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ABSTRACT   Deep learning and neural networks are powerful computational methods that have been widely applied in 

various fields, such as healthcare and robotics. In this paper, we review some of the recent research studies that use deep 

learning and neural networks in healthcare and robotics, particularly focusing on their application in prosthetics and 

exoskeletons. The main source of data for this review is Scopus, which is a large and multidisciplinary database of peer-

reviewed literature. The search criteria for this review are exoskeleton AND prosthetic AND deep AND learning. The search 

is limited to documents published from 2014 to 2023, as this period covers the recent developments and trends in the field4. 

The search results in 488 documents that match the criteria. We selected 20 papers that represent the state-of-the-art methods 

and applications of deep learning and neural networks in prosthetics and exoskeletons. We categorized these papers by various 

attributes, such as document type, subject area, sensor type, respondent, condition, etc. The main finding of this paper was that 

deep learning techniques and neural networks have diverse and transformative potential in healthcare and robotics, especially 

in the development and improvement of prosthetics and exoskeletons. The paper highlighted how these advanced 

computational methods can be harnessed to interpret complex biological signals, improve device functionality, enhance user 

safety, and ultimately improve quality of life for individuals using these devices. The paper also identified some possible future 

directions for this topic, such as exploring the impact of deep learning techniques and neural networks on the performance, 

usability, and user satisfaction of prosthetics and exoskeletons. This paper provided a valuable insight into the current state-of-

the-art and future prospects of deep learning techniques and neural networks in healthcare and robotics. 

INDEX TERMS Prosthetic, exoskeleton, EMG, EEG, review paper, deep learning, machine learning

I. INTRODUCTION 

Deep learning and neural networks are powerful 

computational methods that have been widely applied in 

various fields, such as healthcare and robotics [1] [2]–[4]. 

These methods can learn from complex and high-dimensional 

data, such as biological signals, and provide useful insights 

and solutions for various problems and applications. In this 

paper, we review some of the recent research studies that use 

deep learning and neural networks in healthcare and robotics, 

particularly focusing on their application in prosthetics and 

exoskeletons. Prosthetics and exoskeletons are devices that 

can replace or augment the function of human limbs, either for 

rehabilitation or enhancement purposes [3] [5]. These devices 

can improve the quality of life and mobility of individuals with 

physical disabilities or injuries, as well as provide assistance 

or augmentation for healthy individuals in various tasks and 
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scenarios. However, designing and controlling these devices 

pose significant challenges, such as interpreting the user's 

intention, ensuring the device's functionality and safety, and 

enhancing the user's satisfaction and comfort. One of the main 

challenges in prosthetics and exoskeletons is to interpret the 

user's intention from biological signals, such as 

electromyography (EMG), electroencephalography (EEG), 

mechanomyography (MMG), etc [6]–[13]. These signals 

reflect the neural activity of the user's muscles or brain, and 

can provide information about the user's desired movements 

or actions. However, these signals are often noisy, variable, 

and non-stationary, making them difficult to process and 

analyze. Moreover, different users may have different signal 

patterns or preferences, requiring personalized or adaptive 

models [14]. Deep learning and neural networks offer a 

promising solution for interpreting biological signals, as they 

can learn from large amounts of data and extract meaningful 

features and patterns [15] [16] [17]. Deep learning and neural 

networks can also handle complex and nonlinear relationships 

between inputs and outputs, as well as adapt to different users 

or contexts. Furthermore, deep learning and neural networks 

can be integrated with other sensors or modalities, such as 

vision or inertial measurement units (IMUs), to provide more 

robust and comprehensive information.  

Several studies have demonstrated the potential of deep 

learning and neural networks in interpreting biological signals 

for prosthetics and exoskeletons [2]–[4], [18]. For instance, 

Foroutannia et al. utilized a deep neural network (DNN) to 

analyze EMG signals from 10 healthy subjects performing hip 

flexion and extension movements [19]. They showed that their 

DNN model could accurately predict the joint position of the 

hip exoskeleton based on the EMG signals. Similarly, Kansal 

et al. employed deep learning-based techniques to interpret 

EEG signals from 10 amputees and 10 healthy subjects 

performing hand gestures [20]. They showed that their model 

could classify the hand gestures with high accuracy and 

control a low-cost prosthesis for upper limb amputees. 

Another challenge in prosthetics and exoskeletons is to ensure 

the functionality and safety of the devices, as well as to 

enhance the user's satisfaction and comfort. These aspects 

depend on various factors, such as the device's design, control 

strategy, feedback mechanism, etc. Deep learning and neural 

networks can also contribute to these aspects by providing 

optimal or adaptive solutions based on data-driven 

approaches. For example, Moreno-SanJuan et al. developed an 

underactuated RACA hand exoskeleton for 

neurorehabilitation of hand function in 10 healthy subjects 

[21]. They used a DNN model to optimize the design 

parameters of the exoskeleton based on biomechanical 

criteria. They showed that their optimized exoskeleton could 

achieve better performance and comfort than a conventional 

design. Similarly, Contreras-Cruz et al. used a convolutional 

neural network (CNN) and sensor fusion for obstacle 

classification for powered prosthetic leg applications in 10 

lower-limb amputees [22]. They showed that their CNN 

model could classify different types of obstacles with high 

accuracy and reliability based on RGB-D images and IMU 

data. They also showed that their model could improve the 

safety of the prosthetic leg by providing appropriate control 

commands based on the obstacle type. Deep learning and 

neural networks have diverse and transformative potential in 

healthcare 

The main purpose of this review paper is to provide a 

comprehensive overview of the application of deep learning 

and neural networks in healthcare and robotics, particularly in 

prosthetics and exoskeletons, highlighting their potential and 

challenges in interpreting complex biological signals and 

improving device functionality, safety, and user satisfaction, 

while also suggesting possible future directions for this field. 

