
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 169

RESEARCH ARTICLE OPEN ACCESS

Manuscript received February 10, 2024; revised February 26, 2024; accepted April 10, 2024; date of publication April 20, 2024
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v6i2.388
Copyright © 2024 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
How to cite: Angga Maulana Akbar, Rudy Herteno, Setyo Wahyu Saputro, Mohammad Reza Faisal, and Radityo Adi Nugroho, Enhancing
Software Defect Prediction through Hybrid Optimization for Feature Selection and Gradient Boosting Classification, Journal of Electronics,
Electromedical Engineering, and Medical Informatics, vol. 6, no. 2, pp. 169-181, April 2024.

Optimizing Software Defect Prediction Models:
Integrating Hybrid Grey Wolf and Particle
Swarm Optimization for Enhanced Feature
Selection with Popular Gradient Boosting
Algorithm

Angga Maulana Akbar , Rudy Herteno , Setyo Wahyu Saputro , Mohammad Reza
Faisal , and Radityo Adi Nugroho

Department of Computer Science, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia
Corresponding author: rudy.herteno@ulm.ac.id

ABSTRACT Software defects, also referred to as software bugs, are anomalies or flaws in computer program that cause

software to behave unexpectedly or produce incorrect results. These defects can manifest in various forms, including coding

errors, design flaws, and logic mistakes, this defect have the potential to emerge at any stage of the software development

lifecycle. Traditional prediction models usually have lower prediction performance. To address this issue, this paper proposes

a novel prediction model using Hybrid Grey Wolf Optimizer and Particle Swarm Optimization (HGWOPSO). This research

aims to determine whether the Hybrid Grey Wolf and Particle Swarm Optimization model could potentially improve the

effectiveness of software defect prediction compared to base PSO and GWO algorithms without hybridization. Furthermore,

this study aims to determine the effectiveness of different Gradient Boosting Algorithm classification algorithms when

combined with HGWOPSO feature selection in predicting software defects. The study utilizes 13 NASA MDP dataset. These

dataset are divided into testing and training data using 10-fold cross-validation. After data is divided, SMOTE technique is

employed in training data. This technique generates synthetic samples to balance the dataset, ensuring better performance of

the predictive model. Subsequently feature selection is conducted using HGWOPSO Algorithm. Each subset of the NASA

MDP dataset will be processed by three boosting classification algorithms namely XGBoost, LightGBM, and CatBoost.

Performance evaluation is based on the Area under the ROC Curve (AUC) value. Average AUC values yielded by HGWOPSO

XGBoost, HGWOPSO LightGBM, and HGWOPSO CatBoost are 0.891, 0.881, and 0.894, respectively. Results of this study

indicated that utilizing the HGWOPSO algorithm improved AUC performance compared to the base GWO and PSO

algorithms. Specifically, HGWOPSO CatBoost achieved the highest AUC of 0.894. This represents a 6.5% increase in AUC

with a significance value of 0.00552 compared to PSO CatBoost, and a 6.3% AUC increase with a significance value of 0.00148

compared to GWO CatBoost. This study demonstrated that HGWOPSO significantly improves the performance of software

defect prediction. The implication of this research is to enhance software defect prediction models by incorporating hybrid

optimization techniques and combining them with gradient boosting algorithms, which can potentially identify and address

defects more accurately.

INDEX TERMS Boosting Algorithm, HGWOPSO, Machine Learning, Software Defect Prediction

I. INTRODUCTION
A. BACKGROUND

Software defect prediction is a crucial tasks in software

engineering that can be utilized to maintain software quality

[1]. Software defect is a bug, error, flaw, mistake, fault, or

failure in a computer system that can cause unexpected or

erroneous results or impair intended software performance [2].

To enhance the reliability of software, developers utilize

software defect prediction techniques to identify potential

bugs and various error [3]. Software defect prediction seeks to

forecast defective software modules before they are identified

[4]. Identifying software defects at an early stage can result in

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v6i2.388
https://creativecommons.org/licenses/by-sa/4.0/
mailto:rudy.herteno@ulm.ac.id
https://orcid.org/0000-0001-8544-8995
https://orcid.org/0000-0001-8544-8995
https://orcid.org/0009-0007-9250-7704
https://orcid.org/0000-0001-5798-1426
https://orcid.org/0000-0002-7385-5689

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 170

decreased development expenses, rework efforts, and more

reliable software [5]. Identify defective software modules is

important to continuously improve the quality of software [6].

B. PREVIOUS STUDIES

Software defect prediction datasets often have noisy attribute

properties, high dimensional, and imbalance classes.

Specifically, in the NASA MDP dataset, several attributes

exhibit a wide range of values, resulting in noisy attributes.

Additionally, datasets such as JM1 and MC1 have very large

dimensions, which can cause algorithms to consume

significant time and resources. Moreover, high-dimensional

data can lead algorithms to produce suboptimal results.

Furthermore, the majority of the NASA MDP datasets exhibit

an imbalanced class distribution between defects and non-

defects [7,8]. To overcome problems of imbalanced classes in

software defect dataset, Rahardian et al [9] conducted an

experiment to solve the imbalance class problem in the Nasa

MDP dataset, they took several approaches, namely using

Synthetic Minority Oversampling Technique (SMOTE),

Tomek Links (TL), One-Sided Selection (OSS), Random

Oversampling (ROS), and Random Undersampling (RUS).

The results show that the highest AUC value obtained is

achieved by using the SMOTE approach, with an AUC value

of 0.7277. This research demonstrates that SMOTE is an

effective method for addressing imbalanced classes in the

NASA MDP dataset. However, this study did not incorporate

feature selection into the predictive models. Feature selection

involves selecting attributes that have a significant impact on

predicting the class. This technique can reduce the number of

input features to a classifier and enhance prediction

performance. Consequently, predicting software defects

without feature selection may yield suboptimal results [10]. To

address this issue, a feature selection method is employed to

reduce the number of features and improve prediction

performance.

Futhermore a study conducted by [11] employed an

experiment to handle noisy attributes. They utilized two

approaches using Particle Swarm Optimization (PSO) and

Genetic Algorithm (GA) for feature selection. The researchers

conducted several experiments using different classifiers,

namely Neural Network, Nearest Neighbor, Support Vector

Machine (SVM), Statistical Classifier, and Decision Tree on

the NASA MDP dataset. The results showed that significant

values were obtained when using the SVM Classifier. The

Average AUC result of PSO-SVM is 0.695, while the Average

AUC of GA-SVM is 0.631. This research proved that PSO and

GA are effective optimization algorithm for handling noisy

attributes. However, in this study, data balancing methods

were not utilized, the problem of imbalanced classes still

exists. Consequently, this leads to poor performance produced

by the algorithm.

Another research was conducted by [12]. In this study, they

conducted several experiments to enhance GA performance

by employing hyperparameter tuning and SMOTE in the

NASA MDP dataset. They utilized several approaches,

namely Grid search, Random search, Optuna, Bayesian

search, Hyperband, Tree-structured Parzen Estimator (TPE),

and Nevergrad. The highest average AUC obtained was 0.806

using Hyperband and 0.805 using Optuna. Another research

utilizing PSO as feature selection was conducted by [13] and

[14]. In the study conducted by [13], they employed RUS,

PSO, and Naïve Bayes to predict software defects in the

NASA MDP dataset, with the best AUC obtained being 0.801.

Meanwhile, a study conducted by [14] attempted a different

balancing method, namely using Bootstrap Aggregating

(Bagging) to address the issue of class imbalance. In this

research, they utilized PSO for feature selection and Logistic

Regression as the classification algorithm. The highest AUC

result they obtained was 0.794. The results of the three

previous studies have shown that it is possible to address noisy

attributes and imbalanced classes by implementing balancing

methods and then utilizing PSO or GA as feature selection.

However, PSO and GA also have weaknesses, especially in

high-dimensional datasets. These algorithms tend to generate

suboptimal solutions within the search space without

achieving better solutions. As a result feature selection yield

suboptimal performance in the model, consume valuable time,

and getting traped in local optima [15,16].

