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ABSTRACT The evolution of Electronic Health Records (EHR) has facilitated comprehensive patient record-keeping, 

enhancing healthcare delivery and decision-making processes. Even with these developments, there are still certain difficulties 

when employing ensemble machine-learning techniques to analyze EHR data. This study aims to model the classification of 

patient severity using EHR data. Addressing issues with dimensionality and imbalance in EHR data. and to avoid overfitting 

by optimizing the ensemble model. The principal component analysis (PCA) method is used to address data dimensionality 

issues, and the synthetic minority oversampling technique (Smote) method is used to address data imbalance issues. After that, 

the ensemble model's hyperparameters are optimized using the Grid Search and Random Search approaches to prevent 

overfitting. In light of the study findings, the ensemble model's accuracy significantly improves after correcting data imbalance 

and dimensionality reduction. Notably, the Gradient Boosting Machine (GBM) and CatBoost models exhibited superior 

performance with an accuracy of 73%, achieved through experiments involving dimensionality reduction and handling of 

imbalanced data. Furthermore, optimization techniques such as Grid Search and Random Search were employed to enhance 

the EML models. The results of model optimization revealed that the GBM + Random Search model performed the best, 

achieving an accuracy of 74%, followed by the XGBoost + Grid Search model with an accuracy of 73%. The GBM model 

also excelled in distinguishing between positive and negative classes, boasting the highest Area under Curve (AUC) value of 

0.78, indicative of its superior classification capabilities compared to other models. The study's findings offer a precise severity 

classification that medical professionals and teams can use to make quicker and more informed clinical decisions based on a 

patient's condition. 

 

INDEX TERMS Classification model, Dimensionality reduction, Electronic health record (EHR), Ensemble learning, 

Hyperparameter optimization (HPO), Unbalanced data.  

I. INTRODUCTION 

Together with improvements in information technology in the 

medical field, the implementation of Electronic Health 

Records (EHR) in hospitals has become the main focus of 

efforts to improve patient care standards and the efficacy of 

the healthcare system as a whole [1]. An electronic health 

record, or EHR, is a contemporary type of medical record that 

records a patient's entire medical history, lab results, 

prescriptions, and other health-related information digitally 

and eliminates the need for paper records [2]. A wealth of 

information can be gleaned from EHR data, including 

information on medication use, laboratory test results, chronic 

disease management, patient disease history, and prognostic 

and predictive analysis regarding the patient's health 

development [3]. By carefully analyzing EHR data and 

making use of technology, health professionals can improve 

patient care overall, make better decisions, and manage the 

disease more successfully [4]. Numerous intricate issues 

frequently arise when analyzing data from electronic health 

records (EHRs). One of the primary problems is data quality 

since EHR data frequently contains mistakes, missing values, 

or format inconsistencies [5]. The second issue is 
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interoperability, which hinders data integration and 

information sharing between various EHR systems [6]. Thus, 

in the context of health care, choosing the appropriate Machine 

Learning (ML) model for analyzing EHR data is crucial. The 

accuracy of the predictions made by models directly 

influences the clinical decisions made by medical 

professionals. Proper models can yield more precise forecasts 

concerning the likelihood of an illness, the way treatment will 

work, and the prognosis of an individual [7]. Better 

interpretation of the analysis's findings is also crucial, and 

clear-cut models can offer a deeper understanding of the 

variables affecting the patient's health. Scalability and 

efficiency considerations are also necessary since EHR data 

frequently has a high volume and degree of complexity [8]. 

Effective data processing models can guarantee timely and 

accurate analysis. Other crucial factors to take into account 

when choosing the right model for EHR data are 

generalizability, suitability for the clinical setting, 

sustainability of the model to data variability, and analysis 

goals. Previous research has not thoroughly investigated the 

relationship between data quality, interoperability, and the 

selection of appropriate ML models to address prediction 

accuracy issues in EHRs [9, 10, 11, 12]. There remains a gap 

in understanding how data quality and interoperability can 

affect ML model performance in the context of EHRs. 

Additionally, the issues of data imbalance and overfitting in 

ML models have not been sufficiently addressed [13, 14, 17]. 

