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ABSTRACT The COVID-19 pandemic has had a terrible effect on human health, and computer-aided diagnostic (CAD) 

systems for chest computed tomography have emerged as a potential alternative for COVID-19 diagnosis. Yet, since the cost 

of data annotation may be excessively costly in the medical area, there is a shortage of data that has been annotated. A 

considerable quantity of labelled data is required in order to train a CAD system to a high level of accuracy. The study aims to 

describe an automatic and precise COVID-19 diagnostic method that utilizes a restricted amount of labelled CT images to solve 

this problem. The framework of the system is known as Qualified Contrastive Machine Learning (QCML), and the 

improvements that we have made may be summed up as follows: 1) In order to make use of all of the image's characteristics, 

we combine features with a two-dimensional discrete wavelet transform. 2) We employ the COVID-Net encoder with a 

redesign that focuses on the efficiency of learning and the task specificity of the data. 3) In order to strengthen our capacity to 

generalize, we have implemented a novel pertaining technique that is based on Qualified Contrastive Machine Learning. 4) In 

order to get better categorization results, we have included an extra auxiliary work. The application of Qualified Contrastive 

Machine Learning methodology for infectious disease diagnosis in CT images offers an accuracy of 93.55%, a recall of 91.59%, 

a precision of 96.92%, and an F1-score of 94.18%, demonstrating the potential for accurate and efficient COVID-19 diagnosis 

with limited labelled data. 

  

INDEX TERMS Machine Learning (ML), COVID-19 Diagnosis, Discrete Wavelet Transform (DWT), Computed 

Tomography (CT) Images, Classification. 

I. INTRODUCTION 

Coronavirus (Covid-19), which initially appeared in Wuhan, 

China in December 2019, and is swiftly becoming a 

worldwide pandemic [1] is caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-COV-2), which is 

responsible for producing severe acute respiratory syndrome. 

More than 410 million cases have been documented up to this 

point, and about 6 million fatalities have been attributed to the 

disease, as stated by the World Health Organization (WHO) 

[2]. Because of the rising number of fatalities and cases, the 

World Health Organization (WHO) designated the 

coronavirus illness as a Covid-19 pandemic in March of 2020. 

This caused a number of nations to shut down their borders 

and institute curfews as preventative measures [3]. Covid-19 

predominantly affects the respiratory system, such as the 

lungs, and often produces symptoms that are comparable to 

those of pneumonia [4]. Fever, coughing, sneezing, and 

shortness of breath are among of the most common symptoms, 

and the disease is very infectious because it spreads by 

respiratory droplets, such as when an infected person coughs 

or sneezes. The elderly and those who suffer from ongoing 

medical conditions are at a greater risk of contracting the 

Covid-19 infection. 

In addition to RT-PCR testing, imaging techniques such as 

computed tomography (CT) and chest X-ray (X-ray) are used 

for the purpose of identifying the virus known as Covid-19, 

which mostly affects the lungs [5]. Patients with pneumonia 

caused by Covid-19 may be accurately diagnosed with the use 

of CT imaging to identify characteristic radiographic findings. 

Yet, in order to properly analyse these photos, specialised 
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medical doctors are necessary. CT and X-ray imaging both 

offer certain benefits in early detection in comparison to RT-

PCR assays, but both methods also have some limitations. 

Artificial intelligence (AI) and deep learning (DL) techniques 

are being investigated as a potential alternative to help in the 

early diagnosis of Covid-19 and to expedite the treatment 

process. This will be accomplished by enabling medical 

professionals to quickly and accurately diagnose the disease 

utilising CT and X-ray images [13-15]. Researchers make 

extensive use of artificial intelligence and deep learning 

approaches for the identification of Covid-19 infection using 

X-ray and CT images. In comparison to more conventional 

approaches, the adoption of deep learning techniques has 

increased significantly because of their superior efficiency 

[16]. Deep learning architectures, in contrast to machine 

learning and conventional approaches, do not need the 

extraction of features from the data during the pre-processing 

step. This is one of the most significant factors that drove 

academics to focus their attention on this area of study. 

Deep hybrid learning (DHL) and deep boosted hybrid 

learning (DBHL) are the names of two novel deep learning-

based models that were suggested for successful detection of 

Covid-19 in X-ray datasets in another work that was 

conducted by [17]. According to the findings of this research, 

which makes use of X-ray pictures of two different classes 

(Covid and Non-Covid), the method has an accuracy of 

98.53%. According to the findings of this research, doing 

performance evaluations using just binary class X-ray pictures 

is detrimental to the overall performance of the designs being 

investigated. So it is essential to make use of a variety of data 

sets while attempting to discover Covid-19 [18]. The number 

of classes and the kind of image both have a role in the degree 

to which a CNN architecture is successful. 

