
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 137

RESEARCH ARTICLE OPEN ACCESS

Manuscript received February 10, 2024; revised February 26, 2024; accepted March 8, 2024; date of publication April 20, 2024
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v6i2.375
Copyright © 2024 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
How to cite: Mulia Kevin Suryadi, Rudy Herteno, Setyo Wahyu Saputro, Mohammad Reza Faisal, and Radityo Adi Nugroho, A Comparative
Study of Various Hyperparameter Tuning on Random Forest Classification with SMOTE and Feature Selection Using Genetic Algorithm in
Software Defect Prediction, Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 6, no. 2, pp. 137-147, April 2024

A Comparative Study of Various
Hyperparameter Tuning on Random Forest
Classification with SMOTE and Feature
Selection Using Genetic Algorithm in Software
Defect Prediction

Mulia Kevin Suryadi , Rudy Herteno , Setyo Wahyu Saputro , Mohammad Reza Faisal ,
and Radityo Adi Nugroho

Computer Science Department, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia

Corresponding author: rudy.herteno@ulm.ac.id

ABSTRACT Software defect prediction is necessary for desktop and mobile applications. Random Forest defect prediction

performance can be significantly increased with the parameter optimization process compared to the default parameter.

However, the parameter tuning step is commonly neglected. Random Forest has numerous parameters that can be tuned, as a

result manually adjusting parameters would diminish the efficiency of Random Forest, yield suboptimal results and it will take

a lot of time. This research aims to improve the performance of Random Forest classification by using SMOTE to balance the

data, Genetic Algorithm as selection feature, and using hyperparameter tuning to optimize the performance. Apart from that, it

is also to find out which hyperparameter tuning method produces the best improvement on the Random Forest classification

method. The dataset used in this study is NASA MDP which included 13 datasets. The method used contains SMOTE to handle

imbalance data, Genetic Algorithm feature selection, Random Forest classification, and hyperparameter tuning methods

including Grid Search, Random Search, Optuna, Bayesian (with Hyperopt), Hyperband, TPE and Nevergrad. The results of

this research were carried out by evaluating performance using accuracy and AUC values. In terms of accuracy improvement,

the three best methods are Nevergrad, TPE, and Hyperband. In terms of AUC improvement, the three best methods are

Hyperband, Optuna, and Random Search. Nevergrad on average improves accuracy by about 3.9% and Hyperband on average

improves AUC by about 3.51%. This study indicates that the use of hyperparameter tuning improves Random Forest

performance and among all the hyperparameter tuning methods used, Hyperband has the best hyperparameter tuning

performance with the highest average increase in both accuracy and AUC. The implication of this research is to increase the

use of hyperparameter tuning in software defect prediction and improve software defect prediction performance.

INDEX TERMS Genetic Algorithm, Hyperparameter Tuning, Random Forest, Software Defect Prediction

I. INTRODUCTION

Software system continue to develop and have an important

role in every aspect of our society [1]. With this important

role, the level of software complexity will increase and will

also increase the difficulty in providing high quality, low-cost,

and maintainable software. This difficulty will also increase

the possibility of creating software defects [2]. A defect is an

abnormality in software that causes the system to run

incorrectly or produce unexpected results [3]. Software

defects can cause a failure in the system which will reduce the

quality of desktop or mobile applications. These defects may

occur due to syntax failures, spelling errors, incorrect program

code in lines, requirements, and designs or specifications [4].

Defect prediction is one of the pivotal and crucial tasks in the

software development process. Defect prediction can reduce

maintenance costs, improve quality, performance, and

improve user satisfaction [3]. The impact of these defect

predictions needs to be considered with the rise of software

development, especially the trend of using mobile

applications. There is a lack of a vast overview of the present

state defect prediction research due to the large number of

published divergent software defect prediction datasets,

approaches, and frameworks [5].

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v6i2.375
https://creativecommons.org/licenses/by-sa/4.0/
mailto:rudy.herteno@ulm.ac.id
https://orcid.org/0009-0006-2954-6236
https://orcid.org/0000-0003-0637-8090
https://orcid.org/0009-0007-9250-7704
https://orcid.org/0000-0001-5748-7639
https://orcid.org/0000-0002-7326-7668

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 138

Tuning was not discussed in 78% of the research work [6].

If the parameters are adjusted, the learner algorithm efficiency

and performance score increase significantly contrasted to the

non-tuned values for fixed code attributes, which usually lead

to damaging and illusive outcomes. This ensures that the

outcome will be pretty much optimized by searching the entire

problem search. The parameter optimization process can

significantly increase Random Forest defect prediction

performance compared to the default parameter [7]. However,

the parameter tuning step is commonly neglected. Random

Forest has numerous parameters that can be tuned. As a result,

manually adjusting parameters would diminish the efficiency

of Random Forest, yield suboptimal results and it will take a

lot of time. To address this issue, the hyperparameter tuning

method was used to find the best parameter values

automatically.

In research [8] the research using Artificial Neural Network

(ANN) with Artificial Bee Colony (ABC) and generated AUC

about 0.77 on CM1, 082 on P1, and 0.71 on JM1. Different

research [9] used CS-ILDM, a hybrid of Cost-Sensitive

Learning (CSL) and Large Margin Distribution Machine

(LDM) generated AUC of about 0.771 on CM1, 0.856 on PC1,

and 0747 on JM1. In other research [10] using Random Forest

(RF) generated accuracy of about 0.929 on PC1, 0.983 on

PC2, 0.892 on PC3, 0.882 on PC4, and using Improved

Random Forest (IRF) generated accuracy of about 0.945 on

PC1, 0.985 on PC2, 0.896 on PC3, and 0.906 on PC4.

In this study, authors made a comparison of various

Hyperparameter Tuning for Software Defect Prediction that

combines SMOTE to handle data imbalance problems,

Genetic Algorithm (GA) as feature selection method, and the

classification process will be applied using Random Forest

(RF) algorithm. The Hyperparameter Tuning methods used

are Grid Search, Random Search, Optuna, Bayesian Search

(With Hyperopt), Hyperband, Tree Parzen Estimator, and

Nevergrad. The approaches to each Hyperparameter Tuning

method will be compared based on accuracy and AUC values.

