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ABSTRACT Software defect prediction is necessary for desktop and mobile applications. Random Forest defect prediction 

performance can be significantly increased with the parameter optimization process compared to the default parameter. 

However, the parameter tuning step is commonly neglected. Random Forest has numerous parameters that can be tuned, as a 

result manually adjusting parameters would diminish the efficiency of Random Forest, yield suboptimal results and it will take 

a lot of time. This research aims to improve the performance of Random Forest classification by using SMOTE to balance the 

data, Genetic Algorithm as selection feature, and using hyperparameter tuning to optimize the performance. Apart from that, it 

is also to find out which hyperparameter tuning method produces the best improvement on the Random Forest classification 

method. The dataset used in this study is NASA MDP which included 13 datasets. The method used contains SMOTE to handle 

imbalance data, Genetic Algorithm feature selection, Random Forest classification, and hyperparameter tuning methods 

including Grid Search, Random Search, Optuna, Bayesian (with Hyperopt), Hyperband, TPE and Nevergrad. The results of 

this research were carried out by evaluating performance using accuracy and AUC values. In terms of accuracy improvement, 

the three best methods are Nevergrad, TPE, and Hyperband. In terms of AUC improvement, the three best methods are 

Hyperband, Optuna, and Random Search. Nevergrad on average improves accuracy by about 3.9% and Hyperband on average 

improves AUC by about 3.51%. This study indicates that the use of hyperparameter tuning improves Random Forest 

performance and among all the hyperparameter tuning methods used, Hyperband has the best hyperparameter tuning 

performance with the highest average increase in both accuracy and AUC. The implication of this research is to increase the 

use of hyperparameter tuning in software defect prediction and improve software defect prediction performance. 

INDEX TERMS Genetic Algorithm, Hyperparameter Tuning, Random Forest, Software Defect Prediction 

I. INTRODUCTION 

Software system continue to develop and have an important 

role in every aspect of our society [1].  With this important 

role, the level of software complexity will increase and will 

also increase the difficulty in providing high quality, low-cost, 

and maintainable software. This difficulty will also increase 

the possibility of creating software defects [2]. A defect is an 

abnormality in software that causes the system to run 

incorrectly or produce unexpected results [3]. Software 

defects can cause a failure in the system which will reduce the 

quality of desktop or mobile applications. These defects may 

occur due to syntax failures, spelling errors, incorrect program 

code in lines, requirements, and designs or specifications [4]. 

Defect prediction is one of the pivotal and crucial tasks in the 

software development process. Defect prediction can reduce 

maintenance costs, improve quality, performance, and 

improve user satisfaction [3]. The impact of these defect 

predictions needs to be considered with the rise of software 

development, especially the trend of using mobile 

applications. There is a lack of a vast overview of the present 

state defect prediction research due to the large number of 

published divergent software defect prediction datasets, 

approaches, and frameworks [5]. 
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Tuning was not discussed in 78% of the research work [6]. 

If the parameters are adjusted, the learner algorithm efficiency 

and performance score increase significantly contrasted to the 

non-tuned values for fixed code attributes, which usually lead 

to damaging and illusive outcomes. This ensures that the 

outcome will be pretty much optimized by searching the entire 

problem search. The parameter optimization process can 

significantly increase Random Forest defect prediction 

performance compared to the default parameter [7]. However, 

the parameter tuning step is commonly neglected. Random 

Forest has numerous parameters that can be tuned. As a result, 

manually adjusting parameters would diminish the efficiency 

of Random Forest, yield suboptimal results and it will take a 

lot of time. To address this issue, the hyperparameter tuning 

method was used to find the best parameter values 

automatically. 

In research [8] the research using Artificial Neural Network 

(ANN) with Artificial Bee Colony (ABC) and generated AUC 

about 0.77 on CM1, 082 on P1, and 0.71 on JM1. Different 

research [9] used CS-ILDM, a hybrid of Cost-Sensitive 

Learning (CSL) and Large Margin Distribution Machine 

(LDM) generated AUC of about 0.771 on CM1, 0.856 on PC1, 

and 0747 on JM1. In other research [10] using Random Forest 

(RF) generated accuracy of about 0.929 on PC1, 0.983 on 

PC2, 0.892 on PC3, 0.882 on PC4, and using Improved 

Random Forest (IRF) generated accuracy of about 0.945 on 

PC1, 0.985 on PC2, 0.896 on PC3, and 0.906 on PC4. 