Feature Selection, especially PSO tends to have low

performance without optimization. Generally, the best results

can be obtained when parameter tuning is performed or when

various PSO techniques are utilized [15]. According to [17],

there are several techniques to enhance the PSO method,

including hybridization, improved strategies such as fuzzy

logic and mutation, and the utilization of different PSO

variants such as binary and chaotic. These techniques can

improve the performance of the PSO algorithm. Furthermore

research was conducted by [18], who attempted to enhance the

PSO technique by using a variant of PSO. They employed

Binary PSO as feature selection with Artificial Neural

Network (ANN) as classification. This method was used to

predict software defects in four NASA MDP datasets: JM1,

KC1, KC3, and PC1. They generated AUC values of 0.739,

0.8487, 0.882, and 0.9297, respectively, achieving an average

AUC value of 0.84985. However, in this research, premature

convergence occurred, leading to PSO being trapped in local

optima. This issue can result in PSO yielding suboptimal

results. To address this issue, our study combines PSO with

algorithms that have good exploration capabilities for

hybridization to prevent PSO from getting trapped in local

optima in the software defect prediction model.

Based on this background, we proposed a model to

optimize the PSO algorithm by hybridizing with the GWO

algorithm, as previously mentioned by [17], doing a hybrid on

PSO allows this algorithm to get more optimal results. We

used PSO over GA because particle swarm optimization

algorithms are easier to use, require fewer adjustable

parameters, and are simpler to comprehend compared to other

bionic algorithms like genetic algorithms [15]. According to

[19] the right classifier is needed to be able to reduce high

dimensional data and to get better performance. Research

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 171

conducted by [20] found that the Gradient Boosting Algorithm

can handle High Dimensional Data. Therefore, we propose a

new prediction model using HGWOPSO as feature selection

and popular Gradient Boosting Algorithm as classification for

predicting software defect in NASA MDP Dataset. Gradient

Boosting used in this study are XGBoost, LightGBM, and

CatBoost.

C. OBJECTIVE

The objective of this study is to improving performance

results in software defect prediction using HGWOPSO as

feature selection for XGBoost, LightGBM, and CatBoost as

Classifier which measured with Area Under the ROC Curve

(AUC).

II. METHOD

This section describes the dataset used, Synthetic Minority

Oversampling Technique (SMOTE), Particle Swarm

Optimization (PSO), Grey Wolf Optimizer (GWO), Hybrid

Grey Wolf Optimizer and Particle Swarm Optimizaion

(HGWOPSO), 10 Fold cross validation, Extreme Gradient

Boosting (XGBoost), Light Gradient Boosting Machine

(LightGBM), Categorial Boosting (CatBoost), Area under

the ROC Curve (AUC) and T-Test. The research flow of this

research can be seen in FIGURE 1.

FIGURE 1. Research Flow using proposed Feature Selection and
Classification Models

FIGURE 1 shows a flowchart that we used in this study. The

first step is collecting the NASA MDP dataset, followed by

dividing the data using cross validation. In this study we use

10-fold cross validation for the validation technique. Each

NASA MDP dataset is divided into 10 sections, with 8

sections allocated for training data while the remaining 2

section are used as test data. After the data is divided,

SMOTE is performed on the training data to balance the

dataset, followed by feature selection and classification

executed with three scenarios. Feature selection executed via

PSO, GWO, and HGWOPSO. After the feature selection is

executed, classification is performed using 3 different

algorithms which are Xgboost, Lightgbm, and Catboost.

Research evaluation uses the average AUC value. This

Experiments was carried out using Jupyter Notebook.

A. DATA COLLECTION

In this study we use a software defect dataset called NASA

MDP, These datasets are sourced from the NASA corpus,

which encompasses real software projects across diverse

domains and programming languages namely C, C++, and

Java. The dataset exhibits considerable variations in code

size, complexity, and functionality, offering a

comprehensive representation of software development

challenges. It comprises numerous software metrics,

including lines of code, cyclomatic complexity, and code

churn. These metrics provide valuable insights into the

characteristics and attributes of software components. The

primary purpose of this dataset is to facilitate the evaluation

and development of predictive models aimed at identifying

potentially defective software components early in the

development lifecycle. In the data preprocessing phase,

attributes containing categorical values are converted to

nominal values, specifically 0 and 1. In the NASA MDP

dataset, the Defective attribute represent Y and will

converted to 1 while Non-Defective represent N and will be

converted to 0. The dataset is available for download at the

following link:

https://github.com/klainfo/NASADefectDataset/tree/master

TABLE 1 is shows, which contains information and some

general statistics about each of the datasets used.

B. 10 K-FOLD CROSS VALIDATION

 To reduce the tendency or systematic error in estimating the

performance of a model, random sampling in datasets is

performed by implementing cross validation [21]. Cross-

validation is a statistical method for evaluating the

performance of an algorithm. The capability of cross-

validation lies in its ability to divide the data into training and

testing sets. Cross-validation is a computational method that

requires information partitioning using subsets. [22]. Cross

validation is also resampling data to prevent overfitting [23].

One part of the data is ultilazed to validate the model while

the remaining part is utilized for training the classifier [24]

At this phase, the dataset is divided into training and test data

using cross-validation with a value of k = 10. The data will

be split into ten subsets, each containing instances from the

same class [25].

C. Synthetic Minority Oversampling Technique

SMOTE is a resampling technique that generates some

samples in order to increase the number of the minority class

by selecting a random point from the line segment. SMOTE

linking a sample and its closest neighbor to generates a new

sample [10]. The SMOTE method uses oversampling to

rebalance the original training set. Instead of simply

replicating minority class instances, the primary concept of

SMOTE is to offer synthetic samples [26]. The idea using

SMOTE in software defect prediction is to balance the

defective and non-defective instances, which can increase

the detection performance [27]. SMOTE can be

mathematically modeled in the following equation (1) [28].

https://jeeemi.org/index.php/jeeemi/index
https://github.com/klainfo/NASADefectDataset/tree/master

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 172

 𝑥𝑛𝑒𝑤 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1) × (𝑦[𝑖] − 𝑥) (1)

Consider a minority class sample x and one of its k-nearest

neighbors y[i]. The equation generates a new synthetic

sample 𝑥𝑛𝑒𝑤 by linearly interpolating between x and y[i],

with the extent of interpolation controlled by a random

factor. The random factor, denoted by rand (0,1), scales the

difference between x and y[i], allowing for variability in the

synthetic sample generation process. By repeating this

process for each sample in the minority class and selecting

appropriate nearest neighbors, SMOTE effectively balancing

the dataset, creating new synthetic samples that reflect the

underlying distribution of the minority class. This method

helps to rebalance the class distribution, enabling classifiers

to learn more effectively from the data and improving their

ability to generalize to minority class instances [28]. TABLE

2 shows before and after SMOTE.

TABLE 2

SMOTE process
Dataset Before After

CM1 327 570

JM1 7782 12220

KC1 1186 1736

KC3 194 316

KC4 191 194

MC1 1988 3884

MC2 125 162

MW1 253 452

PC1 705 1288

PC2 745 1458

PC3 1077 1886

PC4 1287 2220

PC5 1711 2480

D. FEATURE SELECTION
1. PSO FEATURE SELECTION

Particle swarm optimization (PSO) is a remarkably effective

metaheuristic approach that has been effeciently employed

to acquire an optimal subset of features containing crucial

information within a feasible time [29]. PSO begins by

generating a set of random solutions and iteratively seeks for

the optimal solution [15]. The PSO algorithm's concept and

development were inspired by the social behaviors of fish

schools and flocks of birds. In the wild, a swarm of birds flies

across an area, following the leader who has closest position

to the food. Birds social behavior can be translated into

mathematical procedures, such as PSO, to solve optimization

issues. In this approach, the swarm of birds is viewed as a

swarm of particles, with each particle representing a

candidate solution. [30]. A swarm of particles updates their

relative positions from iteration to effectively conduct the

search process. In order to obtain the optimum solution, each

particle moves towards its prior personal best position

(Pbest) and the global best position (Gbest) inside the swarm

[17]. In order to produce the optimal feature subset, PSO will

ends when the requirements are satisfied. PSO position and

velocity variations are derived from basic formulas (2) and

(3) [31].

xi
(t+1)

 = xi
t + vi

(t+1) (2)

vi
(t+1)

 = vi
t + c1r1(Pbesti

t − xi
t) + c2r2(Gbestt − xi

t)

(3)

The first formula illustrates how the position (𝑥𝑖) of a

particle (𝑖) at time step (𝑡 + 1) is updated from its previous

position at time (𝑡), taking into account the particle's velocity

(𝑣𝑖). Here xi
(t+1)

 represents the updated position of particle.

