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ABSTRACT Lung Cancer is a disease that has a high mortality rate and is often difficult to detect until it reaches a very 

severe stage. Data indicates that lung cancer cases are typically diagnosed late, posing significant challenges to effective 

treatment. Early detection efforts offer the potential for better recovery chances. Therefore, this research aims to develop 

methods for the identification and classification of lung cancer in the hope of providing further knowledge on effective ways 

to detect this condition at an early stage. One approach under scrutiny involves employing machine learning classification 

techniques, anticipated to serve as a pivotal tool in early disease detection and enhancing patient survival rates. This study 

involves five stages: data collection, data preprocessing, data partitioning for training and testing using 10-fold cross 

validation, model training, and analysis of evaluation results. In this research, four experiments consist of applying two 

classification methods, CatBoost and Random Forest, each tested using default hyperparameter and hyperparameter tuning 

using Bayesian Optimization. It was found that the Random Forest model using hyperparameter tuning Bayesian Optimization 

outperformed the other models with accuracy (0.97106), precision (0.97339), recall (0.97185), f-measure (0.97011), and AUC 

(0.99974) for lung cancer data. These findings highlight that Bayesian Optimization for hyperparameter tuning in 

classification models can improve clinical prediction of lung cancer from patient medical records. The integration of Bayesian 

Optimization in hyperparameter tuning represents a significant step forward in refining the accuracy and effectiveness of 

classification models, thus contributing to the ongoing enhancement of medical diagnostics and healthcare strategies. 

INDEX TERMS Lung Cancer, CatBoost, Random Forest, Bayesian Optimization 

I. INTRODUCTION 

Cancer is one of the most common causes of death in the 

world, accounting for nearly 10 million deaths in 2020. The 

statistics show that nearly 1 in 6 deaths in the world are caused 

by cancer [1]. Data from the International Agency for 

Research on Cancer (IARC) estimates that the number of 

cancer cases worldwide will increase by 28.4 million by 2040  

[2]. There are many types of cancer that can be diagnosed in 

both men and women, such as lung cancer, skin cancer, liver, 

colon, and rectal cancer. The highest percentage of deaths 

reaching 19.4% occurs in lung cancer [3]. Lung cancer can 

originate from organs within the lung (primary) or from 

outside the lung (metastasis) [4]. Smoking is the biggest risk 

factor for lung cancer. Men are more often affected by lung 

cancer than women because smoking mostly occurs in men 

[5]. In addition to direct smoking, inhaled cigarette smoke also 

increases the risk of developing lung cancer. Additional 

factors include genetics, occupation, family history of cancer, 

coffee consumption of more than six cups per day, meat 

consumption, fresh vegetable/fruit consumption, preserved or 

fried food consumption, chronic lung disease, alcohol 

consumption, air pollution, and chemical exposure [6]. 

The reason lung cancer is a deadly disease is because it is 

difficult to detect before it becomes a severe disease. About 

85% of lung cancers are only detected after they are in the final 

stage [7]. Early detection of lung cancer can increase the 

chances of recovery from this disease. Therefore, early 

diagnosis of lung cancer is important [8]. A better 
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understanding of the risk factors for lung cancer symptoms can 

help in the prevention of the disease. The key to improving 

survival rates is early detection using classification techniques 

in machine learning [9]. 

CatBoost and Random Forest are machine learning 

algorithms that can be applied to maintain the accuracy of 

prediction results based on patient medical record data in 

solving classification tasks. CatBoost (Categorical Boosting) 

is an open-source machine learning library implemented with 

the principle of gradient boosting for classification, regression, 

and ranking tasks. Utilizing the Gradient Boosted Decision 

Tree (GBDT) algorithm framework, CatBoost exhibits 

superior performance in handling categorical features and 

substantially enhances feature dimensionality. Additionally, 

CatBoost efficiently mitigates overfitting concerns, thereby 

enhancing prediction accuracy [10]. Research conducted by 

[11] compared eight machine learning methods, and the results 

showed the CatBoost model to be the best classifier compared 

to other classification models. With an accuracy rate of 97.8%, 

the researchers also mentioned that CatBoost has a very fast 

prediction ability, which makes it an efficient choice for tasks 

that require real-time prediction. 

Random Forest (RF) is an ensemble machine learning 

technique applicable to both classification and regression 

tasks. Random forest is a collection of decision trees, and class 

determination is based on the majority of votes from all the 

trees formed [12]. This methodology harnesses the collective 

wisdom of diverse trees, offering resilience against biases, 

resilience against data outliers, and guarding against 

overfitting. By leveraging a diverse set of classifiers, the 

Random Forest algorithm adeptly navigates complex datasets, 

ensuring reliable and accurate predictions. In essence, 

Random Forest emerges as a powerful tool for addressing 

various challenges encountered in predictive modeling [13]. 

In this study, to differentiate it from previous studies [14], 

[15], tuning is used to optimize the performance of the model 

and tune the hyperparameters in CatBoost and Random Forest 

to get the optimal hyperparameter value so that the model can 

provide the best results. Tuning the hyperparameters of 

machine learning algorithms has a positive effect on the final 

results. However, the effect of this tuning differs depending on 

the algorithm used [16]. A study [17] found that the Gradient 

Boosted Decision Tree algorithm had the most effect on 

hyperparameter tuning, with an average improvement of 8-

11%. Another study conducted by [18] applied the 

Hyperparameter-Tuning Bayesian Optimization method to 

adjust the hyperparameters of the Random Forest algorithm, 

resulting in a more efficient Random Forest evaluation model 

with a high level of accuracy.  

