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ABSTRACT  Due to its extensive steps and trials, drug discovery is a long and expensive process. In the last decade, as also 

hard pressed by the COVID-19 pandemic, the screening process could be assisted with the advancement in computational 

technology including the application of Machine Learning. The classification task in Machine Learning has become one of the 

major approaches for drug discovery. Unfortunately, this practice uses discretized labels that might lead to the loss of 

quantitative properties that could be meaningful. Therefore, in this paper, we aim to compare various Machine Learning 

regression algorithms in predicting inhibitory bioactivity, specifically the IC50 value, with the SARS-CoV-2 Replicase 

Polyprotein 1ab as the target. With 1,138 non-duplicated data downloaded from the ChEMBL database that was engineered 

into four dataset variances, 42 regression algorithms were utilized for the prediction. We found that there are computational 

challenges to the use of regression algorithms in predicting bioactivity, for only a handful and a specific dataset variance that 

returned valid performance parameters upon testing. The three that yielded the highest counts of valid performance parameters 

are the Histogram Gradient Boosting Regressor (HGBR), Light Gradient Boosting Machine Regressor (LGBR), and Random 

Forest Regression (RFR). Further statistical analyses show that there is no significant difference between these three algorithms, 

except for the time taken for training and testing the model, where the LGBR excels. Therefore, these three algorithms should 

be primarily considered for the study with the same nature. 

INDEX TERMS SARS-CoV-2 replicase polyprotein 1ab, drug discovery, regression algorithms, IC50 prediction. 

I. INTRODUCTION 

It is well known that drug discovery is a both lengthy and 

costly process [8]. The steps that cover pre-clinical, including 

several trials are found to be similar in several developed 

countries and may take 11.5 years until a market introduction 

[9], [10]. However, in late 2019 a new form of coronavirus 

started infecting humans and even led to a global catastrophe 

in early 2020 [11]. The catastrophic circumstances brought a 

dire need for the accelerated discovery of novel therapeutic 

options such as new healthcare technology [12] and Computer 

Aided Drug Discovery (CADD) [13]. 

In silico drug discovery, where computational powers are 

utilized, is a solution that has been extensively studied in 

recent years, especially in the pre-clinical step [10], [13]–[16]. 

The methods include molecular dynamic simulation (MDS) 

[14] and machine learning [14]–[16]. It has been used for 

discovering new compounds or repurposing known drugs, and 

until 2021, there were more than 70 approved drugs that were 

utilized in silico methods in its pre-clinical stage [14]. 

COVID-19 caused by the SARS-CoV-2 virus is one of the 

diseases that received global attention and where the CADD is 

actively researched [17]. The drug candidate for SARS-CoV-

2 may target human cells or, at the other end, target the virus 

itself [18]. In this case, the 3-chymotrypsin-like protease 

(3CLpro) or the Main Protease (Mpro), which is one of the key 

proteases of the SARS-CoV-2 that is important in replication 

is an enticing target due to the inexistence of its human 

homolog [19], [20]. This is the common scenario as reported 
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in various studies [20]–[25]. Another scenario targets the 

transmembrane protease serine 2 (TMPRSS2) at the host, 

rather than targeting the virus protein due to the highly 

mutative nature of the virus [26]. 

Machine Learning is a progressing field study concerning 

how computers can construct knowledge from a set of data 

(experience) [27]. It has been used to predict interactions 

between drugs and proteins, discover efficacy, and confirm the 

safety biomarkers [28]. Sulistiawan et al. [29] used a Deep 

Semi-Supervised Model to predict the Drug-Target Interaction 

(DTI) of the antiviral drug candidate of SARS-CoV-2. 

Machine Learning has also been used to discover the potential 

of Indonesian herbal compounds, as well as Traditional 

Chinese Medicine (TCM) as antiviral agents for SARS-CoV-

2 [5], [15], [23]. In a broader sense, Machine Learning also 

was used to predict drug synergy in cancer cells [30], as well 

as empowering web servers that can be used to predict 

inhibitory activities [2]–[4]. 