On the other hand, the second formula explains how the

velocity of the particle at time step is updated by considering

the contributions from the personal best position (Pbest) and

the global best position (Gbest) that the particle itself and the

entire population have achieved respectively [31]. The PSO

algorithm's performance is optimized for optimal problem

solving by the adjustment of coefficients (c1 and c2) and

randomization (r1 and r2) [32]. In this studies we used

Cognitive Coefficient (c1) = 0.5, Social Coefficient (c2) =

0.3, Inertia weight (w) = 0.9, iteration = 50 and population

TABLE 1
Specification NASA MDP dataset

Dataset Attribute Instance Defects Non-Defects Defects% Non-Defects% Programming

language

CM1 38 327 42 285 12.8 87.2 C

JM1 22 7782 1672 6110 21.5 78.5 Java

KC1 22 1186 299 887 25.2 74.8 C++

KC3 40 194 36 158 18.6 81.4 Java

KC4 42 191 77 114 40.3 59.7 Java

MC1 39 1988 46 1942 2.3 97.7 C

MC2 40 125 44 81 35.2 64.8 Python

MW1 38 253 27 226 10.7 89.3 Java

PC1 38 705 61 644 8.7 91.3 C

PC2 37 745 16 729 2.1 97.9 Java

PC3 38 1077 134 943 12.4 87.6 Python

PC4 38 1287 177 1110 13.8 86.2 Python

PC5 39 1711 471 1240 27.5 72.5 Java

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 173

size = 5. TABLE 3 shown the outcome of PSO feature

selection.
TABLE 3

Feature selection with PSO
Dataset Features Feature Selected

CM1 37 19
JM1 21 12
KC1 21 10
KC3 39 20
KC4 41 22
MC1 38 18
MC2 39 19
MW1 37 18
PC1 37 17
PC2 36 18
PC3 37 18
PC4 37 20
PC5 38 19

2. GWO FEATURE SELECTION

Grey Wolf Optimizer is metaheuristic swarm-based

algorithm that mimics the social leadership and hunting

behavior of grey wolves in nature [33]. The algorithm

mimics how grey wolves behave in their natural

environment, including their leadership structure and pursuit

style [34]. Within the leadership structure of grey wolves,

there exist four distinct type: alpha, beta, delta, and omega

wolves. Alpha wolves symbolize the solution with the most

optimal results, while beta and delta wolves denote the

second and third best solutions within the population, the rest

of nominated solutions are omega [35]. Hunting behavior of

grey wolves consists of the following three primary parts.

First part is tracking, chasing, and approaching the prey.

After that the wolfs Pursuing, encircling, and harassing the

prey till it stops moving. Last part is the wolves attacking the

prey [36]. Grey wolf algorithm can be mathematically

modeled in the following equations (4) and (5) [33]:

 𝐷 = | 𝐶 × 𝑋𝑝 (𝑡) − 𝑋(𝑡)| (4)

 𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 × 𝐷 (5)

In these equations the variable t represents the number of

iterations, Xp denotes the prey position, X represent the grey

wolves location, while The variables A and C serve as

coefficients for the vectors. their values are determined

through equations (6) and (7) [36]:

 𝐴 = 𝑎 × (2 × 𝑟1 − 1) (6)

 𝐶 = 2 × 𝑟2 (7)

Here, the quantity of a exhibits a linear decrease from 2 to 0,

inversely correlating with the decreasing number of

iterations. r1 and r2 represent uniformly selected random

numbers between [0,1].

Alpha wolves lead grey wolves to locate prey.

Occasionally, beta and delta wolves assist the alpha wolf.

These algorithm prioritizes alpha wolves as the optimal

option, followed by beta and delta wolves. As a result, the

positions of these three wolves influence the movement of

the rest of the population [35].

The mathematical formulas are shown in equation (8) [35]:

𝐷𝛼 = |𝐶1 × 𝑋𝛼 − 𝑋(𝑡)|,

 𝐷𝛽 = |𝐶3 × 𝑋𝛽 − 𝑋(𝑡)|, (8)

𝐷𝛿 = |𝐶3 × 𝑋𝛼𝛿 − 𝑋(𝑡)|.

The values 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 represent the best three wolves in

each iteration, respectively as shown in equations (9) and

(10) [36].

𝑋1 = |𝑋𝛼 − 𝑎1𝐷𝛼|,

 𝑋2 = |𝑋𝛼𝛽 − 𝑎2𝐷𝛽|, (9)

𝑋3 = |𝑋𝛿 − 𝑎2𝐷𝛿|,

 𝑋𝑝 (𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
 (10)

Here, 𝑋𝑝(t + 1) representing the new position of the prey,

which signifies the average of the positions of the top three

wolves within the group. This algorithm will finish the hunt

if Grey wolves attacking the prey [36]. In this study we

utilized step size (a) = 2, Alfa (A) = 0.5, Convergence

Control (C) = 0.3, population size = 5, and iteration = 50.

TABLE 4 shows average feature selected by GWO.

TABLE 4

FEATURE SELECTION WITH GWO
Dataset Features Feature Selected

CM1 37 19
JM1 21 11
KC1 21 8
KC3 39 16
KC4 41 19
MC1 38 16
MC2 39 18
MW1 37 17
PC1 37 17
PC2 36 15
PC3 37 16
PC4 37 18
PC5 38 17

3. HGWOPSO FEATURE SELECTION

Hybrid Grey Wolf Optimizer - Particle Swarm Optimization

is developed without altering the fundamental operation of

GWO and PSO. The PSO algorithm can successfully solve

most real-world issues [17]. However, a solution is needed

to prevent PSO from becoming stuck in a local minimum.

The GWO algorithm is used to assist the PSO in minimizing

the risk of getting trapped in a local minimum. Rather than

sending certain particles to random locations, the exploration

ability of the GWO can be used to partially improve some of

the particle positions, which decreases the risks entailed.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 174

Because the GWO algorithm is used in addition to the PSO

algorithm, the running duration of the code is increased [37],

[38]. FIGURE 2 show the flowchart of HGWOPSO method.

FIGURE 2. Flowchart of HGWOPSO Feature Selection[32]

In this study, we used the same parameters for both PSO and

GWO algorithm, TABLE 5 shows average feature selected

by HGWOPSO.

TABLE 5

FEATURE SELECTION WITH HGWOPSO
Dataset Features Feature Selected

CM1 37 23
JM1 21 18
KC1 21 12
KC3 39 18
KC4 41 17
MC1 38 13
MC2 39 21
MW1 37 16
PC1 37 21
PC2 36 18
PC3 37 20
PC4 37 23
PC5 38 25

E. CLASSIFICATION
1. XGBOOST CLASSIFICATION

Extreme Gradient Boosting is a supervised machine learning

technique that combines the predictions of multiple weaker

or low-performing models. This approach involves utilizing

an ensemble of decision trees within the gradient boosting

framework [39]. XGBoost utilizes gradient boosting as its

core. However, unlike the traditional gradient boosting

algorithm, XGBoost does not add weak learners

sequentially. Instead, XGBoost adopts a multi-threaded

approach by optimizing CPU core utilization in machines

[40]. XGBoost is known for its speed and efficiency due to

its implementation of parallel processing [41]. The Xgboost

approach utilizes the shrinkage technique to combine

multiple weak learners and reduce the possibility of model

overfitting. The combination of trees can be mathematically

modeled in equation (11) [42].