This research aims to increase the accuracy and AUC of

software defect prediction by combining all of those

procedures. The results of this research are expected to provide

contributions such as :

a. It provides a better understanding of feature selection on

software defect prediction and classification performance

with hyperparameter tuning.

b. This provides insight into the most efficient and optimal

strategies for hyperparameter tuning.

c. It has the potential to be implemented in software defect

prediction in order to get the more specific and optimal

result.

d. The outcome of this study further enrich the awareness of

the hyperparameter tuning procedure in software defect

prediction.

II. MATERIAL AND METHODS

FIGURE 1 depicts the research flow for this study, which

consists of SMOTE, feature selection, hyperparameter tuning

process, and classification. In this study, the first step is to

collect the NASA MDP dataset, followed by dividing the data

onto data training and data testing. The dataset is split into

80% for data train and 20% for data test. Subsequently, feature

selection is performed by employing Genetic Algorithm

before hyperparameter tuning and classification. Then, the

hyperparameter phase is executed using Grid Search, Random

Search, Optuna, Bayesian with Hyperopt, Hyperband, Tree

Parzen Estimators, and Nevergrad method. The classification

phase used the Random Forest method. The study evaluation

is based on the Accuracy and AUC value.

FIGURE 1. Research flow of Random Forest classification model

The search space was taken into consideration while selecting

the hyperparameter tuning approach, and some of the

parameters were chosen because of their similar process. The

search space that was employed for this study was predefined.

Other than numbers, search space values can be employed in

the hyperparameter tuning approach. For example, bootstrap

contains parameter values that can be either True or False.

In our study, hyperparameter tuning optimizes the

parameter of Random Forest which is “n_estimators”,

“max_depth”, “min_samples_leaf”, “min_samples_split”, and

“bootstrap”. The best parameter options (search space) are set

as “[50, 100, 200, 400]” for n_estimators, “[None, 10, 20, 40]”

for max_depth, “[2, 5, 10, 20]” for min_samples_split, “[1, 2,

4, 8]” for min_samples_leaf, and “[True, False]” for bootstrap.

This parameter option is employed based on a larger search

space than the default parameter. The default parameter values

for the parameters are 100 for n_estimators, None for

max_depth, 1 for min_samples_leaf, 2 for min_samples_leaf

and True for bootstrap. Those search spaces are applied to all

hyperparameter tuning in this study.

A. DATASET

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 139

The dataset used for this study is NASA MDP [11] that have

been used in previous research. This dataset has two class

labels:
1) Class label “Y” for defective

2) Class label “N” for no defective

Label “Y” is changed to “1” and label “N” changed to “0”

B. SMOTE

SMOTE generates fictional data based on the space

characteristic similarities of minority modules. Compared to

the standard oversampling method, it successfully avoids the

classifier overfitting issue. The fundamental idea involves

adding artificially created minority class instances to their

closest neighbors, hence increasing the quantity of minority

class instances to balance the dataset. [12]. Assume N

represents the oversampling ratio. First of all, for each

minority class instance, select K instances at random based on

the P closest minority class neighbors for every minority class

instance. Afterward, generate a synthetic sample for each

instance in the minority class and select K instances to create

N additional minority class samples. In the end, integrate the

fresh instances with the existing instances set to create a new

training instance set (Eq. (1)).

 𝑥𝑛𝑒𝑤 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1) × (𝑦[𝑖] − 𝑥) (1)

where i is 1, 2, … N, rand(0,1) are random numbers between

0 and 1. 𝑥𝑛𝑒𝑤 is the new instance, x is the minority class

instance, y[i] is the closest to i neighbour x [13].

C. GENETIC ALGORITHM FEATURE SELECTION

Genetic Algorithm is an optimization procedure that optimizes

binary search spaces by manipulating potential solutions. The

search area is deputized by a chromosome, comprising a

limited series of “0” and “1”. The Genetic Algorithm process

is based on sample populations. Genetic Algorithm increases

the amount of candidates seeking better solutions. Throughout

the Genetic Algorithm process, the population encounters

genetic operators like as selection, inheritance, and mutation.

The GA approach begins by embarking a population

hyperparameter sets, which represent possible remedies [14].

To utilize Genetic Algorithm as selection feature to exclude

inconsequential or insignificant features, chromosomes are

defined as a feature mask. A chromosome is represented as a

binary string that is either “0” or “1”. A value of “1“indicate

the feature is selected, whereas “0” indicates it is not [15].

In studies carried out by [16]. In his research using Genetic

Algorithm (GA) compared to other feature selection methods

can select the best subset of features better. GA is also

compared to Particle Swarm Optimization (PSO). According

to the experiment, GA outperforms PSO in terms of

performance. So, the feature selection used in this research is

Genetic Algorithm.

D. GRID SEARCH HYPERPARAMETER TUNING

A Grid Search involved and constructed by a set of

predetermined parameter values that are necessary to give

ideal accuracy and AUC [17]. Grid Search integrates all the

options that have been established by hyperparameters to get

the ideal values for each parameters [18] (Eq. (2)).

 Parameter = arg 𝑚𝑎𝑥𝜃∈𝐺 𝑓(𝜃) (2)

𝜃 ∈ 𝐺 means there is a consider on every combination of

hyperparameter (𝜃) that exist in the grid set (G). 𝑓(𝜃) is the

evaluation function that measures the performance of models

with a particular set of hyperparameter. Grid Search consists

of several steps [19], which are:

1) Automatically generates parameter sets depending on a

given parameter option. If the specified parameter options

are limited to 4 parameter values and applied to 5

parameters, then the grid search will generate 4 × 4 × 4

× 4 × 4 = 1024 combination.

2) Analyze and evaluate all potential parameter settings.

3) Identify the best parameter.

E. RANDOM SEARCH HYPERPARAMETER TUNING

Random Search selects hyperparameter values at random from

a specified hyperparameter space. This strategy may be more

efficient for hyperparameter optimization, particularly when

working with high-dimensional search spaces because it does

not need to analyze all potential combinations. [20] [21]. The

procedure of Random Search can be seen as follows (Eq. (3)).:

Parameter = arg 𝑚𝑖𝑛𝜃 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜃) (3)

𝜃 represents the hyperparameter vector to be optimized and

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜃) is a function that measures model

performance based on a certain combination of

hyperparameter. Those combinations are selected randomly.