In this study, authors made a comparison of various 

Hyperparameter Tuning for Software Defect Prediction that 

combines SMOTE to handle data imbalance problems, 

Genetic Algorithm (GA) as feature selection method, and the 

classification process will be applied using Random Forest 

(RF) algorithm. The Hyperparameter Tuning methods used 

are Grid Search, Random Search, Optuna, Bayesian Search 

(With Hyperopt), Hyperband, Tree Parzen Estimator, and 

Nevergrad. The approaches to each Hyperparameter Tuning 

method will be compared based on accuracy and AUC values.  

This research aims to increase the accuracy and AUC of 

software defect prediction by combining all of those 

procedures. The results of this research are expected to provide 

contributions such as : 

a. It provides a better understanding of feature selection on 

software defect prediction and classification performance 

with hyperparameter tuning. 

b. This provides insight into the most efficient and optimal 

strategies for hyperparameter tuning. 

c. It has the potential to be implemented in software defect 

prediction in order to get the more specific and optimal 

result. 

d. The outcome of this study further enrich the awareness of 

the hyperparameter tuning procedure in software defect 

prediction. 

 
II. MATERIAL AND METHODS 

FIGURE 1 depicts the research flow for this study, which 

consists of SMOTE, feature selection, hyperparameter tuning 

process, and classification. In this study, the first step is to 

collect the NASA MDP dataset, followed by dividing the data 

onto data training and data testing. The dataset is split into 

80% for data train and 20% for data test. Subsequently, feature 

selection is performed by employing Genetic Algorithm 

before hyperparameter tuning and classification. Then, the 

hyperparameter phase is executed using Grid Search, Random 

Search, Optuna, Bayesian with Hyperopt, Hyperband, Tree 

Parzen Estimators, and Nevergrad method. The classification 

phase used the Random Forest method. The study evaluation 

is based on the Accuracy and AUC value. 

 

FIGURE 1. Research flow of Random Forest classification model 

 

The search space was taken into consideration while selecting 

the hyperparameter tuning approach, and some of the 

parameters were chosen because of their similar process. The 

search space that was employed for this study was predefined. 

Other than numbers, search space values can be employed in 

the hyperparameter tuning approach. For example, bootstrap 

contains parameter values that can be either True or False. 

In our study, hyperparameter tuning optimizes the 

parameter of Random Forest which is “n_estimators”, 

“max_depth”, “min_samples_leaf”, “min_samples_split”, and 

“bootstrap”. The best parameter options (search space) are set 

as “[50, 100, 200, 400]” for n_estimators, “[None, 10, 20, 40]” 

for max_depth, “[2, 5, 10, 20]” for min_samples_split, “[1, 2, 

4, 8]” for min_samples_leaf, and “[True, False]” for bootstrap. 

This parameter option is employed based on a larger search 

space than the default parameter. The default parameter values 

for the parameters are 100 for n_estimators, None for 

max_depth, 1 for min_samples_leaf, 2 for min_samples_leaf 

and True for bootstrap. Those search spaces are applied to all 

hyperparameter tuning in this study. 

A. DATASET 
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The dataset used for this study is NASA MDP [11] that have 

been used in previous research. This dataset has two class 

labels: 
1) Class label “Y” for defective 

2) Class label “N” for no defective 

Label “Y” is changed to “1” and label “N” changed to “0” 

B. SMOTE 

SMOTE generates fictional data based on the space 

characteristic similarities of minority modules. Compared to 

the standard oversampling method, it successfully avoids the 

classifier overfitting issue. The fundamental idea involves 

adding artificially created minority class instances to their 

closest neighbors, hence increasing the quantity of minority 

class instances to balance the dataset. [12]. Assume N 

represents the oversampling ratio. First of all, for each 

minority class instance, select K instances at random based on 

the P closest minority class neighbors for every minority class 

instance. Afterward, generate a synthetic sample for each 

instance in the minority class and select K instances to create 

N additional minority class samples. In the end, integrate the 

fresh instances with the existing instances set to create a new 

training instance set (Eq. (1)). 

  𝑥𝑛𝑒𝑤 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1) × (𝑦[𝑖] − 𝑥)       (1) 

 

where i is 1, 2, … N, rand(0,1) are random numbers between 

0 and 1. 𝑥𝑛𝑒𝑤 is the new instance, x is the minority class 

instance, y[i] is the closest to i neighbour x [13].  