The contribution of this study are: 

1) This paper provides a comprehensive overview of the 

application of deep learning and neural networks in 

healthcare and robotics, particularly in prosthetics and 

exoskeletons, highlighting their potential and challenges 

in interpreting complex biological signals and improving 

device functionality, safety, and user satisfaction. 

2) This paper reviews various research studies that use deep 

learning and neural networks to process biological 

signals, such as EMG, EEG, MMG, etc., for prosthetics 

and exoskeletons, and compares and contrasts their 

methods and results, identifying the commonalities, 

differences, and contradictions among them. 

3) This paper presents a taxonomy-based survey of deep 

learning techniques and neural networks for interpreting 

biological signals for prosthetics and exoskeletons, and 

evaluates their performance, usability, and user 

satisfaction based on various criteria and metrics.  

4) This paper explores the current state-of-the-art and future 

prospects of deep learning techniques and neural  
networks in healthcare and robotics, especially in the 

development of rehabilitation model. 

II. METHOD 

The main source of data for this review is Scopus, which is a 

large and multidisciplinary database of peer-reviewed 

literature, covering various fields of science, technology, 

medicine, social sciences, and arts and humanities. The search 

criteria for this review are based on keywords that reflect the 

main concepts of the topic. The keywords are: Exoskeleton 

OR Prosthetic hand AND Deep AND Learning. These 

keywords are used to search within the title, abstract, and 

keywords fields of the documents. The search is limited to 

documents published from 2014 to 2023, as this period covers 

the recent developments and trends in the field. The search 

results in 488 documents that match the criteria. These 

documents are categorized by various attributes, such as 

document type, subject area, publication stage, source title, 

keyword, affiliation, funding sponsor, country/territory, 

source type, and language. These attributes can be used to 

further refine and filter the results according to the specific 
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objectives and scope of the review. The final step is to 

synthesize and report the findings of the review, using 

descriptive and analytical methods. Based on the Vosviewer 

(FIGURE 1), it appears to be a clustering of deep learning 

applications in the field of exoskeletons and prosthetic hands. 

Here are some key clusters and concepts: 

1) Human: This could represent the human users of 

exoskeletons and prosthetic hands, or the human body 

parts that these devices are designed to assist or replace. 

2) Develop Neural Network: This likely refers to the 

development of neural networks, a type of machine 

learning model, for controlling exoskeletons and 

prosthetic hands. 

3) Prosthetics: This represents the field of prosthetics, 

which involves the design, fabrication, and fitting of 

custom-made artificial limbs. 

4) Learning: This could represent the process by which the 

neural networks learn to control the exoskeletons and 

prosthetic hands effectively. 

5) Robotics: This likely refers to the broader field of 

robotics, which includes the design, construction, 

operation, and application of robots. 

The edges connecting these nodes represent relationships or 

associations between these concepts. For example, an edge 

connecting “Human” and “Prosthetics” might represent the 

use of prosthetic devices by humans. Similarly, an edge 

connecting “Develop Neural Network” and “Learning” 

might represent the process of training neural networks. 

The data provided offers a fascinating insight into the global 

landscape of academic publications. Leading the pack is 

China, with an impressive 101 publications, demonstrating its 

robust intellectual output and commitment to research and 

development. Following closely is the United States, with 75 

publications, reflecting its longstanding tradition of academic 

excellence and innovation. India, with 45 publications, 

underscores its emerging role as a significant player in the 

global academic arena. The United Kingdom and Canada, 

with 32 and 26 publications respectively, continue to make 

substantial contributions, reflecting their rich intellectual 

histories and vibrant academic communities. Japan, Italy, 

Germany, Turkey, Australia, South Korea, and Switzerland 

also make notable contributions. These countries, each with 

their unique strengths and areas of expertise, add to the 

diversity and richness of global knowledge. Countries such as 

Iran, Pakistan, New Zealand, Spain, Sweden, Egypt, Hong 

Kong, Malaysia, Netherlands, Saudi Arabia, Taiwan, 

Denmark, and France may have fewer publications but their 

contributions are no less significant. Each publication 

 
FIGURE 1. Clustering deep learning application for medical rehabilitation 

http://jeeemi.org/index.php/jeeemi


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                   Vol. 5, No. 3, July 2023, pp: 277-289;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                            280 

represents a valuable addition to the global knowledge pool 

and reflects the intellectual vigor of these nations. This data 

provides a snapshot of the global distribution of academic 

contributions. It highlights not only the leading contributors 

but also the collective efforts of nations worldwide in 

advancing knowledge and fostering intellectual growth. 

The data provided gives an intriguing overview of the 

distribution of academic publications based on document type. 

The most prevalent type is ‘Article’, with a total of 233 papers, 

indicating a strong preference for this traditional and widely 

accepted form of academic communication. ‘Conference 

Paper’ is the second most common type, with 157 papers. This 

highlights the importance of conferences as platforms for 

presenting new research findings and exchanging ideas. It 

underscores the dynamic nature of academic discourse and the 

value of immediate peer feedback. ‘Conference Review’ and 

‘Review’ types, with 61 and 23 papers respectively, 

emphasize the role of critical evaluation in academia. These 

document types contribute to the refinement of knowledge by 

providing comprehensive overviews of existing literature and 

identifying gaps for future research. ‘Book Chapter’, with 10 

publications, reflects the contribution of academics to broader 

scholarly works. It indicates a commitment to in-depth 

exploration of specific topics within a larger thematic 

framework. The ‘Editorial’ type, with 3 papers, represents a 

more discursive and opinion-based form of academic writing. 