Random Search consists of several steps [19], which are:

1) Random Search creates potential parameter settings based

on a specified iteration limit. If Random Search is used to

seek the optimal parameters of 5 type parameters, the

Random Search will generate parameter values according

to the number of parameters given. The entire procedure

goes on for a set number of iterations.

2) Analyze and evaluate all potential parameter settings.

3) Identify the best parameter.

F. OPTUNA HYPERPARAMETER TUNING

Optuna hyperparameter tuning approach involves minimizing

or maximizing an objective function that acknowledges a set

of hyperparameters as input and returns the validation score.

Optuna considers optimization processes as studies, and

objective function evaluations as trials [22]. Optuna tests

numerous hyperparameter combinations and evaluates their

performance on a defined testing dataset. Optuna uses iterative

experimentation and evaluation to find the optimal

hyperparameter set for a specific performance metric [23].

Optuna can be represented as follows (Eq. (4)) :

 𝑥𝑖 = 𝑂𝑝𝑡𝑢𝑛𝑎(𝑓, 𝑆ℎ1
, 𝑆ℎ2

, … , 𝑆ℎ𝑛
) (4)

In Eq. (4) 𝑥𝑖 is the number of iterations to be carried out, 𝑓 is

the objective function that must be optimized, and 𝑆ℎ𝑛
 is the

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 140

search space for each hyperparameter ℎ𝑖. Optuna includes a

pruning tool that allows you to prematurely end runs that are

not optimum. To do this, the intermediate goal values are

tracked and those that do not fulfill established parameters are

eliminated. Optuna optimization approach is not confined to a

single machine learning library or framework, making it a

versatile tool that can be utilized across many domains and

with different types of machine learning models [24].

G. BAYESIAN SEARCH (WITH HYPEROPT)
HYPERPARAMETER TUNING

Bayesian Optimization when picking the optimal

hyperparameter set for the next assessment, consider the

previous evaluation to determine the ideal hyperparameter. It

involves updating the posterior distribution and maximizing

the acquisition function. [25]. Bayes Search works by

allocating a precedence likelihood to a particular parameter.

Subsequently, multiplying it by the odds dispersion of the

grading function to determine the likelihood of discovering

better outcomes given a collection of hyperparameters [26].

The Bayesian optimization procedure works as follows:

1) Use Eq. (5) to determine the points for each acquisition

function.

𝑥𝑡
𝑖 = arg 𝑀𝑎𝑥𝑥𝑢𝑖 (𝑥|𝐷1:𝑡−1) (5)

2) Choose the nominee using the probability Eq. (6)

𝑃𝑡(𝑗) = ⅇ𝑛𝑔𝑡−1
𝑗

𝛴1=1
𝑘⁄ ⅇ𝑛𝑔𝑡−1

𝑗

 (6)

3) Obtain a sample of the goal function 𝑓 using Eq. (7)

 𝑦𝑡 = 𝑓(𝑥𝑡) + 𝜖𝑡 (7)

4) Add The data to Eq. (8) and update the posterior function

𝑓.

𝐷1:𝑡 = {𝐷1:𝑡−1, (𝑥𝑡, 𝑦𝑡) (8)

5) Earn results with the Eq. (9).

𝑟𝑡
𝑖 = 𝜇𝑡(𝑥𝑡

𝑖) (9)

6) Update gains with the Eq. (10)

 𝑔𝑡
𝑖 = 𝑔𝑡−1

𝑖 + 𝑟𝑡
𝑖 (10)

where 𝐷1:𝑡 = {𝑥𝑛, 𝑦𝑛}𝑛=1
𝑡−1 represents a training dataset

consisting of 𝑡 − 1 observations of function 𝑓. The posterior f

is calculated utilizing the Gaussian procedure given by Eq.
(11), which assumes that the function mean m(x) = 0, the

variance function k is specified by Eq. (12), and 𝑥𝑖 and 𝑥𝑗

represent the ith and jth samples, respectively [25].

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥𝑖, 𝑥𝑗)) (11)

 𝑘(𝑥𝑖, 𝑥𝑖) = exp (−
1

2
||𝑥𝑖 − 𝑥𝑗||2) (12)

Hyperopt offers an optimization framework that disperses a

configuration space, as well as an evaluation function that

maps points within this space to actual-valued loss values,

thereby enabling optimization techniques for exploring search

spaces. These spaces have diverse variable types, sensitivity

profiles, and conditional structures [27][28]. Hyperopt

employs a Bayesian Optimization-based approach to explore

a wide hyperparameter space more efficiently. This implies

that Hyperopt tries to forecast the model performance based

on prior evaluations and utilizes those predictions to pick the

next hyperparameters to test, with the objective of finding the

optimum combination with the smallest number of

evaluations. This differs from procedures like Grid Search and

Random Search, which may be less efficient since they do not

leverage knowledge from past assessments [29].

H. HYPERBAND HYPERPARAMETER TUNING

Hyperband is a hyperparameter optimization approach that

uses a bandit strategy to distribute resources repeatedly to a

series of random hyperparameter configurations [30].

Hyperband creates a collection of n trial points and each trial

point represents one hyperparameter setting. After that,

Hyperband allocates resources data to each test point and

assesses its performance. That means each tested

hyperparameter configuration receives the same amount of

resources to demonstrate its potential performance. By setting

and limiting the number of resources used for each

experiment, Hyperband tries to reduce the time and resources

required to find the optimal hyperparameter configuration. A

percentage of trial points with poor performance are regarded

as less promising and consequently deleted from the set. This

technique is repeated multiple times until there is just one trial

point remaining in the set [31].

I. TREE PARZEN ESTIMATOR HYPERPARAMETER
TUNING

Tree Parzen Estimator (TPE) is an optimization technique that

uses the search area and trial record hyperparameters as input

and recommends which values to attempt in the next steps

[32]. At every attempt, TPE picks fresh parameter samples and

determines which set to use in the following iteration. At first,

samples are selected equally over the search region and

assessed. The gathered samples are sorted into two categories

according to their score. The first category comprises samples

that enhance the present score approximation, while the

second category comprises the remainder. The goal of TPE is

to identify which parameters are most probable to fall into the

first category. Based on this process, TPE utilizes the

distribution of the most optimal samples rather than the best

estimated parameters[33].