 𝐹𝑚(𝑋) = 𝐹𝑚−1(𝑋) + 𝑛𝑓𝑚(𝑋), 0 < 𝑛 < 1 (11)

Where, fm(X) denotes the m-th step in constructing the weak

learner, and Fm(X) represents the m-th step in building the

integrated learner. As there exists a substantial negative

relationship between the parameter n and the number of

iterations, the model's generalization properties are

frequently improved when n assumes a lesser value [43].

𝑓𝑡(𝑥𝑖) represents the newly constructed tree model, with t

indicating the total count of base tree models. The

computational process of XGBoost is shown in a schematic

diagram illustrated in FIGURE 3.

FIGURE 3. A schematic diagram of XGBoost algorithm [44]

2. LIGHTGBM CLASSIFICATION

Light Gradient Boosting Machine is a gradient boosting

framework that uses tree-based learning algorithms.

LightGBM is mainly featured by the decision tree algorithm

based on gradient-based one-side sampling (GOSS),

exclusive feature bundling (EFB), a histogram and leaf-wise

growth strategy with a depth limit [45]. GOSS removes a

considerable fraction of data instances with small gradients

and only utilizes the remainder to estimate information gain.

Because data records with bigger gradients play an important

part in the computation of information gain, GOSS can

produce a reasonably accurate estimate of information gain

with a considerably smaller dataset. EFB reduces the amount

of features by bundling mutually exclusive characteristics

[46]. One unique aspect of the LightGBM algorithm

compared to other gradient boosting tree algorithms is in

spilting tree. When another boosting algorithms split the tree

depthwise or levelwise, LightGBM growing the tree leafwise

on the same leaf [47]. FIGURE 4 shows how LighGBM

spliting the tree while FIGURE 5 shows how another

algorithm such as XGBoost splitting the tree.

FIGURE 4. Leaf-wise tree growth in LightGBM [47]

FIGURE 5. Level-wise tree growth in XGBoost [47]

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 175

LightGBM can be mathematically modeled in the following

equation (12) [45]

 𝒚𝒊 = ∑ 𝒇𝒌(𝒙𝒊)
𝑲
𝒌 (12)

Here, 𝒚𝒊 denotes the prediction generated by the model for

the 𝒊-th data sample. This prediction stems from the

combination of predictions from each decision tree 𝒇𝒌,

where 𝒌 represents the number of trees within the model.

Consequently, if there are 𝑲 trees in the model, the final

prediction is the summation of predictions yielded by each

individual tree. This illustrates the concept of ensemble

learning, wherein the combination of multiple weak models

can yield a stronger one. By employing this approach,

LightGBM enables the modeling of complex relationships

between input features and target outputs by integrating the

results from several decision trees [45-47].

3. CATBOOST CLASSIFICATION

Categorical Boosting is a new gradient boosting tree that can

hadle categorical data. It does not use binary substitution of

categorical values, instead it performs a random permutation

of the dataset and calculates the average label value [48].

Catboost use decision tree as base predictor [49]. When

constructing a new split for the tree, CatBoost uses a greedy

way to consider the combinations. CatBoost combines all

combinations preset with all categorical features in the

dataset [50]. FIGURE 6 shows how CatBoost constructing a

tree.

FIGURE 6. Depth-wise tree growth in CatBoost [50]

Due to CatBoost unique way of building trees, CatBoost has

two main components in performing optimization, namely

Loss Component, and Regularization component [49]. Loss

component is the part that measures how well the model

predicts the actual target from the training samples, Loss

Component can be modeled into mathematical form in the

following equation (13) [49]

 𝐿(𝜃) =
1

𝑁
∑ 𝑙(𝑦𝑖 , 𝐹(𝑥𝑖))𝑁

𝑖=1 (13)

Here 𝜃 is parameter model, N signifies the total number of

samples within the dataset, representing the extent of the

training data utilized to construct the CatBoost model.

𝑙(𝑦𝑖 , 𝐹(𝑥𝑖)) represents the loss function, which quantifies the

discrepancy between the true target value 𝑦𝑖 and the

predicted value 𝐹(𝑥𝑖) for the i-th sample. After the Loss

component results are obtained, the results of the loss

component are summed with the regularization component.

Regularization Component can be modeled into

mathematical form in the following equation (14) [49]

 𝛺(𝜃) = 𝛾 ∑
𝜃𝑗

2

2

𝑀
𝑗=1 (14)

The values M represents the total number of parameters in

the model, and 𝛾 is a hyperparameter controlling the

regularization strength. The regularization component aims

to curb the weight of parameters, preventing them from

growing excessively large, which could lead to overfitting.

Meanwhile, 𝑗 serves as an index used to iterate through each

parameter in the model [49].

F. AREA UNDER THE ROC CURVE

The area under the Receiver Operating Characteristics curve,

or simply AUC is a metric used to measure the performance

of classification models. It represents the measure of

separability between the models true positive rate and false

positive rate across various threshold values. AUC ranges

from 0 to 1, where a higher AUC indicates better model

performance [51]. AUC includes False Negative (FN), False

Positive (FP), True Negative (TN), and True Positive (TP).

AUC can be mathematically modeled in the following

equations (15) [52]

 𝐴𝑈𝐶 =
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)×(

𝑇𝑁

𝑇𝑁+𝐹𝑃
)

2
 (15)

Moreover, interpreting the AUC value provides insights into

the models capacity to differentiate between positive and

negative classes. Additionally, AUC serves as a useful tool

for model selection and comparison, allowing practitioners

to assess the relative effectiveness of different classifiers

[53]. TABLE 6 presents a list of several AUC values for

categorization [54].

TABLE 6

Category of classification result based on AUC values

AUC Values Category

0.90 – 1.00 Excellent

0.80 – 0.90 Good

0.70 – 0.80 Fair

0.60 – 0.70 Poor

0.50 – 0.60 Failure

G. T-TEST

The t-test is a statistical test employed to determine if there

is a significant difference between the means of two groups.

It is commonly employed in scientific research to assess

whether the means of two populations are statistically

different from each other [55]. The t-test calculates the t-

value, which signifies the difference between the means of

the two groups relative to the variation within each group,

factoring in sample sizes and standard deviations.

Subsequently, this t-value is compared against a critical

value derived from the t-distribution to determine the

statistical significance of the observed difference [56] If the

t-test value is less than 0.05, then the results of both

comparisons can be considered significant [57]. T-test can be

calculated uses equations (16) below [56].

 𝑇 =
𝑦1−𝑦2

√𝑠𝑝
2(

1

𝑛1
+

1

𝑛𝑞2
)
 (16)

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 176

Here 𝑦1 and 𝑦2 are the mean values from groups 1 and 2, 𝑠𝑝

is an estimate of the pooled s of the measurements, and n1

and n2 are the number of observations for each group [56].

III. RESULT

TABLE 7 and FIGURE 7 shows the performance of each

model on NASA MDP dataset. In this research, we observed

that our proposed method of hybridizing the PSO algorithm

with the GWO algorithm maximizes the results of the PSO

algorithm. TABLE 7 and FIGURE 7 show that The

HGWOPSO feature selection outperforms both the PSO and

GWO algorithms across all 13 NASA MDP datasets. The

average results for these three feature selection methods are

presented in TABLE 8, While TABLE 9 shows increase

value of each methods.