Our strategy takes use of data obtained from a variety of 

sources and overcomes the problem of a lack of large-scale 

labelled data by using these data. To be more specific, we 

employ the recently specifically created COVID-Net [19] for 

experimental research. The architecture of this network has 

been redesigned to better accommodate the needs of our 

project. In addition, while we are working on the downstream 

job of the system that we have suggested, we have included a 

cooperative learning method that utilises a contrastive learning 

object [20]. An approach like this one not only boosts speed, 

but it also gathers semantic representations that are very close 

to one another yet have hazy borders inside a category domain 

like this one. In order to stabilise the pipeline and capture 

additional characteristics in advance of training, the DWT 

technique will be deployed. Using a publicly available 

COVID-19 CT dataset, we conduct in-depth experiments to 

test and assess our methodology for COVID-19 identification 

tasks [21]. According to the findings, our method is successful 

in obtaining substantial CT feature representations, which 

allows appropriate classifications to be made between 

COVID-19 patients and normal patients using the annotated 

data source. The research gap in this context is the requirement 

for an automated and accurate technique for diagnosing 

COVID-19 using a small number of annotated CT scans and a 

large number of unlabeled CT images. Existing approaches 

might struggle due to a lack of labelled data, limiting their 

ability to properly diagnose the condition. The suggested 

method addresses this gap by combining QCML and discrete 

wavelet transform to increase the accuracy and efficiency of 

COVID-19 detection. The most important findings and 

contributions of this research are presented in the following 

points, 

1. To address the issue of inadequate labelled data, an 

automated and precise method for diagnosing COVID-19 

based on a small number of labelled CT scans and a large 

number of unlabeled CT images is required. 

2. In order to make the most of all of the characteristics 

included inside the pictures, we combine QCML with 

discrete wavelet transform. 

3. The process involves extracting both spectral and 

temporal features from a CNN that has been trained using 

heatmaps derived from a multilevel discrete wavelet 

transform (DWT). These spectral-temporal features are 

then combined with spatial features that are extracted 

from another CNN that was trained using the original 

multiview CT images. This integration of spectral-

temporal and spatial features is intended to improve the 

accuracy and effectiveness of the overall classification or 

analysis task. 

The paper is structured as follows: In Section 2, the methods, 

datasets, and proposed pipeline are described in detail. This 

section provides a comprehensive overview of the approach 

taken by the authors in their research. Section 3 outlines the 

experimental setup, including the parameters that were 

adjusted for the CNNs and the metrics that were used for 

evaluation. This section provides a clear understanding of the 

experimental design and the specific factors that were 

considered in the study. The results are presented in Section 4, 

which highlights the key findings of the research. This section 

provides a detailed analysis of the performance of the 

proposed method, including any limitations or challenges that 

were encountered. Section 5 discusses the results in more 

detail, providing a critical analysis of the findings and their 

implications. This section also highlights the contributions of 

the research and its potential future applications. Finally, 

Section 6 concludes the paper by summarizing the main 

findings, highlighting the significance of the research, and 

providing recommendations for future work. 

 
II.    PROPOSED MODEL 

Convolutional Neural Networks, also known as CNNs, are 

powerful models that can achieve high levels of accuracy 

when classifying data in multi-class problems. One of the 

main advantages of CNNs is their ability to learn and improve 

their classification performance over time without human 

intervention. The architecture of a CNN is based on a 

coordinated arrangement of multilayer perceptrons, where 

each neuron in one layer is connected to all the neurons in the 

next layer. This highly interconnected structure allows CNNs 

to extract and identify features from input data with 

remarkable accuracy. Sample Image Dataset is shown in 

FIGURE 1. DataSet contains 6432 x-ray images for training 

and 1286 images for testing. Chest X-ray images are typically 
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2D and can vary in resolution, but a common size is around 

1024x1024 pixels. 

https://www.kaggle.com/datasets/prashant268/chest-xray-

covid19-pneumonia. 

The building blocks of a CNN are the convolutional layer 

and the rectified linear unit (ReLu). The convolutional layer is 

the most important component of a CNN, responsible for 

extracting key features from the input data. The ReLu is an 

activation function that helps to increase the non-linearity of 

the CNN, allowing it to better represent complex relationships 

between features. Overall, the architecture and design of 

CNNs enable them to perform exceptionally well in complex 

classification tasks, making them a popular choice for image 

recognition, natural language processing, and other AI 

applications. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

FIGURE 1. Sample dataset images 

 

FIGURE 2. Proposed Model 

The input data is processed by convolving it with nuclei 

using convolution filters that span across the entire visual 

field. As a result, the convolutional operation enables the 

extraction of both simple, small patterns and more complex, 

detailed patterns from the input data. This hierarchical 

network structure allows for the extraction of the most 

important feature maps, improves the generalization capability 

of the model, and reduces the computational complexity 

required for training and inference [22]. The convolution 

operation is a fundamental mathematical operation that 

underlies this process, and it can be expressed mathematically 

as [23]. The proposed model is shown in FIGURE 2. 