This study aims to tackle these problems by exploring and 

developing more effective and efficient ML models for 

analyzing EHR data, with a focus on overcoming data 

imbalance and mitigating overfitting. By doing so, the study 

seeks to provide more accurate and reliable results for medical 

professionals in clinical decision-making. 

Research question: How can Ensemble machine learning 

(EML) models improve the classification of patient condition 

status and disease severity using EHR data? How can 

imbalanced and highly dimensional EHR data be resolved? 

How can Ensemble machine learning (EML) models be 

optimized for hyperparameters to solve EHR data overfitting 

problems? This study makes a significant contribution by 

initially tackling crucial concerns associated with the 

dimensionality of data and the imbalance within EHR datasets. 

Additionally, it enhances the performance accuracy of 

ensemble machine-learning algorithms for addressing 

classification tasks. Lastly, it facilitates expedited and more 

accurate clinical decision-making based on patient health 

status. 

 A. RELATED WORKS 

This study examines several earlier investigations that address 

Ensemble machine learning (EML) techniques used in EHR 

data analysis. The purpose of the review was to obtain a deeper 

comprehension of the methodologies employed in health data 

analysis. In addition, weighing the benefits and drawbacks of 

every Ensemble machine learning (EML) technique. Based on 

trends and abnormalities in EHR data, research [13]  employs 

ensemble machine learning models to identify and categorize 

different types of strokes. Concerning accuracy, the best 

algorithms for classification are Random Forest, Extremely 

Randomized Trees, and Histogram-Based Gradient Boosting. 

The study [14] uses big data fusion and ensemble learning 

algorithms to predict and classify breast cancer risk; the 

algorithm with the best accuracy performance is the XGBoost 

algorithm. To enhance the quality of care, research [15] 

attempts to predict the risk of falls early. The XGBoost 

algorithm can identify falls that occur between 54.93% and 

58.01% of the time. The application of the widely used Society 

of Thoracic Surgeons risk score to evaluate the risk of 

morbidity and mortality in cardiac surgery was covered in the 

study [16]. The XGBoost Algorithm generated the best 

predictor, according to the results. In the test cohort, eXtreme 

Gradient Boosting consistently performed better than the 

Society of Thoracic Surgeons model when assessed on the 

index procedure. 

The best model is shown by random forest algorithms in 

research [17], which explores the enormous potential that 

electronic medical records (EHR) have in creating vast and 

intricate medical databases that could be an effective tool for 

clinical research. Predicting a woman's risk of pre-eclampsia 

(PE) is the goal of research [18]. The model predictions were 

constructed using logistic regression (LR), random forest 

(RF), support vector machines (SVM), and extreme gradient 

boosting (XGBoost). The study's findings indicate that the 

XGboost model performs the best in terms of predictions. A 

study [19] uses electronic medical records to guide screening 

decisions for esophageal adenocarcinoma (EAC) and cardia 

adenocarcinoma (GCA) cancers. The study's findings indicate 

that the extreme gradient boosting algorithm performs 

discrimination the best and most accurately. With data from 

Electronic Medical Records (EHRs) up to two years of age, 

the study (Xueqin Pang) attempts to predict obesity in children 

aged > two to ≤ seven years. The outcome is that XGBoost 

outperforms all other models, yielding an AUC of 0.81 

(0.001). The study [20] employed the best Random Forest 

(RF) Model based on the Area under the Receiver Operating 

Characteristic Curve results to offer fresh insights into the 

course of inpatients. The study (Mahesh T R) assessed the 

methods for diagnosing and predicting breast cancer. A variety 

of machine learning (ML) algorithms were employed, such as 

Majority-voting, eXtreme Gradient Boosting algorithm 

(XGBoost), Random Forest (RF), K-Nearest Neighbours 

(KNN), Classification and Regression Tree (CART), Logistic 

Regression (LR), and Naive Bayes (NB) for breast cancer 

classification. Based on the top three classifiers (LR, SVM, 

and CART), the Majority-Voting ensemble method performs 

better than all other individual classifiers, according to the 

result. The results of earlier studies indicate that the Ensemble 

machine learning (EML) approach performs better when 

analyzing EHR data. Nevertheless, overfitting to unbalanced 

data is a common issue with ensemble models. The issues of 

noise, high dimensions, and unbalanced data must be resolved 

to optimize the model and prevent overfitting. This is what sets 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 3, July 2024, pp: 312-321;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              314               