TABLE 8

AVERAGE AUC OF ALL METHOD

Method Average AUC

PSO - XGBoost 0.846391

PSO - LightGBM 0.8427418

PSO - CatBoost 0.829189

GWO - XGBoost 0.8336846

GWO - LightGBM 0.83550285

TABLE 7
AUC results in NASA MDP dataset

Dataset
Method

PSO

XGB

PSO

LGBM

PSO

CAT

GWO

XGB

GWO

LGBM

GWO

CAT

HGWOPSO

XGB

HGWOPSO

LGBM

HGWOPSO

CAT

CM1 0.816736 0.8289104 0.731449 0.8315148 0.86271552 0.782981 0.878109606 0.845849754 0.896231527

JM1 0.685194 0.6857372 0.670386 0.6730202 0.69608008 0.67958 0.717293548 0.700623141 0.68144923

KC1 0.782656 0.7839955 0.660456 0.7923177 0.81152083 0.857281 0.824322917 0.808244048 0.865983796

KC3 0.836911 0.8116299 0.823056 0.8860417 0.85041667 0.856639 0.943489583 0.858854167 0.93125

KC4 0.878191 0.8537245 0.827231 0.8460952 0.82255556 0.857222 0.927469136 0.920634921 0.94047619

MC1 0.907869 0.9387123 0.937868 0.8231137 0.84708664 0.863512 0.964251916 0.966330459 0.934996696

MC2 0.889444 0.8296714 0.843356 0.8946875 0.89569444 0.761694 0.942142857 0.919374999 0.929375

MW1 0.808141 0.8272518 0.911699 0.8712121 0.86238472 0.923913 0.885902503 0.908285756 0.951119895

PC1 0.913314 0.8930403 0.906566 0.8827094 0.87596448 0.866934 0.930438416 0.937964744 0.934698375

PC2 0.900036 0.9228108 0.871235 0.8187508 0.7929395 0.819145 0.930793379 0.949570861 0.973287671

PC3 0.840378 0.8385834 0.839678 0.8106041 0.8238258 0.817827 0.864275316 0.870578184 0.858522144

PC4 0.944723 0.9393189 0.948541 0.9291876 0.93476135 0.934573 0.958888300 0.95693046 0.953285639

PC5 0.799486 0.8022568 0.807941 0.7786452 0.78559151 0.787343 0.822342570 0.819245453 0.782796056

Figure 7. AUC RESULTS IN NASA MDP DATASET

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 177

GWO - CatBoost 0.831434

HGWOPSO - XGBoost 0.891516927

HGWOPSO - LightGBM 0.881729765

HGWOPSO - CatBoost 0.894882478

TABLE 9

AVERAGE INCREASE AUC VALUE OF ALL METHOD

Method Comparison Increase Value

HGWPSO XG – PSO XG 0.04512

HGWOPSO LGBM – PSO LGBM 0.03898

HGWOPSO CAT – PSO CAT 0.06569

HGWOPSO XG – GWO XG 0.05783

HGWOPSO LGBM – GWO LGBM 0.04622

HGWOPSO CAT –GWO CAT 0.06344

After the average AUC results were obtained, we conducted

a significance test using T-test to see if our proposed method

was significant to the model before hybridization. T-test

result can be seen in TABLE 10.

TABLE 10

T-TEST RESULT FOR EVERY METHOD

Method Comparison T-test Value

(𝛼 = 0.05)

Significance

HGWPSO XG –

PSO XG

0.00004 Significant

HGWOPSO LGBM –

PSO LGBM

0.00013 Significant

HGWOPSO CAT –

PSO CAT

0.00552 Significant

HGWOPSO XG –

GWO XG

0.00006 Significant

HGWOPSO LGBM –

GWO LGBM

0.00678 Significant

HGWOPSO CAT –

GWO CAT

0.00148 Significant

Here in the TABLE 8, TABLE 9, and TABLE 10, is evident

that there is a significant improvement between the

HGWOPSO algorithm and the GWO or PSO algorithms.

The results indicate that the highest outcome is achieved by

HGWOPSO CatBoost with an Average AUC of 0.894. This

represents an increase of 6.5% compared to PSO CatBoost,

with a significance value of 0.005, and an increase of 6.3%

compared to GWO CatBoost, with a significance value of

0.001. This test proved that our proposed method stands out

by demonstrating a consistently higher level of significance

compared to traditional PSO or GWO algorithms that do not

utilize hybridization.

IV. DISCUSSION

The results showed that our proposed method could enchane

software defect prediction using HGWOPSO as feature

selection and gradient boosted tree as classifier such as

XGBoost, LightGBM and CatBoost. As we can see in

TABLE 10, We conducted a two-tailed t-test between

HGWOPSO and PSO, and GWO individually. The results of

all t-tests showed values smaller than 0.05. This means there

is a significant difference between HGWPSO and PSO, as

well as between HGWOPSO and GWO.

 From the result above, our method has proven

successfully in optimizing software defect prediction. This is

evidenced that our method is superior compared to prior

study, TABLE 11 shown the comparasion between our

proposed method and other PSO method.

TABLE 11

COMPARASION OF AUC RESULT WITH PREVIOUS PSO STUDIES

Researcher Method AUC

[11] PSO -SVM 0.695

[13] PSO -NB 0.805

[14] PSO -LR 0.794

[18]

BPSO(BCO) -ANN 0.849

Our Research

HGWOPSO - XGB 0.891

HGWOPSO –LGBM 0.881

HGWOPSO - CAT 0.894

With the significance of the results we obtained, compared

to previous PSO research in NASA MDP dataset, where the

highest AUC result is 0.849 using binary cross-entropy PSO

and ANN, we obtained a higher result of 0.894, representing

an increase value of 0.045. This demonstrates that our PSO

model outperforms previous research. The increase in AUC

from the previous result indicates that the optimization we

conducted on the PSO algorithm successfully generated a

superior model for software defect prediction.

 In previous research on software defect prediction,

especially in the NASA MDP dataset, various models were

employed. Researchers employ different approaches to

achieve optimal results, such as parameter tuning, combining

multiple learning models, and seeking effective

combinations between different methods. Because of that,

we also strive to compare our research findings with different

methodologies. TABLE 12 shown the comparasion between

our proposed method and various methodologies.

TABLE 12

Comparasion of AUC result with other research method

Researcher Method AUC

[58] FGA -NB 0.856

 BGA -LR 0.866

[59] FLDA -MLP 0.866

[60] MLP-MFFS ROS 0.817

[61] FFeSSTri 0.834

Our Research

HGWOPSO - XGB 0.891

HGWOPSO –LGBM 0.881

HGWOPSO - CAT 0.894

TABLE 13

Detail comparison with other research method

Researcher Method
Dataset

JM1 KC1 KC3 PC1

[18] BPSO-ANN 0.739 0.848 0.882 0.929

[58] BGA-LR 0.719 0.823 0.86 0.886

Proposed HGWOPSO-
0.681 0.865 0.931 0.934

Research CAT

TABLE 12 present a comprehensive analys compared to

various methodologies. Compared to previous study where

the highest AUC result is 0.866, We achieved a higher result

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 178

using HGWOPSO CatBoost with a percentage increase of

0.028. It is clear that the result of this research outperform

the methodology of previous studies. TABLE 13 and

FIGURE 8 compares the performance of previous studies

where the highest AUC was achieved, using the BPSO-ANN

and BGA-LR methods. The study was conducted on the

JM1, KC1, KC3, and PC1 datasets.

