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ABSTRACT Software Defect Prediction (SDP) is crucial for ensuring software quality. However, class imbalance (CI) poses 

a significant challenge in predictive modeling. This study introduces a novel approach by employing the Synthetic Data Vault 

(SDV) to tackle CI within Cross-Project Defect Prediction (CPDP). Methodologically, the study addresses CI across multiple 

datasets (ReLink, MDP, and PROMISE) by leveraging SDV to augment minority classes. Classification utilizing Decision 

Tree (DT), Logistic Regression (LR), K-Nearest Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF), also model 

performance is evaluated using AUC and t-Test. The results consistently show that SDV performs better than SMOTE and 

other techniques in various projects. This superiority is evident through statistically significant improvements. KNN dominance 

in average AUC results, with values 0.695, 0.704, and 0.750. On ReLink, KNN show 16.06% improvement over the imbalanced 

and 12.84% over SMOTE. Similarly, on MDP, KNN 20.71% improvement over the imbalanced and a 10.16% over SMOTE. 

Moreover, on PROMISE, KNN 13.55% improvement over the imbalanced and 7.01% over SMOTE. RF displays moderate 

performance, closely followed by LR and DT, while NB lags behind. Overall, SDV got an improvement of 10.10% from 

imbalanced, and 7.54% from SMOTE. The statistical significance of these findings is confirmed by t-Test, all below the 0.05 

threshold. The practical implication of adopting SDV for defect detection and CI mitigation lies in its demonstrated 

effectiveness, particularly with KNN as the best classification algorithm, showcasing promising potential to enhance software 

quality by addressing CI and improving predictive modeling outcomes. 

INDEX TERMS Class Imbalance, Cross Project Defect Prediction, Machine Learning, Software Defect Prediction, Synthetic 

Data Vault

I. INTRODUCTION 

Modern software development has undergone a profound 

Software development has evolved significantly, marked by 

increasing complexities in coding and implementation 

processes, necessitating meticulous attention to ensure defect-

free outcomes [1]. Despite substantial advancements in 

software engineering, challenges persist, particularly in the 

identification and rectification of software defects, which are 

vital for businesses to mitigate unforeseeable financial losses 

[2] [3]. To address these challenges, preemptive measures are 

essential, underscoring the importance of defect prediction 

methodologies in software engineering [4]. 

Software Defect Prediction (SDP) has emerged as a critical 

focus within software engineering, dedicated to systematically 

identifying flawed components within software projects [5]. 

These predictive models play a pivotal role in discerning 

segments of the software system with elevated probabilities of 

harboring defects, thereby facilitating efficient allocation of 

testing resources [6]. Among the various SDP methodologies, 

Within-Project Defect Predictions (WPDP) stand out, 

integrating models within the broader framework of SDP [7]. 

However, traditional SDP approaches encounter 

limitations, particularly in scenarios where historical data from 

locally accessible projects is lacking, rendering WPDP 

nonviable [8],[9] Consequently, researchers have shifted their 

attention towards emerging methodologies, prominently 

including Cross Project Defect Prediction (CPDP) [4]. 

CPDP represents a paradigm shift in SDP, leveraging 

historical data from previous software projects to tailor 

predictive models to specific project objectives [10], [11]. 

While promising, CPDP presents a common challenge: class 

imbalance (CI) [12], [13]. This imbalance significantly 

impacts the effectiveness of prediction models [14], [15], with 

fewer defective modules observed compared to non-defective 

ones [12]. 
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To tackle the challenge of CI in software defect prediction, 

numerous studies have explored over-sampling techniques, 

among which the Synthetic Minority Over-sampling 

Technique (SMOTE) has emerged as a widely adopted 

approach [16]. In this study [17], compares two techniques for 

handling imbalanced data: oversampling with SMOTE and 

undersampling with Random Undersampling (RUS), using 

Gradient Boosting (GB) and RF as classification algorithms. 

Initially, on the original unbalanced dataset, the AUC values 

were 0.635 for GB and 0.644 for RF. However, after applying 

SMOTE, the AUC values increased to 0.649 for GB and 0.667 

for RF. Conversely, by using RUS, AUC values of 0.644 for 

GB and 0.650 for RF were obtained. 

These findings demonstrate that employing SMOTE in 

both classification algorithms resulted in a significant 

enhancement in model performance, while the use of RUS 

yielded insignificant changes. Therefore, SMOTE can be 

considered an effective method for addressing CI in the 

PROMISE dataset. However, it's important to note that this 

study only utilizes CK metrics, incorporating a subset of six 

attributes out of a total of 20 available attributes. This 

approach was adopted to focus on revealing the relationship 

between defects in object-oriented projects and CM metrics. 

Other research has also investigated the efficacy of 

SMOTE as a method for addressing CI in CPDP. In this study 

[18], SMOTE combined with AdaBoost (AD-SMOTE) was 

utilized to mitigate misclassification, resulting in an AUC of 

0.664. Another study [19] employed SMOTE in conjunction 

with Deep Canonical Correlation Analysis (S-DCCA) to 

calculate correlations and selectively utilize subsets 

characterized only by features with high correlation, leading 

to an AUC of 0.632. 

SMOTE's popularity stems from its ability to enhance 

class balance without sacrificing valuable minority samples, 

showcasing its efficacy across various studies. While 

originally devised for classification tasks, SMOTE's 

adaptability has extended to addressing regression challenges 

as well [20]. Over the past decade, SMOTE has proven its 

utility across diverse domains, yielding significant 

contributions to various applications [21]. 

However, it is crucial to acknowledge that SMOTE is not 

without limitations. Despite its effectiveness, SMOTE may 

oversimplify the minority class, potentially resulting in 

instances that fail to capture the complexity of real-world data. 

Furthermore, the introduction of noise or bias into synthetic 

data poses challenges to the performance of defect prediction 

models and potentially leading to overfitting [22], [23]. 