C. GENETIC ALGORITHM FEATURE SELECTION 

Genetic Algorithm is an optimization procedure that optimizes 

binary search spaces by manipulating potential solutions. The 

search area is deputized by a chromosome, comprising a 

limited series of “0” and “1”. The Genetic Algorithm process 

is based on sample populations. Genetic Algorithm increases 

the amount of candidates seeking better solutions. Throughout 

the Genetic Algorithm process, the population encounters 

genetic operators like as selection, inheritance, and mutation. 

The GA approach begins by embarking a population 

hyperparameter sets, which represent possible remedies [14]. 

To utilize Genetic Algorithm as selection feature to exclude 

inconsequential or insignificant features, chromosomes are 

defined as a feature mask. A chromosome is represented as a 

binary string that is either “0” or “1”. A value of “1“indicate 

the feature is selected, whereas “0” indicates it is not [15]. 

In studies carried out by [16]. In his research using Genetic 

Algorithm (GA) compared to other feature selection methods 

can select the best subset of features better. GA is also 

compared to Particle Swarm Optimization (PSO). According 

to the experiment, GA outperforms PSO in terms of 

performance. So, the feature selection used in this research is 

Genetic Algorithm. 

D. GRID SEARCH HYPERPARAMETER TUNING 

A Grid Search involved and constructed by a set of 

predetermined parameter values that are necessary to give 

ideal accuracy and AUC [17]. Grid Search integrates all the 

options that have been established by hyperparameters to get 

the ideal values for each parameters [18] (Eq. (2)).  

           Parameter = arg 𝑚𝑎𝑥𝜃∈𝐺  𝑓(𝜃)      (2) 

 

𝜃 ∈ 𝐺 means there is a consider on every combination of 

hyperparameter (𝜃) that exist in the grid set (G). 𝑓(𝜃) is the 

evaluation function that measures the performance of models 

with a particular set of hyperparameter. Grid Search consists 

of several steps [19], which are:  

1) Automatically generates parameter sets depending on a 

given parameter option. If the specified parameter options 

are limited to 4 parameter values and applied to 5 

parameters, then the grid search will generate 4 × 4 × 4 

× 4 × 4 = 1024 combination. 

2) Analyze and evaluate all potential parameter settings. 

3) Identify the best parameter. 

E. RANDOM SEARCH HYPERPARAMETER TUNING 

Random Search selects hyperparameter values at random from 

a specified hyperparameter space. This strategy may be more 

efficient for hyperparameter optimization, particularly when 

working with high-dimensional search spaces because it does 

not need to analyze all potential combinations. [20] [21]. The 

procedure of Random Search can be seen as follows (Eq. (3)).: 
 

Parameter = arg 𝑚𝑖𝑛𝜃 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜃)      (3) 

 

𝜃 represents the hyperparameter vector to be optimized and 

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜃) is a function that measures model 

performance based on a certain combination of 

hyperparameter. Those combinations are selected randomly. 

Random Search consists of several steps [19], which are: 

1) Random Search creates potential parameter settings based 

on a specified iteration limit. If Random Search is used to 

seek the optimal parameters of 5 type parameters, the 

Random Search will generate parameter values according 

to the number of parameters given. The entire procedure 

goes on for a set number of iterations. 

2) Analyze and evaluate all potential parameter settings. 

3) Identify the best parameter. 

F. OPTUNA HYPERPARAMETER TUNING 

Optuna hyperparameter tuning approach involves minimizing 

or maximizing an objective function that acknowledges a set 

of hyperparameters as input and returns the validation score. 

Optuna considers optimization processes as studies, and 

objective function evaluations as trials [22]. Optuna tests 

numerous hyperparameter combinations and evaluates their 

performance on a defined testing dataset. Optuna uses iterative 

experimentation and evaluation to find the optimal 

hyperparameter set for a specific performance metric [23]. 

Optuna can be represented as follows (Eq. (4)) :  

 

       𝑥𝑖 = 𝑂𝑝𝑡𝑢𝑛𝑎(𝑓, 𝑆ℎ1
, 𝑆ℎ2

, … , 𝑆ℎ𝑛
)      (4) 

 

In Eq. (4) 𝑥𝑖 is the number of iterations to be carried out, 𝑓 is 

the objective function that must be optimized, and 𝑆ℎ𝑛
 is the 
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search space for each hyperparameter ℎ𝑖. Optuna includes a 

pruning tool that allows you to prematurely end runs that are 

not optimum. To do this, the intermediate goal values are 

tracked and those that do not fulfill established parameters are 

eliminated. Optuna optimization approach is not confined to a 

single machine learning library or framework, making it a 

versatile tool that can be utilized across many domains and 

with different types of machine learning models [24]. 