 

A.  WAVELET DECOMPOSITION 

It is possible to localize a signal in both the time domain and 

the frequency domain using the wavelet transform as shown 

in FIGURE 3 and FIGURE 4, which makes it a helpful tool 

for signal classification. This feature sets the wavelet 

transform apart from other techniques of transformation. 

Wavelet is used for analysing CT scans for the primary reason 

that it can efficiently detect obscure or hidden characteristics 

within the pictures. This is the major reason why wavelet is 

selected. By scaling and shifting a mother wavelet that already 

exists, it is possible to generate a wavelet of a higher order as 

shown in Eq. (1) and Eq. (2) [24]. 

𝑊∅[𝑗0, 𝑘] =
1

√𝑀
∑ 𝑥[𝑛]∅𝑗0,𝑘[𝑛]𝑛     (1) 

𝑊𝜓[𝑗, 𝑘] =
1

√𝑀
∑ 𝑥[𝑛]𝜓𝑗,𝑘[𝑛],𝑛   𝑓𝑜𝑟𝑗 ≥ 𝑗0   (2) 

where, W_∅ [j_0,k] and W_ψ [j,k] are the approximation 

coefficients and detail coefficients, respectively, and the 

inverse DWT is given by Eq. (3) [25]. Table I represents 

various deep learning models used for Classification 

𝑥[𝑛] =  
1

√𝑀
∑ 𝑥[𝑛]∅𝑗0,𝑘[𝑛]𝑛 +  

1

√𝑀
∑ 𝑥[𝑛]𝜓𝑗,𝑘[𝑛],𝑛   𝑓𝑜𝑟𝑗 ≥ 𝑗0  (3) 

 

FIGURE 3. Wavelet Decomposition 

 

A higher-order wavelet is derived from a fixed mother 

wavelet by applying scaling and shifting operations. Let's 

assume (𝑥) represents a continuous function with square 

integrability. In the context of a real-valued wavelet (𝑥), we 

define the continuous wavelet transform of (𝑥) using Eq. (4) 

and (5) [26]. These equations capture the mathematical 

representation of the transformation process, where the 

wavelet is scaled and shifted to analyse different components 

of the input function (𝑥). 

𝑇𝜓(𝑗, 𝑘) = ∫ 𝑓(𝑥)𝜓𝑗,𝑘(𝑥). 𝑑𝑥
+∞

−∞
   (4) 
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𝜓𝑗,𝑘(𝑥) =
1

√2𝑗
𝜓 (

𝑥−2𝑗𝑘

2𝑗 ) ;     (𝑗, 𝑘) ∈ ℤ2  (5) 

 
TABLE 1 

Various Deep Learning models used for classification 

Model Input 

size 

Learning 

rate 

Opti-

mizer 

Software Batch 

size 

Dense_Ne

t 
224
× 224 

0.0001 Adam TensorFlow, 

Keras 

64 

Alex_Net 224
× 224 

0.0001 Adam TensorFlow, 

Keras 
64 

Res_Net 224
× 224 

0.0001 Adam TensorFlow, 

Keras 
64 

CspNet 224
× 224 

0.0001 Adam TensorFlow, 

Keras 
64 

VGG16 128
× 128 

0.0001 Adam TensorFlow, 

Keras 
64 

VGG19 128
× 128 

0.001 Adam TensorFlow, 

Keras 
64 

CovXNet 224
× 224 

0.0001 Adam TensorFlow, 

Keras 
64 

DarkCovi

dNet 
256
× 256 

0.003 Adam TensorFlow, 

Keras 
64 

Proposed 128
× 128 

0.0001 Adam TensorFlow, 

Keras 
64 

 

 

The parameters of 𝑗 and 𝑘 are the wavelet scale and 

translation factors, respectively. Orthogonal wavelets Eq. (6) 

validated by 2𝑗  carry signal variations at the resolution 2−𝑗 

[27]. 