In terms of tasks, classification is the common one, applied 

in drug discovery. Drugs with known interaction will be 

labeled as 1 and those with no interaction will be labeled as 0 

[2]–[5], [29]–[32]. The label itself might have come from the 

DTI database or based on the half maximal inhibitory 

concentration value (IC50)[33], where the concentrations that 

are less than 1000 nM, between 1000 and 10000 nM, and 

greater than 10000 nM are labeled as active, intermediate, and 

inactive, respectively. In many cases, the intermediate ones are 

omitted. 

Regardless of its popularity in drug discovery, the use of 

discretized labels based on IC50 reduces the data resolution, as 

well as complicates comparisons and evaluations with other 

numeric parameters. Grouping of numeric data is discouraged 

in epidemiology studies [34]. Therefore, in this study, we use 

an uncommon approach in drug discovery, where we apply 

prediction instead of classification. To gain better insights, we 

apply various regression algorithms with the IC50 value used 

as a label. The purpose is to evaluate the possibility of using 

regression in place of classification in Machine Learning-

based drug discovery. The motivation is to preserve the 

quantitative properties in the label, which are commonly lost 

when the label is discretized into groups in classification 

studies. The availability of the predicted inhibitory bioactivity 

in its original quantitative form should provide a better chance 

of comparison with other drug discovery approaches in the 

future. The SARS-CoV-2 Replicase Polyprotein 1ab is used 

as our target protein since we are still moving on from the 

pandemic to epidemic status. The remainder of this article is 

organized as follows: in Section II we present the workflow as 

well as steps involved in this research, followed by the Results 

and Discussion in Section III. In Section IV the paper is 

concluded and some potential issues to be explored are 

presented. 

 
II. METHODS 

The method is similar to common data science methodology 

with some addition of the Chemical Space Analysis, which is 

common in drug discovery, and statistical comparison of the 

FIGURE 1. Research Course 
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algorithms [2], [3], [24], [35]. The whole process, as illustrated 

in FIGURE 1, comprised three main parts: data preparation, 

Quantitative Structure-Activity Relationship (QSAR) 

modeling and evaluation, and statistical analysis. 

 

A. DATA PREPARATION 

This part includes data collection and preprocessing. For this 

part, we used a free Google Colab service. The bioactivity 

dataset is queried from ChEMBL by using its web service and 

the provided Python Application Programming Interface 

(API) [1]. The ChEMBL ID for the target is 

CHEMBL4523582, queried on June 25th, 2023. At the 

moment, there were 1,220 inhibitory bioactivity data of the 

SARS-CoV-2 Replicase Polyprotein 1ab stored in the 

ChEMBL database. The queried data includes fields such as 

the compounds in Simplified Molecular-input-line-entry 

system (SMILES) notation and the IC50 value towards the 

target of each compound. Later, the duplicated compounds are 

filtered, resulting in 1,138 non-duplicated inhibitory 

bioactivity data. The next step is labeling each compound 

bioactivity as “active”, “intermediate”, or “inactive”, based on 

the respective IC50. The values less than 1000 nM are labeled 

as active, while those greater than 10000 nM are labeled as 

inactive, and those in between are labeled as intermediate. The 

frequency of each bioactivity class is shown in FIGURE 2. 

The SMILES representation of each compound is 

standardized using string processing. The standardized 

SMILES is then used for calculating the pharmacokinetic 

profile of each compound by using the Python rdkit library 

version 3.1 [36], [37]. The calculated profile includes the 

number of hydrogen bond donors (NumHDonors), the number 

of hydrogen bond acceptors (NumHAcceptors), molecular 

weight (MW), and the Ghose-Crippen-Viswanadhan octanol-

water partition coefficient (LogP). Standardized SMILES are 

also used to calculate Pubchem molecular fingerprints, by 

using the function from the Padelpy library [38]. Then, the 

IC50 values are converted to pIC50, and along with the 

standardized SMILES, and PubChem fingerprints, form the 

bioactivity dataset. 