G. BAYESIAN SEARCH (WITH HYPEROPT) 
HYPERPARAMETER TUNING 

Bayesian Optimization when picking the optimal 

hyperparameter set for the next assessment, consider the 

previous evaluation to determine the ideal hyperparameter. It 

involves updating the posterior distribution and maximizing 

the acquisition function. [25]. Bayes Search works by 

allocating a precedence likelihood to a particular parameter. 

Subsequently, multiplying it by the odds dispersion of the 

grading function to determine the likelihood of discovering 

better outcomes given a collection of hyperparameters [26]. 

The Bayesian optimization procedure works as follows: 

1) Use Eq. (5) to determine the points for each acquisition 

function. 

𝑥𝑡
𝑖 = arg 𝑀𝑎𝑥𝑥𝑢𝑖 (𝑥|𝐷1:𝑡−1)      (5) 

  

2) Choose the nominee using the probability Eq. (6) 

𝑃𝑡(𝑗) = ⅇ𝑛𝑔𝑡−1
𝑗

𝛴1=1
𝑘⁄ ⅇ𝑛𝑔𝑡−1

𝑗

      (6) 

 

3) Obtain a sample of the goal function 𝑓 using Eq. (7) 

        𝑦𝑡 = 𝑓(𝑥𝑡) + 𝜖𝑡       (7) 

 

4) Add The data to Eq. (8) and update the posterior function 

𝑓. 

𝐷1:𝑡 = {𝐷1:𝑡−1, (𝑥𝑡, 𝑦𝑡)       (8) 

 

5) Earn results with the Eq. (9). 

𝑟𝑡
𝑖 = 𝜇𝑡(𝑥𝑡

𝑖)       (9) 

 

6) Update gains with the Eq. (10) 

      𝑔𝑡
𝑖 = 𝑔𝑡−1

𝑖 + 𝑟𝑡
𝑖     (10) 

where 𝐷1:𝑡 = {𝑥𝑛, 𝑦𝑛}𝑛=1
𝑡−1  represents a training dataset 

consisting of 𝑡 − 1 observations of function 𝑓. The posterior f 

is calculated utilizing the Gaussian procedure given by Eq. 
(11), which assumes that the function mean m(x) = 0, the 

variance function k is specified by Eq. (12), and 𝑥𝑖 and 𝑥𝑗 

represent the ith and jth samples, respectively [25]. 

 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥𝑖, 𝑥𝑗))     (11) 

          𝑘(𝑥𝑖, 𝑥𝑖) = exp (−
1

2
||𝑥𝑖 − 𝑥𝑗||2)    (12) 

 

Hyperopt offers an optimization framework that disperses a 

configuration space, as well as an evaluation function that 

maps points within this space to actual-valued loss values, 

thereby enabling optimization techniques for exploring search 

spaces. These spaces have diverse variable types, sensitivity 

profiles, and conditional structures [27][28]. Hyperopt 

employs a Bayesian Optimization-based approach to explore 

a wide hyperparameter space more efficiently. This implies 

that Hyperopt tries to forecast the model performance based 

on prior evaluations and utilizes those predictions to pick the 

next hyperparameters to test, with the objective of finding the 

optimum combination with the smallest number of 

evaluations. This differs from procedures like Grid Search and 

Random Search, which may be less efficient since they do not 

leverage knowledge from past assessments [29].  

H. HYPERBAND HYPERPARAMETER TUNING 

Hyperband is a hyperparameter optimization approach that 

uses a bandit strategy to distribute resources repeatedly to a 

series of random hyperparameter configurations [30]. 

Hyperband creates a collection of n trial points and each trial 

point represents one hyperparameter setting. After that, 

Hyperband allocates resources data to each test point and 

assesses its performance. That means each tested 

hyperparameter configuration receives the same amount of 

resources to demonstrate its potential performance. By setting 

and limiting the number of resources used for each 

experiment, Hyperband tries to reduce the time and resources 

required to find the optimal hyperparameter configuration. A 

percentage of trial points with poor performance are regarded 

as less promising and consequently deleted from the set. This 

technique is repeated multiple times until there is just one trial 

point remaining in the set [31]. 

I. TREE PARZEN ESTIMATOR HYPERPARAMETER 
TUNING 

Tree Parzen Estimator (TPE) is an optimization technique that 

uses the search area and trial record hyperparameters as input 

and recommends which values to attempt in the next steps 

[32]. At every attempt, TPE picks fresh parameter samples and 

determines which set to use in the following iteration. At first, 

samples are selected equally over the search region and 

assessed. The gathered samples are sorted into two categories 

according to their score. The first category comprises samples 

that enhance the present score approximation, while the 

second category comprises the remainder. The goal of TPE is 

to identify which parameters are most probable to fall into the 

first category. Based on this process, TPE utilizes the 

distribution of the most optimal samples rather than the best 

estimated parameters[33]. 