In response, this study proposes the adoption of synthetic 

data from the Synthetic Data Vault (SDV) as an alternative 

approach. Synthetic data generated by data synthesizers have 

been shown to better represent the original data distribution, 

offering potential advantages over traditional methods [24], 

[25]. SDV features a number of approaches that each offer 

their unique advantages. GAN have proven to be powerful, 

generating high-quality, diverse synthetic data that closely 

resembles the original dataset. GAN improve model 

performance through data augmentation [26]. Conditional 

GAN (CT-GAN) enhance this innovation by generating data 

with certainty of discrete values, overcoming CI, and 

enriching the dataset with specialized information [26]. 

Copula GAN differentiates itself by utilizing copula functions 

in the generative process, offering greater interpretability and 

flexibility in capturing relationships between variables [27]. 

The Gaussian Copula is distinguished by its remarkable 

capacity to generate synthetic data effectively calibrate noise, 

attributed to its flexibility in describing dependencies between 

random variables [28]. Variational Autoencoders (VAE) 

capture the underlying data distribution using nonparametric 

approaches, providing a powerful alternative in tabular data 

generation [29]. Overall, the SDV approach offers a diverse 

set of tools with specific advantages for addressing challenges 

in synthetic data generation across various applications. 

This study endeavors to assess the efficacy of SDV 

techniques in mitigating CI within CPDP. This involves 

utilizing five frequently used classification algorithms [30], 

including Decision Tree (DT), Logistic Regression (LR), K-

Nearest Neighbors (KNN), Naive Bayes (NB), and Random 

Forest (RF), with the evaluation metric being the AUC. The 

research focuses on leveraging original samples from the 

minority class within CPDP datasets to create new synthetic 

instances. This approach directly addresses CI between the 

majority and minority classes, thereby enhancing the overall 

effectiveness and fairness of CPDP models. The contribution 

of this study is as follows: 

a. Introduction of SDV as an alternative approach to 

traditional oversampling techniques like SMOTE for 

mitigating class imbalance in CPDP. 

b. Identification of the optimal classification method among 

the five most commonly utilized algorithms in CPDP. 

 
II.   METHOD 

The proposed methodology presents a meticulously structured 

approach to designing and implementing trials by harnessing 

the ReLink, NASA MDP, and PROMISE, within a 

computational framework, specifically leveraging Google 

Colab and Python programming. FIGURE 1 shows a 

flowchart that we used in this study. Within this methodology, 

one dataset is designated as the target project, while the others 

serve as source projects. To effectively tackle CI issues 

inherent in the datasets, synthetic data is generated using the 

SDV, a proficient tool in developing generative models within 

relational databases. SDV facilitates data synthesis by 

selectively sampling across database components post-model 

formulation, ensuring adherence to underlying structural 

constraints [31]. Moreover, the study incorporates the 

utilization of five classification algorithms, namely DT, LR, 

KNN, NB, and RF, to conduct a comprehensive assessment of 

defect prediction effectiveness across multiple projects. This 

evaluation employs the 10-fold cross-validation technique and 

utilizes metrics such as the AUC to measure the performance 

of each algorithm. 
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FIGURE 1. Research Flow 

 
A. DATA COLLECTION 

The study employs three datasets: ReLink, NASA MDP, and 

PROMISE datasets which is a publicly available dataset that 

widely applied in various domains [4], [19]. Within the 

ReLink dataset, three projects are featured: Apache, Safe, and 

Zxing. The NASA MDP dataset is focused on five specific 

projects out of twelve, namely CM1, MW1, PC1, PC3, and 

PC5, chosen due to their shared attributes, thereby eliminating 

the necessity for attribute selection for CPDP [18]. In the 

PROMISE dataset, 11 projects are integrated, including ant-

1.7, camel-1.4, ivy-1.1, jedit-4.2, log4j-1.0, lucene-2.4, poi-

3.0, synapse-1.2, velocity-1.6, xalan-2.4, and xerces-1.3.  

 
TABLE 1 

Summary of Dataset Statistics Employed in This Study 

Source Project Instances Non-

Defects 

Defects Defective 

(%) 

ReLink apache 194 96 98 50.52% 

safe 56 34 22 39.29% 

zxing 399 281 118 29.57% 

NASA 

MDP 

CM1 327 285 42 12.84% 

MW1 253 226 27 10.67% 

PC1 705 644 61 8.65% 

PC3 1077 943 134 12.44% 

PC4 1287 1110 177 13.75% 

PROMISE ant-1.7 745 579 166 22.28% 

camel-1.4 872 727 145 16.63% 

ivy-1.1 241 225 16 6.64% 

jedit-4.2 367 319 48 13.08% 

log4j-1.0 135 101 34 25.19% 

lucene-2.4 340 137 203 59.71% 

poi-3.0 442 161 281 63.57% 

synapse-1.2 256 170 86 33.59% 

velocity-1.6 229 151 78 34.06% 

xalan-2.4 723 613 110 15.21% 

xerces-1.3 453 384 69 15.23% 

 
This selection rationale is driven by the utilization of multi-

version datasets, where a singular version is chosen as the 

distributions of two versions within a project may exhibit high 

similarity, potentially even identical [32]. Access to the 

ReLink and NASA MDP datasets is available through the 

following link: https://github.com/bharlow058/AEEEM-and-

other-SDP-datasets [33], whereas the PROMISE dataset can 

be obtained from: https://github.com/feiwww/PROMISE-

backup [34]. TABLE 1 is shows, which contains information 

and some general statistics about each of the datasets used. 

 
B. PREPROCESSING 

In the data preprocessing phase, attributes containing 

categorical values are converted to nominal values, 

specifically 0 and 1. For instance, within the ReLink dataset, 

the attribute 'isDefective' represents 'bug' as 1 and 'clean' as 

0. Similarly, in the NASA MDP dataset, the 'Defective' 

attribute denotes 'Y' as 1 and 'N' as 0. Likewise, within the 

PROMISE dataset, the 'bug' attribute designates values other 

than 0 as 1. 