This study seeks to contrast the efficacy of CatBoost and 

Random Forest methods in assessing their accuracy for lung 

cancer classification. The aim is to gain insights into the most 

suitable approach for this specific task, with or without the 

implementation of Hyperparameter Tuning Bayesian 

Optimization. This comparison is anticipated to shed light on 

the advantages and disadvantages of each method, aiding in 

the development of a more effective classification model for 

early-stage detection of lung cancer. The examination of these 

two methods aims to improve the precision and reliability of 

lung cancer diagnosis, potentially leading to better patient 

outcomes and survival rates. Ultimately, this research 

endeavors to contribute to the refinement of lung cancer 

classification techniques, enhancing the overall quality of 

healthcare for individuals diagnosed with this disease. The 

findings of this study are anticipated to offer contributions 

such as: 

a. Provide knowledge on the application of classification 

techniques and hyperparameter tuning using patient 

medical records. 

b. Introduce Hyperparameter Tuning Bayesian 

Optimization as a novel approach to optimize the 

performance of CatBoost and Random Forest methods, 

especially in lung cancer classification tasks. 

c. Aid medical professionals in refining decision-making 

processes through data analytics. 

 
II. MATERIALS AND METHODS 

The research process generally involves comparing the results 

of two classification methods: CatBoost and Random Forest. 

Each method undergoes testing under two conditions: using 

default hyperparameters and through hyperparameter tuning 

via Bayesian Optimization. This study is structured using five 

sequential stages: data collection using a lung cancer dataset, 

data preprocessing, data partitioning for training and testing 

using 10-fold cross validation, model training, and analysis of 

evaluation results. The research flow carried out in this study 

can be seen in FIGURE 1 as follows. 

FIGURE 1. Research Flowchart 

A. DATA COLLECTION 

The dataset used in this study is the Survey Lung Cancer 

Dataset taken from the Kaggle Repository site, can be seen at 
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https://www.kaggle.com/datasets/mysarahmadbhat/lung-

cancer. The dataset contains information about what attributes 

are used as features to classify patients with lung cancer. This 

dataset consists of 309 instances and 16 attributes, with 15 

attributes representing the clinical status of patients used as 

predictive variables and one attribute designated as the target 

variable. The attribute description, as outlined in prior research 

[14], [15], is cataloged in TABLE 1, supplying a 

comprehensive overview of the dataset attributes and their 

implications in lung cancer diagnosis. 

TABLE 1 
Lung Cancer Data Attribute Description 

No Attribute Description Value 

1 Gender Participant’s gender M, F 

2 Age Age in years 21 - 87 

3 Smoking Smoker or not 1, 2 

4 Yellow Fingers Has yellow fingers 1, 2 

5 Anxiety Anxious or not 1, 2 

6 Peer_pressure Feels peer pressure 1, 2 

7 Chronic Disease 
Suffers from a chronic 

disease 
1, 2 

8 Fatigue Suffers from fatigue 1, 2 

9 Allergy Has an allergy 1, 2 

10 Wheezing Suffers from wheezing 1, 2 

11 Alcohol Consumes alcohol 1, 2 

12 Coughing Suffers from coughing 1, 2 

13 
Shortness of 

Breath 
Has shortness of breath 1, 2 

14 
Swallowing 

Difficulty 
Has difficulty swallowing 1, 2 

15 Chest Pain Has chest pain 1, 2 

16 Lung Cancer 
Diagnosed with lung 

cancer 
YES, NO 

B. PREPROCESSING 

The final prediction may be affected by noise in the raw data 

and/or missing values. Sometimes, the dataset from secondary 

sources is not prepared for use in machine learning algorithms. 

Dataset are pre-processed to prepare them for algorithmic 

processing. At this stage, null values are checked and 

corrected, and the data is balanced. Anything that impacts the 

performance of the machine learning model at this point can 

be handled more skillfully [15]. 

First, check the dataset for null values or missing values. It 

was found that the Survey Lung Cancer dataset does not 

contain null values or missing values, so no data imputation or 

replacement of missing values is required. Furthermore, label 

encoding is used to convert category label values into 

numerical form so that they can be processed more effectively 

by machine learning algorithms [19]. For example, in the 

Survey Lung Cancer dataset, in the target variable which has 

categorical variables with values {NO and YES} and in the 

Gender feature with a value set {M = Male and F = Female}, 

then after the label encoder process it becomes {0, 1} to 

simplify the modeling process. 

The Survey Lung Cancer dataset used in this study shows a 

significant imbalance in the target variable column, with 270 

rows having “YES” values and only 39 rows having “NO” 

values. To ensure the accuracy and balance of predictions and 

results, such imbalanced data must be controlled. In addition, 

33 duplicate entries in the dataset have also been removed. 

Thus, after the removal of duplicate entries, the dataset 

contains 276 entries, with 238 entries indicating cancer and 38 

entries indicating non-cancer. The Random Oversampling 

technique was applied to overcome the uneven distribution of 

data between the majority and minority classes [20], where 

“cancer” (the majority class) was oversampled. FIGURE 2 

shows the distribution of lung cancer risk before and after 

balancing the dataset using random oversampling. 