J. NEVERGRAD HYPERPARAMETER TUNING  

Nevergrad is a derivative-free optimization platform that 

gathers a vast range of optimization methods and a vast range 

of test functions to assess them. Nevergrad may simply create 

and define a search domain, allowing numerous algorithms in 

Nevergrad to automatically change variables and take 

consideration of their perhaps logarithmic or discrete nature, 

as well as any user-defined mutation or recombination 

operator [34] [35]. 

K. RANDOM FOREST CLASSIFIER 

Random Forest is a classification approach that integrates 

numerous decision trees. Each decision tree is constructed 
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with random and independent sampled vector values. These 

vectors are spread identically across all trees in the model. By 

combining predictions from these trees, Random Forest can 

reduce overfitting and improve model performance.  Random 

Forest picks features at random from the whole number of 

features. After that, the root node is identified using the most 

efficient split technique. Then, the children of the nodes are 

going to be extracted using the identical best split method. 

Those steps will be carried out until a tree is constructed with 

the root node and the goal is obtained as a leaf node. In the 

end, all previous steps are repeated in order to generate a 

random number of trees A significant advantage of RF is that 

there is no need to trim each tree when there are several trees 

[36] [37]. This approach is based on two fundamental 

principles which are randomly selecting a subset of rows from 

a dataset and fuse the predictions of multiple classifiers. The 

data are resampled and supplied to the following basic learner 

algorithms for training [38]. Random Forest has many 

configurable parameters. Configuration of Random Forest 

parameters has a big impact on performance, so the 

hyperparameter tuning process is suitable for Random Forest 

[39]. 

 
III. RESULTS 

This section shows the performance of each hyperparameter 

tuning method utilizing Random Forest as the classification 

method. The performance of Random Forest is assessed based 

on the Accuracy and AUC values obtained. 

A.  SMOTE PROCESS 

The SMOTE process is executed on the data train. SMOTE 

increases the x and y train on all datasets, from 261 to 460 on 

CM1, 6225 to 9762 on JM1, 159 to 240 on KC1, 155 to 256 

on KC3, no change on KC4, 1590 to 3108 on MC1, 100 to 120 

on MC2, 202 to 370 on MW1, 564 to 1030 on PC1, 596 to 

1168 on PC2, 861 to 1524 on PC3, 1029 to 1768 on PC4 and 

1368 to 2004 on PC5. Those processes use SMOTE with 

random state = 42. 

B.  GENETIC ALGORITHM PROCESS 

The Genetic Algorithm procedure is carried out with default 

parameter settings, as was also done in the study [40]. Our 

Genetic Algorithm employs the “parameter_population_size” 

= 5, “num_generations” = 50 and “mutation_rate” = 0.05. 

TABLE 1 displays the outcome of GA feature selection. 

 
TABLE 1 

Feature selection with genetic algorithm 

Dataset Features Feature Selection GA 

CM1 37 17 

JM1 21 14 

KC1 21 11 

KC3 39 18 

KC4 41 22 

MC1 38 20 

MC2 39 20 

MW1 37 18 

PC1 37 22 

PC2 36 19 

PC3 37 16 

PC4 37 23 

PC5 38 17 

C.  HYPERPARAMETER TUNING PROCESS 

TABLE 2 shows the optimal parameter obtained after going 

through the hyperparameter tuning process. TABLE 2 is a 

pivotal element of this study, detailing the optimal 

hyperparameters obtained through various tuning methods for 

different datasets. Each dataset, named from CM1 to PC5, 

represents a unique case within the NASA MDP dataset 

collection. The table compares the results of six tuning 

methods: Grid Search, Random Search, Optuna, Bayesian 

(with Hyperopt), Hyperband, TPE, and Nevergrad34. These 

methods are employed to find the best combination of 

hyperparameters that yield the highest accuracy and AUC 

values for defect prediction. This granular level of detail 

enables the researchers to draw meaningful conclusions about 

the efficacy of each hyperparameter tuning approach, 

ultimately guiding the selection of the most effective method 

for enhancing the Random Forest classifier’s predictive 

capabilities. The study’s findings, as encapsulated in Table 2, 

serve as a testament to the importance of hyperparameter 

tuning in machine learning tasks, particularly in the context of 

software defect prediction where precision is paramount. 