 
C. OVERSAMPLING WITH SYNTHETIC DATA VAULT 

Within the software defect dataset, most of the data exhibits 

a significantly larger proportion of non-defective samples 

compared to defective ones [31]. CI often results in bias 

within machine learning models towards the majority class 

[35]. Given the critical importance of accurately predicting 

the defective class, addressing CI becomes imperative prior 

to constructing CPDP models [36], [37]. 

Synthetic oversampling techniques, such as SMOTE, are 

employed to address the imbalance by generating artificial 

minority instances and rebalancing the dataset [38], [39]. 

However, concerns arise regarding the fidelity of replicating 

the original dataset with conventional oversampling 

techniques [22].  Synthetic data, intentionally manufactured 

to resemble real-world data, presents a promising strategy to 

overcome such issues, potentially offering higher quality 

than directly obtained or measured data [40]. Synthetic data 

retains a robust set of variables essential for supporting 

relevant multivariate analyses [41]. In a previous 

investigation utilizing fMRI images from an open-access 

database, the efficacy of CI mitigation through synthetic data 

shaping techniques was found to surpass that of SMOTE 

[42]. Therefore, the SDV, an end-to-end framework for 

modeling and generating synthetic sequential data tailored 

for tabular datasets [43], will be utilized to create minority 

data and address the CI problem in CPDP. Constructed with 

precision, these models aim to capture and estimate the 

correlations and distributions among different variables 

found within the original dataset [44]. 

During the initial phase of the SDV redesign process, the 

system was augmented with two additional libraries to 

optimize its functionality. Reversible Data Transforms 

(RDT) were employed by SDV to preprocess tables, which 

underwent iterative processing facilitated by Copulas for 

modeling purposes [45]. Presently, SDV offers various 

options for modeling single tables, including Copula GAN, 

CTGAN, Fast ML Preset, Gaussian Copula, and TVAE [46]. 

Furthermore, SDV consists of interconnected modules, each 

serving distinct functionalities. Here are some APIs for the 

modules within SDV. 

 
1. META FILE  

The primary phase of the operation encompasses the 

acquisition of the dataset. Following this, SDV mandates 

access to metadata concerning the dataset, encompassing 

attributes such as column data types. This requisite 
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information is encapsulated within a JSON structure denoted 

as the meta file, serving as a foundational element essential 

for the execution of SDV procedures on the dataset in 

question [45]. 
 
2. DATA LOADER  

The CSVDataLoader class is initialized with a meta file 

supplied as input parameter. Upon instantiation, this file is 

stored internally as an attribute named 'meta'. Subsequent to 

this initialization, the DataNavigator class is instantiated 

utilizing the details provided within the meta file to identify 

and load the corresponding CSV files as pandas DataFrames. 

A dictionary structure is then created, associating each table's 

name with an instance of the Table class. Each Table 

instance encapsulates both the metadata and DataFrame 

specific to its corresponding table. This amalgamation of 

information serves as the foundation for the instantiation of 

a DataNavigator instance. The DataNavigator, thus created, 

encapsulates the necessary information and functionalities 

required for navigating through the dataset effectively. 

Finally, this instantiated DataNavigator is returned by the 

'loadData' method for further utilization [45]. 

 
3. DATA NAVIGATOR  

DataNavigator serves as a crucial component for both data 

navigation and modeling, housing pertinent information 

regarding the dataset's structure. Its primary functionalities 

encompass accessing child or parent tables, retrieving data 

from tables, obtaining table metadata, applying data 

transformations, and discerning relationships between tables. 

A key operation performed by DataNavigator is the 

get_relationships method, wherein it meticulously traces the 

dataset's structure, storing essential details regarding inter-

table relationships, including parent-child associations and 

primary-foreign key mappings. Such insights are 

fundamental for the subsequent data modeling endeavors 

[45]. 
 
4. MODELER  

The SDV modeling technique utilizes Conditional Parameter 

Aggregation (CPA) and Recursive Conditional Parameter 

Aggregation (RCPA) to characterize relationships among 

tables in a dataset. CPA consolidates conditional parameters 

within individual tables, while RCPA extends these 

parameters recursively to all descendant tables, starting from 

leaf nodes and progressing towards the root node. The 

modelDatabase function identifies dataset roots, initiates 

RCPA, and stores the resultant models in the Modeler 

attribute, enabling efficient modeling of intricate relational 

structures. The Modeler class possesses the capacity to store 

numerous models and is adaptable to various types of models 

utilized, such as Copula or others [45]. 

Let D represent a database comprising numerous tables, 

denoted as T. The interconnections among these tables are 

established, thus C(T) signifies the set of children of T, while 

P(T) denotes the set of parents of T. 

Since the CPA method returns the extended table, line 4 

of the algorithm stores the extended tables as T. 

Subsequently, line 5 preprocesses T to convert the values into 

numerical data. The base case of this algorithm is for leaf 

tables, where C(T)=∅. During the creation of the overall 

model by SDV, it applies RCPA and uses the result to 

calculate the database model. The SDV's modeling algorithm 

invokes the RCPA method on all tables without parents. Due 

to the recursive nature of RCPA, this ensures that all tables 

in the database ultimately undergo the CPA method [47]. 

 
TABLE 2 

Recursive Application of CPA to add Derived Columns to T 

No. Algorithm 

1. function RCPA(T) 
2.    for all C ∈ C(T) do  
3.       RCPA(C) 
4.    T ← CPA(T) 
5.    T ← PreProcess(T) 

 
5. SAMPLER  

Following the completion of modeling, the ultimate phase in 

data synthesis entails the sampling of new data. This task is 

executed by the Sampler class, which is initialized with an 

instance of the Modeler class. Utilizing the insights gleaned 

from the Modeler, the Sampler orchestrates the generation of 

synthetic data. Its core objective is to offer a spectrum of 

sampling methods catering to diverse user requisites. Thus, 

users merely need to furnish a Modeler instance and a 

DataNavigator instance to the Sampler, facilitating the 

invocation of relevant sampling methods and subsequent 

data sampling. The Sampler maintains all sampled data 

within a dictionary structure, wherein each table's name is 

correlated with the respective sampled rows [45]. 