 
FIGURE 2. Dataset of lung cancer survey before and after Random 
Oversampling 

 
FIGURE 3. Repeated 10-Fold Cross Validation 

C. DATA SHARING 

In data sharing, this research uses the 10-Fold Cross 

Validation technique. Cross-validation partitions the initial 

dataset into training and validation sets. The training set is 

utilized to train the classification model, enabling the 

evaluation of its performance. In 10-fold cross-validation, 

the value of K is set to 10, meaning the dataset is divided into 

ten subsets. One subset serves as the validation set, while the 

remaining K-1 subsets are employed as the training set for 

model testing [21], [22]. The 10-fold cross validation 

technique is employed to provide an unbiased estimation of 

the prediction model's performance, facilitating comparison 

and mitigating the risk of overfitting [23]. A visual 

representation of the repetition of this data division featuring 
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the application of 10-fold cross validation according to [24] 

can be seen in FIGURE 3. 

D. CLASSIFICATION 

1. CATBOOST CLASSIFICATION 

Developed in 2017 by Yandex Researchers and Engineers 

[25], CatBoost is an open-source machine learning library 

that uses a type of boosting algorithm. Binary decision trees 

are used for base predictors in CatBoost. This algorithm has 

the ability to handle classification features more rationally 

and efficiently so as to reduce the possibility of overfitting 

[10]. Proposed by [25], [26] CatBoost demonstrates superior 

performance and shorter execution time compared to the 

XGBoost and LightGBM algorithms. CatBoost distinguishes 

itself from other gradient boosting algorithms by employing 

ordered boosting, a modification of the gradient boosting 

algorithm designed to address the target leakage issue 

efficiently [26]. CatBoost is useful for small datasets and is 

suitable for handling categorical features [27]. The 

estimation results described by [26] can be seen in equation 

(1) as follows. 

 

𝑍 = 𝐻(𝑥𝑖) = ∑ 𝑐𝑗1{𝑥∈𝑅𝑗}

𝐽

𝑗=1

 

(1) 

where 𝐻(𝑥𝑖) represents the decision tree function of the 

explanatory variable 𝑥𝑖 and 𝑅𝑗 is the disjoint region 

associated with a leaf of the tree. To overcome the problem 

of prediction error in gradient scaling, [25] developed a new 

method that involves generating pseudocode shown in 

TABLE 2. 

TABLE 2 
CatBoost Algorithm 

Ordered Boosting 

input: {(𝑿𝒌, 𝒚𝒌)}𝒌=𝟏
𝒏 , 𝑰; 

𝝈 ← random permutation of [1, n]; 

𝑴𝒊  ←  𝟎 𝐟𝐨𝐫 𝒊 = 𝟏. . 𝒏; 
for t ← 1 to I do 

      for i ← 1 to n do 

             𝒓𝒊 ← 𝒚𝒊 −  𝑴𝝈(𝒊)−𝟏(𝒙𝟏)  

      for i ← 1 to n do 

             ∆𝑴 ← 𝑳𝒆𝒂𝒓𝒏𝑴𝒐𝒅𝒆𝒍 ((𝒙𝒋, 𝒓𝒋) ∶  𝝈(𝒋) ≤ 𝒊) ; 

             𝑴𝒊 ←  𝑴𝒊 +  ∆𝑴; 
return 𝑴𝒏 

 

2. RANDOM FOREST CLASSIFICATION 

Random Forest was first published by [28] officially in 2001. 

Random Forest was developed to improve decision tree 

methods that often experience overfitting. The methodology 

of Random Forest revolves around the creation of numerous 

decision trees, with the final prediction result being 

determined through majority voting from all the individual 

prediction outcomes. This approach effectively overcomes 

the problems that may arise when performing classification 

with only one decision tree, which is often not optimal [29]. 

The ensemble model encompasses two variations: 

Bagging and Boosting. Random Forest belongs to the 

Bagging techniques, alternatively referred to as bootstrap 

aggregation methods[30]. This method operates on two core 

principles: row sampling and voting classifiers. Initially, the 

dataset is resampled and fed into the subsequent base learner 

model for training. Following the training phase, 

aggregation, or voting classifier, is employed, where the test 

data's output is determined by the class receiving the highest 

votes from the base learner models [31]. The schematic 

representation of the random forest's general model is 

depicted in FIGURE 4. 

 
FIGURE 4. Generalized Structure for Random Forest [31] 

The Random Forest method starts with the formation of 

trees, where each decision tree is formed by applying the gini 

index defined in equation (2) below [32]. 

 
𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐷) = 1 −  ∑ 𝑃𝑖

2
𝑚

𝑖=1
 

(2) 

Where 𝑃𝑖 is the proportion of the number of attributes in 

each class, and m is the number of each attribute. The feature 

that has the lowest total Gini Index value will be the root 

node in the tree. The total Gini Index at an internal node (e.g., 

K) is calculated in the following equation (3). 

𝑇𝑜𝑡. 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐾) =  
𝑇1

𝑇
 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐷1) + 

𝑇2

𝑇
 𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 (𝐷2) (3) 

Where 𝑇1 is the total records belonging to the first class, 

𝑇2 is the total records belonging to the second class, and T is 

the total records of all classes. This process continues with 

the formation of child nodes until all nodes in the tree cannot 

be split. After the entire tree is formed, the classification 

stage continues using the voting method. The stages of 

completion with the Random Forest algorithm are as follows 

[33]: 

1. Determine the number of trees (k) selected from a total 

of m features, where k < m. 

2. Then random samples are taken as many as N in the 

dataset for each tree. 

3. In each tree, a random subset of predictors is taken, 

where m < p, p is the number of predictor variables. 

