_COMMENT 

36 

JM1 HALSTEAD_LEVEL LOC_CODE_AND

_COMMENT 

22 PC1 NORMALIZED_ 

CYLOMATIC_ 

COMPLEXITY 

NORMALIZED_ 

CYLOMATIC_ 

COMPLEXITY 

38 

LOC_CODE_AND_CO

MMENT 

NUM_UNIQUE_ 

OPERATORS 

21 CYCLOMATIC_ 

DENSITY 

CYCLOMATIC_ 

DENSITY 

37 

LOC_BLANK CYCLOMATIC_ 
COMPLEXITY 

20 MAINTENANCE_ 
SEVERITY 

MAINTENANCE_
SEVERITY 

36 

KC1 HALSTEAD_LEVEL HALSTEAD_ 

LEVEL 

22 PC2 CYCLOMATIC_ 

DENSITY 

CYCLOMATIC_ 

DENSITY 

37 

LOC_CODE_AND_CO

MMENT 

LOC_CODE_AND

_COMMENT 

21 DESIGN_DENSITY DESIGN_ 

DENSITY 

36 

CYCLOMATIC_COM
PLEXITY 

CYCLOMATIC_ 
COMPLEXITY 

20 NORMALIZED_ 
CYLOMATIC_ 

COMPLEXITY 

MAINTENANCE_
SEVERITY 

35 

KC3 LOC_CODE_AND_CO

MMENT 

NODE_COUNT 40 PC3 NORMALIZED_ 

CYLOMATIC_ 

COMPLEXITY 

NORMALIZED_C

YLOMATIC_COM

PLEXITY 

38 

DECISION_DENSITY EDGE_COUNT 39 MAINTENANCE_ 
SEVERITY 

MAINTENANCE_
SEVERITY 

37 

LOC_COMMENTS CYCLOMATIC_ 

COMPLEXITY 

38 ESSENTIAL_ 

DENSITY 

ESSENTIAL_ 

DENSITY 

36 

MC1 CYCLOMATIC_DENS

ITY 

ESSENTIAL_ 

DENSITY 

39 PC4 CYCLOMATIC_ 

DENSITY 

CYCLOMATIC_ 

DENSITY 

38 

GLOBAL_DATA_DE

NSITY 

NORMALIZED_ 

CYLOMATIC_ 
COMPLEXITY 

38 NORMALIZED_ 

CYLOMATIC_ 
COMPLEXITY 

NORMALIZED_C

YLOMATIC_COM
PLEXITY 

37 

NORMALIZED_CYL

OMATIC_COMPLEXI

TY 

GLOBAL_DATA_

DENSITY 

37 MAINTENANCE_SEV

ERITY 

HALSTEAD_ 

LEVEL 

36 

MC2 ESSENTIAL_DENSIT
Y 

ESSENTIAL_ 
DENSITY 

40 PC5 HALSTEAD_LEVEL HALSTEAD_ 
LEVEL 

39 

GLOBAL_DATA_DE

NSITY 

NORMALIZED_ 

CYLOMATIC_ 
COMPLEXITY 

39 CYCLOMATIC_ 

DENSITY 

CYCLOMATIC_ 

DENSITY 

38 

MAINTENANCE_SEV
ERITY 

GLOBAL_DATA_
DENSITY 

38 MAINTENANCE_ 
SEVERITY 

MAINTENANCE_
SEVERITY 

37 

In this research, the use of the SMOTE+RFE+RF technique 

has had a significant impact on increasing accuracy on several 

datasets, such as CM1, JM1, KC1, KC3, MC1, MC2, MW1, 

PC1, PC2, PC3, PC4, and PC5. With a reasonably significant 

increase in accuracy on most datasets, especially on MC1, 

with an accuracy value reaching 0.9998, the 

SMOTE+RFE+RF technique shows strong potential for 

improving classification model performance. These results 
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show that using the SMOTE technique can help balance 

unbalanced datasets, thereby improving the quality of the 

resulting classification model. These findings indicate that 

both features “CYCLOMATIC_DENSITY” and 

“MAINTENANCE_SEVERITY” may strongly correlate with 

the predicted target variables in the software context. 

Therefore, a deep understanding of the role of these important 

features can help develop better and more accurate predictive 

models. 

IV. DISCUSSION 

The results of this study, found in TABLE 6 and FIGURE 5, 

demonstrate significantly enhanced prediction accuracy 

across most of the evaluated datasets when employing the 

SMOTE+RFE+RF technique. Specifically, our method 

achieves a notable average increase in accuracy compared to 

baseline models that do not utilize SMOTE or RFE. TABLE 

6 provides a detailed accuracy comparison between RFE+RF 

and SMOTE+RFE+RF across various datasets. For example, 

in dataset CM1, the accuracy increases from 0.8182 to 0.9833 

after applying SMOTE. Similarly, dataset KC1 shows an 

accuracy improvement from 0.7908 to 0.8795 using 

SMOTE+RFE+RF. However, most datasets, such as PC1 and 

PC4, exhibit substantial enhancements, with accuracy rising 

from 0.9559 to 0.9924 and from 0.9160 to 0.9848, 

respectively.  