From the user's standpoint, SDV entails discrete stages, 

namely data preparation, modeling, sampling, and 

evaluation. 

 
1. DATA PREPARATION  

In the data preparation phase, the initial step involves loading 

the data as a pandas DataFrame object. Subsequently, the 

data undergoes conversion into metadata using the 

SingleTableMetadata approach, which meticulously 

describes each table. This metadata encompasses details 

such as the data type for each column, the primary key, and 

other pertinent identifiers [46]. 

 
2. MODELING  

During the modeling phase, synthetic data is generated based 

on the prepared metadata. This process involves employing 

a synthesizer that utilizes the original data as a foundation. 

Throughout this stage, the synthesizer discerns the 

underlying patterns within the original dataset. Various 

synthesizers are utilized in this modeling phase, including 

Copula GAN, CTGAN, Fast ML Preset, Gaussian Copula, 

and TVAE [46]. 

Due to the limited elucidation provided for each 

modeling aspect within the documentation or paper 

concerning SDV, the following is a little explanation that can 

be summarized from various sources. 

a) Copula GAN: This hybrid synthesizer integrates classical 

statistics with GAN-based deep learning techniques, 
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offering a comprehensive approach to data modeling 

[46]. In the realm of GAN, there are two main 

components: the discriminator (D) and the generator (G). 

The discriminator aims to distinguish real data from fake, 

while the generator tries to produce data that looks real. 

The equation represents a game where the generator 

minimizes its likelihood of being detected by the 

discriminator, while the discriminator maximizes its 

ability to differentiate real from fake. At equilibrium, the 

generator creates data indistinguishable from real, and 

the discriminator can't reliably tell real from fake, 

achieving a balance where the generated data distribution 

matches the real data distribution [48]. 

𝑚𝑖𝑛𝐺𝑚𝑖𝑛𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝 𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(𝐷(𝑥))] +        (1) 

𝐸𝑧~𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] 

b) Conditional Tabular GAN (CTGAN): Employs a GAN-

based method to model the distribution of tabular data 

and sample rows from it [49]. CTGAN assesses the 

dissimilarity between the acquired conditional 

distribution and the real data's conditional distribution. 

The conditional vector is denoted as 𝐷𝑡
∗ =  𝑘∗, where 𝑘 =

1, … , |𝐷𝑡|, and 𝑑𝑖,𝑗, a discrete variable in 𝐷𝑡, is initially 

represented as a one-hot vector 𝑑𝑖,𝑗 with dimension |𝐷𝑖|. 

During training, the conditional generator is permitted to 

generate any set of one-hot discrete vectors. 

Additionally, to penalize generator losses, cross-entropy 

between 𝐷𝑖
∗ and 𝑚𝑖

∗ is incorporated. A suggested 

procedure for producing 𝐷1
∗ = 𝑚1

∗ is proposed, enabling 

the generator to replicate 𝑚1
∗ accurately into 𝐷1

∗ [50]. 

c) Fast ML Preset: This synthesizer leverages machine 

learning (ML) techniques to efficiently model the data 

[46]. It introduces an innovative approach known as 

indel-coding methodology, where each indel in the input 

sequence is represented as either present ('1') or absent 

('0'). This binary representation is then utilized in a 

machine learning-based algorithm to estimate the 

likelihood of gap characters in ancestral sequences. 

Initially, Fast ML employs a simple coding scheme to 

convert all indels into binary format, indicating their 

presence or absence. The resulting binary data matrix 

serves as input to an ML-based ancestral indel 

reconstruction algorithm [51]. However, it's important to 

note that there isn't a single equation that encapsulates the 

entirety of a machine learning model  [52]. 

d) Gaussian Copula: Copula models provide an efficient 

approach to capturing both inter-variable dependencies 

and individual behaviors. They prove especially valuable 

for synthesizing datasets from complex, smaller real 

datasets [53]. Each column in the table is indexed from 

0, 1, ..., n, with each column having its Cumulative 

Distribution Function (CDF) denoted as 𝐹0 𝑡𝑜 𝐹𝑛 

respectively. Subsequently, each row of the table is 

treated as a vector 𝑋 =  (𝑥0, 𝑥1, … , 𝑥𝑛). The Gaussian 

Copula is then applied to transform the row vector. 

Mathematically, this transformation can be expressed as: 

 𝑌 =  [𝜑−1(𝐹0(𝑥0)), 𝜑−1(𝐹1(𝑥1)), … , 𝜑−1(𝐹𝑛(𝑥𝑛))]  (2)       

In this equation,  𝜑−1(𝐹𝑛(𝑥𝑛)) represents the inverse 

cumulative distribution function of the Gaussian 

distribution applied to the original distribution [54]. 

e) Tabular Variational Autoencoder (TVAE): 

Implementing the Variational Autoencoder (VAE) 

approach, this synthesizer consists of an encoder for 

compressing input data into a low-dimensional latent 

space and a decoder for reconstructing output data based 

on the learned representation from the encoder [24]. 

log 𝑝(𝑥) ≥ 𝐸𝑧~𝑞(𝑧|𝑥)[∑ log 𝑝(𝑥𝑡|𝑧𝑡) + log 𝑝(𝑧𝑡|𝑧𝑡−1) −𝑡   (3) 

log 𝑞(𝑧𝑡|𝑧𝑡−1, ∅𝑡(𝑥)) 

This equation delineates a constraint derived from VAE 

methodology, which elucidates the interplay between 

latent variable z and observed variable x. Within the VAE 

framework, z adheres to a predetermined prior 

distribution p(z), typically a standard normal distribution. 

The choice of likelihood distribution p(x|z) varies 

depending on the task, being either Normal or Bernoulli. 