this research apart from earlier studies.  This research makes a 

significant contribution to the development of Ensemble 

machine learning (EML) approaches for Electronic health 

records (EHR) analysis. Focusing on handling noise, high 

dimensionality, and data imbalance in EHR, the study selects 

appropriate base models, applies complex parameter tuning, 

and utilizes various model optimization methods. By 

employing techniques like synthetic minority over-sampling, 

Principal component analysis (PCA), and tuning parameters, 

the research compares the performance of machine learning 

ensembles in EHR data analysis. By accurately classifying 

patients' severity levels, medical professionals and teams can 

expeditiously make more informed clinical decisions. 

 
II. METHODOLOGY 

This study specifically selected several ensemble learning 

models, the effectiveness of which has been assessed in 

previous studies. Since this aligns with our research context 

and objectives, we concentrate on models that demonstrate 

potential in managing large and unbalanced data sets. We 

selected ensemble learning models that offer a more accurate 

way to classify patient disease outcomes. This selection aims 

to give a thorough overview of different approaches and how 

well they work in comparable situations. A schematic of the 

research methodology is presented in FIGURE 1, which 

includes the various stages involved in model comparison. The 

objective of this study is to enhance classification performance 

metrics related to data imbalance issues and parameter 

optimization in ensemble learning models. 

A. DATASETS 

The study utilized publicly accessible patient electronic health 

record data from private hospitals in Indonesia [21]. Contains 

information from a laboratory report about the patient's health, 

including check results for erythrocytes, leucocytes, 

thrombocytes, hemoglobin, mean corpuscular volume   

(MCV), mean corpuscular hemoglobin (MCH) and mean 

corpuscular hemoglobin concentration (MCHC). The dataset 

contains records of 4412 patient examination outcomes. The 

 

 
FIGURE 1. Phases of the research approach used. 

 

 
TABLE 1 

An explanation of the features' contents in the dataset [21]  

Feature Name Data Type Description 

Hematocrit Float The laboratory test results for the patient's hematocrit 

Hemoglobin Float The laboratory test results for the patient's hemoglobin 

Erythrocyte Float The laboratory test results for the patient's erythrocyte 

Leucocyte Float The laboratory test results for the patient's leucocyte 

Thrombocyte Numeric The laboratory test results for the patient's thrombocyte 

Mean Corpuscular Hemoglobin (MCH) Float The laboratory test results for the patient's MCH 

Mean Corpuscular Hemoglobin Concentration (MCHC) Float The laboratory test results for the patient's MCHC 

Mean Corpuscular Volume (MCV) Float The laboratory test results for the patient's MCV 

Age Numeric Patient's age 

Sex Nominal  Patient's gender 

Severity Level Nominal Target label, Severe = Inpatient, Mild = Outpatient 
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total amount of data utilized in this study was 4412. Two data 

classes are available: Severe and Mild. The numbers for the 

mild class were 2628 and the severe class 1784. A total of 

3970.8, or 90% of the data, are used for training, and 441.2, or 

10%, are used for testing. There are 11 features in the dataset. 

TABLE 1 provides comprehensive details about the features 

of the data. In this study, unbalanced data was handled using 

the Synthetic Minority Over-sampling Technique (SMOTE) 

method, while dimension reduction was accomplished using 

the Principal Component Analysis (PCA) method. 

DATA PREPROCESSING 

Data preprocessing involves cleaning, transforming, and 

organizing data to make it easier for the model to understand 

[22]. EHR data is processed using scaling, encoding, and 

dimension reduction techniques. Through the use of the k-fold 

cross-validation technique, the data is split into training and 

testing subsets: 90% for training and 10% for testing. The 

dimension reduction technique is implemented through the 

Principal component analysis (PCA) method to reduce data 

complexity and extract significant information from high-

dimensional data sets. Oversampling techniques, such as the 

Synthetic minority over-sampling technique (SMOTE) 

method, are also employed to address data imbalances. There 

are two label classes: mild conditions fall under class 0, and 

severe conditions fall under class 1. The label data for classes 

0 and 1 is shown in FIGURE 2. The ensemble learning model's 

hyperparameters were optimized using both the Grid search 

and Random search techniques. 