J. NEVERGRAD HYPERPARAMETER TUNING

Nevergrad is a derivative-free optimization platform that

gathers a vast range of optimization methods and a vast range

of test functions to assess them. Nevergrad may simply create

and define a search domain, allowing numerous algorithms in

Nevergrad to automatically change variables and take

consideration of their perhaps logarithmic or discrete nature,

as well as any user-defined mutation or recombination

operator [34] [35].

K. RANDOM FOREST CLASSIFIER

Random Forest is a classification approach that integrates

numerous decision trees. Each decision tree is constructed

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 141

with random and independent sampled vector values. These

vectors are spread identically across all trees in the model. By

combining predictions from these trees, Random Forest can

reduce overfitting and improve model performance. Random

Forest picks features at random from the whole number of

features. After that, the root node is identified using the most

efficient split technique. Then, the children of the nodes are

going to be extracted using the identical best split method.

Those steps will be carried out until a tree is constructed with

the root node and the goal is obtained as a leaf node. In the

end, all previous steps are repeated in order to generate a

random number of trees A significant advantage of RF is that

there is no need to trim each tree when there are several trees

[36] [37]. This approach is based on two fundamental

principles which are randomly selecting a subset of rows from

a dataset and fuse the predictions of multiple classifiers. The

data are resampled and supplied to the following basic learner

algorithms for training [38]. Random Forest has many

configurable parameters. Configuration of Random Forest

parameters has a big impact on performance, so the

hyperparameter tuning process is suitable for Random Forest

[39].

III. RESULTS

This section shows the performance of each hyperparameter

tuning method utilizing Random Forest as the classification

method. The performance of Random Forest is assessed based

on the Accuracy and AUC values obtained.

A. SMOTE PROCESS

The SMOTE process is executed on the data train. SMOTE

increases the x and y train on all datasets, from 261 to 460 on

CM1, 6225 to 9762 on JM1, 159 to 240 on KC1, 155 to 256

on KC3, no change on KC4, 1590 to 3108 on MC1, 100 to 120

on MC2, 202 to 370 on MW1, 564 to 1030 on PC1, 596 to

1168 on PC2, 861 to 1524 on PC3, 1029 to 1768 on PC4 and

1368 to 2004 on PC5. Those processes use SMOTE with

random state = 42.

B. GENETIC ALGORITHM PROCESS

The Genetic Algorithm procedure is carried out with default

parameter settings, as was also done in the study [40]. Our

Genetic Algorithm employs the “parameter_population_size”

= 5, “num_generations” = 50 and “mutation_rate” = 0.05.

TABLE 1 displays the outcome of GA feature selection.

TABLE 1

Feature selection with genetic algorithm

Dataset Features Feature Selection GA

CM1 37 17

JM1 21 14

KC1 21 11

KC3 39 18

KC4 41 22

MC1 38 20

MC2 39 20

MW1 37 18

PC1 37 22

PC2 36 19

PC3 37 16

PC4 37 23

PC5 38 17

C. HYPERPARAMETER TUNING PROCESS

TABLE 2 shows the optimal parameter obtained after going

through the hyperparameter tuning process. TABLE 2 is a

pivotal element of this study, detailing the optimal

hyperparameters obtained through various tuning methods for

different datasets. Each dataset, named from CM1 to PC5,

represents a unique case within the NASA MDP dataset

collection. The table compares the results of six tuning

methods: Grid Search, Random Search, Optuna, Bayesian

(with Hyperopt), Hyperband, TPE, and Nevergrad34. These

methods are employed to find the best combination of

hyperparameters that yield the highest accuracy and AUC

values for defect prediction. This granular level of detail

enables the researchers to draw meaningful conclusions about

the efficacy of each hyperparameter tuning approach,

ultimately guiding the selection of the most effective method

for enhancing the Random Forest classifier’s predictive

capabilities. The study’s findings, as encapsulated in Table 2,

serve as a testament to the importance of hyperparameter

tuning in machine learning tasks, particularly in the context of

software defect prediction where precision is paramount.

D. PERFORMANCE OF RANDOM FOREST CLASSIFIER

The Random Forest model process is carried out using optimal

parameters obtained from the previous process. TABLE 3

displays the Accuracy and AUC values when the Random

Forest classification method uses optimal parameters as in

TABLE 2. Based on TABLE 3, It can be seen that there is an

improvement in Accuracy and AUC in Random Forest which

uses optimal parameters compared to Random Forest without

using optimal parameter.

In this study, the result of the software defect prediction

assessment of NASA MDP datasets on the accuracy and AUC

values obtained are presented in TABLE 3. Based on TABLE

III there are several Accuracy and AUC values that are similar

and even have the same value for several tuning

hyperparameters. FIGURE 2 shows a comparison of each

performance for each hyperparameter tuning. However, it can

be seen in TABLE 3 that there are several performances on

certain datasets that experience a decrease in Accuracy and

AUC. TABLE 4 shows that of all datasets, Nevergrad has the

biggest average gain in accuracy of roughly 3.9%, while

Hyperband enhances AUC by approximately 3.5%. However,

when utilizing accuracy and AUC as standards for this

approach, Hyperband has the highest overall improvement

rate.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 142

TABLE 2
Optimal parameter

Tuning Parameter
Dataset

CM1 JM1 KC1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Grid Search

n estimators 400 400 400 100 100 400 200 100 50 50 400 50 200

min samples split 2 10 2 2 20 5 5 5 5 2 2 5 5

min samples leaf 1 1 1 1 4 1 1 1 1 1 1 1 1

max depth 40 None 40 10 10 None 10 None 40 40 None 20 None

bootstrap False False False True False False True False False False False False False

Random

Search

n_estimators 100 200 100 100 50 50 100 50 200 50 200 200 200

min_samples_split 10 5 2 2 20 5 10 5 2 5 2 5 5

min_samples_leaf 4 2 1 2 2 1 4 1 2 1 1 2 1

max_depth 20 40 40 None 10 40 10 10 None 20 None None None

bootstrap False False False True False False True True False False False False True