The fundamental objective is to derive the posterior 

distribution of the latent variable, denoted as p(z|x). 

However, the true posterior is challenging to compute for 

continuous latent spaces like z [55], [56]. 

 
3. SAMPLING  

Following the conclusion of the modeling process, the 

synthesizer possesses the capability to produce synthetic 

data. In this context, the generated synthetic data specifically 

targets the minority class, addressing the issue of data 

imbalance [46]. 

 
4. DIAGNOSTIC  

The Diagnostic Report performs fundamental checks on data 

format and validity. Specifically, it applies the 

TableStructure metric to each table in the dataset to ensure 

consistency. This metric compares the column names 

between the synthetic and real data. By identifying all 

column names in both datasets, it calculates a score based on 

the overlap between the columns.  

𝑠𝑐𝑜𝑟𝑒 =  
𝑟∩ 𝑠

𝑟 ∪ 𝑠
                                   (4) 

A score of 100% indicates perfect alignment, meaning the 

synthetic data shares identical column names with the real 

data [46]. 

 
C.  Synthetic Minority Oversampling Technique 

The Synthetic Minority Over-Sampling Technique 

(SMOTE) is employed as an oversampling method to 

mitigate CI in datasets [57]. This technique leverages 

original samples from the minority class to generate new 

synthetic instances. Unlike traditional data space 

approaches, SMOTE operates in feature space for 

synthesizing instances [26]. In this study, the assessment 

outcomes derived from the SMOTE will be juxtaposed with 

those obtained from SDV and unbalanced datasets. This 

comparative strategy enables a comprehensive evaluation of 

SDV's efficacy in addressing dataset imbalance by 

contrasting it with alternative methodologies such as 

SMOTE. The equation of SMOTE, represented as follows: 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1)  × (𝑦[𝑖] − 𝑥)                         (5) 
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This equation generates a new synthetic sample, denoted as 

𝑥𝑛𝑒𝑤, by linearly blending between an original sample, x, 

and another sample, 𝑦[𝑖]. The degree of blending is 

determined by a random factor, rand (0,1), which adjusts the 

difference between x and 𝑦[𝑖]. This random factor introduces 

variability into the process of generating the synthetic 

sample [58].   

 
D. CLASSIFICATION ALGORITHM 

In recent years, researchers have increasingly focused on the 

classification stage, which represents the final phase of 

prediction models. This stage has been the subject of intense 

scrutiny aimed at enhancing the efficiency of CPDP models 

and improving classifier performance. As such, this study 

adopts the five most prevalent classification methods utilized 

in CPDP [30]. 
1. K-NEAREST NEIGHBORS 

The K-Nearest Neighbors (KNN) algorithm is highly 

regarded for its versatility, as it refrains from imposing 

stringent assumptions regarding the underlying data 

distribution. KNN achieves remarkable classification 

accuracy by leveraging the proximity of data points and 

making decisions based on the majority class among the 

nearest neighbors, a methodology that frequently yields 

favorable outcomes across diverse datasets [59]. Upon 

deployment, KNN classifies new data points by scrutinizing 

the predominant class among their nearest neighbors within 

a predefined neighborhood size, denoted as the K value. This 

approach ensures both adaptability and efficacy in 

classification tasks. The Euclidean distance stands as the 

fundamental formulation utilized in the KNN, represented 

as: 

𝑑𝑖𝑠(𝑥, 𝑦) =  √∑ (𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1                                   (6) 

In this equation, 𝒙𝒊 and 𝒚𝒊 represent elements of the feature 

vectors x and y from sets A and B, respectively. The variable 

n denotes the dimensionality of the feature space, 

encompassing the number of features considered in the 

comparison [60]. 

 
2. NAIVE BAYES  

Naive Bayes (NB) is a probabilistic machine learning 

technique employed for classification tasks [18]. It 

determines the highest probability value and assigns the test 

data to the most suitable category based on this calculation 

[61]. The classifier derives its name from the "naive" 

assumption that all features are independent of each other 

given a class label. While this assumption is often violated in 

real-world contexts, Naive Bayes classifiers can still yield 

satisfactory outcomes in numerous scenarios [62]. This 

simplicity and robust classification performance contribute 

to NB being widely adopted as a classification algorithm 

[63]. The equation of NB, represented as: 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝐻) 𝑃(𝐻)

𝑃(𝑋)
                                (7) 

In this equation, X represents data with an unknown class, 

while H stands for the hypothesis that X belongs to a specific 

class. The term 𝑃(𝑌|𝑋) denotes the probability of hypothesis 

HH given the data X, known as the posterior probability. 

𝑃(𝐻) represents the prior probability of hypothesis H, while 

𝑃(𝑋|𝐻) signifies the probability of observing data X given 

hypothesis H. Finally, 𝑃(𝑋) represents the overall 

probability of observing data X [64]. 

  
3. DECISION TREE  

Decision Tree (DT) classifier stands out as a computational 

model revered for its multistage decision-making process, 

adept at handling both numerical and nominal data types. Its 

hierarchical structure comprises decision nodes and leaf 

nodes, facilitating the creation of efficient decision rules 

[65]. In essence, there exist two primary types of nodes 

within this structure: decision nodes and leaf nodes. Decision 

nodes play a crucial role in establishing decision rules by 

segmenting the data into different sections based on specific 

criteria. Conversely, leaf nodes represent the ultimate 

outcomes or conclusions derived from these decision rules 

and do not lead to further subdivisions or branches. Thus, 

while decision nodes steer the tree's structure, leaf nodes 

furnish the final decisions or predictions [66]. The entropy 

equation serves as a pivotal tool in DT analysis, particularly 

when calculating the impurity at a node, represented as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑃) =  − ∑ 𝑝(𝑖). log2(𝑝(𝑖))             (8) 

In this equation, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑃) represents the entropy of the 

dataset P, where 𝑝(𝑖) denotes the probability that an instance 

in dataset P belongs to class i [67]. 