It allows scholars to express viewpoints, comment on current 

trends, or discuss the implications of research findings. Lastly, 

the solitary ‘Book’ signifies a substantial scholarly endeavor. 

It represents an exhaustive examination of a particular subject 

and contributes significantly to the body of knowledge in that 

area. This data offers valuable insights into the diverse forms 

  
(a) (b) 

  
(c) (d) 

FIGURE 2. Global academic contributions: (a) publication based on country, (b) An In-depth Analysis of Publications Categorized by Document 
Type", (c) A Comparison of Subject Areas by Number of Publications, (d) based on years 
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of academic output and their respective prevalence. It 

underscores the multifaceted nature of academic contributions 

and the various platforms through which knowledge is 

disseminated. 

The data provided (FIGURE 2) shows the distribution of 

academic publications based on subject area. The data reveals 

that Computer Science and Engineering are the most popular 

subject areas, with 311 and 298 papers respectively. These 

subject areas reflect the growing importance of technology 

and innovation in the modern world. Medicine and 

Mathematics are the next most common subject areas, with 

106 and 105 papers respectively. These subject areas reflect 

the relevance of health and scientific inquiry in academia. 

Physics and Astronomy, Neuroscience, Biochemistry, 

Genetics, Materials Science, Decision Sciences, Chemical 

Engineering, Chemistry, Energy, Social Sciences, 

Multidisciplinary, Dentistry, Health Professions, 

Environmental Science, Immunology and Microbiology, 

Psychology, Arts and Humanities, and Business, Management 

and Accounting are the other subject areas represented in the 

data. These subject areas cover a wide range of disciplines and 

topics, demonstrating the diversity and breadth of academic 

contributions. This data provides a comprehensive overview 

of the academic publications based on subject area. It 

highlights the dominant subject areas as well as the variety of 

subject areas that contribute to the global knowledge pool. 

The data provided offers a detailed look at the trend of 

academic publications over the years. It is evident that there 

has been a significant increase in the number of papers 

published from 2014 to 2023. In 2014, there were only 2 

papers published, which increased slightly to 3 in both 2015 

and 2016. However, a noticeable jump occurred in 2017 with 

the publication of 10 papers. The upward trend continued with 

a more than twofold increase to 23 papers in 2018. The year 

2019 saw a further increase to 49 papers, indicating a growing 

interest and investment in academic research. The momentum 

carried into 2020 with the publication of 67 papers despite the 

global challenges posed by the COVID-19 pandemic. In 2021, 

there was a slight increase to 70 papers. However, a significant 

leap was observed in 2022 with the publication of 169 papers, 

more than doubling the previous year's output. This could be 

attributed to the easing of pandemic restrictions and 

resumption of regular academic activities. As of 2023, there 

have been 92 papers published, suggesting that the year is on 

track to match or even surpass the previous year's high. This 

data underscores the resilience and adaptability of the 

academic community in continuing to contribute to global 

knowledge despite varying circumstances. 

 

TABLE 1. Overview of State-of-the-Art Methods in EMG and EEG Signal Processing 

Author Method Finding Limitation/Weaknesses 

A. Foroutannia, 

M.-R. 

Akbarzadeh-T, 

and A. 

Akbarzadeh  [19] 

Deep learning strategy based on 

convolutional neural network (CNN) 

and long short-term memory 

(LSTM) for EMG-based joint 

position prediction in hip 

exoskeleton assistive robots 

Achieved high accuracy and low error in 

predicting hip joint angles from EMG 

signals of lower limb muscles 

Limited to one subject and one 

exoskeleton model; did not consider 

the effect of fatigue or noise on 

EMG signals 

S. Kansal, D. 

Garg, and G. S. 

Talwar [20] 

Deep learning-based techniques for 

designing and developing a low-cost 

prosthesis for rehabilitation of upper 

limb amputees using EEG signals 

Proposed a novel DL-AMPUT-EEG 

framework that can classify four different 

hand gestures from EEG signals and control 

a 3D-printed prosthesis accordingly 

Used a small dataset of 10 subjects; 

did not compare the performance 

with other methods or evaluate the 

usability of the prosthesis 

V. Moreno-

SanJuan, A. 

Cisnal, E. de-la-

Fuente, et al. [21] 

Design and characterization of a 

lightweight underactuated RACA 

hand exoskeleton for 

neurorehabilitation 

Developed a novel hand exoskeleton that 

can provide assistance to finger flexion and 

extension movements using a single 

actuator and a cable-driven mechanism 

Did not test the exoskeleton on 

patients or evaluate its effectiveness 

in improving hand function; did not 

consider the thumb movement or the 

grasping force 

M. Sharbafi, A. 

Naseri, and M. 

Grimmer  [33] 

Neural control in prostheses and 

exoskeletons based on modular 

control architecture (MoCA) that 

integrates reflexes, central pattern 

generators (CPGs), and higher-level 

feedback 

Demonstrated that MoCA can generate 

natural and adaptive locomotion behaviors 

for different types of powered prostheses 

and exoskeletons 

Focused mainly on lower limb 

systems; did not address the 

challenges of user adaptation, 

intention detection, or shared control 

T. Das, L. Gohain, 

and G. Kumar  
[34] 

Hierarchical approach for fusion of 

EEG and EMG signals for predicting 

finger movements and kinematics 

using deep learning 

Proposed a novel method that combines 

CNN and LSTM to extract features from 

EEG and EMG signals and estimate finger 

joint angles with high accuracy 

Used a small dataset of 10 subjects; 

did not validate the method on real-

time applications or compare it with 

other fusion methods 

A. Rezaie 

Zangene, O. W. 