 

FIGURE 2. Labels for data classes 0 and 1 

 

. K-FOLD CROSS VALIDATION 

A dataset can be divided into multiple parts (folds), or K-

folds, using K-fold cross-validation, where K is the desired 

number of parts [23]. There were K iterations in the training 

and evaluation process. The validation set is the set from the 

first fold, and the training set is the other fold in each 

iteration. The average of each iteration's model performance 

is used to determine the model's performance. Because the 

model is evaluated using multiple combinations of training 

and validation data, K-fold helps to reduce the variability of 

evaluation results [24, 25]. Several-fold evaluations provide 

a more objective view of the model's performance, 

particularly about its ability to generalize to new data. 

D. THE PRINCIPAL COMPONENT ANALYSIS (PCA) 
METHOD 

PCA is used to transform a dataset with many dimensions 

(features) into a dataset with fewer dimensions while 

preserving key information from the original dataset [26]. 

PCA lowers the dimensionality of the data by eliminating 

features that are not as important or contribute little to the 

variability of the data. PCA can be used to resolve 

multicollinearity in datasets where features exhibit strong 

correlations with one another. The formula for the PCA 

method is as follows [27]:  

 

𝑥𝑠𝑡𝑑 =  
𝑥− 𝜇

𝜎
          (1) 

 

∑ =  
1

𝑚
 𝑥𝑠𝑡𝑑

𝑇  𝑥𝑠𝑡𝑑         (2) 

 

∑ 𝑣 =  𝜆𝑣          (3) 

 

𝑥𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝑥𝑠𝑡𝑑 𝑣𝑘         (4) 

 

 

𝑥 is an arbitrary variable for which the standard deviation is 

computed. 𝜇 the mean (average) of the stochastic variable 𝑥. 

𝜎 the symbol for the 𝑥 variable's standard deviation. Data 

standardization is accomplished by taking the average of 

each feature and dividing the result by the standard deviation, 

as shown in Eq. (1).  𝑚 this variable represents the amount 

of data or the number of samples used in the computation. 

𝑥𝑠𝑡𝑑 is the outcome of the standard deviation computation. 

Here,𝑥𝑠𝑡𝑑
𝑇  a row vector is transformed into a column vector 

through the transposition operation, represented by the 𝑇 

symbol. 𝑥𝑠𝑡𝑑
𝑇  𝑥𝑠𝑡𝑑 it displays the outcome of multiplying the 

matrix 𝑥𝑠𝑡𝑑
𝑇  by 𝑥𝑠𝑡𝑑 , which, depending on the matrix's 

dimensions, can result in either a matrix or a scalar. 

Covariance matrix 𝛴 is computed from standardized data 

using Eq. (2). Using Eq. (3), determine the eigenvalues 𝜆 and 

eigenvectors 𝑣𝑘 from the covariance matrix. The principal 

components of the data are the eigenvectors that match the 

largest eigenvalues. Eq. (4), shows how the chosen principal 

components were used to convert the original data 𝑥𝑠𝑡𝑑 into 

a lower dimensional space. 

C. K-FOLD CROSS VALIDATION 

A dataset can be divided into multiple parts (folds), or K-

folds, using K-fold cross-validation, where K is the desired 

number of parts [23]. There were K iterations in the training 

and evaluation process. The validation set is the set from the 

first fold, and the training set is the other fold in each 

iteration. The average of each iteration's model performance 

is used to determine the model's performance. Because the 

model is evaluated using multiple combinations of training 
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and validation data, K-fold helps to reduce the variability of 

evaluation results [24, 25]. Several-fold evaluations provide 

a more objective view of the model's performance, 

particularly about its ability to generalize to new data. 

D. THE PRINCIPAL COMPONENT ANALYSIS (PCA) 
METHOD 

PCA is used to transform a dataset with many dimensions 

(features) into a dataset with fewer dimensions while 

preserving key information from the original dataset [26]. 