Optuna

n_estimators 200 50 400 200 100 50 400 50 400 100 50 200 400

min_samples_split 20 5 10 5 5 2 2 2 2 10 10 2 2

min_samples_leaf 1 4 1 1 2 1 1 1 1 1 4 1 2

max_depth None 40 10 10 20 40 None 40 None 40 20 40 20

bootstrap True False False False True True True False True False False True True

Bayesian

(HyperOpt)

n_estimators 200 200 400 400 50 400 50 100 50 100 200 100 100

min_samples_split 5 2 2 2 2 5 2 2 2 10 2 2 5

min_samples_leaf 1 2 1 1 20 2 1 1 1 1 1 1 1

max_depth 40 None 20 20 40 40 40 None 40 40 40 40 20

bootstrap False False True True True False True True False False False False False

Hyperband

n_estimators 400 100 200 400 200 200 50 50 50 200 200 400 200

min_samples_split 2 2 2 2 10 2 5 5 2 2 2 2 5

min_samples_leaf 1 1 1 4 8 1 2 1 2 2 1 2 1

max_depth 10 None 40 10 40 40 None None 20 40 40 20 20

bootstrap True False False False True False True False True False False False False

TPE

n_estimators 400 200 400 400 50 400 50 400 50 50 50 400 200

min_samples_split 10 2 10 10 10 5 5 10 2 20 10 2 10

min_samples_leaf 1 4 1 1 8 2 2 4 2 2 1 1 1

max_depth 20 None 40 40 None 20 20 20 40 None None 40 40

Bootstrap False False False False False False False True True True True False False

Nevergrad

n_estimators 400 400 400 200 400 200 200 50 50 50 400 400 400

min_samples_split 2 20 5 2 10 2 20 20 2 2 5 2 2

min_samples_leaf 1 2 1 2 1 1 1 4 2 2 2 1 2

max_depth 10 40 None 10 40 None 20 None 40 20 None 40 20

bootstrap False True False False False True False False False False False True True

TABLE 3
Random Forest performance with hyperparameter tuning

Data

Tuning

No

Tuning

Grid

Search

Random

Search
Optuna

Bayesian Search

(Hyperopt)
Hyperband

Tree Parzen

Estimator
Nevergrad

CM1
Accuracy 0.8182 0.8333 0.8636 0.8333 0.8333 0.8333 0.8636 0.8485

AUC 0.7719 0.7785 0.7851 0.8132 0.7736 0.8264 0.7835 0.7818

JM1
Accuracy 0.7264 0.7579 0.7752 0.7662 0.7797 0.7791 0.7649 0.7592

AUC 0.6789 0.6810 0.7007 0.7048 0.7095 0.6960 0.6791 0.6977

KC1
Accuracy 0.6750 0.7000 0.7000 0.7000 0.7250 0.7750 0.7500 0.8000

AUC 0.4740 0.5000 0.4805 0.4913 0.5152 0.4957 0.4848 0.5108

KC3
Accuracy 0.6410 0.7179 0.6667 0.7949 0.7436 0.7436 0.7179 0.7179

AUC 0.5926 0.6204 0.6074 0.6667 0.6370 0.6741 0.6444 0.5963

KC4
Accuracy 0.7600 0.8000 0.8000 0.8000 0.8400 0.7600 0.8000 0.8400

AUC 0.8117 0.8929 0.8571 0.8896 0.8539 0.8571 0.8474 0.8442

MC1
Accuracy 0.9623 0.9673 0.9698 0.9698 0.9673 0.9698 0.9673 0.9749

AUC 0.8695 0.8834 0.9135 0.9284 0.9111 0.8849 0.8979 0.8897

MC2
Accuracy 0.7200 0.7600 0.7600 0.7600 0.7600 0.7600 0.8000 0.8400

AUC 0.8095 0.8571 0.9048 0.8333 0.8988 0.8929 0.8690 0.8333

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 143

(a)

(b)

FIGURE 2. Comparison of each hyperparameter tuning on Random Forest performance (a) Random Forest performance on accuracy, (b) Random

Forest performance on AUC

Data

Tuning

No

Tuning

Grid

Search

Random

Search
Optuna

Bayesian Search

(Hyperopt)
Hyperband

Tree Parzen

Estimator
Nevergrad

MW1
Accuracy 0.7843 0.7843 0.8235 0.8039 0.8039 0.7843 0.8431 0.8235

AUC 0.6963 0.6232 0.7463 0.7500 0.7256 0.7335 0.7561 0.7244

PC1
Accuracy 0.9007 0.9007 0.9362 0.9291 0.9433 0.9530 0.9078 0.9149

AUC 0.8672 0.8884 0.8857 0.8866 0.9034 0.9293 0.8957 0.9031

PC2
Accuracy 0.9799 0.9664 0.9799 0.9799 0.9664 0.9732 0.9732 0.9664

AUC 0.9336 0.9302 0.9539 0.9569 0.9207 0.9474 0.9379 0.9276

PC3
Accuracy 0.8287 0.8287 0.8380 0.8472 0.8380 0.8519 0.8380 0.8565

AUC 0.7947 0.8125 0.7957 0.8002 0.8042 0.8004 0.8199 0.8170

PC4
Accuracy 0.9147 0.9186 0.9264 0.9031 0.9186 0.9225 0.9341 0.9225

AUC 0.9589 0.9509 0.9668 0.9544 0.9527 0.9515 0.9544 0.9524

PC5
Accuracy 0.7638 0.7434 0.7434 0.7522 0.7347 0.7522 0.7230 0.7172

AUC 0.7733 0.7910 0.7945 0.7926 0.7749 0.7993 0.7742 0.7820

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

CM1 JM1 KC1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

A
cc

u
ra

cy

Tuning method

No Hyperparameter Grid Search Random Search Optuna

Bayesian (HyperOpt) Hyperband Tree Parzen Estimator Nevergrad

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

CM1 JM1 KC1 KC3 KC4 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

A
U

C

Tuning method

No Hyperparameter Grid Search Random Search Optuna

Bayesian (HyperOpt) Hyperband Tree Parzen Estimator Nevergrad

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 144

TABLE 4
Average increase value on all dataset

Hyperparameter Tuning
Increase Value

Accuracy AUC

Grid Search 0.0157 0.0136

Random Search 0.0237 0.0277

Optuna 0.0280 0.0335

Bayesian (Hyperopt) 0.0291 0.0268

Hyperband 0.0294 0.0351

TPE 0.0314 0.0240

Nevergrad 0.0390 0.0176

IV. DISCUSSION

FIGURE 3 and FIGURE 4 show a comparative examination

of the three best hyperparameter tuning methods to increase

Accuracy and AUC on average. This comparison reveals that

Nevergrad exceeds the other hyperparameter tuning methods

in terms of accuracy, while Hyperband outperforms the

remaining hyperparameter tuning method in terms of AUC.