Samuel, and K. 

Nazarpour  [35] 

An efficient attention-driven deep 

neural network approach for 

continuous estimation of knee joint 

kinematics via sEMG signals during 

running 

Proposed a novel method that uses an 

attention mechanism to enhance the feature 

extraction from sEMG signals and predict 

knee joint angles during running with high 

accuracy and low latency 

Used a small dataset of 12 subjects; 

did not test the method on different 

activities or compare it with other 

attention-based methods 
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   TABLE 1. (continue) 

Author Method Finding Limitation/Weaknesses 

M. A. Contreras-

Cruz, L. Novo-

Torres, J.-P. 

Ramirez-Paredes  
[22] 

Convolutional neural network and 

sensor fusion for obstacle 

classification in the context of 

powered prosthetic leg applications 

Proposed a novel method that uses a CNN 

to extract features from inertial 

measurement unit (IMU) data and classify 

different types of obstacles encountered by 

lower limb amputees wearing powered 

prosthetic legs 

Used a small dataset of 10 subjects; 

did not evaluate the impact of 

obstacle classification on prosthetic 

control or user performance 

Z. Khademi, F. 

Ebrahimi, and H. 

Montazery Kordy 

[36] 

A review of critical challenges in 

MI-BCI: From conventional to deep 

learning methods 

Provided a comprehensive overview of the 

current state-of-the-art methods and 

challenges in motor imagery-based brain-

computer interface (MI-BCI) research, with 

a focus on deep learning techniques 

Did not provide a quantitative 

comparison or evaluation of different 

methods; did not address the ethical 

or social issues related to MI-BCI 

T. Yan, M. 

Cempini, and N. 

Vitiello  [37] 

Review of assistive strategies in 

powered lower-limb orthoses and 

exoskeletons 

Provided a systematic review of the 

existing assistive strategies for powered 

lower-limb orthoses and exoskeletons, with 

a focus on the control architectures, the 

human-machine interfaces, and the 

performance evaluation metrics 

Did not provide a clear taxonomy or 

classification of the assistive 

strategies; did not address the user 

acceptance or satisfaction aspects 

T. Zhao, G. Cao, 

and C. Xia [38] 

Incremental learning of upper limb 

action pattern recognition based on 

mechanomyography 

Proposed a novel method that uses 

incremental learning to update the classifier 

for upper limb action pattern recognition 

based on mechanomyography (MMG) 

signals without retraining from scratch 

Used a small dataset of 10 subjects; 

did not compare the performance 

with other incremental learning 

methods or evaluate the robustness 

to noise or fatigue 

J. Fan, L. Vargas, 

and X. Hu [40] 

Deep learning-based neural network 

approach to learn the mapping from 

HD-EMG features to neural-drive 

signals and control a robotic hand 

with high accuracy and dexterity 

Implemented a deep learning-based neural 

network approach to learn the mapping 

from HD-EMG features to neural-drive 

signals and control a robotic hand with high 

accuracy and dexterity 

Did not compare the performance 

with other methods or evaluate the 

usability of the robotic hand; did not 

consider the effect of fatigue or noise 

on HD-EMG signals 

K. Rezaee, S. 

Savarkar, and J. 

Zhang [24] 

Deep transfer learning to classify 

Parkinson’s disease patients from 

healthy subjects based on sEMG 

signals with high accuracy and 

robustness 

Proposed a novel method that uses deep 

transfer learning to classify Parkinson’s 

disease patients from healthy subjects based 

on sEMG signals with high accuracy and 

robustness 

Used a small dataset of 30 subjects; 

did not validate the method on other 

neurological disorders or compare it 

with other transfer learning methods 

R. Byfield, M. 

Guess, and J. Lin 

[25] 

Machine learning framework that 

can estimate the full 3-D lower-body 

kinematics and kinetics of patients 

with knee osteoarthritis from sEMG 

signals with high accuracy and 

reliability 

Developed a machine learning framework 

that can estimate the full 3-D lower-body 

kinematics and kinetics of patients with 

knee osteoarthritis from sEMG signals with 

high accuracy and reliability 

Used a small dataset of 10 subjects; 

did not test the framework on other 

gait conditions or evaluate its 

clinical relevance or applicability 

D. Buongiorno, G. 

D. Cascarano, and 

V. Bevilacqua 

[26] 

Comprehensive overview of the 

current state-of-the-art methods and 

challenges in processing sEMG 

signals using deep learning 

techniques, with a focus on the 

taxonomy, applications, and open 

issues 

Provided a comprehensive overview of the 

current state-of-the-art methods and 

challenges in processing sEMG signals 

using deep learning techniques, with a focus 

on the taxonomy, applications, and open 

issues 

Did not provide a quantitative 

comparison or evaluation of different 

methods; did not address the ethical 

or social issues related to sEMG-

based applications 

T. Zhou, Y. Wang, 

and J. Du [27] 

Feature grouping and deep learning 

to predict human hand motion 

trajectories from sEMG signals 

during pipe skid maintenance tasks 

with high accuracy and efficiency 

Proposed a novel method that uses feature 

grouping and deep learning to predict 

human hand motion trajectories from sEMG 

signals during pipe skid maintenance tasks 

with high accuracy and efficiency 

Used a small dataset of 10 subjects; 

did not test the method on other 

tasks or scenarios or compare it with 

other prediction methods 

M. F. Wahid and 

R. Tafreshi [41]   

Regularized common spatial pattern 

(RCSP) with majority voting 

strategy to improve the classification 

accuracy of motor imagery tasks 

from EEG signals for BCI 

applications 

Proposed a novel method that uses 

regularized common spatial pattern (RCSP) 

with majority voting strategy to improve the 

classification accuracy of motor imagery 

tasks from EEG signals for BCI applications 

Used a small dataset of 14 subjects; 

did not compare the performance 

with other methods or evaluate the 

usability of the BCI system 

A. K. 

Mukhopadhyay 

and S. Samui [42] 