FIGURE 8. Detail comparison with other research method

Based on the data presented in TABLE 13 and FIGURE 8, a

comparison is made between different methods for

predicting software defects. The proposed method using

HGWOPSO and CatBoost demonstrates the best

performance in KC1, KC3, and PC1 datasets. HGWOPSO

CatBoost achieves superior results compared to other

methods because HGWOPSO optimizes the performance of

PSO through the exploration capabilities inherited from the

GWO algorithm. This enables HGWOPSO to select more

relevant features and attain better results. Additionally,

CatBoost's unique approach to constructing and splitting

trees also plays a crucial role in classification. However, the

method used in this study also has limitations. Specifically,

the resulting model's performance fails to reach optimal

levels in the JM1 dataset. HGWOPSO CatBoost yields an

AUC of 0.681, as indicated in TABLE 6, which falls into the

Poor Category. This is attributed to the excessively high-

dimensional data and class imbalance present in the JM1

dataset, resulting in suboptimal results from the method we

employed

In this study, our findings in software defect prediction

using HGWOPSO have significant implications both in

industry and research. Industrially, the prediction model we

developed can be implemented in software development

companies to enhance the quality assurance process. By

accurately predicting software defects, companies can

allocate resources more efficiently, prioritize testing efforts,

and ultimately deliver high-quality software products to their

clients. Additionally, IT consultancy firms can leverage our

prediction model to offer better risk assessment and

mitigation strategies to their clients, helping businesses

anticipate potential software defects and take proactive

measures to minimize their impact on operations. On the

research front, our contribution in developing the

HGWOPSO approach as a novel method for defect

prediction provides a substantial contribution to the field of

software engineering. Our findings can serve as a foundation

for future research in building more advanced defect

prediction models and improved methodologies.

Furthermore, the dataset and methodology we utilized can

serve as a benchmark for future studies in software defect

prediction, facilitating the evaluation and enhancement of

prediction models in the field. Thus, our research not only

advances knowledge in software defect prediction but also

has practical implications for various industries and research

domains.

V. CONCLUSION

Software defect prediction is a crucial task in software

engineering that can be utilized to maintain software quality.

Identifying software defects at an early stage can result in

decreased development expenses, rework efforts, and more

reliable software. Software defect prediction datasets,

specifically the NASA MDP dataset, have noisy attribute

properties, high dimensionality, and imbalanced classes. To

overcome these issues, we propose a method using

HGWOPSO as feature selection and gradient boosting trees

for classification, namely XGBoost, LightGBM, and

CatBoost. The proposed method, which utilizes HGWOPSO,

has been found to enhance AUC performance compared to

the previous PSO study. The average AUC values yielded by

HGWOPSO XGBoost, HGWOPSO LightGBM, and

HGWOPSO CatBoost are 0.891, 0.881, and 0.894,

respectively. We also conducted a two-tailed t-test between

HGWOPSO and PSO, as well as between HGWOPSO and

GWO individually. The results of all t-tests showed values

smaller than 0.05. This indicates a significant difference

between HGWPSO and PSO, as well as between

HGWOPSO and GWO. This is prove that our proposed

method successfully maximizes the results of the PSO

algorithm. The findings of the research shows that

employing HGWOPSO feature selection with CatBoost

classification results in superior performance compared to

the method used in the previous study.

This research still has several limitations. As we can see

in TABLE 13, it is evident that the method we used yielded

suboptimal performance compared to previous studies,

spesifically in the JM1 dataset. Our best method,

HGWOPSO CatBoost, resulted in an AUC of 0.681, falling

into the 'poor' category. This could be attributed to the

dataset's excessively large high-dimensional data and highly

imbalanced classes. For future research, we recommend

focusing on examining this dataset, given its excessively

high-dimensional data and highly imbalanced classes. To

mitigate the imbalanced classes, we suggest changing the

sampling method used, such as RUS, ROS, TL, or OSS, This

change aims to address class imbalance and improve model

performance. Additionally, we recommend changing the

classification method in order to select a more suitable

approach. The objective is to address issues associated with

high-dimensional data, This is evident when we change the

classification yields beeter performance result, as shown in

TABLE 7 and FIGURE 7, where the HGWOPSO - XGBoost

method outperformed HGWOPSO - CatBoost with an AUC

of 0.717. Furthermore, we suggest employing

0

0.2

0.4

0.6

0.8

1

JM1 KC1 KC3 PC1

P
er

fo
rm

an
ce

Dataset

BPSO-ANN BGA -LR HGWOPSO-CAT

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 179

hyperparameter tuning in future research the aim for this

study is to achieve more optimal results in software defect

prediction.

REFERENCES
[1] M. K. Thota, F. H. Shajin, dan P. Rajesh, "Survey on software defect

prediction techniques," International Journal of Applied Science and

Engineering, vol. 17, no. 4, pp. 331-344, 2020, doi:

10.6703/IJASE.202012_17(4).331.

[2] J. Li, P. He, J. Zhu and M. R. Lyu, "Software Defect Prediction via

Convolutional Neural Network," 2017 IEEE International Conference

on Software Quality, Reliability and Security (QRS), Prague, Czech

Republic, pp. 318-328, 2017. doi: 10.1109/QRS.2017.42.

[3] M. S. Rawat and S. K. Dubey, “Software defect prediction models for

quality improvement: A literature study,” Int. J. Comput. Sci. Issues,

vol. 9, no. 5 5–2, pp. 288–296, 2022. [Online], Available:

https://www.researchgate.net/publication/287793526_Software_Defe

ct_Prediction_Models_for_Quality_Improvement_A_Literature_Stu

dy

[4] Z. Li, X. Y. Jing, X. Zhu, "Progress on approaches to software defect

prediction," IET Software, vol. 12, no. 3, pp. 161-175, 2018, doi:

10.1049/iet-sen.2017.0148.

[5] J. Ren, K. Qin, Y. Ma, and G. Luo, “Survey on Software Defect

Prediction Using Machine Learning Techniques,” J. Appl. Math.,vol.

3, no. 12, pp. 2319–7064, 2018, doi: 10.1155/2014/785435.

[6] G. Czibula, Z. Marian, I. G. Czibula, "Software defect prediction using

relational association rule mining," Information Sciences, vol. 264, pp.

260-278, 2014, doi: 10.1016/j.ins.2013.12.031.

[7] B. Khan, R. Naseem, M. A. Shah, K. Wakil, A. Khan, M. I. Uddin, M.

Mahmoud, "Software defect prediction for healthcare big data: an

empirical evaluation of machine learning techniques," Journal of

Healthcare Engineering, 2021, doi: 10.1155/2021/8899263.

[8] K. K. Bejjanki, J. Gyani, and N. Gugulothu, “Class imbalance

reduction (CIR): A novel approach to software defect prediction in the

presence of class imbalance,” Symmetry (Basel)., vol. 12, no. 3, 2020,

doi: 10.3390/sym12030407.

[9] H. Rahardian, M. R. Faisal, F. Abadi, R. A. Nugroho, R. Herteno,

"Implementation of Data Level Approach Techniques to Solve

Unbalanced Data Case on Software Defect Classification," Journal of

Data Science and Software Engineering, vol. 1, no. 01, pp. 53-62,

2020, doi: 10.20527/jdsse.v1i01.13.

[10] K. Khadijah, P. S. Sasongko, "Software Defect Prediction Using

Synthetic Minority Over-sampling Technique and Extreme Learning

Machine," Journal of Telematics and Informatics (JTI), vol. 7, no. 2,

pp. 60-68, 2019. doi: 10.12928/jti.v7i2.

[11] R. S. Wahono, N. Suryana, S. Ahmad, "Metaheuristic optimization

based feature selection for software defect prediction," Journal of

Software, vol. 9, no. 5, pp. 1324-1333, 2014,

doi:10.4304/jsw.9.5.1324-1333.

[12] M. K. Suryadi, K, H. Rudy, S. W. Saputro, M. R. Faisal, and R. A.

Nugroho, "A Comparative Study of Various Hyperparameter Tuning

on Random Forest Classification With SMOTE and Feature Selection

Using Genetic Algorithm in Software Defect Prediction," Journal of

Electronics, Electromedical Engineering, and Medical Informatics,

vol. 6, no. 2, 2024. doi: 10.35882/jeeemi.v6i2.375.