PCA lowers the dimensionality of the data by eliminating 

features that are not as important or contribute little to the 

variability of the data. PCA can be used to resolve 

multicollinearity in datasets where features exhibit strong 

correlations with one another. The formula for the PCA 

method is as follows [27]:  

 

𝑥𝑠𝑡𝑑 =  
𝑥− 𝜇

𝜎
          (1) 

 

∑ =  
1

𝑚
 𝑥𝑠𝑡𝑑

𝑇  𝑥𝑠𝑡𝑑         (2) 

 

∑ 𝑣 =  𝜆𝑣          (3) 

 

𝑥𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  𝑥𝑠𝑡𝑑 𝑣𝑘         (4) 

 

 

𝑥 is an arbitrary variable for which the standard deviation is 

computed. 𝜇 the mean (average) of the stochastic variable 𝑥. 

𝜎 the symbol for the 𝑥 variable's standard deviation. Data 

standardization is accomplished by taking the average of 

each feature and dividing the result by the standard deviation, 

as shown in Eq. (1).  𝑚 this variable represents the amount 

of data or the number of samples used in the computation. 

𝑥𝑠𝑡𝑑 is the outcome of the standard deviation computation. 

Here,𝑥𝑠𝑡𝑑
𝑇  a row vector is transformed into a column vector 

through the transposition operation, represented by the 𝑇 

symbol. 𝑥𝑠𝑡𝑑
𝑇  𝑥𝑠𝑡𝑑 it displays the outcome of multiplying the 

matrix 𝑥𝑠𝑡𝑑
𝑇  by 𝑥𝑠𝑡𝑑, which, depending on the matrix's 

dimensions, can result in either a matrix or a scalar. 

Covariance matrix 𝛴 is computed from standardized data 

using Eq. (2). Using Eq. (3), determine the eigenvalues 𝜆 and 

eigenvectors 𝑣𝑘 from the covariance matrix. The principal 

components of the data are the eigenvectors that match the 

largest eigenvalues. Eq. (4), shows how the chosen principal 

components were used to convert the original data 𝑥𝑠𝑡𝑑 into 

a lower dimensional space. 

E. THE SYNTHETIC MINORITY OVER-SAMPLING 
TECHNIQUE (SMOTE) METHOD 

The Synthetic Minority Over-sampling Technique (SMOTE) 

approach is employed in this study to address the issue of class 

imbalance in the dataset [28]. SMOTE helps to address the 

problem of class imbalance by increasing the representation of 

the minority class and preventing the model from favoring the 

majority class in its predictions [29]. SMOTE reduces the risk 

of overfitting in the model by producing more variable 

synthetic data [30]. The SMOTE method formula is as follows 

[31]: 

 

𝑑𝑖𝑓𝑓𝑣𝑒𝑐𝑡𝑜𝑟 =  𝑥𝑖𝑁𝑁 −  𝑥𝑖       (5) 

 
𝑥𝑛𝑒𝑤 =  𝑥𝑖 + 𝑟 ∗ 𝑑𝑖𝑓𝑓𝑣𝑒𝑐𝑡𝑜𝑟     (6) 

 

In Eq. (5), 𝑥𝑖𝑁𝑁  is the closest neighbor, and 𝑥𝑖 is a minority 

sample. Eq. (6), represents the freshly generated synthetic data 

𝑥𝑛𝑒𝑤  which was appended to the original dataset to enhance 

the representation of the minority class. 

F. THE XGBOOST ALGORITHM 

An ensemble boosting algorithm called extreme gradient 

boosting (XGBoost) builds a stronger model by combining 

multiple weak models, or weak learners. To enhance the 

model, XGBoost makes use of the loss function's gradient as 

a reference. By highlighting incorrect samples in subsequent 

iterations, this approach focuses on fixing prediction errors 

from the previous model [32]. 

G. THE RANDOM FOREST ALGORITHM 

The Random Forest (RF) ensemble learning technique merges 

several decision tree models into a single, more powerful 

model. Because Random Forests employ randomization 

during their creation, they are generally less prone to 

overfitting than single-decision trees. The Random Forest 

algorithm uses two levels of randomization [20]. 

H. THE GRADIENT BOOSTING MACHINE (GBM) 
ALGORITHM 

The Gradient Boosting technique is implemented by the 

Gradient Boosting Machine (GBM), which uses the gradient 

of the loss function to continuously correct previous model 

prediction errors. A new model is added to the ensemble with 

each GBM iteration, and this new model is adjusted based on 

the residual (residual error) of the preceding model. The GBM 

regularization features that help prevent overfitting include 

using a lower learning rate and adding regularization to the 

loss function. Large and complex data sets are well handled by 

GBM. Because the GBM learning process is iterative, it tends 

to be slower than some other ensemble methods [33]. 