 
FIGURE 4. High and Low Frequency decomposition 

 

𝐷𝑊𝑇𝑓(𝑛) = {
𝑠𝑗,𝑘 = ∑ 𝑓(𝑛)𝑙𝑛−2𝑗𝑘,𝑛

𝑑𝑗,𝑘 = ∑ 𝑓(𝑛)ℎ𝑛−2𝑗𝑘,𝑛
  (6) 

where 𝑠𝑗,𝑘  refers to the low-frequency component and 𝑑𝑗,𝑘 

refers to the high-frequency component. we can deduce the 

IDWT Eq. (7) process to reconstruct 𝑠 from 𝑠𝑗,𝑘  and 𝑑𝑗,𝑘  [28]. 

 

𝑠𝑛 = ∑ (𝑘 𝑙𝑛−2𝑗𝑘𝑠𝑗,𝑘 + ℎ𝑛−2𝑗𝑘𝑑𝑗,𝑘)   (7) 

B.  ENCODERS 

A traditional encoder is designed to be versatile and 

compatible with various types of network architectures, 

allowing it to be applied to different types of tasks. However, 

the differences between different encoders can vary 

significantly, ranging from substantial variations to minor 

variances. In our specific research, we chose to utilize 

COVID-Net, a popular and well-known encoder, as our 

chosen encoders 𝑓𝑘 and 𝑓𝑞. These encoders were trained to 

learn representations based on lung CT images for the 

purpose of COVID-19 detection. This architectural choice 

allows for effective representation learning while controlling 

the computational complexity. The architectural advantages 

of COVID-Net, particularly its lightweight residual layers, 

align well with the internal structure of our QCML method. 

This alignment contributes to the successful integration of 

COVID-Net as the encoder in our research framework as 

shown in FIGURE 5. COVID-Net was first designed for the 

purpose of categorising CXR pictures; nevertheless, it has 

the potential to be beneficial for improving pattern 

recognition due to the fact that CT scans include more exact 

features than CXR images do. On the other hand, if there isn't 

any adequate coordination, this variation might result in 

greater computational load and a reduction in output 

accuracy. In order to solve this problem, we have included 

batch normalisation (BN) into the COVID-Net architecture. 

This will help minimise the amount of internal covariate shift 

(ICS) [24] and increase representation learning stability 

while the network is being trained. After the input photos and 

at each central hub in the top sector of the architecture, BN 

layers have been purposefully created. This is due to the fact 

that the bottom sector is filled to the brim with convolution 

layers, and the addition more BN layers would lead to a 

considerable rise in the number of parameters as well as the 

complexity of the calculation.  
We choose a neuron 𝒙𝒌 at random from a layer to 

guarantee that the amount of processing that is used is as 

efficient as possible. The BN operation may be stated 

mathematically as represented in Eq. (8) [29]. 

𝑦𝑘 = 𝛾𝑘�̂�𝑘 + 𝛽𝑘,      𝑤ℎ𝑒𝑟𝑒 �̂�𝑘 =
𝑥𝑘−𝐸(𝑥𝑘)

√𝑉𝑎𝑟(𝑥𝑘)
  (8) 

E(.) and Var(.) denote the average and variation of the input 

neurons, respectively. On the other hand, γ and β are trained 

parameters from layers that are utilized to revert the 

transformation of the activation and make the network more 

flexible. 

 

FIGURE 5. Network structure of the feature encoding block. 

C.  QUALIFIED CONTRASTIVE MACHINE LEARNING 
(QCML) 

In recent years, contrastive machine learning has been an 

increasingly prominent study subject, particularly when 

applied to the processing of medical images. This trend is 
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especially evident in the context of the medical field. 

Extracting meaningful representations from unlabelled 

information by using a variety of pretext tasks, such as mask 

image modelling and contrastive machine learning, is the 

goal of this methodology, which is based on deep learning 

networks. The auxiliary work is finished off by designing a 

loss function, which also serves to fine-tune the features that 

will be used in the subsequent tasks, such as semantic 

segmentation, object identification, and picture classification 

[25]. We have decided to use a contrastive task as the 

contrastive machine learning pretext task for the COVID-19 

diagnostic downstream task. This choice was made in order 

to maximise accuracy. Contrastive machine learning is one 

of the most successful ways of contrastive machine learning 

because it permits the learning of excellent representations 

without the need for annotated datasets. This makes it one of 

the most effective methods of contrastive machine learning. 

In this method, several unlabelled photographs are compared 

to one another, and the contrastive loss is determined by 

analysing the degree to which the images are alike and 

differently from one another [26]. After the pre-training 

phase, which took place at the QCML stage, the encoder was 

moved into the classification stage in preparation for the 

COVID-19 detection in input images. In contrast to the 

contrastive loss that we imposed during the contrastive 

machine learning, we will now add a similarity function in 

the following manner as shown in Eq. (9) [30]. 