FIGURE 3. Comparison of accuracy performance of each tuning

FIGURE 4. Comparison of AUC performance of each tuning

TABLE 5 compares the performance of the models used in

this study to the models from the previous study. Previous

studies have proposed the IRF approach to increase Random

Forest performance. Research has been conducted out and

employs PC1, PC2, PC3, PC4 dataset.

TABLE 5
Comparison with previous research

Dataset

Previous Research Method

(Accuracy) [10] Proposed Research

with RF (Accuracy)

 RF IRF

PC1 92.9% 94.5% 95.3%

PC2 98.3% 98.5% 98%

PC3 89.2% 89.6% 85.65%

PC4 88.2% 90.625% 92.25%

The comparison of the two prior studies demonstrates that

hyperparameter tuning has the ability to exceed or reach

comparable results to previous research. In contrast, when

hyperparameter tuning was used on PC1 and PC4, the

accuracy value was effectively enhanced by 2.4% and 4.05%,

respectively. The accuracy value was also effectively raised in

IRF classification around 0.8% on PC1 and 1.625% on PC4.

TABLE 6 compares the performance of the models used in

this study to the models from the previous study. Previous

studies have proposed the fusion of conventional Artificial

Neural Network (ANN) and the inventive Artificial Bee

Colony (ABC) machine learning. The other research uses CS-

ILDM, ANN-ABC, LDM, and NB. Research has been

conducted and employs CM1, PC1, and JM1 datasets.

TABLE 6

Comparison with other research method

Research Method

Dataset (AUC)

CM1 PC1 JM1

[8]

ANN-ABC 0.77 0.82 0.71

NB 0.75 0.70 0.68

RF 0.74 0.85 0.75

C4.5 0.53 0.68 0.61

[9]

CS-ILDM 0.771 0.856 0.747

ANN-ABC 0.773 0.823 0.711

LDM 0.546 0.603 0.589

NB 0.716 0.638 0.679

Proposed

Research
RF 0.826 0.929 0.71

Based on the data presented in TABEL 6, a comparison is

made between different machine learning classifiers. In

contrast, the proposed method using hyperparameter tuning

and Genetic Algorithm feature selection produces the best

performance on CM1 and PC1 datasets. Random Forest with

this research approach outperforms various methodologies

and outperforms the Random Forest without hyperparameter

tuning. However, there are weaknesses obtained based on

TABLE 5 and TABLE 6 where there are several performances

that cannot be superior compared to other methods. One of the

weaknesses of this method is that the parameters obtained can

provide better performance and can also provide worse

performance. It also has some limitations, especially in search

space. Despite all that, it can be confirmed that the results of

this research outperform previous research. The AUC value

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

Hyperband TPE Nevergrad

av
er

ag
e

in
cr

ea
se

 a
cc

u
ra

cy

Tuning method

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

Random Search Optuna Hyperband

av
er

ag
e

in
cr

ea
se

 A
U

C

Tuning method

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 145

and accuracy of Random Forest using Genetic Algorithm and

hyperparameter tuning outperform the average AUC value

and accuracy value of other methodologies.

V. CONCLUSION

Software defect prediction is important for desktop and mobile

applications because it helps developers see possible problems

before they happen, fix mistakes faster, enhance the quality of

the program, and lessen the negative impact on the user

experience. This research emphasizes enhancing the

performance of Random Forest classification in terms of

accuracy and AUC in software defect prediction. When

compared to earlier research employing various

classifications, it was discovered that Genetic Algorithm

feature selection and hyperparameter tuning successfully

improved accuracy and AUC results. According to the

research findings, Random Forest classification using the

Genetic Algorithm feature selection and hyperparameter

tuning produces better results than other classification

methods used in earlier studies. This is proven by the AUC

values for CM1 and PC1 of around 0.826 and 0.929. This is

also proven by the accuracy values on PC1 and PC4 of 0.953

and 0.922. According to this research, Hyperband has the best

hyperparameter tuning performance with the highest average

increase in accuracy and AUC. Hyperband increases the

accuracy value on the entire dataset by 2.94% and increases

the AUC value by 3.51%.

This research still has several limitations, it can be seen that

there is some decrease in accuracy and AUC performance on

certain datasets. In future studies, it is recommended to utilize

this approach alongside additional classification

methodologies to forecasting software defects. The objective

is to determine the best classification method to anticipate

software defects. It also recommended to use of larger search

space in hyperparameter tuning. The aim is to find out a more

optimal parameter to use in the classification method to

achieve enhanced efficiency or effectiveness.

ACKNOWLEDGEMENT

We extend our gratitude to all the individuals associated with

the Computer Science study program, Faculty of Mathematics

and Natural Sciences, University of Lambung Mangkurat,for

their invaluable support and provision of resources that

facilitated the completion of this research. Our heartfelt

appreciation also goes out to our fellow project team members

for their dedication and collaborative efforts, which greatly

contributed to the achievements of this study.

REFERENCES
[1] H. K. Dam et al., “A deep tree-based model for software defect

prediction,” Feb. 2018, [Online]. Available:

http://arxiv.org/abs/1802.00921

[2] Z. Li, X. Y. Jing, and X. Zhu, “Progress on approaches to software

defect prediction,” IET Software, vol. 12, no. 3. Institution of

Engineering and Technology, pp. 161–175, Jun. 01, 2018. doi:

10.1049/iet-sen.2017.0148.

[3] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect

prediction using a connectivity-based unsupervised classifier,” in

Proceedings - International Conference on Software Engineering,

IEEE Computer Society, May 2016, pp. 309–320. doi:

10.1145/2884781.2884839.

[4] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, “Software defect

prediction using feature selection and random forest algorithm,” in

Proceedings - 2017 International Conference on New Trends in

Computing Sciences, ICTCS 2017, Institute of Electrical and

Electronics Engineers Inc., Jul. 2017, pp. 252–257. doi:

10.1109/ICTCS.2017.39.

[5] R. S. Wahono, “A Systematic Literature Review of Software Defect

Prediction: Research Trends, Datasets, Methods and Frameworks,”

Journal of Software Engineering, vol. 1, no. 1, 2015, [Online].