I. THE ADABOOST ALGORITHM 

Adaptive Boosting (AdaBoost) uses an ensemble in which a 

weak model is the core component. The primary step in 

AdaBoost is giving every data sample a unique weight. The 

sample weights are rearranged in such a way that samples with 

incorrect classifications are assigned a higher weight and 

samples with correct classifications are assigned a lower 

weight. The final result is determined by taking the weighted 

average of the prediction results from each weak model and 

calculating the majority of votes (classification) or the average 

prediction (regression) of all the models. AdaBoost's 

sensitivity to noise or anomalies in the data may cause learning 

to be disrupted and unstable models to be produced [33]. 
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J. THE CATBOOST ALGORITHM 

CatBoost, or categorical boosting, focuses mostly on data that 

are classified or have categorical features. This algorithm is 

made to work well with data that has categorical features, 

avoiding the need for extra preprocessing like one-hot 

encoding. Additionally, this algorithm automatically accounts 

for the interactions between features, producing a more 

accurate model [33]. The Gradient Boosting approach, on 

which CatBoost is based, creates a more powerful model by 

aggregating a large number of weak models, or weak learners. 

K. THE HYPERPARAMETER OPTIMIZATION (HPO) 

Hyperparameter optimization (HPO) is the process of 

identifying the ideal values for a model's hyperparameters. 

Optimal hyperparameter values have a substantial impact on 

the model's accuracy and performance, which makes 

hyperparameter optimization crucial. To optimize the model, 

different combinations of hyperparameter values are tried, and 

cross-validation techniques are used to assess the model's 

performance [24]. The two hyperparameter optimization 

methods used in this study are the Grid Search and Random 

Search methods. 

 

The Grid Search method's objective is to test every possible 

combination of hyperparameter values from a predetermined 

parameter space. The model will be trained using the training 

data for each combination of hyperparameters that are tested, 

and cross-validation techniques will be used to assess the 

model's performance [34]. After evaluating every possible 

combination of hyperparameters, Grid Search will choose the 

combination that yields the best results based on the evaluation 

metrics that have been chosen [35]. 

 

A Random Search starts with a set of hyperparameter values 

that are randomly selected from a predefined parameter space. 

Random Search samples at random without adhering to a 

specific pattern, in contrast to Grid Search, which 

methodically tests each combination of hyperparameter values 

in the grid [36]. The flexibility of Random Search is greater 

than that of Grid Search because it is not sensitive to the 

number of values that have been determined for each 

hyperparameter. 

L. EVALUATION OF MODEL PERFORMANCE 

A model performance evaluation was carried out to gain a 

better understanding of the model's ability to handle 

classifications related to the status of patients' health 

conditions [37]. This is important to ensure that the built 

model can generalize well on test data. Several metrics are 

used in the model's evaluation [38]. Equations (7), (8), (9), and 

(10) [39]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
     (7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)+ ∑ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝐹𝑁)
     (8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)

∑ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝐹𝑃)+ ∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)
   (9) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
∑ 𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛

∑ 𝑅𝑒𝑐𝑎𝑙𝑙+∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛
    (10) 

 

The model's ability to consistently produce accurate 

classifications is measured by equation accuracy (7). Recall 

equation (8) quantifies the number of positive classes that the 

model was able to correctly identify. The precision of equation 

(9) is the number of accurate positive predictions. The 

harmonic average of recall and precision is represented by the 

F1 Score equation (10). 

III. RESULTS  

The model in this study is trained and tested using the Python 

programming language. To determine the degree of 

dependence or relationship between two or more features in 

a dataset, feature correlation is used. The correlation between 

data features is displayed in FIGURE 3. Three phases 

comprised the research experiments: the first involved 

training and testing the model without the use of PCA, or 

Smote; the second stage involved using PCA, and SMOTE 

techniques. In phase three, Grid Search and Random Search 

methods are used to optimize the model. The following 

section explains the study findings 

 
FIGURE 3. The correlation between data feature 

A. BASELINE MODEL EXPERIMENTS FOR ENSEMBLE 
MACHINE LEARNING (EML) 

The five Ensemble machine learning (EML) models used are 

XGBoost, Random Forest (RF), Gradient Boosting Machine 

(GBM), AdaBoost, and CatBoost. The model was trained 

and tested using a cross-validation technique with a k-fold of 

10. TABLE 2 displays the accuracy, recall, precision, and 

F1-Score values for the model. 