B. QSAR MODELING AND EVALUATION 

The bioactivity from the previous step was then used as the 

dataset for training and testing the regression algorithms. The 

dataset was split with an 80:20 proportion for the training and 

testing data, respectively using the Scikit-learn Library [39]. 

Then, we used the lazypredict library for batch training and 

evaluation of the regression models [40]. In total, 42 

regression algorithms were tested. The dataset splitting, model 

training, and evaluation were repeated 100 times, with the 

iteration number also serving as the randomization seed. Four 

dataset variances were used: 

1. Full dataset, where the whole 881 features of the 

PubChem fingerprints as well as all bioactivity classes 

were used. 

2. Without low variance features, the PubChem 

fingerprints that had insignificant variance were not 

included in the modeling and evaluation process. 

3. Without the intermediate bioactivity class, only the 

compounds with IC50 that are less than or equal to 1000 

nM and those greater than or equal to 10000 nM that 

included in the modeling and evaluation process. 

4. Without low variance features and intermediate 

bioactivity class, which yielded the smallest dataset of 

all fours. 

The modeling and evaluation part produced the 

performance dataset of the regression algorithms, with four 

dataset variances, where each scenario was repeated 100 

times. The recorded performance parameters are R2, Adjusted 

R2, Root Mean Squared Error (RMSE), and Time Taken. 

For the Modeling and Evaluation of the algorithms, we used 

a virtual machine with Ubuntu 20.04.6 with kernel 5.4.0-155-

generic. The installed Python version is 3.8 along with 

libraries in used related to this research are lazypredict 0.2.12, 

numpy 1.24.3, and scikit-learn 1.3.0. The host has an Intel 

Xeon E5-2630 v4 CPU with eight cores allocated to the virtual 

machine. The allocated RAM is 32 GB. 

C. STATISTICAL ANALYSIS 

The statistical analysis part consists of two subparts. The first 

one is the chemical space analysis, where statistical methods 

were used to explore the characteristics of the compounds in 

each bioactivity class. This helps to understand the chemical 

nature of the compounds in each class. The other second 

subpart is statistical comparisons of the performance of each 

algorithm in each scenario (dataset variance). Descriptive and 

inference techniques are used to compare the algorithms. As 

the result could be erroneous due to a programming glitch in 

the library or the data characteristics that are not compatible 

with certain algorithms, the performance data must be filtered 

according to the theoretically possible R2 and Adjusted R2 

values before applying the statistical techniques. Last, we 

draw a conclusion based on the statistical analysis results. 

FIGURE 2. Compounds frequency in each bioactivity class. 
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III. RESULT  

A. CHEMICAL SPACE ANALYSIS 

The chemical space analysis is aimed at understanding the 

chemical characteristics between the three bioactivity classes. 

First, the distributions of the bioactivity classes are visualized 

as the function of MW and LogP as shown in FIGURE 3(a). 

Second, the bioactivities are compared as the distributions of 

Lipinski’s rule-of-five descriptors, as shown in FIGURE 3(b)-

(e). The function of MW and LogP shows that most of the 

compounds are within a similar range of values, regardless of 

the bioactivity classes. There are few inactive compounds, and 

only a single red dot, denoting a single compound with 

 

  
 

 

  
 

(a) 

(b) (c) 

(e) (d) 

FIGURE 3. (a) Chemical space analysis as a function of molecular weight (MW) and octanol-water partition (LogP); (b)-(e) Distributions of the 
Lipinski's descriptors for each bioactivity class. 
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intermediate bioactivity that strayed from the others. This fact 

indicates that most of the studied compounds are below 800 

Da and LogP below 7.5. The boxplots of Lipinski’s descriptors 

show that the compounds mostly satisfied Lipinski’s rule of 

five.  