4. Then, the process in the second and third steps is 

repeated for k trees. 

5. Prediction results are obtained from the most votes from 

the classification results of as many trees. 

E. BAYESIAN OPTIMIZATION 

Bayesian optimization is a popular method in 

hyperparameter tuning. This method was chosen because of 

its ability to obtain the optimal value quickly. It utilizes a 

Gaussian Process (GP) that comprehensively understands 

https://jeeemi.org/index.php/jeeemi/index
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prior knowledge. The algorithm depends on fitting a 

probability model to the observed value of the target to be 

optimized. By analyzing the predictive distribution, 

Bayesian optimization techniques direct the search towards 

areas of the input space anticipated to offer the most 

informative insights into solving the optimization problem 

[34]. 

Bayesian optimization uses a Gaussian process to update 

previous values by considering previous parameter 

information. The Bayes formula is employed to compute the 

posterior probability distribution along with the mean and 

variance of the accuracy for each hyperparameter value. A 

higher average accuracy signifies strong model performance. 

During subsequent iterations, the process of choosing points 

with high average accuracy is termed exploitation, whereas 

selecting points with significant accuracy variance is termed 

exploration. In the Bayesian optimization procedure, 

exploration takes precedence in the initial stages, 

transitioning to exploitation in the later stages [35]. Equation 

(4), which states that model A and observation B, is the basis 

for the optimization process based on Bayesian theory [34], 

[36].  

𝑃 (𝐴|𝐵) =  
𝑃 (𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

(4) 

Where P(A) is the prior probability and P(B) represents the 

probability of a value of variables A and B respectively. 

P(A|B) and P(B|A) are conditional probabilities, i.e., the 

posterior of variable A if the value of B is known, and vice 

versa, the likelihood of variable B if the value of A is known. 

Equation (4) can be simplified by ignoring the normalization 

factor P(B), resulting in a simpler formula as shown in Eq. 

(5) below. 

𝑃 (𝐴|𝐵) = 𝑃 (𝐵|𝐴) 𝑃(𝐴) (5) 

The steps in operational Bayesian Optimization are as 

follows [36]: 

1. Form a probability model as a surrogate of the objective 

function. 

2. Find hyperparameters that produce optimal 

performance. 

3. Implement these hyperparameters in the actual objective 

function. 

4. Update the surrogate model by incorporating 

information from the new results. 

5. Repeating steps 2-4 until reaching the maximum 

number of iterations or a set time limit. 

F. EVALUATION 

1. CONFUSION MATRIX 

Confusion Matrix is a method used to evaluate the accuracy 

and performance of classification algorithms, whether they 

are used for classifying or predicting attributes. It is designed 

as an evaluation method for machine learning algorithms 

used in solving classification problems[37]. The confusion 

matrix comprises data comparing the system's classification 

outcomes with the expected classification results [38]. The 

confusion matrix is a data matrix that juxtaposes the system's 

classification outcomes with the anticipated classification 

results. It includes False Negative (FN), False Positive (FP), 

True Negative (TN), and True Positive (TP), each of which 

is precisely detailed in the accompanying table, depicted as 

TABLE 3. This matrix offers a comprehensive view of the 

system's performance, enabling a nuanced understanding of 

classification accuracy and error rates [22], [32]. 

TABLE 3 

Confusion Matrix 

Actual Class 
Predicted Class 

Class = Yes Class = No 

Class = Yes True Positif (TP) False Negatif (FN) 

Class = No False Positif (FP) True Negatif (TN) 

By using a confusion matrix, it can calculate various 

evaluation matrices such as accuracy, precision, recall, and 

f-measure. The following is the calculation formula [14], 

[15], [32], [39]. 

1. Accuracy 

Accuracy is the percentage of accuracy of the model in 

classifying data correctly on the test, with both positive  

and negative results. Accuracy can be calculated in Eq. 

(6) as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑁 +  𝐹𝑃 +  𝑇𝑁
 

(6) 

2. Recall 

Recall is the proportion of true positive estimates to the 

total true positive data. Recall can be calculated in Eq. 

(7) as follows. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(7) 

3. Precision 

Precision is the ratio of the original positive estimate to 

the overall estimate of the positive result prediction. 

Precision can be calculated in Eq. (8) as follows. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 +  𝑇𝑃
 

(8) 

4. F - Measure 

F-Measure is a metric that combines Precision and 

Recall into a single value that presents a balance 

between the two. F-Measure can be calculated in Eq. (9) 

as follows. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

(9) 

 

2. AREA UNDER CURVE (AUC) 

The Area Under Curve (AUC) method quantifies the area 

beneath the Receiver Operating Characteristic (ROC) curve, 

serving as a measure to evaluate classification 

performance[40]. AUC assesses the likelihood that the 

classification system will assign a higher value to a positive 

sample than a negative one when randomly selected[41]. 

Therefore, a higher AUC value signifies the superior quality 

of the classification method utilized [42]. The categories for 

the range of AUC values can be seen in TABLE 4. 

TABLE 4 
Category AUC Value 

Category AUC Value 

Excellent Classification 0.90 - 1.00 

https://jeeemi.org/index.php/jeeemi/index
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Good Classification 0.80 - 0.90 

Fair Classification 0.70 - 0.80 

Poor Classification 0.60 - 0.70 

Failure Classification 0.50 - 0.60 

AUC has a range from 0 to 1, in this study, AUC is used 

as a metric to assess the performance of machine learning 

classification models in classifying between Lung Cancer 

and Non-Lung Cancer.  When the AUC value is close to 1, it 

indicates that the model has a perfect ability to distinguish 

two different class distributions [14]. The AUC calculation 

formula can be seen in Eq. (10) below [38].  