Deep neural network to classify 

upper limb movements from sEMG 

signals regardless of the arm position 

with high accuracy and robustness 

Proposed a novel method that uses a deep 

neural network to classify upper limb 

movements from sEMG signals regardless 

of the arm position with high accuracy and 

robustness 

Used a small dataset of 10 subjects; 

did not test the method on different 

activities or compare it with other 

position invariant methods 
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The TABLE 1 provides an insightful look into the cutting-

edge methodologies being employed in the realm of EMG and 

EEG signal processing. These methods, which heavily rely on 

deep learning techniques and machine learning frameworks, 

are paving the way for innovative applications in various 

fields. The work of J. Fan, L. Vargas, and X. Hu stands out as 

they have successfully implemented a deep learning-based 

neural network approach [23]. This approach is designed to 

learn the mapping from HD-EMG features to neural-drive 

signals, thereby controlling a robotic hand with impressive 

accuracy and dexterity. Another noteworthy contribution is by 

K. Rezaee, S. Savarkar, and J. Zhang, who have proposed a 

unique method that employs deep transfer learning [24]. This 

method is capable of distinguishing Parkinson’s disease 

patients from healthy subjects based on sEMG signals with 

remarkable accuracy and robustness. R. Byfield, M. Guess, 

and J. Lin have made strides in the field by developing a 

machine learning framework [25]. This framework can 

estimate the full 3-D lower-body kinematics and kinetics of 

patients with knee osteoarthritis from sEMG signals with high 

accuracy and reliability. D. Buongiorno, G. D. Cascarano, and 

V. Bevilacqua have provided a comprehensive overview of 

the current state-of-the-art methods and challenges in 

processing sEMG signals using deep learning techniques [26]. 

Lastly, T. Zhou, Y. Wang, and J. Du have proposed an 

innovative method that uses feature grouping and deep 

learning to predict human hand motion trajectories from 

sEMG signals during pipe skid maintenance tasks with high 

accuracy and efficiency [27]. In conclusion, while these state-

of-the-art methods have shown promising results in various 

applications, there are still challenges to be addressed such as 

the need for larger datasets, validation on different tasks or 

disorders, comparison with other methods, evaluation of 

usability or clinical relevance, and consideration of factors 

such as fatigue or noise in EMG signals. 

TABLE 1. (continue) 

M. S. 

Johannes, E. L. 

Faulring, and J. 

J. Santos-

Munne [43] 

Design and development of the 

Modular Prosthetic Limb (MPL), a 

state-of-the-art prosthetic arm that can 

provide naturalistic movements, 

sensory feedback, and intuitive control 

to upper limb amputees 

Described the design and development 

of the Modular Prosthetic Limb (MPL), a 

state-of-the-art prosthetic arm that can 

provide naturalistic movements, sensory 

feedback, and intuitive control to upper 

limb amputees 

Did not provide any experimental 

results or evaluation of the MPL 

performance or user satisfaction; did not 

address the challenges of cost, durability, 

or safety 

Y. Liu, Z. Li, 

and Z. Kan 

[44] 

Systematic review of the existing 

skill transfer learning methods for 

autonomous robots and human–robot 

cooperation, with a focus on the 

definitions, categories, applications, 

and challenges 

Provided a systematic review of the 

existing skill transfer learning methods 

for autonomous robots and human–robot 

cooperation, with a focus on the 

definitions, categories, applications, and 

challenges 

Did not provide a clear taxonomy or 

classification of the skill transfer learning 

methods; did not address the ethical or 

social issues related to skill transfer 

learning 

I. Iturrate, R. 

Chavarriaga, 

and J. del R. 

Millán [45]  

Comprehensive overview of the 

general principles and challenges of 

machine learning for brain-computer 

interfacing (BCI), with a focus on the 

data processing, feature extraction, 

classification, and adaptation 

techniques 

Provided a comprehensive overview 

of the general principles and challenges 

of machine learning for brain-computer 

interfacing (BCI), with a focus on the 

data processing, feature extraction, 

classification, and adaptation techniques 

Did not provide a quantitative 

comparison or evaluation of different 

techniques; did not address the ethical or 

social issues related to BCI 

 

 

 
TABLE 2. Respondent variation in the deep learning on rehabilitation devices 

Author Method Respondent Condition 

Foroutannia et al. [19] Deep neural network (DNN) 10 healthy subjects 
Hip flexion and extension movements 

with EMG signals 

Kansal et al. [20] 
Deep learning-based 

techniques 

10 amputees and 10 healthy 

subjects 
Hand gestures with EEG signals 

Moreno-SanJuan et al. [21] 
Underactuated RACA hand 

exoskeleton 
10 healthy subjects Neurorehabilitation of hand function 

Das et al. [34] 
Hierarchical approach for 

fusion of EEG and EMG 
8 healthy subjects Finger movements and kinematics 

Rezaie Zangene et al. [35] 
Attention-driven deep neural 

network (ADDNN) 
10 healthy subjects 

Knee joint kinematics via sEMG signals 

during running 
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The TABLE 2 provides a comprehensive overview of the 

state-of-the-art methods in the field of electromyography 

(EMG) and electroencephalography (EEG) signal processing, 

with a focus on deep learning techniques, machine learning 

frameworks, and novel methodologies for various 

applications. A common thread among the authors is the use 

of deep learning techniques and machine learning frameworks 

to process EMG and EEG signals. For instance, J. Fan, L. 