 
4. RANDOM FOREST  

Random Forest (RF) algorithm is a supervised classification 

technique utilized in creating a forest through a randomized 

procedure [68]. Initially, it identifies the root node 

employing the most effective splitting technique. This 

process is then replicated for the child nodes, utilizing the 

same optimal splitting method. The iterative nature of this 

cycle results in the construction of a complete tree, with the 

desired outcome at the leaf nodes. Subsequently, the 

algorithm repeats these steps to generate multiple trees, each 

with its random selection of features and splits [69]. RF 

execution involves a structured process. It begins with 

bootstrapping, where samples of size n are drawn randomly 

with replacement from dataset clusters. DT are then grown 

without pruning until reaching maximum size, using these 

bootstrap samples. At each node, a split is chosen by 

randomly selecting a subset of m predictors from the total p 

predictors (where m << p), known as the random feature 

selection phase. This process repeats k times, creating a 

forest of k trees [70]. 
5. LOGISTIC REGRESSION 

Logistic Regression (LR) is a versatile predictive modeling 

technique extensively utilized to assess the relationship 

between dependent (target) variables, typically categorical 

data with nominal or ordinal scales, and independent 

(predictor) variables [71]. It stands out as a prominent 

statistical method employed in constructing predictive 

models, particularly for estimating the probability of an 

event [72]. LR is specifically tailored for making categorical 

predictions, handling binary or multinomial outcomes by 

modeling the probability of belonging to a specific category. 

It achieves this by employing a logistic function to transform 

the output of a LR model into probabilities, ensuring 
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predictions fall within the range of 0 to 1  [73]. The equation 

of LR, represented as: 

log (
𝑃𝑏𝑗

1−𝑃𝑏𝑗
) + 𝛽1𝑋1𝑗 + 𝛽2𝑋2𝑗 + ⋯ + 𝛽𝑛𝑋𝑛𝑗                (9) 

In this equation, 𝛽𝑛 represents the slope of independent 

attributes, and 𝑋𝑛𝑗signifies an independent attribute in record 

j. The variable nn denotes the number of independent 

attributes, and j signifies the number of records in the dataset 

[70]. 

 
E. PERFORMANCE EVALUATION 

Model performance evaluation is a crucial aspect of this 

study [59], primarily focusing on the AUC, which holds 

significant importance in evaluating the effectiveness of data 

categorization [74]. AUC provides a quantitative measure of 

the model's ability to distinguish between different classes, 

with values ranging from 0 to 1. A value of 1 indicates 

perfect separation between classes, while a value of 0.5 

suggests random categorization [75]. Analyzing AUC values 

provides valuable insights into the discriminatory power of 

the model and its performance in accurately classifying 

instances. The equation of AUC, represented as: 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑡))𝑑𝑡
1

0
                       (10) 

In this equation, the AUC represents the integral of the True 

Positive Rate (TPR) plotted against the False Positive Rate 

(FPR), where t signifies various classification thresholds 

[76]. 

 
F. T-TEST 

This test focused on the difference in AUC values to evaluate 

the average performance of the model and determine its 

significance [78]. Setting the alpha (α) value at 0.05, a 

common significance level, provides a confident basis for 

rejecting the null hypothesis with 95% certainty in statistical 

testing. A t-Test result below this threshold indicates strong 

statistical significance. While alpha levels can be adjusted, 

0.05 is generally accepted as a practical compromise [79]. 

The equation of T-Test, represented as: 

𝑇 =
𝑦1−𝑦2

√𝑠𝑝
2(

1

𝑛1
 + 

1

𝑛𝑞2
)
                                         (11) 

In this equation, 𝒚𝟏 and 𝒚𝟐 represent the mean values from 

groups 1 and 2, respectively. 𝒔𝒑 stands for an estimate of the 

pooled standard deviation of the measurements. 

Additionally, 𝒏𝟏 and 𝒏𝟐 denote the number of observations 

for each group [58]. 

 
III. RESULT 

This study embarks on a comprehensive assessment aimed at 

gauging the efficacy of synthetic data generated through 

SDV in tackling the persistent challenge of CI within the 

domain of CPDP. Through a meticulous and comparative 

investigation, we delve into the performance analysis of 

SDV-generated synthetic datasets in contrast with those 

fashioned by the widely adopted SMOTE technique.  

Drawing upon a diverse array of data gleaned from 19 

projects, our research endeavors to unveil the nuanced 

intricacies of synthetic data's efficacy in addressing CI 

challenges within CPDP. TABLE 3 – 5 show the empirical 

evidence meticulously gathered and analyzed throughout our 

study firmly establishes the superiority of SDV-generated 

synthetic data over both the original imbalanced dataset and 

those artificially balanced by the SMOTE technique. 

Moreover, the study displays the results of the evaluation 

using five evaluation algorithms, enhancing the robustness 

of the findings. These evaluation algorithms likely 

encompass a range of metrics such AUC, among others. The 

use of multiple evaluation algorithms helps provide a 

comprehensive understanding of the performance of 

synthetic data generated through SDV and SMOTE across 

various dimensions. 

These robust findings not only underscore the substantial 

potential of SDV synthetic data in rectifying CI issues but 

also shed light on its transformative impact on predictive 

modeling paradigms within CPDP. By offering novel 

insights and statistically superior outcomes compared to 

conventional methods like SMOTE, our study heralds a new 

era in the realm of CI strategies within CPDP.  

During the initial validation stage, one project was 

designated as the testing dataset, while the others projects 

were utilized as the training datasets. Subsequently, in the 

 
 

FIGURE 2. Performance Comparison of the Proposed Method and Others 
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subsequent validation stages, the dataset from the next 

project was chosen as the test data, with datasets from the 

remaining projects employed as the training data. This 

iterative process continued until all projects had been utilized 

as testing datasets. 