 
TABLE 2 

Performance evaluation results of the EML model without optimization 

Model Accuracy Precision Recall F1-Score 

XGBoost 0.69 0.69 0.69 0.68 
RF 0.70 0.69 0.70 0.69 
GBM 0.72 0.71 0.72 0.71 
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AdaBoost 0.71 0.70 0.71 0.70 
CatBoost 0.71 0.71 0.71 0.71 

 
When measured against other models, the accuracy of the 

Gradient Boosting Machine (GBM) and CatBoost models is 

superior. The accuracy obtained by the CatBoost and 

Gradient Boosting Machine (GBM) models was 71% and 

72%. The Gradient Boosting Machine (GBM) outperforms 

CatBoost when evaluated in terms of precision, recall, and 

F1-Score. 

B. ENSEMBLE MACHINE LEARNING (EML) MODEL 
EXPERIMENTS WITH PCA ANDA SMOTE 

The objective of this experiment's second phase was to 

address data imbalances and reduce the dimensions of the 

data. Data imbalances are handled with the SMOTE method, 

while data dimensions are reduced using the PCA method. 

Next, the model is trained and tested. TABLE 3 displays the 

obtained accuracy, precision, recall, and F1-Score results.  

 
TABLE 3 

Performance evaluation results of the EML model following the 
application of SMOTE and PCA. 

Model Accuracy Precision Recall F1-Score 

XGBoost 0.71 0.70 0.71 0.70 
RF 0.72 0.71 0.72 0.71 
GBM 0.73 0.73 0.73 0.72 
AdaBoost 0.72 0.71 0.72 0.71 
CatBoost 0.73 0.72 0.73 0.72 

 

The Ensemble machine learning (EML) model's accuracy 

increased as a result of using the PCA and SMOTE methods. 

The accuracy of the CatBoost and Gradient Boosting 

Machine (GBM) models was 73%. The Gradient Boosting 

Machine (GBM) model outperforms the CatBoost model 

when compared based on precision, recall, and F1-Score 

results. The classification outcomes of the Gradient Boosting 

Machine (GBM) model are shown in FIGURE 4. Results of 

the CatBoost model's classification are shown in FIGURE 5. 

 

 
FIGURE 4. Results of classification using the Gradient Boosting 

Machine (GBM) model. 

 
FIGURE 5. Classification outcomes of the CatBoost model 

C. ENSEMBLE MACHINE LEARNING (EML) MODEL 
EXPERIMENTS WITH OPTIMIZATION  

At this point, the experiment proceeded by employing Grid 

Search and Random Search methods to optimize the model. 

The model employs 0.1, 0.01, and 0.001 as the values for the 

learning rate parameter. The performance outcomes of the 

EML model, which was optimized through the application of 

Grid Search and Random Search techniques, are shown in 

TABLE 4. 

 
TABLE 4 

Results of the EML model's performance evaluation following 
optimization 

Model Accuracy Precision Recall F1-Score 

XGBoost + Grid 
Search 

0.73 0.73 0.73 0.73 

XGBoost + 
Random Search 

0.72 0.72 0.72 0.72 

RF +  
Grid Search 

0.70 0.70 0.70 0.70 

RF +  
Random Search 

0.72 0.72 0.72 0.72 

GBM + Grid 
Search 

0.73 0.74 0.73 0.73 

GBM + Random 
Search 

0.74 0.74 0.74 0.74 

AdaBoost + Grid 
Search 

0.69 0.69 0.69 0.69 

AdaBoost + 
Random  Search 

0.69 0.69 0.69 0.69 

CatBoost +  
Grid Search 

0.72 0.72 0.72 0.72 

CatBoost + 
Random Search 

0.72 0.72 0.72 0.72 

 

The EML model optimization experiment that employed 

Grid Search and Random Search yielded two optimal 

models: Gradient Boosting Machine (GBM) and XGBoost. 

