
Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 223

 RESEARCH ARTICLE OPEN ACCESS

Manuscript received July 27, 2023; revised August 20, 2023; accepted September 21, 2023; date of publication October 30, 2023
Digital Object Identifier (DOI): https://doi.org/10.35882/jeemi.v5i4.315
Copyright © 2023 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).

How to cite: Vina Maulida, Rudy Herteno , Mohammad Reza Faisal , Dwi Kartini , Friska Abadi, “Feature Selection Using Firefly Algorithm
with Tree-Based Classification In Software Defect Prediction, vol. 5, no. 4, pp. 223-230, October 2023.

Feature Selection Using Firefly Algorithm with
Tree-Based Classification in Software Defect
Prediction

Vina Maulida , Rudy Herteno , Mohammad Reza Faisal , Dwi Kartini , Friska Abadi

Fakultas Matematika dan Ilmu Pengetahuan Alam , Universitas Lambung Mangkurat , Indonesia

Corresponding author: rudy.herteno@ulm.ac.id

ABSTRACT Defects that occur in software products are a universal occurrence. Software defect prediction is usually carried

out to determine the performance, accuracy, precision and performance of the prediction model or method used in research,

using various kinds of datasets. Software defect prediction is one of the Software Engineering studies that is of great concern

to researchers. The purpose of this research is to improve the performance produced by the Decision Tree, Random Forest,

and Deep Forest classification methods by selecting the Firefly feature in predicting software defects. In addition, it is also to

find out a tree-based classification algorithm with Firefly feature selection that can provide better software defect prediction

performance. The dataset used in this study is the ReLink dataset which consists of Apache, Safe and Zxing. Then the data is

divided into testing data and training data with 10-fold cross validation. Then feature selection is performed using the Firefly

Algorithm. Each ReLink dataset will be processed by each tree-based classification algorithm, namely Decision Tree,

Random Forest and Deep Forest according to the results of the Firefly feature selection. Performance evaluation uses the

AUC value (Area under the ROC Curve). Research was conducted using google collab and the average AUC value generated

by Firefly-Decision Tree is 0.66, the average AUC value generated by Firefly-Random Forest is 0.77, and the average AUC

value generated by Firefly-Deep Forest is 0.76. The results of this study indicate that the approach using the Firefly algorithm

with Random Forest classification gets better results compared to other tree-based algorithms.

INDEX TERMS Software Defect Prediction, Firefly, Decision tree, Random forest, Deep forest

I. INTRODUCTION

Software systems continue to serve important functions in

every aspect of our society, the presence of a flaw in such a

system can have a major impact on the economy and the

general population[1]. Software development projects

necessitate a phase of software testing which is of utmost

importance and incurs significant costs for investigating the

efficacy of the resultant product[2]. A software defect

denotes a flaw, error, bug, mistake, fault, or failure within a

computer system or program that may result in an

unexpected or inaccurate outcome or hinder intended

software behavior[3]. To attain high-quality software, the

final product must have minimal defects. Early detection of

software defects can lead to reduced development costs,

rework efforts, and more dependable software[4]. Defect

prediction is an exceedingly dynamic domain within

software analytics[5]. The utilization of software defect

prediction metrics is of parfrequency significance in the

development of a prediction model, which has the objective

of enhancing software quality by foreseeing a maximal

number of software defects[6].

In research conducted by Andini et al[7]. in his research

using a tree-based classification with hyperparameter

tuning, the average AUC value generated by a Decision

Tree is 0.69, while the average AUC value generated by a

Random Forest is 0.76 and the average AUC value

produced by Deep Forest is 0.79. In another study by Anbu

et al. the Firefly optimization method was used to improve

software defect prediction performance as feature selection,

the final results of the study concluded that the Firefly

search algorithm is effective for feature selection problems

with the results of classification accuracy SVM-with FS has

better accuracy by 4.53% compared to SVM-without FS, by

5.4% compared to KNN without FS, by 11% compared to

NB-without FS. In a previous study conducted by Zhou et

al. proposes several methods such as Deep Belief Networks

http://jeeemi.org/index.php/jeeemi
https://doi.org/10.35882/jeemi.v5i4.315
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0009-0001-2499-5343
https://orcid.org/0000-0003-0637-8090
https://orcid.org/0000-0001-5748-7639
https://orcid.org/0000-0002-7382-5084
https://orcid.org/0000-0002-9449-8000

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 224

(DBN), Random Forest (RF), Naive Bayes (NB), Logistic

Regression (LR) and Support Vector Machine (SVM) in

predicting software defects. The data used are NASA,

PROMISE, AEEEM and ReLink datasets. Based on the

comparison results, for the NASA dataset it can be seen that

DPDF has the best performance, AUC increases and the

highest value is 92%. For the PROMISE and AEEEM

datasets, the DPDF results are also better than the others,

with the highest scores of 89% and 86%. And across

multiple datasets ReLink, DPDF has not outperformed RF

and DBN, the highest score is 75%. Feature selection plays

a crucial role in a plethora of applications owing to its

indispensability in ensuring generalization, performance,

computational efficiency, and feature interpretability[8]. So

in this study research will be carried out on the application

of feature selection in predicting software defects using the

Firefly algorithm for tree-based classification, namely

Decision Tree, Random Forest classification, and Deep

Forest with the aim of improving the resulting performance.