𝑠𝑖𝑚(𝑢, 𝑣) =
𝑢𝑇𝑣

‖𝑢‖2.‖𝑣‖2
                                                    (9) 

The notation (u, v) refers to a pair of embedding 

characteristics that were taken from the classifier's average 

pooling layer. For the sake of dimensionality reduction, we 

make the decision to implement an extra projection micro 

network Z(.). As a result of handling things in this manner, 

the dimension of the embedding’s is brought down to 128, 

and the similarity function is modified to read as Eq. (10) 

[31]. 

𝑠𝑖𝑚(𝑢, 𝑣) =
𝑍(𝑢).𝑍(𝑣)

‖𝑍(𝑢)‖2.‖𝑍(𝑣)‖2
                                           (10) 

Contrary to the QCML stage, the contrastive loss that is used 

for the auxiliary work is planned in the following manner as 

shown in Eq. (11) [31]. 

 𝑙 = −𝑙𝑜𝑔
exp (𝑠𝑖𝑚(𝑢,𝑣)/𝜏

∑ 𝐼.exp (𝑠𝑖𝑚(𝑢,𝑣)/𝜏𝑘
𝑘=1

                                      (11) 

where I is intended to function as an indicator and may take 

on the value 0 or 1 depending on whether or not (u, v) is 

positive or negative. Each batch of data will be entered into 

a calculation that will simultaneously determine the cross-

entropy loss and the contrastive loss. By using our strategy, 

it is possible to improve the performance of the model in a 

manner that is invariant to the domain, which in turn 

improves the performance of the bi-classification. 

 

Algorithm: 

1. Let the batch size Ns & Nc, Dataset I D1, Dataset D2, 

Temperature τ, fq, fk, wavelet filter Tf, g, augmentation 

function T, dictionary q and the projection head z be the 

input. 

2. Initialize the encoder f pretrained on LUNA dataset for 

query and keys. 

fq  - fk = f 

3. Create the convolutional neural network and Resnet 

Create the threshold Image 

for i=1: row length of Ns & Nc 

for i=1: column length of Ns & Nc 

    if Ns & Nc(x,y)<254 

     Ns & Nc (x,y)=0 

  else 

   Ns & Nc (x,y)=1 

  end if 

  end for 

4. For sampling from D1, perform the following steps for 

mini- batch(𝑥𝑖)𝑖=1
𝑁𝑠 . 

for i ϵ {1,....,Ns} do 

 Select augmentation functions t, t’ from T: 

 X2i – 1 = t(xi), x̂2i – 1 = t’(xi): 

 Transform augmented images with Tf: 

 X2i – 1 = Tf(x2i – 1), X̂2i - 1 = Tf(X̂2i – 1); 

 h2i – 1 = fk(x2i – 1),h2i = fq(X̂2i – 1); 

 z2i – 1 = g(h2i – 1),z2i = g(h2i); 

 lpos = {𝑧2i − 1. 𝑧2𝑖}𝑖=1
𝑁𝑠 , Ineg = {𝑧2𝑖 −

1. 𝑞}𝑖=1
𝑁𝑠 ; 

end for  

 l = concate ([lpos, lneg], dim = 1); 

 l̂ = zeros_like(xi); 

lcon = CrossEntropyLoss(l/τ,l̂); 

Update fk to minimize lcon; 

Update fq via  𝑠𝑖𝑚(𝑢, 𝑣) =
𝑢𝑇𝑣

‖𝑢‖2.‖𝑣‖2
    

 Enqueue (q, z2i – 1); 

 Dequeue (q); 

end for  

return fk; 

5. For sampling from D2, perform the following steps  

for mini- batch(𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁𝑐 . 

f = fk; 

Transform input images with Tf; 

Xi = Tf(xi); 

ĥi = f(Xi); 

ẑ = Z(ĥi); 

ŷi = classifier(ĥi); 

lce = CrossEntropyLoss(ŷi, yi); 

Calculate contrastive loss via 𝐿(�̂�, 𝑦) =

− ∑ 𝑦𝑖log ( �̂�𝑖); 

lcon  = NTXentLoss(ẑ ,yi); 

loverall = lce + lcon; 

Finetune f to minimize loverall; 

end for 

6. Compute accuracy, precision, recall, AUC. 

a. Accuracy = ((TP+TN)/(TP+TN+FP+FN))* 100 

b. Sensitivity = (TP/TP+FN) * 100                 

c. Specificity = (TN/TN+FP) * 100 
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7. Return accuracy, precision, recall, AUC. 

    

(a) (b) (c) (d) 

FIGURE 6. Network structure of the feature encoding block. 