Compared to other state-of-the-art methods, such as 

Support Vector Machine (SVM) and Decision Trees (DT), the 

combination of SMOTE, RFE, and Random Forest 

consistently shows superior performance in accuracy and 

handling class imbalances. Recent studies, such as those by 

Zhang et al. [13] and Kim et al. [14], also corroborate the 

benefits of using ensemble methods like Random Forest in 

conjunction with SMOTE for software defect prediction. 

These results further emphasize the consistent increase in 

accuracy across diverse datasets, reinforcing the potential of 

SMOTE as a valuable tool in improving prediction models 

within the software defect prediction domain. However, 

unlike previous studies focusing on individual techniques, 

integrating RFE for feature selection further boosts the 

model's performance by eliminating redundant and irrelevant 

features. 

Important feature analysis highlights the critical role of 

features "MAINTENANCE_SEVERITY" and 

"CYCLOMATIC_DENSITY" in software defect prediction, 

as shown in TABLE 10 and FIGURE 6. These findings are 

consistent with previous studies [7] that identified cyclomatic 

complexity and maintenance severity as crucial factors 

influencing prediction model accuracy. Differences in 

findings compared to other studies may be due to the diverse 

nature of datasets and the specific features analyzed. For 

instance, while some studies have emphasized code churn and 

developer activity metrics, this study underscores the 

importance of maintenance-related metrics. 

The insights gained from this research offer valuable 

guidance for researchers and practitioners in building more 

effective software defect prediction models. In real-world 

software development and testing scenarios, understanding 

critical features like "CYCLOMATIC_DENSITY" and 

"MAINTENANCE_SEVERITY" can facilitate more targeted 

feature selection and lead to the development of more accurate 

prediction models. Furthermore, employing SMOTE to 

handle class imbalances should be considered a best practice 

in predictive model development because it can enhance the 

representation of the minority class without introducing 

significant noise. 

While this study contributes valuable insights, it is essential 

to acknowledge its limitations. The research is confined to the 

NASA MDP dataset, which may limit the generalizability of 

the findings. This dataset's specific characteristics might not 

represent other domains or types of software projects. 

Additionally, using SMOTE may introduce synthetic 

examples that do not perfectly reflect real-world minority class 

samples, potentially affecting the robustness of the 

predictions. Furthermore, addressing the issue of overfitting 

should be a key focus for future research endeavors. 

Overfitting was identified as one of the limitations of this 

study, potentially impacting the robustness and 

generalizability of the predictive models. Future studies can 

ensure the development of more robust and reliable software 

defect prediction models by prioritizing the prevention or 

mitigation of overfitting. 

The rationale for choosing the SMOTE+RFE+RF 

technique over others is its combined ability to handle class 

imbalances, reduce dimensionality, and enhance prediction 

accuracy. SMOTE addresses the skewness in class 

distribution, RFE ensures that only the most relevant features 

are used, and Random Forest provides robustness and high 

accuracy in classification tasks. Reflecting on the broader 

impact of this research, the findings have significant 

implications for software defect prediction and machine 

learning. By demonstrating the effectiveness of the 

SMOTE+RFE+RF technique, this study provides a robust 

methodology that can be adapted and extended to other 

predictive modeling tasks, including those in different 

disciplines such as finance, healthcare, and cybersecurity. 

In conclusion, this research enhances the accuracy of 

software defect predictions and contributes to a deeper 

understanding of the critical features influencing these 

predictions. Integrating SMOTE, RFE, and Random Forest 

offers a comprehensive approach to tackling class imbalances 

and feature selection, setting a new standard for future studies 

in this domain. 

V. CONCLUSION 

This research aims to evaluate important features and measure 

accuracy in software defect prediction (SDP) using the 

SMOTE+RFE+RF technique. The study was conducted in 

two stages to measure accuracy on the NASA MDP dataset: 

initially employing the RFE+RF technique and subsequently 

integrating the SMOTE technique before RFE+RF in the 

second stage. Results demonstrate that incorporating SMOTE 
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enhances accuracy across most datasets, with the MC1 dataset 

achieving the highest accuracy of 0.9998. The analysis of 

important features identified 

“MAINTENANCE_SEVERITY” and 

“CYCLOMATIC_DENSITY” as the most frequently 

occurring features, underscoring their significant role in SDP 

modeling. This finding aligns with previous studies [7] and 

highlights the consistency in recognizing these features and 

their importance across various research efforts. 

The novelty of this research lies in integrating the 

SMOTE+RFE+RF techniques, demonstrating their potential 

to enhance SDP classification model performance while 

identifying pivotal features. These insights offer valuable 

contributions to the field by providing a more practical 

approach to SDP and emphasizing the importance of feature 

selection in predictive modeling. Despite the promising 

results, it is essential to recognize the study's limitations. The 

research is confined to the NASA MDP dataset, which may 

limit the generalizability of the findings. Future research could 

explore the applicability of the SMOTE+RFE+RF technique 

across different datasets or domains to further validate its 

effectiveness. 

In conclusion, this study showcases the potential of the 

SMOTE+RFE+RF technique in improving SDP classification 

model performance and highlights the importance of feature 

selection in predictive modeling. The findings contribute 

valuable insights to the field and pave the way for future 

research to build upon this foundation. 
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