Available: http://journal.ilmukomputer.org

[6] G. Rana, E. U. Haq, E. Bhatia, and R. Katarya, “A Study of Hyper-

Parameter Tuning in the Field of Software Analytics,” in Proceedings

of the 4th International Conference on Electronics, Communication

and Aerospace Technology, ICECA 2020, Institute of Electrical and

Electronics Engineers Inc., Nov. 2020, pp. 455–459. doi:

10.1109/ICECA49313.2020.9297613.

[7] B. F. F. Huang and P. C. Boutros, “The parameter sensitivity of

random forests,” BMC Bioinformatics, vol. 17, no. 1, Sep. 2016, doi:

10.1186/s12859-016-1228-x.

[8] Ö. F. Arar and K. Ayan, “Software defect prediction using cost-

sensitive neural network,” Applied Soft Computing Journal, vol. 33,

pp. 263–277, Apr. 2015, doi: 10.1016/j.asoc.2015.04.045.

[9] C. Jin, “Software defect prediction model based on distance metric

learning,” Soft comput, vol. 25, no. 1, pp. 447–461, Jan. 2021, doi:

10.1007/s00500-020-05159-1.

[10] K. R. Magal, S. Gracia Jacob, and A. Professor, “Improved Random

Forest Algorithm for Software Defect Prediction through Data Mining

Techniques,” 2015.

[11] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “NASA MDP Software

Defects Data Sets,” IEEE Transactions on Software Engineering

39(9) , pp. 1208–1215, 2018, doi:

https://doi.org/10.6084/m9.figshare.c.4054940.v1.

[12] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The Impact

of Class Rebalancing Techniques on the Performance and

Interpretation of Defect Prediction Models,” IEEE Transactions on

Software Engineering, vol. 46, no. 11, pp. 1200–1219, Nov. 2020, doi:

10.1109/TSE.2018.2876537.

[13] C. Zhang, J. Song, Z. Pei, and J. Jiang, “An Imbalanced Data

Classification Algorithm of De-noising Auto-Encoder Neural

Network Based on SMOTE,” MATEC Web of Conferences ICCAE

2016, 2016, doi: 10.1051/conf/2016.

[14] K. A. Putri, W. Fawwaz, and A. Maki, “Enhancing Pneumonia

Disease Classification using Genetic Algorithm-Tuned DCGANs and

VGG-16 Integration,” Open Access Journal, vol. 6, no. 1, pp. 11–22,

2024, doi: 10.35882/jeemi.v6i1.349.

[15] S. Aalaei, H. Shahraki, A. Rowhanimanesh, and S. Eslami, “Feature

selection using genetic algorithm for breast cancer diagnosis:

experiment on three different datasets,” 2016.

[16] R. B. Bahaweres, A. Imam Suroso, A. Wahyu Hutomo, I. Permana

Solihin, I. Hermadi, and Y. Arkeman, “Tackling Feature Selection

Problems with Genetic Algorithms in Software Defect Prediction for

Optimization,” in Proceedings - 2nd International Conference on

Informatics, Multimedia, Cyber, and Information System, ICIMCIS

2020, Institute of Electrical and Electronics Engineers Inc., Nov.

2020, pp. 64–69. doi: 10.1109/ICIMCIS51567.2020.9354282.

[17] B. H. Shekar and G. Dagnew, Grid Search-Based Hyperparameter

Tuning and Classification of Microarray Cancer Data 2019 Second

International Conference on Advanced Computational and

Communication Paradigms (ICACCP). IEEE, 2019.

[18] T. N. Nuklianggraita, A. Adiwijaya, and A. Aditsania, “On the Feature

Selection of Microarray Data for Cancer Detection based on Random

Forest Classifier,” JURNAL INFOTEL, vol. 12, no. 3, pp. 89–96, Aug.

2020, doi: 10.20895/infotel.v12i3.485.

[19] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,

“The Impact of Automated Parameter Optimization on Defect

Prediction Models,” IEEE Transactions on Software Engineering, vol.

45, no. 7, pp. 683–711, Jul. 2019, doi: 10.1109/TSE.2018.2794977.

[20] P. Probst, M. N. Wright, and A. L. Boulesteix, “Hyperparameters and

tuning strategies for random forest,” Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, vol. 9, no. 3. Wiley-

Blackwell, May 01, 2019. doi: 10.1002/widm.1301.

[21] T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of

Algorithms and Applications,” Mar. 2020, [Online]. Available:

http://arxiv.org/abs/2003.05689

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 146

[22] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A

Next-generation Hyperparameter Optimization Framework,” in

Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Association for Computing

Machinery, Jul. 2019, pp. 2623–2631. doi:

10.1145/3292500.3330701.

[23] K. Cheng and S. Takada, “Software Defect Prediction based on

JavaBERT and CNN-BiLSTM,” 2023. [Online]. Available:

http://ceur-ws.org

[24] S. Shekhar, A. Bansode, and A. Salim, “A Comparative study of

Hyper-Parameter Optimization Tools,” Jan. 2022, [Online].

Available: http://arxiv.org/abs/2201.06433

[25] F. F. Firdaus, H. A. Nugroho, and I. Soesanti, “Deep Neural Network

with Hyperparameter Tuning for Detection of Heart Disease,” in

Proceedings - 2021 IEEE Asia Pacific Conference on Wireless and

Mobile, APWiMob 2021, Institute of Electrical and Electronics

Engineers Inc., Apr. 2021, pp. 59–65. doi:

10.1109/APWiMob51111.2021.9435250.

[26] H. Erbin and R. Finotello, “Machine learning for complete

intersection Calabi-Yau manifolds: A methodological study,”

Physical Review D, vol. 103, no. 12, Jun. 2021, doi:

10.1103/PhysRevD.103.126014.

[27] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-Sklearn:

Automatic Hyperparameter Configuration for Scikit-Learn,” 2014.

[28] J. Bergstra, B. Komer, D. Yamins, C. Eliasmith, and D. D. Cox,

“Computational Science & Discovery Hyperopt: a Python library for

model selection and hyperparameter optimization,” 2015.