𝐴𝑈𝐶 =  
(

𝑇𝑃
𝑇𝑃 +  𝐹𝑁) ∗ (

𝑇𝑁
𝑇𝑁 + 𝐹𝑃)

2
 

(10) 

 
III. RESULTS 

This study will present the results of evaluating model 

performance in lung cancer classification using the CatBoost, 

CatBoost using Hyperparameter Tuning Bayesian 

Optimization, Random Forest, and Random Forest using 

Hyperparameter Tuning Bayesian Optimization. Data that has 

gone through the preprocessing and data balancing stages is 

used for testing. The distribution of both training and test data 

is assessed through the implementation of the 10-Fold Cross 

Validation method. This entails dividing the dataset into ten 

equal segments, with one segment allocated as test data and 

the remaining nine segments utilized for training purposes. 

This procedure is iterated until each segment has been 

employed as test data, ultimately yielding an average 

performance value across all iterations. 

A. THE RESULTS OF THE CATBOOST METHOD 

This section unveils the experimental findings derived from 

the utilization of the CatBoost classification model employing 

default hyperparameters. The performance metrics of this 

assessment model are comprehensively detailed in TABLE 5. 
 

TABLE 5 
CatBoost Results 

Set 
CatBoost 

Accuracy Precision Recall F-M AUC 

1 0.9737 0.9737 0.975 0.9744 1 

2 0.8684 0.8913 0.875 0.8571 0.991 

3 0.9737 0.9762 0.9722 0.9756 1 

4 0.9474 0.95 0.95 0.9474 0.9976 

5 0.9737 0.975 0.9737 0.973 1 

6 0.9474 0.9524 0.9474 0.9444 0.9858 

7 0.9211 0.9318 0.9211 0.9143 0.983 

8 0.9737 0.975 0.9737 0.973 1 

9 0.9474 0.9524 0.9474 0.9444 0.995 

10 0.9737 0.975 0.9737 0.973 0.995 

Average 0.95002 0.95528 0.9509 0.9476 0.9947 

 

TABLE 5 exhibits the outcomes derived from executing 

of the CatBoost model utilizing default hyperparameters, 

which underwent ten segments through a cross validation 

process. Subsequent to these segments, it is discerned that 

the average performance of the model yielded commendable 

metrics: an accuracy of 0.95002, a precision score of 

0.95528, a recall rate of 0.9509, an F-measure of 0.9476, and 

an AUC value of 0.9947. These results underscore the 

efficacy of the CatBoost algorithm in achieving high levels 

of accuracy and reliability in lung cancer classification tasks. 

B. THE RESULTS OF THE CATBOOST METHOD USING 
HYPERPARAMETER TUNING BAYESIAN 
OPTIMIZATION 

This section unveils the experimental findings derived from 

the utilization of the CatBoost classification model with 

hyperparameter tuning using the Bayesian Optimization 

method. The hyperparameters of the Catboost model used for 

the tuning process in this study are comprehensively depicted 

in TABLE 6, which provides insight into the description of the 

hyperparameters and their use in the model. 
TABLE 6 

List of CatBoost Hyperparameters Used in the Tuning Process 

Hyperparameter Description 

learning_rate 
Controls the contribution rate of each tree at each 

iteration 

depth Defines the maximum depth of each tree 

iteration 
Defining the maximum number of trees in the 

ensemble 

12_leaf_reg Adjusting tree node weights 

border_count Defining the number of bins in feature quantization 

subsample Setting the data fraction 

colsample_bylevel Setting the feature fraction 

 

Subsequently, the hyperparameter configuration is 

presented in TABLE 7, which provides a comprehensive 

overview of the refined hyperparameter settings achieved 

through the optimization procedure. 
TABLE 7 

Hyperparameter Setup for CatBoost Method 

Hyperparameter Value 

learning_rate 0.01, 1.0 

depth 1, 10 

iterations 10, 100 

l2_leaf_reg 0.1, 10.0 

border_count 1, 255 

subsample 0.1, 1.0 

colsample_bylevel 0.1, 1.0 

Best Hyperparameter Value 

learning_rate 0.61185806 

depth 10 

iterations 100 

l2_leaf_reg 0.1 

border_count 255 

subsample 0.1 

colsample_bylevel 0.1 

Train Accuracy 0.9974 

Test Accuracy 0.9792 

After obtaining the best combination value of the 

hyperparameters from the tuning process, which we can see in 

TABLE 7, then insert the best hyperparameters into the 
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CatBoost model. The performance of the CatBoost model 

using Bayesian Optimization can be seen in TABLE 8. 