II. METHOD

This research method describes the dataset used, Decision

Tree algorithm, Random Forest, Deep Forest, Firefly

algorithm, test validation using cross validation, and

performance measurement using the evaluation method using

AUC. The following is the research procedure that will be

carried out. Figure 1 show the flow of this research.

FIGURE 1. Research flow with feature selection

In this study, a flowchart is presented in Figure 1. The initial

step involves collecting the ReLink dataset, followed by

sharing the data using cross validation. The validation

technique adopted in this study is 10-fold validation. To

achieve this, each ReLink dataset is partitioned into 10

sections, with 9 sections designated as training data and the

remaining section used as test data. Subsequently, feature

selection is executed via the Firefly algorithm before

classification. The classification phase involves three

scenarios, which are Decision Tree, Random Forest, and

Deep Forest. The study's evaluation employs the average

AUC value. The experimentation was conducted using

Python Google Collaboratory.

A. DATA COLLECTION

The dataset used in this study is a software metrics dataset

called ReLink, which consists of Apache, Safe, and Zxing

data. This dataset can be downloaded at the following link

https://github.com/bharlow058/AEEEM-and-otherSDP-

datasets/tree/master/dataset/Relink.

TABLE 1 shows the frequency of data that varies in each

ReLink dataset, namely Apache with 194 data, Safe with 56

data and Zxing with 399 data. Then explains the ReLink

dataset software metrics which are grouped into 2 software

metric categories (groups), namely Complexity Metric

(CPM) and Count Metric (CTM). The ReLink dataset has

the same number of software metrics[7].

TABLE 1

Relink dataset

Matrix

Category

Attribute Name

Dataset Original

Apache Safe Zxing

Complexity

Metric(CPM)

AvgCyclomatic √ √ √

AvgCyclomaticModified √ √ √

AvgCyclomaticStrict √ √ √

AvgEssential √ √ √

MaxCyclomatic √ √ √

MaxCyclomaticModified √ √ √

MaxCyclomaticStrict √ √ √

RatioCommentToCode √ √ √

SumCyclomatic √ √ √

SumCyclomaticModified √ √ √

SumCyclomaticStrict √ √ √

SumEssential √ √ √

Count

Metric(CTM)

AvgLine √ √ √

AvgLineBlank √ √ √

AvgLineCode √ √ √

AvgLineComment √ √ √

CountLine √ √ √

CountLineBlank √ √ √

CountLineCode √ √ √

CountLineCodeDecl √ √ √

CountLineCodeExe √ √ √

CountLineComment √ √ √

CountSemicolon √ √ √

CountStmt √ √ √

CountStmtDecl √ √ √

CountStmtExe √ √ √

Number of Modules 194 56 399

Number of Attributes

(Feature)

26 26 26

Number of Classes

(Buggy)

98 22 ll8

Number of Classes

(Clean)

96 34 281

Percentage (Buggy) 50.52% 39.29% 29.57%

http://jeeemi.org/index.php/jeeemi
https://github.com/bharlow058/AEEEM-and-otherSDP-datasets/tree/master/dataset/Relink
https://github.com/bharlow058/AEEEM-and-otherSDP-datasets/tree/master/dataset/Relink

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 225

B. DATA SHARING
1. CROSS VALIDATION

The reduction of bias in the case of random sampling of

datasets is accomplished through the implementation of

cross validation[9]. Cross Validation divides the original

data into training data and testing data[4]. It consists of

randomly dividing the data set into K parts[10]. One part is

used to validate the model and the rest to train the classifier.

This process is repeated K times, selecting different

validation subsets. Cross Validation divides raw data into

training data and testing data randomly. Weaknesses that K-

Fold Cross Validation has when using unbalanced data

where there is a possibility of causing some data to be lost

and only testing a few instances so that there are still many

untested[11].