T confirms the nonparametric natures of the descriptors in 

each bioactivity class. The Shapiro-Wilk’s test of distribution 

was applied. Under a 95% confidence interval, all the p-values 

are below α = 0.05, indicating the values are not normally 

distributed. Therefore, we continued with the Kruskal-Wallis 

test for each descriptor, using the bioactivity classes as groups, 

as shown in TABLE 2. As can be observed, there is at least a 

group of compounds that is significantly different. Hence, the 

analysis continued with a post-hoc test, they were using 

Dunn’s method with Bonferroni adjustment. The results are 

shown in TABLE . It can be seen that in terms of molecular 

weight, the active and inactive compounds have no significant 

difference, while between the two and the intermediate class, 

there are significant differences. A similar pattern also can be 

observed in the number of hydrogen bond acceptors. In 

contrast, there is no significant difference in the number of 

hydrogen bond donors between the inactive and the 

intermediate compounds, while they are significant between 

the inactive and active compounds, and between the 

intermediate and active compounds. 

B. PERFORMANCE OF THE REGRESSION ALGORITHMS 

Before feeding the data into the algorithms, the dataset was 

assessed for its modelability. This step is required to ensure 

TABLE 1 
Distribution normality test of the Lipinski's descriptors for each 
bioactivity class. 

Class Descriptor Statistic p p.signif 

inactive LogP 0.951 <0.001 **** 

inactive MW 0.814 <0.001 **** 

inactive NumHAcceptors 0.867 <0.001 **** 

inactive NumHDonors 0.689 <0.001 **** 

intermediate LogP 0.988 0.007 ** 

intermediate MW 0.985 0.001 ** 

intermediate NumHAcceptors 0.869 <0.001 **** 

intermediate NumHDonors 0.862 <0.001 **** 

active LogP 0.992 0.003 ** 

active MW 0.955 <0.001 **** 

active NumHAcceptors 0.918 <0.001 **** 

active NumHDonors 0.904 <0.001 **** 

 
TABLE 2 

Results of the Kruskal-Wallis tests between bioactivity classes for each 
Lipinski's descriptor. 

Descriptor Statistics df p p.signif 

MW 1004.886 744 <0.001 **** 

LogP 1029.107 778 <0.001 **** 

NumHDonors 175.316 13 <0.001 **** 

NumHAcceptors 83.947 17 <0.001 **** 

 

 
(a) 

 

 
(b) 

 
FIGURE 4. Distributions of valid R2 and Adjusted R2 values in each 
dataset variance. 

FIGURE 5. Frequency of the experiment with valid R2 and Adjusted R2 
values, grouped by algorithm. This only includes those trained and 
tested using the no low variance features dataset. 
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the dataset could produce predictive QSAR models, identified 

by the Modelabiliy Index (MODI) that is greater than 0.65 

[41]. In this study, the MODI is calculated utilizing an R code 

that was previously used in several published works by other 

researchers [2], [3]. The result shows that our curated dataset 

has a MODI of 0.768, indicating its modelability and the 

potential to yield predictive QSAR models. 

 

1. R2 AND ADJUSTED R2 

The QSAR modeling and evaluation part was executed with 

42 algorithms, four dataset variances, and 100 repetitions, or 

in total, 33,600 experiments. However, due to various factors, 

the process only yielded 33,028 performance data. From the 

Exploratory Data Analysis (EDA) on the performance data, 

we found that much individual repetition resulted in invalid R2 

and/or Adjusted R2 scores on the model testing part. 

Moreover, none of the performance parameters in the full 

dataset and the one without the intermediate bioactivity were 

found to be within the valid range. Fig. 4 shows the 

distributions of the valid R2 and Adjusted R2. It is only the 

dataset with omitted low variance features that have the testing 

performance parameters within the valid range. Therefore, 

further discussions are only concerned with the QSAR 

modeling yielded by this particular dataset. Out of 42 

algorithms, only 10 fall within this category, with the data 

frequencies shown in Fig. 5. 

Fig. 6 shows the values of the performance parameters from 

the model testing part. The shapes of the boxes correspond to 

the distributions of values. Since the Histogram Gradient 

Boosting Regressor (HGBR), Light Gradient Boosting 

Machine Regressor (LGBR), and Random Forest Regressor 

(RFR) are those that have more frequencies, therefore the 

boxes have larger spans, denoting the standard deviations. 