TABLE 8 
CatBoost with Bayesian Optimization Results 

Set 
CatBoost + Bayesian Optimization 

Accuracy Precision Recall F-M AUC 

1 0.9737 0.9737 0.975 0.9744 0.984 

2 0.8684 0.8913 0.875 0.8571 0.981 

3 1 1 1 1 1 

4 0.9474 0.95 0.95 0.9474 0.995 

5 0.9737 0.975 0.9737 0.973 0.997 

6 0.9474 0.9524 0.9474 0.9444 0.975 

7 0.9737 0.975 0.9737 0.973 0.974 

8 0.9737 0.975 0.9737 0.973 1 

9 0.9474 0.9524 0.9474 0.9444 1 

10 0.9737 0.975 0.9737 0.973 0.992 

Average 0.95791 0.96198 0.9589 0.9559 0.9901 

 

In TABLE 8, the findings of the CatBoost model enriched 

with hyperparameter tuning using Bayesian optimization are 

carefully detailed. By employing a 10-fold cross-validation 

strategy and obtaining the average, the CatBoost model 

shows significant performance improvements. Specifically, 

after applying hyperparameter tuning with Bayesian 

optimization, the CatBoost model showed significant 

progress, achieving a commendable accuracy of 0.95791, 

precision score of 0.96198, recall rate of 0.9589, F-measure 

of 0.9559, and AUC value of 0.9973. These results 

underscore the efficacy and substantial potential of using 

Bayesian optimization techniques to improve the 

performance of the CatBoost algorithm in lung cancer 

classification tasks. 

C. THE RESULTS OF THE RANDOM FOREST METHOD 

This section unveils the experimental findings derived from 

the utilization of the Random Forest classification model 

employing default hyperparameters. The performance metrics 

of this assessment model are comprehensively detailed in 

TABLE 9. 
TABLE 9 

Random Forest Results 

Set 
Random Forest 

Accuracy Precision Recall F-M AUC 

1 0.9737 0.9737 0.975 0.9744 1 

2 0.8684 0.8913 0.875 0.8571 1 

3 1 1 1 1 1 

4 0.9474 0.95 0.95 0.9474 1 

5 0.9737 0.975 0.9737 0.973 1 

6 0.9474 0.9524 0.9474 0.9444 0.995 

7 0.9474 0.9524 0.9474 0.9444 0.989 

8 0.9737 0.975 0.9737 0.973 1 

9 0.9737 0.975 0.9737 0.973 1 

Set 
Random Forest 

Accuracy Precision Recall F-M AUC 

10 0.9737 0.975 0.9737 0.973 0.989 

Average 0.95791 0.96198 0.9589 0.9559 0.9973 

In TABLE 9, the findings from the Random Forest model 

execution, which includes ten segment iterations using cross 

validation, are well presented. It can be seen that on average 

the Random Forest model using the default hyperparameters 

achieves good performance metrics. Specifically, the model 

demonstrated an accuracy of 0.95791, precision of 0.96198, 

recall rate of 0.9589, F-measure of 0.9559, and AUC of 

0.9973. These results underscore the efficacy and reliability 

of the Random Forest algorithm in the context of lung cancer 

classification tasks. 

D. THE RESULTS OF THE RANDOM FOREST METHOD 
USING HYPERPARAMETER TUNING BAYESIAN 
OPTIMIZATION 

This section unveils the experimental findings derived from 

the utilization of the Random Forest classification model with 

hyperparameters tuning using the Bayesian Optimization 

method. The hyperparameters of the Random Forest model 

used for the tuning process in this study are comprehensively 

depicted in TABLE 10, which provides insight into the 

description of the hyperparameters and their use in the model. 

TABLE 10 
List of Random Forest Hyperparameters Used in the Tuning Process 

Hyperparameter Description 

n_estimators Number of decision trees to be created in the 

ensemble 

criterion Criteria for selecting the best features to split nodes 

max_features Number of randomly drawn features at each split 

max_depth Maximum depth of the tree 

min_samples_split Minimum number of samples required to split nodes 

min_samples_leaf The Minimum number of samples required to be a 

leaf (last) node 

bootstrap Determine whether to use bootstrap samples when 

building the tree 

Subsequently, the hyperparameter configuration is 

presented in TABLE 11, which provides a comprehensive 

overview of the refined hyperparameter settings achieved 

through the optimization procedure.  

TABLE 11 
Hyperparameter Setup for Random Forest Method 

Hyperparameter Value 

n_estimators 10, 1000 

criterion 'gini', 'entropy' 

max_features 0.1, 1.0 

max_depth 1, 20 

min_samples_split 2, 20 

min_samples_leaf 1, 10 

bootstrap True, False 

Best Hyperparameter Value 

n_estimators 1000 
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criterion gini 

max_features 0.1 

max_depth 13 

min_samples_split 2 

min_samples_leaf 1 

bootstrap False 

Train Accuracy 0.9974 

Test Accuracy 0.9792 

 

After obtaining the best combination value of the 

hyperparameters from the tuning process, which we can see in 

TABLE 11, then insert the best hyperparameters into the 

CatBoost model. The performance of the CatBoost model 

using Bayesian Optimization can be seen in TABLE 12.  

TABLE 12 
Random Forest with Bayesian Optimization Results 

Set 
Random Forest + Bayesian Optimization 

Accuracy Precision Recall F-M AUC 

1 0.9737 0.9737 0.975 0.9744 1 

2 0.8947 0.9091 0.9 0.8889 1 

3 1 1 1 1 1 

4 0.9737 0.9737 0.975 0.9744 1 

5 1 1 1 1 1 

6 0.9737 0.975 0.9737 0.973 1 

7 0.9474 0.9524 0.9474 0.9444 1 

8 1 1 1 1 1 

9 0.9737 0.975 0.9737 0.973 1 

10 0.9737 0.975 0.9737 0.973 0.997 

Average 0.97106 0.97339 0.9718 0.9701 0.99986 

 

In TABLE 11, the findings of the Random Forest model 

enriched with hyperparameter tuning using Bayesian 

optimization are carefully detailed. By employing a 10-fold 

cross-validation strategy and obtaining the average, the 

Random Forest model shows significant performance 

improvements. Specifically, after applying hyperparameter 

tuning with Bayesian optimization, the Random Forest 

model showed significant progress, achieving a 

commendable accuracy of 0.97106, precision score of 

0.97339, recall rate of 0.9718, f-measure of 0.97011, an 

AUC value of 0.999. These results underscore the efficacy 

and substantial potential of employing Bayesian 

optimization techniques to enhance the performance of the 

Random Forest algorithm in lung cancer classification tasks. 