 
TABLE 3 

AUC Performance on ReLink Dataset 

Classification Result Propose Imbalanced SMOTE 

Decision Tree Average 0.655 0.618 0.576 

 Improvement - 5.53% 12.06% 

Logistic Regression Average 0.612 0.568 0.569 

Improvement - 7.15% 7.00% 

KNN Average 0.695 0.584 0.606 

 Improvement - 16.05% 12.84% 

Naïve Bayes Average 0.626 0.604 0.611 

 Improvement - 3.61% 2.44% 

Random Forest Average 0.651 0.617 0.613 

 Improvement - 5.28% 5.82% 

 
TABLE 4 

AUC Performance on NASA MDP Dataset 

Classification Result Propose Imbalanced SMOTE 

Decision Tree Average 0.623 0.562 0.566 

 Improvement - 9.89% 9.22% 

Logistic Regression Average 0.644 0.538 0.566 

Improvement - 16.56% 12.18% 

KNN Average 0.704 0.558 0.633 

 Improvement - 20.71% 10.16% 

Naïve Bayes Average 0.581 0.528 0.535 

 Improvement - 9.11% 7.97% 

Random Forest Average 0.607 0.530 0.556 

 Improvement - 12.78% 8.50% 

 
TABLE 5 

AUC Performance on PROMISE Dataset 

Classification Result Propose Imbalanced SMOTE 

Decision Tree Average 0.610 0.561 0.582 

 Improvement - 7.96% 4.49% 

Logistic Regression Average 0.633 0.578 0.598 

Improvement - 8.69% 5.63% 

KNN Average 0.750 0.649 0.698 

 Improvement - 13.55% 7.01% 

Naïve Bayes Average 0.638 0.607 0.618 

 Improvement - 4.80% 3.01% 

Random Forest Average 0.634 0.572 0.604 

 Improvement - 9.76% 4.79% 

 

SDV exhibits superior performance compared to 

SMOTE in handling imbalanced datasets, consistently 

outperforming both original imbalanced datasets and those 

balanced using SMOTE across various classification 

algorithms and datasets. However, SDV techniques demand 

substantial computational resources and expertise to 

generate high-quality synthetic data accurately representing 

the underlying distribution. In contrast, SMOTE is simpler 

and less resource-intensive but may produce synthetic 

samples sensitive to noise and outliers, potentially leading to 

overfitting or decreased model performance. Imbalanced 

datasets reflect real-world scenarios, yet their inherent bias 

can cause classifiers to favor the majority class, resulting in 

suboptimal predictive performance for minority classes. 

Therefore, while imbalanced datasets remain representative 

of practical applications, employing SDV or SMOTE 

techniques requires careful consideration of computational 

requirements and potential impacts on model generalization. 

FIGURE 2 depicts a graph comparing the average results 

of the proposed method with those of other methods across 

different datasets. Each dataset is represented as a cluster of 

bars along the x-axis, with each bar providing a visual 

representation of the mean outcomes of the method 

examined within the corresponding dataset. 

Following the attainment of average AUC results for 

each project, we conducted a significance test utilizing the t-

Test to ascertain whether our proposed method exhibited 

statistical significance compared to others. 

 
Table 6 

The Result of the T-Test 

Dataset Method 

Comparison 

T-Test  

(∝ = 0.05) 

Significance 

ReLink DT – Imbalance 0.013048389 Significance 

DT – SMOTE 0.021842223 Significance 

 LR – Imbalance 0.027067072 Significance 

 LR – SMOTE 0.019639803 Significance 

 KNN – Imbalance 0.038361514 Significance 

 KNN – SMOTE 0.001148641 Significance 

 NB – Imbalance 0.034557446 Significance 

 NB – SMOTE 0.036961263 Significance 

 RF – Imbalance 0.021797694 Significance 

 RF – SMOTE 0.038530614 Significance 

MDP DT – Imbalance 0.000004295 Significance 

DT – SMOTE 0.000000513 Significance 

 LR – Imbalance 0.000000277 Significance 

 LR – SMOTE 0.000000037 Significance 

 KNN – Imbalance 0.000284700 Significance 

 KNN – SMOTE 0.007529326 Significance 

 NB – Imbalance 0.000252743 Significance 

 NB – SMOTE 0.000180900 Significance 

 RF – Imbalance 0.000000163 Significance 

 RF – SMOTE 0.000001129 Significance 

PROMISE DT – Imbalance 0.000262698 Significance 

DT – SMOTE 0.004458561 Significance 

 LR – Imbalance 0.000048935 Significance 

 LR – SMOTE 0.000036173 Significance 

 KNN – Imbalance 0.000000186 Significance 

 KNN – SMOTE 0.000000755 Significance 

 NB – Imbalance 0.001251084 Significance 

 NB – SMOTE 0.009402305 Significance 

 RF – Imbalance 0.000078728 Significance 

 RF – SMOTE 0.000130464 Significance 

 

TABLE 6 presents the test results utilizing the t-Test to 

evaluate the significance of differences between the various 

test methods. If the obtained t-Test value is below the 

predetermined alpha threshold of 0.050, it indicates a 

statistically significant performance improvement. 

Conversely, if the t-Test value exceeds the alpha threshold, 

the observed performance improvement is considered 

statistically non-significant. In this study, the t-Test results 

suggest that there are significant differences between the 

performance of different methods, particularly in the context 

of addressing CI in datasets. For instance, comparing the 

proposed method against SMOTE and imbalance approaches 

with five classifiers, across various datasets, the p-values are 

consistently low. This indicates that the proposed method 

yields statistically significant improvements over others. 

Moreover, the significance levels vary across different 

datasets and algorithms. For instance, in the MDP dataset, 

the p-values for all method comparisons are extremely low, 

suggesting highly significant differences. On the other hand, 
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in the PROMISE and RELINK dataset, while most 

comparisons still yield low p-values, indicating significance, 

there are instances where the significance levels are slightly 

higher. This variability underscores the importance of 

considering dataset-specific characteristics when evaluating 

the effectiveness of different methods. 