 

    
(a) (b) (c) (d) 

FIGURE 7. Heatmap of various levels of DWT for Dataset II 

 

The various datasets heat maps are shown in FIGURE 6 and 

FIGURE 7. 

III.  TRAINING AND OPTIMIZATION OF THE 
PROPOSED ARCHITECTURE 

The architecture that has been proposed is subjected to a 

training process facilitated by a backpropagation algorithm. 

This algorithm is responsible for adjusting the network's 

weights and biases to optimize its performance. In the case 

of training multi-class datasets, the chosen cost function is 

Cross-Entropy Eq. (12). This particular cost function is 

designed to measure the dissimilarity between the predicted 

output probabilities and the true labels of the multi-class 

dataset. It takes into account the logarithm of the predicted 

probabilities, ensuring that the model is penalized for 

incorrect predictions and encouraged to make more accurate 

ones.  On the other hand, when dealing with two-class 

datasets, the binary cross-entropy Eq. (13) is employed as the 

cost function. This specific cost function is tailored to the 

nature of binary classification tasks. It evaluates the 

discrepancy between the predicted probabilities and the true 

binary labels, aiming to minimize the divergence between 

them. By calculating the logarithm of the predicted 

probabilities, it effectively captures the errors made by the 

model and guides the learning process towards achieving 

better classification performance [23]. 

 

𝐿(�̂�, 𝑦) = − ∑ 𝑦𝑖log ( �̂�𝑖)    (12) 

𝐿𝐵𝐶𝐸 = −
1

𝑛
∑((𝑦𝑖log ( �̂�𝑖)) + (1 − 𝑦𝑖). log (1 − �̂�𝑖)) (13) 

In the given context, the variable "n" represents the total 

number of samples within the dataset. The variable "y" 

denotes the true or actual value associated with each sample, 

while "y-hat" (yˆ) represents the predicted value for the 

corresponding sample.  To update the weights within the 

architecture during the training process, the Adam 

optimization algorithm is utilized. This algorithm, referenced 

as "Adam optimization [27]," is a popular choice for 

optimizing neural network models. It combines the advantages 

of both adaptive gradient descent (AdaGrad) and root mean 

square propagation (RMSprop) algorithms. During the 

optimization process, the Adam algorithm employs a learning 

coefficient, denoted as η (eta), which determines the step size 

or rate at which the weights are updated [28, 29]. The learning 

coefficient η can vary at different time steps during the training 

process, denoted as t. The specific value of η at a given time 

step t is determined by the Adam optimization algorithm as 

represented an Eq. (14) – Eq. (16) [24]. 

𝑤𝑡+1
𝑗

= 𝑤𝑡
𝑗

− 𝜂
𝑉𝑡

√𝑆𝑡+𝜀
−× 𝑔𝑡   (14) 

𝑉𝑡 = 𝛽1 × 𝑉𝑡−1 − (1 − 𝛽1) × 𝑔𝑡   (15) 

𝑆𝑡 = 𝛽2 × 𝑆𝑡−1 − (1 − 𝛽2) × 𝑔𝑡
2   (16) 

In the provided explanation, the variable "w" represents the 

weights within the architecture. The hyperparameters β1 and 

β2 correspond to specific coefficients used in the Adam 

optimization algorithm. The coefficient η denotes the learning 

rate, which determines the step size for weight updates during 

training, with its value varying at different time steps denoted 

as t. The gradient at time step t is represented by gt. 

Furthermore, Vt and St symbolize the exponential moving 

averages of the gradients and the squares of gradients, 

respectively, along with the weights wt. Within the proposed 

architecture, the rectified linear unit (ReLU) activation 

function is employed after each convolution operation. This 

activation function is described mathematically in Eq. (17) 

referenced as [30,31]. The ReLU activation function is widely 

used in neural networks and is defined as follows: 

 
𝑓(𝑥)𝑅𝑒𝑙𝑢 = max {0, 𝑥}    (17) 

Fully connected layers (FC) are integral components of 

convolutional neural network (CNN) architectures. In FC 

layers, every neuron in the preceding layer is connected to 

every neuron in the subsequent layer. These connections 

enable the calculation of the degree to which each value aligns 

with a particular class or category. In the architecture's final 

layer, the output of the FC layer is combined with activation 

functions such as sigmoid, support vector machine (SVM), 

softmax, and others to facilitate the prediction of classes. In 

the specific study mentioned, the softmax activation function 

is utilized for classification purposes. The softmax activation 

function computes a probability distribution for a given set of 

output categories. This distribution assigns probabilities to 

each category based on the input values. Eq. (18) referenced 

as [23] presents the mathematical representation of the 

softmax activation function used in this study. 