IV. DISCUSSION 

This study conducted four experiments based on the 

previously described research results. The experiments 

include the application of two classification methods, namely 

CatBoost and Random Forest, first using default 

hyperparameters and then using hyperparameters that have 

been set up through a tuning process using Bayesian 

Optimization with the aim of improving the prediction 

performance of the model. It can be seen in TABLE 7 and 

TABLE 11 that each method shows the best hyperparameter 

results after the tuning process. However, since some of these 

parameters, such as border_count, depth, and iterations for the 

CatBoost method, and n_estimators for the Random Forest 

method are near the extreme of their range, there is still room 

for improvement.  Thus, these values can still be searched and 

explored for optimal combinations using Bayesian 

Optimization. 

The comparison of assessment outcomes for CatBoost 

utilizing default hyperparameters and those optimized through 

Bayesian Optimization hyperparameter tuning is depicted in 

FIGURE 5, based on the results provided in TABLE 5 and 

TABLE 8. This visualization offers a comprehensive 

overview of the performance disparities between the two 

approaches, highlighting the efficacy of employing Bayesian 

Optimization in refining the model hyperparameters. 

FIGURE 5. Comparison of CatBoost Results with and without 
Hyperparameter Tuning Bayesian Optimization 

FIGURE 5 shows that there is an improvement in the 

performance of several evaluation metrics, such as accuracy, 

precision, recall, and F-measure, when the CatBoost model 

uses Bayesian Optimization for hyperparameter tuning. These 

results illustrate that hyperparameter tuning can have a real 

positive impact on improving model performance. The 

relatively small decrease in the AUC value after 

hyperparameter tuning may indicate that the tuning has found 

a more consistent configuration or fit to the data used, resulting 

in more stable results. The decrease in AUC value from 

0.99475 to 0.99014 in the model after hyperparameter tuning 

indicates an improvement in the model's performance in 

distinguishing between positive and negative classes. It can be 

interpreted that the model before and after tuning is stable and 

reliable in distinguishing between positive and negative 

classes despite the small numerical change. In other words, 

hyperparameter tuning has successfully improved the overall 

performance of the CatBoost model. The comparison of 

assessment outcomes between the random forest model 

utilizing default hyperparameters and those refined through 

hyperparameter tuning via Bayesian Optimization, as 

delineated in the findings presented in TABLE 9 and TABLE 

12 respectively, is depicted in FIGURE 6. This visual 

representation encapsulates the performance disparities 
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between the two approaches, providing a comprehensive 

overview of the effectiveness of hyperparameter tuning in 

optimizing the random forest model. The graphical illustration 

serves as a valuable tool for discerning the impact of parameter 

optimization on key evaluation metrics, such as accuracy, 

precision, recall, and F-measure. Through this comparative 

analysis, researchers gain deeper insights into the efficacy of 

employing Bayesian Optimization to enhance the predictive 

capabilities of the random forest algorithm. 

 

FIGURE 6. Comparison of Random Forest Results with and without 
Hyperparameter Tuning Bayesian Optimization 

FIGURE 6 visually demonstrates a noteworthy enhancement 

in performance across all evaluation metrics when the 

Random Forest model integrates Bayesian Optimization for 

hyperparameter tuning. These findings vividly illustrate the 

tangible positive effects of hyperparameter tuning on elevating 

the model's performance within the Random Forest 

framework. The discernible improvement suggests that the 

hyperparameter configuration derived through the Bayesian 

Optimization process aligns more closely with the inherent 

characteristics of the training data. Consequently, the Random 

Forest model exhibits heightened efficacy in discerning 

underlying patterns within the dataset, thereby facilitating 

more precise predictions. This empirical evidence underscores 

the pivotal role of hyperparameter tuning in optimizing model 

performance. It underscores the importance of tailored 

parameter settings in enhancing the predictive capabilities of 

machine learning algorithms. 

The comprehensive findings of all the evaluations 

performed on all the models in this study using the lung cancer 

dataset are carefully presented in FIGURE 7. This figure 

summarizes the culmination of the analysis and assessment 

performed on the performance of the models, providing a 

concise overview of their efficacy in handling the complexity 

of the lung cancer dataset.  

As seen in FIGURE 7, the Random Forest model optimized 

with Bayesian Optimization provides superior performance 

compared to other models. In comparison with other studies, 

the findings of this research indicate that the use of CatBoost 

and Random Forest combined with Bayesian Optimization 

hyperparameter tuning is more effective in classifying lung 

cancer data. Specifically, this methodology elevates the 

evaluation metric value compared to prior studies that 

employed alternative classification algorithms or did not use 

Bayesian Optimization hyperparameter tuning. Additional 

testing was conducted through comparative analysis of the 

evaluation results obtained in this research with the results of 

others research using the same dataset. This comparison aims 

to assess the performance achieved in this research in relation 

to previous research efforts. The comparative results are 

presented in TABLE 13. 