Therefore, further comparisons will be focused on these three 

algorithms. The Shapiro-Wilk tests of distribution normality 

in TABLE 4 show that the parameters produced by the LGBR 

algorithm are not normally distributed, hence further 

comparison must use a non-parametric method. 

 
TABLE 4 

Result of Shapiro-Wilk test on R2 and Adjusted R2 values of the 
algorithms with the top three frequencies 

Algorithm Parameter Statistic p p.signif 

HGBR Adjusted R2 0.921 0.177 ns 

HGBR R2 0.921 0.177 ns 

LGBR Adjusted R2 0.848 0.021 * 

LGBR R2 0.848 0.021 * 

RFR Adjusted R2 0.866 0.059 ns 

RFR R2 0.866 0.059 ns 

TABLE 3 
Results of the Dunn Posthoc Tests with Bonferroni adjustment between bioactivity classes for each Lipinski's descriptor. 

Descriptor group1 group2 n1 n2 statistic p p.adj p.adj.signif 

MW inactive intermediate 219 342 -3.149 0.001 0.003 ** 

inactive active 219 577 0.475 0.634 0.634 ns 

intermediate active 342 577 4.547 <0.001 <0.001 **** 

LogP inactive intermediate 219 342 1.493 0.135 0.135 ns 

inactive active 219 577 -3.669 <0.001 <0.001 *** 

intermediate active 342 577 -6.161 <0.001 <0.001 **** 

NumHDonors inactive intermediate 219 342 -0.273 0.784 0.784 ns 

inactive active 219 577 4.291 <0.001 <0.001 **** 

intermediate active 342 577 5.337 <0.001 <0.001 **** 

NumHAcceptors inactive intermediate 219 342 -4.620 <0.001 <0.001 **** 

inactive active 219 577 0.762 0.446 0.446 ns 

intermediate active 342 577 6.745 <0.001 <0.001 **** 

 

 
FIGURE 6. Boxplot of the R2 and Adjusted R2 from model testing. 

 

http://jeeemi.org/index.php/jeeemi


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 1, January 2024, pp: 1-10;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                            7 

TABLE 5 shows the results of the Kruskal-Wallis tests for 

both evaluation parameters between the algorithms. On either 

parameter, the difference is not significant. 

 

2. COST FUNCTION 

The Root Mean Squared Error (RMSE) was used as the cost 

function upon QSAR modeling and evaluation. It is calculated 

by taking the root of the squared average of the difference 

between each prediction and the actual value. Since the value 

reflects errors, which means the lower the RMSE, the better 

the model’s prediction capability. Fig. 7 shows the RMSE 

boxplots of the algorithms from the model testing of the non-

low variance dataset. It can be seen that the top three 

frequencies tend to have lower RMSE compared to the other 

algorithms. The Shapiro-Wilk test in TABLE 6 shows that 

each of these top three frequency algorithms has normally 

distributed RMSE. Therefore, we continue comparing the 

RMSE using ANOVA. The result shown in TABLE 7 

indicates that there is no significant difference in the RMSE of 

the HGBR, LGBR, and RFR algorithms. 

 

3. TIME TAKEN 

This parameter highlights the time needed for either training 

or testing. The lower the Time Taken means it took a shorter 

time for training and/or testing. Fig. 8 shows the distribution 

of time taken for training and testing the model produced by 

each algorithm. The Shapiro-Wilk test in TABLE 8 shows that 

for each algorithm in both phases, the durations are not 

normally distributed. In light of the distribution normality, the 

Kruskal-Wallis test is used to compare the time taken between 

the three algorithms. As shown in TABLE 9, there is at least 

one algorithm that has a significantly different duration in both 

training and testing. Using the Dunn test for post-hoc analysis 

shown in TABLE 10, we found the time taken between these 

three algorithms is significantly different. As reflected by the 

boxplots in Fig. 8, it is the LGBR that has the fastest time for 

both training and testing for this particular case. 