D.  PERFORMANCE OF RANDOM FOREST CLASSIFIER  

The Random Forest model process is carried out using optimal 

parameters obtained from the previous process. TABLE 3 

displays the Accuracy and AUC values when the Random 

Forest classification method uses optimal parameters as in 

TABLE 2. Based on TABLE 3, It can be seen that there is an 

improvement in Accuracy and AUC in Random Forest which 

uses optimal parameters compared to Random Forest without 

using optimal parameter. 

In this study, the result of the software defect prediction 

assessment of NASA MDP datasets on the accuracy and AUC 

values obtained are presented in TABLE 3. Based on TABLE 

III there are several Accuracy and AUC values that are similar 

and even have the same value for several tuning 

hyperparameters. FIGURE 2 shows a comparison of each 

performance for each hyperparameter tuning. However, it can 

be seen in TABLE 3 that there are several performances on 

certain datasets that experience a decrease in Accuracy and 

AUC. TABLE 4 shows that of all datasets, Nevergrad has the 

biggest average gain in accuracy of roughly 3.9%, while 

Hyperband enhances AUC by approximately 3.5%. However, 

when utilizing accuracy and AUC as standards for this 

approach, Hyperband has the highest overall improvement 

rate.  
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TABLE 2 
Optimal parameter 

Tuning Parameter 
Dataset 

CM1 JM1 KC1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Grid Search 

n estimators 400 400 400 100 100 400 200 100 50 50 400 50 200 

min samples split 2 10 2 2 20 5 5 5 5 2 2 5 5 

min samples leaf 1 1 1 1 4 1 1 1 1 1 1 1 1 

max depth 40 None 40 10 10 None 10 None 40 40 None 20 None 

bootstrap False False False True False False True False False False False False False 

Random 

Search 

n_estimators 100 200 100 100 50 50 100 50 200 50 200 200 200 

min_samples_split 10 5 2 2 20 5 10 5 2 5 2 5 5 

min_samples_leaf 4 2 1 2 2 1 4 1 2 1 1 2 1 

max_depth 20 40 40 None 10 40 10 10 None 20 None None None 

bootstrap False False False True False False True True False False False False True 

Optuna 

n_estimators 200 50 400 200 100 50 400 50 400 100 50 200 400 

min_samples_split 20 5 10 5 5 2 2 2 2 10 10 2 2 

min_samples_leaf 1 4 1 1 2 1 1 1 1 1 4 1 2 

max_depth None 40 10 10 20 40 None 40 None 40 20 40 20 

bootstrap True False False False True True True False True False False True True 

Bayesian 

(HyperOpt) 

n_estimators 200 200 400 400 50 400 50 100 50 100 200 100 100 

min_samples_split 5 2 2 2 2 5 2 2 2 10 2 2 5 

min_samples_leaf 1 2 1 1 20 2 1 1 1 1 1 1 1 

max_depth 40 None 20 20 40 40 40 None 40 40 40 40 20 

bootstrap False False True True True False True True False False False False False 

Hyperband 

n_estimators 400 100 200 400 200 200 50 50 50 200 200 400 200 

min_samples_split 2 2 2 2 10 2 5 5 2 2 2 2 5 

min_samples_leaf 1 1 1 4 8 1 2 1 2 2 1 2 1 

max_depth 10 None 40 10 40 40 None None 20 40 40 20 20 

bootstrap True False False False True False True False True False False False False 

TPE 

n_estimators 400 200 400 400 50 400 50 400 50 50 50 400 200 

min_samples_split 10 2 10 10 10 5 5 10 2 20 10 2 10 

min_samples_leaf 1 4 1 1 8 2 2 4 2 2 1 1 1 

max_depth 20 None 40 40 None 20 20 20 40 None None 40 40 

Bootstrap False False False False False False False True True True True False False 

Nevergrad 

n_estimators 400 400 400 200 400 200 200 50 50 50 400 400 400 

min_samples_split 2 20 5 2 10 2 20 20 2 2 5 2 2 

min_samples_leaf 1 2 1 2 1 1 1 4 2 2 2 1 2 

max_depth 10 40 None 10 40 None 20 None 40 20 None 40 20 

bootstrap False True False False False True False False False False False True True 

 