𝑍𝑘 =
𝑒𝑥𝑘

∑ 𝑒𝑥𝑘𝑛
𝑖=1

     (18) 

In the given context, x represents the input vector to the 

softmax activation function. The variable n corresponds to the 

number of classes or categories in the classification task. The 

index k ranges from 1 to n indicating each individual class. 

The output vector of the softmax activation function is denoted 

as Z. It consists of n elements, with each element representing 
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the probability or likelihood of the input belonging to the 

corresponding class k. One of the key properties of the 

softmax function is that the sum of all the elements in the 

output vector Z is equal to 1. This property ensures that the 

output vector represents a valid probability distribution over 

the classes, as probabilities must sum up to 1.  

IV. RESULTS  
Typically, studies that involve only two classes tend to have 

higher success rates compared to studies involving multiple 

classes. In comparison, the proposed architecture gave a rate 

of 99.85% accuracy. Nevertheless, the success rates of these 

approaches are contingent on the datasets that were used by 

the researchers. This includes the quantity of samples and 

classes that were included within the datasets, both of which 

might have an effect on the effectiveness of the designs. Eq. 

(19), Eq. (20), and Eq. (21) explain how classification 

algorithms are assessed based on accuracy, sensitivity, and 

specificity [24,25]. Table II lists the model's attainment 

values. FIGURE 5 shows how the number of epochs affects 

accuracy. 

Accuracy = ((TP+TN)/(TP+TN+FP+FN))* 100      (19) 

Sensitivity = (TP/TP+FN) * 100              (20) 

Specificity = (TN/TN+FP) * 100                                (21) 
 

TABLE 2 
Performance comparison with dataset i 

Model 
Acc. 

(%) 
Prec. Recall 

F1-

Score 

Spec. 

(%) 

AUC 

(%) 

DenseNet 96.06 96.68 95.53 96.43 97.55 97.22 

AlexNet 92.83 92.23 92.3 93.18 93.1 93.97 

ResNet 94.65 94.08 94.12 95.03 94.95 95.82 

CspNet [21] 93.84 93.25 93.31 94.2 94.12 94.99 

VGG16 49.2 48.11 48.67 49.06 48.98 49.85 

VGG19 49.2 48.11 48.67 49.06 48.98 49.85 

CovXNet [22] 96.87 96.29 96.34 97.24 97.16 98.03 

CoroNet [20] 97.28 96.68 96.75 97.63 97.55 98.42 

CovidXrayNet 

[24] 
96.66 96.11 96.13 97.06 96.98 97.85 

DarkCovidNet 

[31] 
94.04 93.46 93.51 94.41 94.33 95.2 

Proposed 

QCML model 
98.69 98.11 98.16 99.06 98.98 99.85 

 

 

FIGURE 8. Confusion Matrix 

 

The results of an experimental investigation employing the 

dataset I, which comprises of CT scans utilised for 

identifying Covid-19, are shown in TABLE 2. This table 

contains the information. The model earned the greatest 

performance overall across all measures, resulting in a 

success rate of one hundred percent. The confusion matrix of 

the proposed system is shown in FIGURE 8. In the second 

application, experimental research was carried out by 

integrating the dataset I and dataset II, both of which 

comprise CT scans of Covid-19 and normal instances. This 

was done so that the results of the study could be used to the 

second application. The findings are shown in TABLE 3, 

where it is possible to see that the proposed method QCML 

was successful in reaching the greatest possible success rate 

of 95.52% according to the accuracy metric. 
 

TABLE 3 
Performance comparison with dataset II 

Model Accu

racy 

(%) 

Preci

sion 

Recal

l 

F1-

Score 

Specif

icity 

(%) 

AUC 

(%) 

DenseNet 87.77 87.11 85.52 87.28 87.74 87.58 

AlexNet 82.19 81.53 79.94 81.7 82.16 82 

ResNet 83.12 82.46 80.87 82.63 83.09 82.93 

CspNet 

[21] 

81.26 80.6 79.01 80.77 81.23 81.07 

VGG16 46.07 45.41 43.82 45.58 46.04 45.88 

VGG19 46.07 45.41 43.82 45.58 46.04 45.88 

CovXNet 

[22] 

84.67 84.01 82.42 84.18 84.64 84.48 

CoroNet 

[20] 

87.93 87.27 85.68 87.44 87.9 87.74 

CovidXray

Net [24] 

86.84 86.18 84.59 86.35 86.81 86.65 

DarkCovid

Net [31] 

84.6 83.94 82.35 84.11 84.57 84.41 

Proposed 

QCML 

model 

95.52 94.86 93.27 95.03 95.49 95.33 

V. DISCUSSION 

The Dataset-X-ray dataset was employed in the third 

experimental investigation that was conducted on identifying 

Covid-19. This dataset is comprised of four classes. The 

findings of the research are shown in TABLE 4. The 

proposed method QCML had the maximum performance in 

terms of accuracy (96.69%), precision (0.99), recall (0.98), 

F1-score (0.98). 
TABLE 4 

Performance comparison with dataset III 
Model Acc. 