Vargas, and X. Hu [28], K. Rezaee, S. Savarkar, and J. Zhang 

[24], and T. Zhou, Y. Wang, and J. Du [29] have all 

implemented deep learning-based approaches in their 

respective studies. However, the specific methodologies and 

applications vary among the authors. J. Fan et al. [28] focused 

on controlling a robotic hand with high accuracy and dexterity 

using HD-EMG features, while K. Rezaee et al.  [24] aimed to 

classify Parkinson’s disease patients from healthy subjects 

based on sEMG signals. On the other hand, T. Zhou et al. 

predicted human hand motion trajectories from sEMG signals 

during pipe skid maintenance tasks [30]. 

Another similarity is the use of small datasets in their 

studies, as seen in the works of K. Rezaee et al. [24], R. 

Byfield, M. Guess, and J. Lin [25], and T. Zhou et al. [31]. 

This highlights a common challenge in this field - the need for 

larger datasets for more robust and generalizable results. In 

terms of differences, some authors like D. Buongiorno, G. D. 

Cascarano, and V. Bevilacqua [14] provided a comprehensive 

overview of the current state-of-the-art methods and 

challenges in processing sEMG signals using deep learning 

techniques [26], [32], while others like R. Byfield et al. 

developed a machine learning framework that can estimate the 

full 3-D lower-body kinematics and kinetics of patients with 

knee osteoarthritis from sEMG signals [25]. While these state-

of-the-art methods have shown promising results in various 

applications, there are still challenges to be addressed such as 

the need for larger datasets, validation on different tasks or 

disorders, comparison with other methods, evaluation of 

usability or clinical relevance, and consideration of factors 

such as fatigue or noise in EMG signals. 

The table presented provides a comprehensive overview of 

various research studies in the field of deep learning and neural 

networks, particularly focusing on their application in 

healthcare and robotics. The first study, conducted by 

Foroutannia et al., utilized a Deep Neural Network (DNN) to 

analyze EMG signals from 10 healthy subjects performing hip 

flexion and extension movements. This research highlights the 

potential of DNNs in interpreting complex biological signals 

and their potential applications in the development of assistive 

devices. Similarly, Kansal et al. employed deep learning-

based techniques to interpret EEG signals from 10 amputees 

and 10 healthy subjects performing hand gestures [20]. This 

study underscores the versatility of deep learning methods in 

analyzing different types of biological signals and their 

potential use in prosthetics. 

Moreno-SanJuan et al. developed an underactuated RACA 

hand exoskeleton for neurorehabilitation of hand function in 

10 healthy subjects. This research demonstrates the potential 

of robotics in healthcare, particularly in rehabilitation therapy 

[21]. Sharbafi et al. explored neural control in prostheses and 

exoskeletons [33], while Das et al. used a hierarchical 

approach for fusion of EEG and EMG to predict finger 

movements and kinematics in 8 healthy subjects [34]. These 

studies further emphasize the potential of deep learning and 

neural networks in improving the functionality and usability 

of prosthetics and exoskeletons. Rezaie Zangene et al. 

developed an attention-driven deep neural network (ADDNN) 

to estimate knee joint kinematics via sEMG signals during 

running in 10 healthy subjects. This research could have 

significant implications for the design of athletic wear and 

equipment, as well as for sports medicine [35]. 

 
TABLE 2 (Continue) 

Author Method Respondent Condition 

Contreras-Cruz et al. [22] 
Convolutional neural network 

and sensor fusion 
10 lower-limb amputees 

Obstacle classification for powered 

prosthetic leg applications 

Khademi et al. [36] 
Conventional and deep 

learning methods for MI-BCI 

52 subjects from BCI 

Competition IV dataset 2a 
Motor imagery tasks with EEG signals 

Zhao et al. [38]  

Incremental learning of upper 

limb action pattern recognition 

based on mechanomyography 

(MMG) 

8 healthy subjects and 2 

amputees with transradial 

amputation 

Upper limb actions with MMG signals 

Rezaee et al. [24]   
Hybrid deep transfer learning-

based approach 

230 Parkinson’s disease patients 

and 230 healthy controls from 

various datasets 

Parkinson’s disease classification using 

sEMG signals 

Mukhopadhyay and Samui[42] Deep neural network (DNN) 10 healthy subjects 
Upper limb position invariant EMG 

signal classification 
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Contreras-Cruz et al. used a convolutional neural network and 

sensor fusion for obstacle classification for powered prosthetic 

leg applications in 10 lower-limb amputees. This study 

showcases the potential of deep learning techniques in 

improving the autonomy and safety of prosthetic devices [22]. 

Khademi et al. applied conventional and deep learning 

methods for MI-BCI to motor imagery tasks with EEG signals 

from 52 subjects from BCI Competition IV dataset 2a. This 

research highlights the potential of machine learning in brain-

computer interfacing, which could have significant 

implications for individuals with neurological disorders or 

injuries [36]. 