 

FIGURE 7. Comparison of Evaluation Results 

TABLE 13 
Comparison of Accuracy Results with Previous Research 

Algorithms Accuracy (%) 

NB [15] 91.6 

SVM [15] 92.6 

k-NN [15] 90.5 

AdaBoost [15] 90.5 

J48 [15] 90.5 

LR [15] 94.7 

CatBoost 95 

CatBoost + BO 95.7 

RF 95.7 

RF + BO 97.1 

 

 As evidenced in TABLE 13, it can be concluded that the 

methods employed in this study are superior to previous 

research. Despite the absence of hyperparameter tuning using 

Bayesian optimization, both the CatBoost and Random Forest 

models demonstrate commendable performance when applied 

to the lung cancer dataset compared to previous research. 

However, it is noteworthy that more favorable outcomes can 

be achieved through the implementation of hyperparameter 

tuning using Bayesian optimization techniques. By using 

Bayesian Optimization as a hyperparameter tuning method, 

this research reveals the improved performance of lung cancer 

classification when two machine learning methods, CatBoost 

and Random Forest are used. This method helps in finding 

better hyperparameter configurations that optimize the 

classification model, allowing the model to classify data more 

accurately and efficiently. 
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While the experiments conducted in this study demonstrate 

significant improvements in model performance through 

hyperparameter tuning using Bayesian Optimization, there 

remain certain limitations and areas for further exploration. 

Despite achieving optimized hyperparameter settings, some 

parameters, such as border_count, depth, and iterations for the 

CatBoost method, and n_estimators for the Random Forest 

method, approach the extremes of their respective ranges. This 

proximity to the boundary suggests potential limitations in 

further optimizing these hyperparameters, as pushing them 

beyond their current range could lead to overfitting or 

computational inefficiencies. Additionally, despite the 

improvements in performance metrics, the impact of 

hyperparameter tuning may vary depending on the specific 

characteristics and distribution of the dataset. Therefore, 

generalizing the effectiveness of Bayesian Optimization 

across different datasets and problem domains may require 

further investigation and validation. 

The findings presented in FIGURE 5 and FIGURE 6, 

alongside the comprehensive evaluation results summarized in 

FIGURE 7, hold several implications for both research and 

practical applications in lung cancer classification. Firstly, the 

significant performance improvements observed in the 

Random Forest model optimized with Bayesian Optimization 

underscore the potential of this approach in enhancing the 

accuracy and efficiency of lung cancer classification models. 

By leveraging advanced optimization techniques like 

Bayesian Optimization, researchers and practitioners can 

effectively navigate the complex landscape of hyperparameter 

configuration, leading to more robust and reliable predictive 

models. Furthermore, the comparison with previous studies 

highlights the superiority of the CatBoost and Random Forest 

models combined with Bayesian Optimization 

hyperparameter tuning in classifying lung cancer data. This 

suggests that adopting advanced machine learning methods 

and optimization techniques can yield substantial 

advancements in medical diagnosis and treatment planning. 

Overall, the findings of this study emphasize the importance 

of methodological rigor and innovation in developing 

predictive models for medical applications, ultimately 

contributing to improved patient outcomes and healthcare 

delivery. 

V. CONCLUSION 

In this study, machine learning algorithms were used to 

identify and classify lung cancer. The approach involves five 

steps, including collecting data, data preprocessing, dividing 

the data into training and testing sets using 10-fold cross 

validation, training the model, and comparing the results. The 

results illustrate four experiments that include applying two 

classification methods, CatBoost and Random Forest, using 

default hyperparameters and a Bayesian Optimization tuning 

process. Data analysis shows the most effective 

hyperparameter combinations for each method after 

hyperparameter tuning with Bayesian Optimization. 

Nevertheless, further enhancements are possible by exploring 

their optimal configurations, considering that some 

hyperparameters may still be at the edge of their value ranges. 

Evaluation of the results is done by considering various 

performance parameters such as accuracy, recall, precision, F-

measure, and AUC. After completing the training of all 

models, it was found that the Random Forest model using 

Bayesian Optimization hyperparameter tuning outperformed 

the other models with accuracy 0.97106, precision 0.97339, 

recall 0.97185, f-measure 0.97011 and AUC 0.99974 for the 

lung cancer dataset. Thus, this study can help improve the 

clinical prediction of lung cancer from patients medical 

records. The findings obtained by the CatBoost model show 

consistent performance, characterized by stability both before 

and after hyperparameter tuning. Although it does not surpass 

the Random Forest model in all evaluation matrices, the 

CatBoost model shows a fairly good level of accuracy overall. 

This stability shows that the CatBoost model maintains 

robustness and reliability at various stages, indicating its 

potential as a reliable choice for classification tasks. 

Nevertheless, in order to further enhance the performance of 

the approach in predicting lung cancer, future research needs 

to pay attention to several key aspects. One important thing 

that needs to be considered in future research is that the dataset 

used should be larger and diverse in the features included. This 

will allow the model to learn more complex patterns and 

provide more accurate predictions. Furthermore, future 

research could also consider other classification methods that 

may be more suitable or effective when combined with 

Bayesian Optimization. Lastly, further exploration of the 

optimal hyperparameter combination using Bayesian 

Optimization on the classification method to be used.  By 

making improvements to these aspects, it is hoped that future 

research can attain more precise and comprehensive outcomes 

in the classification of lung cancer data. 
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