(%) 

Prec. Reca

ll 

F1-

Score 

Spec. 

(%) 

AUC 

(%) 

DenseNet 86.98 0.89 0.9 0.89 88.68 93.14 

AlexNet 90.5 0.92 0.92 0.92 89.14 94.74 

ResNet 92.58 0.95 0.94 0.95 91.81 96.16 

CspNet [21] 82.51 0.8 0.85 0.82 81.11 89.86 

VGG16 90.97 0.93 0.92 0.93 88.61 94.9 

VGG19 91.21 0.94 0.93 0.93 88.57 94.98 

CovXNet [22] 92.32 0.96 0.9 0.92 90.3 93.78 
CoroNet [20] 91.99 0.94 0.93 0.93 91.54 95.42 

CovidXrayNet 

[24] 95.27 0.97 0.97 0.97 95.35 97.9 

DarkCovidNet 

[31] 94.21 0.97 0.95 0.96 93.19 96.69 

Proposed 

QCML model 96.69 0.99 0.98 0.98 96.56 99 
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When it comes to classification and recognition tasks, 

convolutional neural networks, often known as CNNs, are 

frequently used. These networks make use of layers that are 

completely linked and are made up of feature maps that are 

produced using the convolution technique. These feature 

maps, which assist identify the characteristics recognised or 

preserved within the input, are produced by applying the 

filters that are employed in this procedure to the input 

picture. This produces the feature maps. Although while the 

feature maps that are closest to the output tend to capture 

more broad information, the network was built to recognise 

even the smallest of details in the picture that is being fed 

into it. The initial two layers of the convolution process each 

highlight a particular aspect of the pictures, which ultimately 

results in visuals that may be understood. These important 

traits are referred to as attributes, and although humans may 

have difficulty comprehending them, CNN models are able 

to understand them. Also, when feature maps progress 

deeper into the network, they have a tendency to expose less 

and fewer details, despite the fact that these details are 

relevant characteristics that are used in the decision-making 

process by CNN models. The heat maps of proposed model 

is shown in FIGURE 9. 

 
X- Ray Images Heat Map GAP CT - Images Heat Map GAP 

      

      

      

      

FIGURE 9. Sample heat maps and Covid-19 visuals of proposed model 

 

 

FIGURE 10. Performance comparison of proposed model using dataset I. 

When the findings of experimental research are considered 

as a whole, it can be observed that it makes accurate 

predictions of X-ray and CT pictures. As comparison to X-

ray pictures, computed tomography (CT) images proved to 

be more successful. One possible explanation for this is that 

CT scans have a higher level of sensitivity and a more refined 

level of detail. FIGURE 10, FIGURE 11, and FIGURE 12 

represents the performance comparison of all three datasets. 

 

FIGURE 11. Performance comparison of proposed model using dataset II. 

 

FIGURE 12. Performance comparison of proposed model using dataset III. 

VI. CONCLUSION 

The study aims to address the urgent need for accurate and 

efficient diagnostic methods for COVID-19, given the rising 
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number of cases and associated deaths. To this day, it has been 

responsible for the illness of millions of people and the death 

of millions more. The appearance of new strains of this disease 

presents significant dangers to human health, since the illness 

is known to be associated with a variety of adverse health 

effects. A number of states have taken a variety of preventative 

actions to stop the spread of the illness and cut down on the 

number of fatalities. In most cases, RT-PCR assays are used 

in order to make a diagnosis of this condition. Yet, there are a 

number of drawbacks associated with it, including the 

insufficiency of RT-PCR assays, the danger of transmission to 

healthcare professionals, the discomfort experienced by 

patients, and the expense. In this context, a variety of research 

projects are carried out, and a variety of potential solutions are 

proposed. One of these research looks at deep learning 

architectures that have a high level of performance. With an 

accuracy of 99.85%, a recall of 91.59%, a precision of 

96.92%, and an F1-score of 94.18%, our suggested system 

demonstrated its better performance in comparison to other 

current systems. In future, it could be developed as an 

epidemiological models that can predict disease spread, 

identify high-risk populations, and inform public health 

interventions to control outbreaks effectively. 
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