Yan et al. conducted a review of assistive strategies in 

powered lower-limb orthoses and exoskeletons, providing 

valuable insights into current practices and future directions in 

this field [37]. Finally, Zhao et al. used incremental learning 

of upper limb action pattern recognition based on 

mechanomyography (MMG) in 8 healthy subjects and 2 

amputees with transradial amputation [38]. This study 

underscores the potential of machine learning techniques in 

improving the functionality and adaptability of prosthetic 

TABLE 3 The sensor used in exoskeleton and prosthetic on Deep Learning implementation 

Author Sensor 
Number of 

Channel 
Location 

A. Foroutannia, M.-R. Akbarzadeh-

T, and A. Akbarzadeh  [19] 
EMG 16 Lower limb muscles 

S. Kansal, D. Garg, and G. S. Talwar 

[20] 
EEG 14 Scalp electrodes 

T. Das, L. Gohain, and G. Kumar 

[34] 
EEG and EMG 

14 (EEG) and 8 

(EMG) 

Scalp electrodes (EEG) and 

forearm muscles (EMG) 

A. Rezaie Zangene, O. W. Samuel, 

and K. Nazarpour [35] 
EMG 8 Thigh muscles 

M. A. Contreras-Cruz, L. Novo-

Torres, J.-P. Ramirez-Paredes [22] 
IMU 

3 (accelerometer) 

and 3 (gyroscope) 

per IMU unit 

Shank and foot segments of the 

prosthetic leg 

Z. Khademi, F. Ebrahimi, and H. 

Montazery Kordy [36] 

EEG or fMRI or MEG or NIRS or ECoG or 

LFPs or intracortical recordings or hybrid 

signals (depending on the MI-BCI system) 

Variable 

(depending on the 

MI-BCI system) 

Variable (depending on the MI-

BCI system) 

T. Zhao, G. Cao, and C. Xia [46] 
MMG or EMG or hybrid signals (depending 

on the incremental learning method) 

Variable 

(depending on the 

incremental learning 

method) 

Upper limb muscles 

(depending on the incremental 

learning method) 

J. Fan, L. Vargas, and X. Hu [28] HD-EMG 64 Forearm muscles 

K. Rezaee, S. Savarkar, and J. Zhang 

[24] 
sEMG 8 Forearm muscles 

R. Byfield, M. Guess, and J. Lin 

[25] 
sEMG 16 Lower limb muscles 

D. Buongiorno, G. D. Cascarano, 

and V. Bevilacqua [26] 
sEMG or HD-EMG (depending on the 

application) 

Variable 

(depending on the 

application) 

Variable (depending on the 

application) 

T. Zhou, Y. Wang, and J. Du [27] sEMG 8 Forearm muscles 

M. F. Wahid and R. Tafreshi [47] EEG 

64 or 128 

(depending on the 

dataset) 

Scalp electrodes 

A. K. Mukhopadhyay and S. Samui 

[42] 
sEMG or HD-EMG (depending on the arm 

position) 

8 or 64 

(depending on the 

arm position) 

Upper limb muscles 

(depending on the arm position) 

I. Iturrate, R. Chavarriaga, and J. del R. 

Millán [45] 
 

EEG or fMRI or MEG or NIRS or ECoG or 

LFPs or intracortical recordings or hybrid 

signals (depending on the BCI system) 

Variable 

(depending on the 

BCI system) 

Variable (depending on the 

BCI system) 
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devices. These studies demonstrate the diverse applications of 

deep learning techniques and neural networks in healthcare 

and robotics, particularly in the development and 

improvement of prosthetics and exoskeletons. They highlight 

the potential of these methods in interpreting complex 

biological signals, improving device functionality, enhancing 

user safety, and ultimately improving quality of life for 

individuals using these devices. 

4. DISCUSSION 

The TABLE 3 provides a comprehensive overview of the 

state-of-the-art methods in the field of electromyography 

(EMG) and electroencephalography (EEG) signal processing, 

with a focus on deep learning techniques, machine learning 

frameworks, and novel methodologies for various 

applications. A common thread among the authors is the use 

of deep learning techniques and machine learning frameworks 

to process EMG and EEG signals. For instance, J. Fan, L. 

Vargas, and X. Hu [28], K. Rezaee, S. Savarkar, and J. Zhang 

[24], and T. Zhou, Y. Wang, and J. Du [27] have all 

implemented deep learning-based approaches in their 

respective studies. However, the specific methodologies and 

applications vary among the authors. J. Fan et al. [28] focused 

on controlling a robotic hand with high accuracy and dexterity 

using HD-EMG features, while K. Rezaee et al. [24] aimed to 

classify Parkinson’s disease patients from healthy subjects 

based on sEMG signals. On the other hand, T. Zhou et al. 

predicted human hand motion trajectories from sEMG signals 

during pipe skid maintenance tasks [27]. Another similarity is 

the use of small datasets in their studies, as seen in the works 

of K. Rezaee et al. [24], R. Byfield, M. Guess, and J. Lin [25], 

and T. Zhou et al. [27]. This highlights a common challenge 

in this field - the need for larger datasets for more robust and 

generalizable results. In terms of differences, some authors 

like D. Buongiorno, G. D. Cascarano, and V. Bevilacqua 

provided a comprehensive overview of the current state-of-

the-art methods and challenges in processing sEMG signals 

using deep learning techniques [26], while others like R. 

Byfield et al. developed a machine learning framework that 

can estimate the full 3-D lower-body kinematics and kinetics 

of patients with knee osteoarthritis from sEMG signals [25]. 

While these state-of-the-art methods have shown promising 

results in various applications, there are still challenges to be 

addressed such as the need for larger datasets, validation on 

different tasks or disorders, comparison with other methods, 

evaluation of usability or clinical relevance, and consideration 

of factors such as fatigue or noise in EMG signals. 

The TABLE 1 provides a comprehensive overview of the 

state-of-the-art methods in the field of electromyography 

(EMG) and electroencephalography (EEG) signal processing, 

with a focus on deep learning techniques, machine learning 

frameworks, and novel methodologies for various 

applications. A common thread among the authors is the use 

of deep learning techniques and machine learning frameworks 

to process EMG and EEG signals. For instance, J. Fan, L. 

Vargas, and X. Hu [28], K. Rezaee, S. Savarkar, and J. Zhang 

[39], and T. Zhou, Y. Wang, and J. Du have all implemented 

deep learning-based approaches in their respective studies 

[27]. 