Overall, the t-Test results, coupled with the alpha value, 

provide strong evidence to support the superiority of the 

proposed method in addressing CI compared to traditional 

approaches across multiple datasets. 

 
IV. DISCUSSION 

The study substantiates the remarkable efficacy of our 

proposed methodology in effectively addressing the intricate 

challenge of CI within the realm of CPDP. Through the 

judicious utilization of Synthetic Data Generation via SDV 

to rectify CI, our approach distinctly demonstrates superior 

performance when juxtaposed against five utilized 

classifiers. Notably, it surpasses conventional methodologies 

such as SMOTE and imbalance data scenarios, thereby 

underscoring its robustness and effectiveness. 

A meticulous and comprehensive comparative analysis 

reveals the consistent outperformance of our approach over 

SMOTE across a myriad of datasets, as meticulously 

delineated in TABLE 3 – 5. Furthermore, leveraging the 

rigorous statistical tool of t-Test, as outlined in TABLE 6, 

we establish statistical significance, thereby unequivocally 

showcasing the superiority of our SDV approach over 

SMOTE across all evaluated datasets. 

The synthetic data generated through SDV consistently 

exhibits superior performance across diverse evaluation 

metrics, with particular prominence observed in the realm of 

the AUC metric. Notably, the steadfast superiority of the 

KNN algorithm underscores the pivotal role of algorithmic 

selection in effectively mitigating the challenges associated 

with CPDP. 

While antecedent studies have explored an array of 

techniques to grapple with CI, our investigation empirically 

substantiates that SDV presents a more efficacious resolution 

within this domain. This assertion gains further credence 

through the comparative analysis presented in TABLE 7, 

which unequivocally underscores the supremacy of our 

method over alternative techniques. 
TABLE 7 

Comparison of AUC Values of the Proposed Method with Other Studies 

Dataset Method AUC  

ReLink Propose Method with KNN 0.695 

PF-SMOTE [13] 0.633 

S-DCCA [19] 0.632 

NASA MDP Propose Method with KNN 0.704 

AD-SMOTE [18] 0.664 

PROMISE Propose Method with KNN 0.750 

GSMOTE-NFM [80] 0.715 

SMOTE-GB [17] 0.649 

SMOTE-RF [17] 0.667 

 

However, we conscientiously acknowledge the inherent 

constraints in our study. The reliance on specific datasets 

inevitably curtails the generalizability of our findings, while 

the focus on the AUC metric and select classification 

algorithms may inadvertently overshadow other salient 

facets of model performance assessment. Furthermore, the 

computational intricacies attendant to the SDV technique 

pose pragmatic challenges in real-world deployment, 

warranting further exploration and refinement. The study 

also does not rule out the possibility that further exploration 

may lead to overfitting when employing data generated by 

SDV. This consideration underscores the need for caution in 

extending the application of SDV-generated data beyond the 

scope of this study. 

Nevertheless, our study yields pivotal findings that carry 

profound implications for the field of CPDP. Academically, 

we offer invaluable insights into enhancing the reliability 

and precision of defect prediction models by showcasing the 

efficacy of synthetic data generation through SDV. The 

implementation of SDV techniques stands poised to usher in 

more precise and reliable forecasts of software defects, 

thereby bolstering the quality and dependability of software 

products. 

Moreover, the seamless integration of SDV holds 

promise for streamlining the development lifecycle, 

curtailing maintenance expenditures, and ultimately 

elevating customer satisfaction levels. Additionally, 

synthetic data serves as an indispensable tool for 

safeguarding sensitive personal information that cannot be 

divulged, thereby ensuring compliance with stringent data 

privacy regulations. 

Furthermore, we ardently advocate for the exploration of 

alternative methodologies within SDP frameworks to 

mitigate CI, surpassing traditional techniques such as 

SMOTE. In essence, our research underscores the 

transformative potential of our proposed methodology in 

reshaping the landscape of CPDP. By effectively mitigating 

CI through SDV, our approach engenders robust predictive 

models that surpass existing methodologies, thereby offering 

a compelling roadmap for future research endeavors aimed 

at augmenting the efficacy and applicability of defect 

prediction models. 

 
V. CONCLUSION 

This research aims to tackle a common challenge in CPDP, 

namely CI, by leveraging synthetic data generated by SDV. 

SDV works to balance the data by creating minority classes, 

thereby achieving a balanced distribution of instances across 

classes. Using five different classification algorithms and the 

AUC metric, this study thoroughly investigated the 

performance of synthetic data generated by SDV compared 

to traditional methods like SMOTE across 19 selected 

projects. 

Our study unequivocally demonstrates the superiority of 

synthetic data generated by SDV in addressing CI within 

CPDP. Across all analyzed datasets, SDV consistently 

outperformed both the original unbalanced datasets and 

those balanced using SMOTE, as evidenced by higher AUC 

scores. Specifically, various methods, including Relink, 

Nasa MDP, and PROMISE, showed sequential 

improvements. KNN achieved AUC scores of 0.695, 0.704, 

and 0.750 for the respective datasets, while DT attained 

scores of 0.655, 0.623, and 0.610. LR yielded AUC scores of 

0.612, 0.644, and 0.633, whereas NB obtained scores of 
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0.626, 0.581, and 0.638. RF received AUC scores of 0.651, 

0.607, and 0.634. These results confirm that the utilization of 

synthetic data from SDV significantly enhances model 

performance in addressing CI in CPDP. 

To address the limitations identified in this study, future 

research could explore the application of SDV techniques 

across a broader range of datasets and project contexts to 

enhance generalizability. Additionally, investigating the 

performance of SDV in conjunction with other machine 

learning techniques and performance measures could 

provide a more comprehensive understanding of its 

capabilities. Moreover, efforts to mitigate the computational 

overhead associated with SDV implementation could 

facilitate its adoption in real-world CPDP scenarios, as well 

as further exploration for addressing the overfitting problem. 
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