[13] A. Suryadi, "Integration of feature selection with data level approach

for software defect prediction," Sinkron: Jurnal dan Penelitian Teknik

Informatika, vol. 4, no. 1, pp. 51-57, 2019. doi:

10.33395/sinkron.v3i1.10137

[14] R. S. Wahono and N. Suryana, "Combining particle swarm

optimization based feature selection and bagging technique for

software defect prediction," International Journal of Software

Engineering and Its Applications, vol. 7, no. 5, pp. 153-166, 2013. doi:

10.14257/ijseia.2013.7.5.16

[15] M. Cai, “An Improved Particle Swarm Optimization Algorithm and

Its Application to the Extreme Value Optimization Problem of

Multivariable Function,” Comput. Intell. Neurosci., vol. 2022, 2022,

doi: 10.1155/2022/1935272.

[16] F. Catak and T. Bilgem, "Genetic algorithm based feature selection in

high dimensional text dataset classification," WSEAS Transactions On

Information Science And Applications, vol. 12, no. 28, pp. 290-296,

2015, [Online], Available:

https://www.researchgate.net/publication/283661718_Genetic_Algor

ithm_based_Feature_Selection_in_High_Dimensional_Text_Dataset

_Classification

[17] A. G. Gad, Particle Swarm Optimization Algorithm and Its

Applications: A Systematic Review, vol. 29, no. 5. pp. 2531-2561,

2022. doi: 10.1007/s11831-021-09694-4.

[18] R. Malhotra, A. Shakya, R. Ranjan, and R. Banshi, "Software defect

prediction using Binary Particle Swarm Optimization with Binary

Cross Entropy as the fitness function," Journal of Physics: Conference

Series, vol. 1767, no. 1, p. 012003, February 2021. doi: 10.1088/1742-

6596/1767/1/012003

[19] V. Pappu, P. M. Pardalos, "High-dimensional data classification,"

Clusters, Orders, and Trees: Methods and Applications: In Honor of

Boris Mirkin's 70th Birthday, pp. 119-150, 2014, doi: 10.1007/978-1-

4939-0742-7_8.

[20] R. Blagus, L. Lusa, "Boosting for high-dimensional two-class

prediction," BMC Bioinformatics, vol. 16, pp. 1-17, 2015, doi:

10.1186/s12859-015-0868-7.

[21] S. Ghosh, A. Rana, and V. Kansal, “A Nonlinear Manifold Detection

based Model for Software Defect Prediction,” Procedia Comput. Sci.,

vol. 132, pp. 581–594, 2018, doi: 10.1016/j.procs.2018.05.012.

[22] R. T. Yunardi, R. Apsari, and M. Yasin, "Comparison of Machine

Learning Algorithm For Urine Glucose Level Classification Using

Side-Polished Fiber Sensor," Journal of Electronics, Electromedical

Engineering, and Medical Informatics, vol. 2, no. 2, pp. 33–39, 2020,

doi: 10.35882/jeeemi.v2i2.1.

[23] D. Berrar, "Cross-validation," Encyclopedia of Bioinformatics and

Computational Biology: ABC of Bioinformatics, vol. 1–3, no. January

2018, pp. 542–545, 2018, doi: 10.1016/B978-0-12-809633-8.20349-

X.

[24] M. Anbu and G. S. Anandha Mala, "Feature selection using firefly

algorithm in software defect prediction," Cluster Computing, vol. 22,

no. 4, pp. 10925–10934, 2019, doi: 10.1007/s10586-017-1235-3.

[25] M. M. Mafazy, "Classification of COVID-19 Cough Sounds using

Mel Frequency Cepstral Coefficient (MFCC) Feature Extraction and

Support Vector Machine Telematika Classification of COVID-19

Cough Sounds using Mel Frequency Cepstral Coefficient (MFCC)

Feature Extraction," no. August, 2023, doi:

10.35671/telematika.v16i2.2569.

[26] A. Fernández, S. Garcia, F. Herrera, dan N. V. Chawla, "SMOTE for

learning from imbalanced data: progress and challenges, marking the

15-year anniversary," Journal of Artificial Intelligence Research, vol.

61, pp. 863-905, 2018, doi: 10.1613/jair.1.11192

[27] A. Alazba dan H. Aljamaan, "Software defect prediction using

stacking generalization of optimized tree-based ensembles," Applied

Sciences, vol. 12, no. 9, pp. 4577, 2022, doi: 10.3390/app12094577

[28] C. Zhang, J. Song, Z. Pei, and J. Jiang, “An Imbalanced Data

Classification Algorithm of De-noising Auto-Encoder Neural

Network Based on SMOTE,” MATEC Web of Conferences ICCAE

2016, 2016, doi: 10.1051/conf/2016.

[29] Z. Ye, Y. Xu, Q. He, M. Wang, W. Bai, and H. Xiao, “Feature

Selection Based on Adaptive Particle Swarm Optimization with

Leadership Learning,” Comput. Intell. Neurosci., vol. 2022, 2022,

doi: 10.1155/2022/1825341.

[30] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A.

Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A

Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061,

2022, doi: 10.1109/ACCESS.2022.3142859.

[31] M. Banga, A. Bansal, and A. Singh, “Proposed hybrid approach to

predict software fault detection,” Int. J. Performability Eng., vol. 15,

no. 8, pp. 2049–2061, 2019, doi: 10.23940/ijpe.19.08.p4.20492061.

[32] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A.

Summakieh, and S. Mirjalili, “Particle Swarm Optimization: A

Comprehensive Survey,” IEEE Access, vol. 10, pp. 10031–10061,

2022, doi: 10.1109/ACCESS.2022.3142859.

[33] S. Mirjalili, "How effective is the Grey Wolf optimizer in training

multi-layer perceptrons," Applied Intelligence, vol. 43, pp. 150-161,

2015, doi: 10.1007/s10489-014-0645-7

[34] O. O. Akinola, A. E. Ezugwu, J. O. Agushaka, R. A. Zitar, dan L.

Abualigah, "Multiclass feature selection with metaheuristic

optimization algorithms: a review," Neural Computing and

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 180

Applications, vol. 34, no. 22, pp. 19751-19790, 2022, doi:

10.1007/s00521-022-07705-4

[35] A. Kaveh dan P. Zakian, "Improved GWO algorithm for optimal

design of truss structures," Engineering with Computers, vol. 34, pp.

685-707, 2018, doi: 10.1007/s00366-017-0567-1

[36] S. Mirjalili, S. M. Mirjalili, dan A. Lewis, "Grey wolf optimizer,"

Advances in Engineering Software, vol. 69, pp. 46-61, 2014, doi:

10.1016/j.advengsoft.2013.12.007

[37] F. A. Şenel et al., "A novel hybrid PSO-GWO algorithm for

optimization problems," Engineering with Computers, vol. 35, pp.

1359-1373, 2019, doi: 10.1007/s00366-018-0668-5

[38] J. Teng, J. Lv, L. Guo, "An improved hybrid grey wolf optimization

algorithm," Soft Computing, vol. 23, pp. 6617-6631, 2019, doi:

10.1007/s00500-018-3310-y.

[39] S. Mehta and K. S. Patnaik, "Improved prediction of software defects

using ensemble machine learning techniques," Neural Computing and

Applications, vol. 33, no. 16, pp. 10551-10562, 2021, doi:

10.1007/s00521-021-05811-3

[40] S. Ramraj, N. Uzir, R. Sunil, and S. Banerjee, "Experimenting

XGBoost algorithm for prediction and classification of different

datasets," International Journal of Control Theory and Applications,

vol. 9, no. 40, pp. 651-662, 2016, [Online], Available:

https://www.researchgate.net/publication/318132203_Experimenting

_XGBoost_Algorithm_for_Prediction_and_Classification_of_Differ

ent_Datasets

[41] R. Hoque, S. Das, M. Hoque, and E. Haque, "Breast Cancer

Classification using XGBoost," World Journal of Advanced Research

and Reviews, vol. 21, no. 2, pp. 1985-1994, 2024, doi:

10.30574/wjarr.2024.21.2.0625

[42] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system,"

in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 785-794, 2016 doi:

10.1145/2939672.2939785

[43] M. R. Ansyari, M. I. Mazdadi, F. Indriani, D. Kartini, and T. H.