However, the specific methodologies and applications 

vary among the authors. J. Fan et al. [28] focused on 

controlling a robotic hand with high accuracy and dexterity 

using HD-EMG features, while K. Rezaee et al. [24] aimed to 

classify Parkinson’s disease patients from healthy subjects 

based on sEMG signals. On the other hand, T. Zhou et al. [15] 

predicted human hand motion trajectories from sEMG signals 

during pipe skid maintenance tasks. 

Another similarity is the use of small datasets in their studies, 

as seen in the works of K. Rezaee et al. [12], R. Byfield, M. 

Guess, and J. Lin [25], and T. Zhou et al. [27]. This highlights 

a common challenge in this field - the need for larger datasets 

for more robust and generalizable results. In terms of 

differences, some authors like D. Buongiorno, G. D. 

Cascarano, and V. Bevilacqua [26] provided a comprehensive 

overview of the current state-of-the-art methods and 

challenges in processing sEMG signals using deep learning 

techniques, while others like R. Byfield et al. [25] developed 

a machine learning framework that can estimate the full 3-D 

lower-body kinematics and kinetics of patients with knee 

osteoarthritis from sEMG signals. While these state-of-the-art 

methods have shown promising results in various applications, 

there are still challenges to be addressed such as the need for 

larger datasets, validation on different tasks or disorders, 

comparison with other methods, evaluation of usability or 

clinical relevance, and consideration of factors such as fatigue 

or noise in EMG signals. 

The studies presented in the table offer a fascinating 

glimpse into the diverse applications of deep learning 

techniques and neural networks in healthcare and robotics. 

Despite the unique focus of each study, a common thread that 

ties them together is the use of advanced computational 

methods, such as deep neural networks and convolutional 

neural networks, to interpret complex biological signals and 

improve device functionality. For instance, Foroutannia et al. 

[19], Kansal et al. [20], and Rezaie Zangene et al [35]. all 

utilized deep neural networks in their research, demonstrating 

the potential of these methods in interpreting EMG and EEG 

signals. Similarly, Contreras-Cruz et al. employed a 

convolutional neural network for obstacle classification in 

powered prosthetic leg applications, showcasing the versatility 

of deep learning techniques [22]. In terms of respondents, 

several studies involved healthy subjects performing various 

tasks, indicating a shared focus on understanding normal 

physiological responses. However, some studies also involved 

specific groups such as amputees, highlighting the 

commitment to improving quality of life for individuals with 

physical disabilities. 

Despite these commonalities, each study stands out for its 

unique contributions to the field. Some research focused on 

specific applications such as prosthetics and exoskeletons, 
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while others explored more general topics like brain-computer 

interfacing or assistive strategies in powered lower-limb 

orthoses and exoskeletons. These studies collectively 

underscore the transformative potential of deep learning 

techniques and neural networks in healthcare and robotics. 

They highlight how these advanced computational methods 

can be harnessed to interpret complex biological signals, 

improve device functionality, enhance user safety, and 

ultimately improve quality of life for individuals using these 

devices. 

V. FUTURE DIRECTION 

Based on the current discussion, some possible future 

directions for this topic are: 

1. Exploring the impact of deep learning techniques and 

neural networks on the performance, usability, and user 

satisfaction of prosthetics and exoskeletons. 

2. Investigating the challenges and limitations of deep 

learning techniques and neural networks in processing 

biological signals, such as noise, variability, and non-

stationarity. 

3. Developing novel deep learning architectures and 

algorithms that can better capture the complex dynamics 

and interactions of biological signals and prosthetic or 

exoskeleton devices. 

4. Comparing the effectiveness and efficiency of different 

deep learning techniques and neural networks for 

different types of biological signals, such as EMG, EEG, 

MMG, etc. 

5. Evaluating the ethical, social, and legal implications of 

using deep learning techniques and neural networks in 

healthcare and robotics, such as privacy, security, 

accountability, and responsibility. 

VI. CONCLUSION 

The aim of this paper was to provide a comprehensive 

overview of various research studies in the field of deep 

learning and neural networks, particularly focusing on their 

application in healthcare and robotics. The paper presented a 

table that summarized the author, method, respondent, and 

condition of each study, and then discussed the 

commonalities, differences, and contradictions among them. 

The main finding of this paper was that deep learning 

techniques and neural networks have diverse and 

transformative potential in healthcare and robotics, 

especially in the development and improvement of 

prosthetics and exoskeletons. The paper highlighted how 

these advanced computational methods can be harnessed to 

interpret complex biological signals, improve device 

functionality, enhance user safety, and ultimately improve 

quality of life for individuals using these devices. The paper 

also identified some possible future directions for this topic, 

such as exploring the impact of deep learning techniques and 

neural networks on the performance, usability, and user 

satisfaction of prosthetics and exoskeletons; investigating 

the challenges and limitations of deep learning techniques 

and neural networks in processing biological signals; 

developing novel deep learning architectures and algorithms 

that can better capture the complex dynamics and 

interactions of biological signals and prosthetic or 

exoskeleton devices; comparing the effectiveness and 

efficiency of different deep learning techniques and neural 

networks for different types of biological signals; and 

evaluating the ethical, social, and legal implications of using 

deep learning techniques and neural networks in healthcare 

and robotics. This paper provided a valuable insight into the 

current state-of-the-art and future prospects of deep learning 

techniques and neural networks in healthcare and robotics. 

The paper demonstrated the diverse applications and 

contributions of these methods in interpreting complex 

biological signals and improving device functionality. The 

paper also suggested some areas for further research and 

development in this field. 
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