TABLE 3 
Random Forest performance with hyperparameter tuning 

Data  

Tuning 

No 

Tuning 

Grid 

Search 

Random 

Search 
Optuna 

Bayesian Search 

(Hyperopt) 
Hyperband 

Tree Parzen 

Estimator 
Nevergrad 

CM1 
Accuracy 0.8182 0.8333 0.8636 0.8333 0.8333 0.8333 0.8636 0.8485 

AUC 0.7719 0.7785 0.7851 0.8132 0.7736 0.8264 0.7835 0.7818 

JM1 
Accuracy 0.7264 0.7579 0.7752 0.7662 0.7797 0.7791 0.7649 0.7592 

AUC 0.6789 0.6810 0.7007 0.7048 0.7095 0.6960 0.6791 0.6977 

KC1 
Accuracy 0.6750 0.7000 0.7000 0.7000 0.7250 0.7750 0.7500 0.8000 

AUC 0.4740 0.5000 0.4805 0.4913 0.5152 0.4957 0.4848 0.5108 

KC3 
Accuracy 0.6410 0.7179 0.6667 0.7949 0.7436 0.7436 0.7179 0.7179 

AUC 0.5926 0.6204 0.6074 0.6667 0.6370 0.6741 0.6444 0.5963 

KC4 
Accuracy 0.7600 0.8000 0.8000 0.8000 0.8400 0.7600 0.8000 0.8400 

AUC 0.8117 0.8929 0.8571 0.8896 0.8539 0.8571 0.8474 0.8442 

MC1 
Accuracy 0.9623 0.9673 0.9698 0.9698 0.9673 0.9698 0.9673 0.9749 

AUC 0.8695 0.8834 0.9135 0.9284 0.9111 0.8849 0.8979 0.8897 

MC2 
Accuracy 0.7200 0.7600 0.7600 0.7600 0.7600 0.7600 0.8000 0.8400 

AUC 0.8095 0.8571 0.9048 0.8333 0.8988 0.8929 0.8690 0.8333 
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(a)  

(b)  

FIGURE 2. Comparison of each hyperparameter tuning on Random Forest performance (a) Random Forest performance on accuracy, (b) Random 

Forest performance on AUC 

Data  

Tuning 

No 

Tuning 

Grid 

Search 

Random 

Search 
Optuna 

Bayesian Search 

(Hyperopt) 
Hyperband 

Tree Parzen 

Estimator 
Nevergrad 

MW1 
Accuracy 0.7843 0.7843 0.8235 0.8039 0.8039 0.7843 0.8431 0.8235 

AUC 0.6963 0.6232 0.7463 0.7500 0.7256 0.7335 0.7561 0.7244 

PC1 
Accuracy 0.9007 0.9007 0.9362 0.9291 0.9433 0.9530 0.9078 0.9149 

AUC 0.8672 0.8884 0.8857 0.8866 0.9034 0.9293 0.8957 0.9031 

PC2 
Accuracy 0.9799 0.9664 0.9799 0.9799 0.9664 0.9732 0.9732 0.9664 

AUC 0.9336 0.9302 0.9539 0.9569 0.9207 0.9474 0.9379 0.9276 

PC3 
Accuracy 0.8287 0.8287 0.8380 0.8472 0.8380 0.8519 0.8380 0.8565 

AUC 0.7947 0.8125 0.7957 0.8002 0.8042 0.8004 0.8199 0.8170 

PC4 
Accuracy 0.9147 0.9186 0.9264 0.9031 0.9186 0.9225 0.9341 0.9225 

AUC 0.9589 0.9509 0.9668 0.9544 0.9527 0.9515 0.9544 0.9524 

PC5 
Accuracy 0.7638 0.7434 0.7434 0.7522 0.7347 0.7522 0.7230 0.7172 

AUC 0.7733 0.7910 0.7945 0.7926 0.7749 0.7993 0.7742 0.7820 
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TABLE 4 
Average increase value on all dataset 

Hyperparameter Tuning 
Increase Value 

Accuracy AUC 

Grid Search 0.0157 0.0136 

Random Search 0.0237 0.0277 

Optuna 0.0280 0.0335 

Bayesian (Hyperopt) 0.0291 0.0268 

Hyperband 0.0294 0.0351 

TPE 0.0314 0.0240 

Nevergrad 0.0390 0.0176 

 
IV. DISCUSSION 

FIGURE 3 and FIGURE 4 show a comparative examination 

of the three best hyperparameter tuning methods to increase 

Accuracy and AUC on average. This comparison reveals that 

Nevergrad exceeds the other hyperparameter tuning methods 

in terms of accuracy, while Hyperband outperforms the 

remaining hyperparameter tuning method in terms of AUC. 