Saragih, "Implementation of Random Forest and Extreme Gradient

Boosting in the Classification of Heart Disease Using Particle Swarm

Optimization Feature Selection," Journal of Electronics,

Electromedical Engineering, and Medical Informatics, vol. 5, no. 4,

pp. 250-260, 2023. doi: 10.35882/jeemi.v5i4.322

[44] H. Mo, H. Sun, J. Liu, and S. Wei, "Developing window behavior

models for residential buildings using XGBoost algorithm," Energy

and Buildings, vol. 205, p. 109564, 2019. doi:

10.1016/j.enbuild.2019.109564

[45] Y. Wang and T. Wang, "Application of improved LightGBM model

in blood glucose prediction," Applied Sciences, vol. 10, no. 9, p. 3227,

2020. doi: 10.3390/app10093227

[46] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-

Y. Liu, "Lightgbm: A highly efficient gradient boosting decision tree,"

in Advances in Neural Information Processing Systems 30, 2017,

[Online], Available:

https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde8486

69bdd9eb6b76fa-Abstract.html

[47] D. D. Rufo, T. G. Debelee, A. Ibenthal, and W. G. Negera, "Diagnosis

of diabetes mellitus using gradient boosting machine (LightGBM),"

Diagnostics, vol. 11, no. 9, p. 1714, 2021. doi:

10.3390/diagnostics11091714

[48] S. Jhaveri, I. Khedkar, Y. Kantharia, and S. Jaswal, "Success

prediction using random forest, catboost, xgboost and adaboost for

kickstarter campaigns," in 2019 3rd International Conference on

Computing Methodologies and Communication (ICCMC), pp. 1170-

1173, IEEE, 2019. doi: 10.1109/ICCMC.2019.8819828

[49] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A.

Gulin, "CatBoost: unbiased boosting with categorical features," in

Advances in Neural Information Processing Systems 31, 2018,

[Online], Available:

https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daa

c41c24863285549-Abstract.html

[50] G. Huang, L. Wu, X. Ma, W. Zhang, J. Fan, X. Yu, W. Zeng, and H.

Zhou, "Evaluation of CatBoost method for prediction of reference

evapotranspiration in humid regions," Journal of Hydrology, vol. 574,

pp. 1029-1041, 2019. doi: 10.1016/j.jhydrol.2019.04.085

[51] J. Huang and C. X. Ling, "Using AUC and accuracy in evaluating

learning algorithms," IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 3, pp. 299-310, 2005. doi:

10.1109/TKDE.2005.50

[52] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two

SVM models through different metrics based on the confusion

matrix,” Comput Oper Res, vol. 152, Apr. 2023, doi:

10.1016/j.cor.2022.106131

[53] C. Cortes and M. Mohri, "AUC optimization vs. error rate

minimization," in Advances in Neural Information Processing Systems

16, 2003.

[54] A. R. Syulistyo, D. M. J. Purnomo, M. F. Rachmadi, and A. Wibowo,

“Convolutions Subsampling Convolutions Gaussian connection Full

connection Full connection Subsampling,” JIKI (Jurnal Ilmu Komput.

dan Informasi) UI, vol. 9, no. 1, pp. 52–58, 2016

[55] X. U. Manfei, D. Fralick, J. Z. Zheng, B. Wang, and F. E. N. G.

Changyong, "The differences and similarities between two-sample t-

test and paired t-test," Shanghai Archives of Psychiatry, vol. 29, no. 3,

p. 184, 2017. doi: 10.11919/j.issn.1002-0829.217070

[56] G. B. Limentani, M. C. Ringo, F. Ye, M. L. Bergquist, and E. O.

McSorley, "Beyond the t-test: statistical equivalence testing,", pp.

221-A, 2005, doi: 10.1021/ac053390m

[57] R. Sefira, A. Setiawan, R. Hidayatullah, and R. Darmayanti, "The

Influence of the Snowball Throwing Learning Model on Pythagorean

Theorem Material on Learning Outcomes," Edutechnium Journal of

Educational Technology, vol. 2, no. 1, pp. 1-7, 2024. [Online],

Available:https://edutechnium.com/journal/index.php/edutechnium/a

rticle/view/37

[58] K. Muthukumaran, A. Rallapalli, and N. L. Bhanu Murthy, “Impact of

feature selection techniques on bug prediction models,” ACM Int.

Conf. Proceeding Ser., vol. 18-20-Febr, pp. 120–129, 2015, doi:

10.1145/2723742.2723754.

[59] A. Kalsoom, M. Maqsood, M. A. Ghazanfar, F. Aadil, and S. Rho, A

dimensionality reduction-based efficient software fault prediction

using Fisher linear discriminant analysis (FLDA), vol. 74, no. 9.

Springer US, 2018. doi: 10.1007/s11227-018-2326-5.

[60] A. Iqbal and S. Aftab, “A classification framework for software defect

prediction using multi-filter feature selection technique and MLP,”

Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 1, pp. 18–25, 2020, doi:

10.5815/ijmecs.2020.01.03.

[61] F. Meng, W. Cheng, and J. Wang, "An Integrated Semi-supervised

Software Defect Prediction Model," Journal of Internet Technology,

vol. 24, no. 6, pp. 1307-1317, 2023,

doi:10.53106/160792642023112406013

BIBLIOGRAPHY

Angga Maulana Akbar originated in

Banjarbaru, South Kalimantan. Since 2020, he

has pursued his academic endeavors as a student

of the Computer Science Department at

Universitas Lambung Mangkurat. His current

area of research interest is centered on software

defect prediction. Additionally, his final

assignment involves research centered on

predicting defects in software. The goal of his

research is to improving defect prediction in

software, especially in NASA MDP dataset.

Rudy Herteno is currently a lecturer in the

Faculty of Mathematics and Natural Science,

Lambung Mangkurat University. He received his

bachelor’s degree in Computer Science from

Lambung Mangkurat University and a master’s

degree in Informatics from STMIK Amikom

University. His research interests include

software engineering, software defect prediction

and deep learning.

Email: rudy.herteno@ulm.ac.id.

https://jeeemi.org/index.php/jeeemi/index
mailto:rudy.herteno@ulm.ac.id

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 169-181; eISSN: 2656-8632

Homepage: jeeemi.org 181

Setyo Wahyu Saputro is a lecturer in

Computer Science Department, Faculty of

Mathematics and Natural Science, Lambung

Mangkurat University in Banjarbaru. He received

bachelor’s degree also in Computer Science from

Lambung Mangkurat Univesity, and received his

master’s degree in Informatics from STMIK

Amikom University. His research interests

include software engineering and artifial

intelligence applications. He can be contacted at

email: setyo.saputro@ulm.ac.id

Mohammad Reza Faisal received the B.Sc.

and M.Eng. degrees in physics and informatics

from Bandung Institute of Technology, Bandung,

Indonesia, in 2004 and 2013. He also received a

B.Eng. degree in informatics from Pasundan

University, Bandung, Indonesia, in 2002 and a

Ph.D. in computer science from Kanazawa

University, Ishikawa, Japan, in 2018. He is

currently a lecturer in the Computer Science

Department, Faculty of Mathematics and Natural

Sciences, Lambung Mangkurat University in

Banjarbaru, Indonesia. His research interests

include artificial intelligence applications, text

mining, and software engineering. He can be contacted at email:

reza.faisal@ulm.ac.id.

Radityo Adi Nugroho received his bachelor’s

degree in Informatics from the Islamic University

of Indonesia and a master’s degree in Computer

Science from Gadjah Mada University. Currently,

he is an assistant professor in the Department of

Computer Science at Lambung Mangkurat

University. His research interests include

software defect prediction and computer vision.

He can be contacted at email:

radityo.adi@ulm.ac.id.

https://jeeemi.org/index.php/jeeemi/index
mailto:setyo.saputro@ulm.ac.id
mailto:reza.faisal@ulm.ac.id
mailto:radityo.adi@ulm.ac.id