IV. DISCUSSION 

Conventional drug discovery is a tedious and expensive 

process. Fortunately, with the recent advances in computing 

technologies, in silico processes could be exercised for 

screening potential drug candidates. Classification is one of 

the supervised machine learning tasks that is gaining 

popularity for identifying potential bioactivity. In some 

studies, the bioactivity is based on the IC50 values that are 

grouped into two or three groups. Despite it is being a common 

approach, however, this practice reduces the information that 

can be learned by the model, as well as losing some statistical 

properties [34], [42], [43]. 

In this study, we applied regression algorithms to predict the 

IC50, instead of classification. We argue that this approach 

should give more information, and better comparability with 

results from other studies. The SARS-CoV-2 Replicase 

Polyprotein 1ab is taken as a target. Using curated bioactivity 

data from the ChEMBL database, we tested the approach with 

42 regression algorithms and four dataset variances that 

repeated 100 times. Counting the training and testing phases, 

the experiment yields 33,028 data or only about 98.29% of the 

expected 33,600 data. By investigating the experiment logs, 

TABLE 5 
Results of the Kruskal-Wallis tests on R2 and Adjusted R2 between the 
algorithms with the top three frequencies. 

Parameter n Statistic df p p.signif 

R2 42 1.020 2 0.6 ns 

Adjusted R2 42 1.020 2 0.6 Ns 

      

 
TABLE 6 

Results of the Shapiro-Wilk distribution normality test on the RMSE of the 
algorithms with the top three frequencies. 

Algorithm Statistic p p.signif 

HGBR 0.947 0.447 ns 

LGBR 0.984 0.993 ns 

RFR 0.963 0.835 ns 

 
TABLE 7 

ANOVA test result on the RMSE of the algorithms with the top three 
frequencies. 

Effect DFn DFd F p ges p.signif 

Algorithm 2 39 1.048 0.36 0.051 ns 

 
TABLE 8 

Results of the Shapiro-Wilk distribution normality test on the Time Taken 
of the algorithms with the top three frequencies. 

Phase Algorithm Statistic p p.signif 

Training HGBR 0.620 <0.001 **** 

 LGBR 0.878 0.054 ns 

 RFR 0.958 0.759 ns 

Testing HGBR 0.952 0.001 ** 

 LGBR 0.647 <0.001 **** 

 RFR 0.922 <0.001 **** 

 
TABLE 9 

Kruskal-Wallis test result on the time taken, grouped by the algorithms 
with the top frequencies, for training and testing phases. 

Phase n statistic df p p.signif 

Testing 42 36.279 2 <0.001 **** 

Training 300 265.780 2 <0.001 **** 

 

 
FIGURE 7. RMSE distribution of each algorithm in the testing stage. 
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the reduction was caused by some algorithms that failed to run 

properly due to glitches or incompatibilities with the data. 

Moreover, much of the resulting testing phase performance 

parameters, namely the R2 and the Adjusted R2 are falling out 

of the theoretically possible range. In the end, only some of the 

results from the no-low variance dataset can have meaningful 

model testing performance parameters. Algorithms-wise, only 

10 out of 42 satisfy the requirement, and only three of them 

can be considered stable enough for inference, judging from 

the number of valid R2 and Adjusted R2 values. 

From these three algorithms, namely Histogram Gradient 

Boosting Regression (HGBR), Light Gradient Boosting 

Machine Regression (LGBR), and Random Forest Regression 

(RFR), they share similar qualities in terms of predicting 

capability (R2 and Adjusted R2) and the observed cost function 

(RMSE). It is only the Time Taken that has significant 

differences between the algorithms, where LGBR came up 

with the shortest durations, followed by HGBR and then the 

RFR. 

Random Forest Classifier is a known Machine Learning 

method in drug discovery, as demonstrated in several studies 

[2]–[6]. Despite the popularity of its counterpart, as far as this 

study is concerned, the performance of the Random Forest 

algorithm can be matched by HGBR and LGBR. If there is an 

emphasis on time, the LGBR should be highly considered, 

although further investigations must be carried out. On the 

contrary, the Support Vector Regression (SVR) did not 

perform as expected, despite it being reported to be proficient 

in QSAR modeling [7]. 