Overall evaluation results between the Gradient Boosting 

Machine (GBM) and XGBoost indicate that the GBM model 

is the better model. The Gradient Boosting Machine (GBM) 

model experienced a 74% increase in accuracy following 

Random Search technique optimization. The classification 

outcomes of the Gradient Boosting Machine (GBM) model 

following Random Search optimization are shown in 

FIGURE 6. 
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FIGURE 6. Results of classifying the Gradient Boosting Machine (GBM) 

model using optimization for Random Search. 

IV. DISCUSSION 

Through a comprehensive comparative analysis of multiple 

ensemble machine learning models on EHR datasets, this 

study focuses on minority class performance, which is 

important in this field, as well as model hyperparameter tuning 

to classify patient severity condition status. Our analysis 

highlights the impact of dimensionality, data imbalance, and 

hyperparameter tuning in classification modeling and 

demonstrates the varying degrees of efficacy among these 

models in the classification of outcomes for minority classes. 

 

FIGURE 7. The ROC-AUC value for the EML model 

 

After handling unbalanced data and dimension reduction, the 

accuracy performance results of the EML model show a 

significant change. We highlight the results of GMB and 

CatBoost models that have superior performance with an 

obtained accuracy of 73%, based on experiments with 

dimensionality reduction and handling of imbalanced data. 

Additionally, we experimented by improving the EML model.  

We use optimization techniques such as Grid Search and 

Random Search to enhance the EML model. According to the 

results of the EML model optimization, the GBM + Random 

Search model performed the best, achieving an accuracy of 

74%; XGBoost + Grid Search came in second place, achieving 

an accuracy of 73%. FIGURE 7 shows the results of the 

Receiver Operating Characteristic - Area under the Curve 

(ROC-AUC) of the used EML model. The GBM model 

performs the best in distinguishing between positive and 

negative classes with the highest AUC value of 0.78. This 

indicates that the GBM model has better classification 

capabilities compared to other models. When juxtaposed with 

the study conducted by [30, 33], the GBM model in this 

research exhibited superior enhancements in performance. On 

the other hand, both AdaBoost and CatBoost models have the 

same AUC value of 0.77, showing comparable performance 

in class discrimination. Meanwhile, the RF and XGBoost 

models, although still acceptable in performance, have lower 

AUC values of 0.76 for the RF model and 0.74 for the 

XGBoost model. Due in part to the large sample size in this 

study, the machine learning ensemble model continues to 

perform slowly. A deeper investigation will be conducted 

using the deep learning (DL) approach to conduct additional 

research. However, the study's findings offer a precise severity 

classification that medical professionals and teams can use to 

make quicker and more informed clinical decisions based on 

a patient's condition. 

V.  CONCLUSION 

The study conducted a thorough comparative analysis of 

various ensemble machine learning (EML) models using 

Electronic Health Record (EHR) datasets. The focus was on 

evaluating the performance of minority classes, crucial in this 

domain, and optimizing model hyperparameters for 

classifying patient severity conditions. The analysis 

emphasized the impact of dimensionality, data imbalance, and 

hyperparameter tuning on classification modeling, 

showcasing differing levels of efficacy among these models in 

predicting outcomes for minority classes. After addressing 

data imbalance and reducing dimensionality, the accuracy of 

the EML models showed significant improvement. Notably, 

the GBM and CatBoost models exhibited superior 

performance with an accuracy of 73%, achieved through 

experiments involving dimensionality reduction and handling 

of imbalanced data. Furthermore, optimization techniques 

such as Grid Search and Random Search were employed to 

enhance the EML models. The results of model optimization 

revealed that the GBM + Random Search model performed 

the best, achieving an accuracy of 74%, followed by the 

XGBoost + Grid Search model with an accuracy of 73%. The 

GBM model also excelled in distinguishing between positive 

and negative classes, boasting the highest AUC value of 0.78, 

indicative of its superior classification capabilities compared 

to other models. Conversely, both AdaBoost and CatBoost 

models showed comparable performance with an AUC value 

of 0.77, while the RF and XGBoost models exhibited slightly 

lower AUC values of 0.76 and 0.74, respectively, although 

still maintaining acceptable performance levels. 
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