 

FIGURE 3. Comparison of accuracy performance of each tuning 
 

FIGURE 4. Comparison of AUC performance of each tuning 

 

TABLE 5 compares the performance of the models used in 

this study to the models from the previous study. Previous 

studies have proposed the IRF approach to increase Random 

Forest performance. Research has been conducted out and 

employs PC1, PC2, PC3, PC4 dataset. 
 

TABLE 5 
Comparison with previous research 

Dataset 

Previous Research Method 

(Accuracy) [10] Proposed Research 

with RF (Accuracy) 

 RF IRF 

PC1 92.9% 94.5% 95.3% 

PC2 98.3% 98.5% 98% 

PC3 89.2% 89.6% 85.65% 

PC4 88.2% 90.625% 92.25% 

 

The comparison of the two prior studies demonstrates that 

hyperparameter tuning has the ability to exceed or reach 

comparable results to previous research. In contrast, when 

hyperparameter tuning was used on PC1 and PC4, the 

accuracy value was effectively enhanced by 2.4% and 4.05%, 

respectively. The accuracy value was also effectively raised in 

IRF classification around 0.8% on PC1 and 1.625% on PC4. 

TABLE 6 compares the performance of the models used in 

this study to the models from the previous study. Previous 

studies have proposed the fusion of conventional Artificial 

Neural Network (ANN) and the inventive Artificial Bee 

Colony (ABC) machine learning. The other research uses CS-

ILDM, ANN-ABC, LDM, and NB. Research has been 

conducted and employs CM1, PC1, and JM1 datasets. 

 
TABLE 6 

Comparison with other research method 

Research Method 

Dataset (AUC) 

CM1 PC1 JM1 

[8] 

ANN-ABC 0.77 0.82 0.71 

NB 0.75 0.70 0.68 

RF 0.74 0.85 0.75 

C4.5 0.53 0.68 0.61 

[9] 

CS-ILDM 0.771 0.856 0.747 

ANN-ABC 0.773 0.823 0.711 

LDM 0.546 0.603 0.589 

NB 0.716 0.638 0.679 

Proposed 

Research 
RF 0.826 0.929 0.71 

 

Based on the data presented in TABEL 6, a comparison is 

made between different machine learning classifiers. In 

contrast, the proposed method using hyperparameter tuning 

and Genetic Algorithm feature selection produces the best 

performance on CM1 and PC1 datasets. Random Forest with 

this research approach outperforms various methodologies 

and outperforms the Random Forest without hyperparameter 

tuning. However, there are weaknesses obtained based on 

TABLE 5 and TABLE 6 where there are several performances 

that cannot be superior compared to other methods. One of the 

weaknesses of this method is that the parameters obtained can 

provide better performance and can also provide worse 

performance. It also has some limitations, especially in search 

space. Despite all that, it can be confirmed that the results of 

this research outperform previous research. The AUC value 
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and accuracy of Random Forest using Genetic Algorithm and 

hyperparameter tuning outperform the average AUC value 

and accuracy value of other methodologies. 

 
V. CONCLUSION 

Software defect prediction is important for desktop and mobile 

applications because it helps developers see possible problems 

before they happen, fix mistakes faster, enhance the quality of 

the program, and lessen the negative impact on the user 

experience. This research emphasizes enhancing the 

performance of Random Forest classification in terms of 

accuracy and AUC in software defect prediction. When 

compared to earlier research employing various 

classifications, it was discovered that Genetic Algorithm 

feature selection and hyperparameter tuning successfully 

improved accuracy and AUC results. According to the 

research findings, Random Forest classification using the 

Genetic Algorithm feature selection and hyperparameter 

tuning produces better results than other classification 

methods used in earlier studies.  This is proven by the AUC 

values for CM1 and PC1 of around 0.826 and 0.929. This is 

also proven by the accuracy values on PC1 and PC4 of 0.953 

and 0.922. According to this research, Hyperband has the best 

hyperparameter tuning performance with the highest average 

increase in accuracy and AUC. Hyperband increases the 

accuracy value on the entire dataset by 2.94% and increases 

the AUC value by 3.51%. 

This research still has several limitations, it can be seen that 

there is some decrease in accuracy and AUC performance on 

certain datasets. In future studies, it is recommended to utilize 

this approach alongside additional classification 

methodologies to forecasting software defects. The objective 

is to determine the best classification method to anticipate 

software defects. It also recommended to use of larger search 

space in hyperparameter tuning. The aim is to find out a more 

optimal parameter to use in the classification method to 

achieve enhanced efficiency or effectiveness. 
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