Our study has several implications for the use of Machine 

Learning algorithms in drug discovery. First, we have 

explored the use of regression algorithms where classification 

is the commonly applied technique in the field. We have also 

found that the application of regression algorithms in this 

particular field faces several computational as well as 

algorithmic challenges where most of the model performance 

parameters in the testing phase were invalid. However, the 

possibility of getting a higher range of information compared 

to the discretized approach in classification becomes a strong 

point for more investigation. Despite our experiment yielding 

HGBR, LGBR, and RFR as the most stable regression 

algorithms that might not be the case with other datasets, such 

as different targets or molecular descriptors. Moreover, 

compared to the accuracy of the previous study that targeted 

the SARS-CoV-2 3CLpro [3], which is about 70%, the 

algorithms we evaluated still performed poorly. Whether 

hyperparameter tuning can be exploited to increase 

performance, should be thoroughly explored. Therefore, 

further studies must be undertaken to answer these questions. 

 
V. CONCLUSION 

Drug discovery is a long and expensive process. Fortunately, 

due to the advancement in computational technology and 

cheminformatics, those properties could be reduced for good 

reasons. When to COVID-19 pandemic was starting to hit the 

world, there was an urgency for an accelerated development 

of novel as well as repurposed drugs. Machine Learning which 

 

FIGURE 8. Distributions of the training and testing durations of each algorithm. 

 
TABLE 10 

Results of the Dunn test with Bonferroni adjustment for the time taken between algorithms. 

Phase group1 group2 n1 n2 Statistic p p.adj p.adj.signif 

Testing HGBR LGBR 16 14 -3.341 <0.001 0.001 ** 

 HGBR RFR 16 12 2.988 0.002 0.002 ** 

 LGBR RFR 14 12 6.008 <0.001 <0.001 **** 

Training HGBR LGBR 100 100 -8.151 <0.001 <0.001 **** 

 HGBR RFR 100 100 8.151 <0.001 <0.001 **** 

 LGBR RFR 100 100 16.302 <0.001 <0.001 **** 
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is a branch of computational science is extensively used in this 

part, with the classification task as the major approach. 

In this study, we explored the use of regression algorithms 

to predict the compounds' inhibitory bioactivity toward the 

SARS-CoV-2 replicase polyprotein 1ab. By using the IC50 

data from the ChEMBL database and PubChem descriptor for 

converting the compounds into numeric vectors, we 

experimented with the combinations of algorithms and dataset 

variances. Evaluating the results, we uncovered that the use of 

regression algorithms is challenging, for we got many invalid 

performance parameters from the model testing phase, where 

the R2 and/or Adjusted R2 values are out of the theoretical 

range. However, the use of regression algorithms in this 

particular field would yield more information than the 

discretized ones in the classification task. We found that for 

the particular dataset used in this study, the regression 

algorithms of Histogram Gradient Boosting, Light Gradient 

Boosting Machine, and Random Forest yielded the highest 

counts of valid results.  

Regardless of the use of Random Forest Classification in 

some previous studies, from our experiments, its regression 

counterpart has no statistically significant performance 

differences compared to the Histogram Gradient Boosting 

Regressor and the Light Gradient Boosting Machine 

Regressor. Surprisingly, the Light Gradient Boosting Machine 

Regressor has a significantly lower duration for either training 

or testing, making it a promising algorithm to be explored for 

this particular case. 

There should be more studies that investigate the use of 

regression algorithms in predicting inhibitory bioactivity. The 

three algorithms should even be explored from several 

different approaches. The performances of each algorithm 

could be improved by using the appropriate hyperparameter 

tuning. In this study, we only converted the dataset to a feature 

matrix with a single molecular fingerprint. As different 

fingerprint leads to a different form of feature matrix, it should 

lead to different performance. This could be addressed in 

future studies. Moreover, a different target enzyme or protein 

might have another set of algorithms that suits it. Hence, this 

study then could be repeated with a different target. 
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