[29] S. Putatunda and K. Rama, “A comparative analysis of hyperopt as

against other approaches for hyper-parameter optimization of

XGBoost,” in ACM International Conference Proceeding Series,

Association for Computing Machinery, Nov. 2018, pp. 6–10. doi:

10.1145/3297067.3297080.

[30] S. Falkner, A. Klein, and F. Hutter, “Combining Hyperband and

Bayesian Optimization,” 2017.

[31] J. Wang, J. Xu, and X. Wang, “Combination of Hyperband and

Bayesian Optimization for Hyperparameter Optimization in Deep

Learning,” Jan. 2018, [Online]. Available:

http://arxiv.org/abs/1801.01596

[32] H. Li, Q. Zhang, X. Qin, and S. Yuantao, “Raw vibration signal pattern

recognition with automatic hyper-parameter-optimized convolutional

neural network for bearing fault diagnosis,” Proc Inst Mech Eng C J

Mech Eng Sci, vol. 234, no. 1, pp. 343–360, Jan. 2020, doi:

10.1177/0954406219875756.

[33] C. Maurice, F. Madrigal, and F. Lerasle, “Hyper-optimization tools

comparison for parameter tuning applications,” 2017 14th IEEE

International Conference on Advanced Video and Signal Based

Surveillance (AVSS) : Aug. 29 2017-Sept. 1 2017., 2017.

[34] J. Rapin, M. Gallagher, P. Kerschke, M. Preuss, and O. Teytaud,

“Exploring the MLDA benchmark on the Nevergrad platform,” in

GECCO 2019 Companion - Proceedings of the 2019 Genetic and

Evolutionary Computation Conference Companion, Association for

Computing Machinery, Inc, Jul. 2019, pp. 1888–1896. doi:

10.1145/3319619.3326830.

[35] J. Rapin, P. Bennet, E. Centeno, D. Haziza, A. Moreau, and O.

Teytaud, “Open source evolutionary structured optimization,” in

GECCO 2020 Companion - Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion, Association for

Computing Machinery, Inc, Jul. 2020, pp. 1599–1607. doi:

10.1145/3377929.3398091.

[36] M. R. Ansyari, M. I. Mazdadi, F. Indriani, D. Kartini, and T. H.

Saragih, “Implementation of Random Forest and Extreme Gradient

Boosting in the Classification of Heart Disease Using Particle Swarm

Optimization Feature Selection,” Open Access Journal, vol. 5, no. 4,

pp. 250–260, 2023, doi: 10.35882/jeemi.v5i4.322.

[37] K. Vijiyakumar, B. Lavanya, I. Nirmala, and S. S. Caroline, Random

Forest Algorithm for the Prediction of Diabetes. 2019.

[38] V. Maulida, R. Herteno, M. R. Faisal, D. Kartini, and F. Abadi,

“Feature Selection Using Firefly Algorithm with Tree-Based

Classification in Software Defect Prediction,” Open Access Journal,

vol. 5, no. 4, pp. 223–230, 2023, doi: 10.35882/jeemi.v5i4.315.

[39] Y. N. Soe, P. I. Santosa, and R. Hartanto, Software Defect Prediction

Using Random Forest Algorithm 2018 12th South East Asian

Technical University Consortium (SEATUC). IEEE, 2018.

[40] I. Syarif, A. Prugel-Bennett, and G. Wills, “SVM Parameter

Optimization using Grid Search and Genetic Algorithm to Improve

Classification Performance,” TELKOMNIKA (Telecommunication

Computing Electronics and Control), vol. 14, no. 4, p. 1502, Dec.

2016, doi: 10.12928/telkomnika.v14i4.3956.

BIBLIOGRAPHY

Mulia Kevin Suryadi originated in Martapura,

Banjar, South Kalimantan. Since 2020, he has

pursued his academic endeavors as a student of the

Computer Science Department at Lambung

Mangkurat University. His current area of research

lies within the realm of software engineering. He

has selected this particular interest due to his

affinity towards software engineering.

Additionally, his final project involves research

centered on predicting software defects. The goal

of this research is to predict defects in software.

Rudy Herteno, was born in Banjarmasin,

South Kalimantan. After graduating from high

school, he pursued his undergraduate studies in

the Computer Science Department at Lambung

Mangkurat University and graduated in 2011.

After completing his undergraduate program, he

worked as a software developer to gather

experience for several years. He developed a lot

of software, especially for local governments. In

2017, He completed his master's degree in

Informatics from STMIK Amikom University.

Currently, he is a lecturer in the Faculty of Mathematics and Natural Science

at Lambung Mangkurat University. His research interests include software

engineering, software defect prediction, and deep learning.

Setyo Wahyu Saputro is a lecturer in Computer

Science Department, Faculty of Mathematics and

Natural Science, Lambung Mangkurat University in

Banjarbaru. He received bachelor’s degree also in

Computer Science from Lambung Mangkurat

University, and received his master’s degree in

Informatics from STMIK Amikom University. His

research interests include software engineering and

artificial intelligence applications.

https://jeeemi.org/index.php/jeeemi/index

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 6, No. 2, April 2024, pp: 137-147; eISSN: 2656-8632

Homepage: jeeemi.org 147

Mohammad Reza Faisal was born in

Banjarmasin. Following his graduation from high

school, he pursued his undergraduate studies in

the Informatics department at Pasundan

University in 1995, and later majored in Physics

at Bandung Institute of Technology in 1997. After

completing his bachelor's program, he gained

experience as a training trainer in the field of

information technology and software

development. Since 2008, he has been a lecturer

in computer science at Universitas Lambung Mangkurat, while also

pursuing his master's program in Informatics at Bandung Institute of

Technology in 2010. In 2015, he furthered his education by pursuing a

doctoral degree in Bioinformatics at Kanazawa University, Japan. To this

day, he continues his work as a lecturer in Computer Science at Universitas

Lambung Mangakurat. His research interests encompass Data Science,

Software Engineering, and Bioinformatic.

Radityo Adi Nugroho received his

bachelor's degree in Informatics from the

Islamic University of Indonesia and a master's

degree in Computer Science from Gadjah

Mada University. Currently, he is an assistant

professor in the Department of Computer

Science at Lambung Mangkurat University.

His research interests include software defect

prediction and computer vision. He is also a

practitioner in the field of information

technology as a project manager and systems

analyst to develop software and information

systems used by universities.

https://jeeemi.org/index.php/jeeemi/index