C. FEATURE SELECTION
1. FIREFLY ALGORITHM BASED FEATURE SELECTION
Feature selection constitutes a combinational optimization

problem[12]. The Firefly algorithm (FA) is a novel

population-based meta-heuristic algorithm that exhibits

exceptional performance on a multitude of optimization

problems[13]. The Firefly Algorithm is algorithm that

draws inspiration from the light flashing behavior of the

original Firefly[14]. It should be noted that every Firefly

has its unique position that is determined by the number

that is generated for each of them[15]. Firefly Algorithm

for discriminatory features selection of classification and

regression models to support the decision-making process

using database-based learning methods[16]. It can be

posited that the algorithm in question has achieved a

remarkable level of success, despite its relatively low

cost[17]. This algorithm is inspired by the blinking

behavior of a Firefly, a randomly generated solution will be

treated as a Firefly, and the brightness assigned depends on

its performance in the objective function[14]. The

brightness of a Firefly is determined by evaluating the

fitness function. For the problem of maximizing brightness,

it can be compared with the value of the objective function

(fitness function)[18]. The Firefly algorithm exhibits

superior capacity to evade trapping in local optima,

alongside a marked enhancement in both the speed of

convergence and precision of solutions[19].

The attractiveness of the Firefly is determined by its

brightness, which is contingent on the light intensity. The

calculation of attractiveness for each Firefly is

accomplished through the utilization of Equation (1)[14].

β(r) = β0e
-γr2 (1)

where variable β0 is utilized to signify the level of appeal at

the point where distance (r)=0, and in certain instances, it is

regarded as equivalent to the value of one for mathematical

computations. Meanwhile, the symbol γ is representative of

the degree of light absorption. It should be noted that r

denotes the distance between two fireflies, i and j, who are

in constant motion from one position to another. It is a

well-established fact that the degree of attractiveness

between these fireflies is closely linked with the distance

that separates them. Therefore, the distance between two

fireflies, i and j, is determined using the Euclidean distance

law[14]. calculated by the equation(2).

rij = ||xi – xj|| = √∑ = 1(𝑋𝑖, 𝑘 − 𝑋𝑗, 𝑘)𝑑
𝑘

2 (2)

where d denotes the dimensions of the given problem, xi,k

corresponds to the k-th component of the Firefly position i.

After calculating the distance between two fireflies, if

Firefly i exhibits a lower luminosity compared to Firefly j,

then the resulting attraction between the two occurs when

Firefly i moves towards Firefly j. the movement in question

is governed by Equation (3)[14], which is stated as follows:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽0𝑒
−(𝛾𝑟𝑖𝑗

2) ∗ (𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝛼 ∗ (𝑟𝑎𝑛𝑑 − 1/2)

(3)

where t denotes the number of iterations, the coefficient α

denotes a stochastic variable governing the magnitude of

the random walk, and rand signifies a random number

generator that falls within the interval [0,1]. The Firefly

with lower luminosity translocates towards the brighter

Firefly after considering three factors[14]. The first factor

corresponds to the current position of the less luminous

Firefly. The second factor denotes the movement towards

the brighter Firefly, which is guided by the attraction

coefficient β. Finally, the last factor corresponds to a type

of random walk that is computed by a random generator

multiplied by α.

D. CLASSIFICATION
1. DECISION TREE CLASSIFICATION

A Decision Tree(DT) is a classification technique utilized

in data mining that constructs a model in a top-down tree-

like fashion, predicated on the attributes intrinsic to a

designated data set[20]. The Decision Tree classification

method is capable of resolving both binary and multi-class

classification problems in data mining classification[21]. As

with an ordinary tree, the Decision Tree comprises a root,

branches, and leaves, adhering to the same structure[22].

The essence of DT lies in its hierarchal and predictive

modeling strategy, wherein the item's observation serves as

branches to determine the item's target value in the leaf[23].

FIGURE 2. Struktur Decision Tree[24]

This implies that it is a coordinated tree through a node

called the "root," with no imminent edges, while various

http://jeeemi.org/index.php/jeeemi

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 226

other nodes have only one imminent edge. An inner or

exam node is referred to as a center with complex edges.

Each additional node is titled as either greeneries or

incurable or excellent nodes. The leaf node is linked to the

name of the class. The Decision Tree is an integral

constituent of the planning set[24]. A Decision Tree of this

nature is depicted in FIGURE 2.

2. RANDOM FOREST CLASSIFICATION

Random Forest(RF) algorithm is a supervised classification

algorithm, as indicated by its name, which involves the

creation of a forest through a random process. The number

of trees within the forest directly affects the accuracy of the

outcomes, with larger numbers of trees resulting in greater

precision[25]. Random Forest classification is done by

obtaining the majority class votes from the individual vote

class trees[26]. One important benefit associated with RF

relates to the fact that there is no need to prune individual

trees, given the presence of multiple trees. However, the

disadvantage is that due to the large number of trees, the

ability to visualize them effectively is impaired[27]. This

method is underpinned by two primary principles: row

sampling and voting classifier. The provided records are

resampled and then forwarded to the next base learner

models for training. Aggregating is the voting classifier

concept, where the output for test data is chosen for the

class with the highest vote from the base learner

models[28]. A generalized model for the Random Forest is

depicted in FIGURE 3.

FIGURE 3. Random Forest structure[28]

3. DEEP FOREST CLASSIFICATION

Deep Forest is a new tree based classification algorithm

which is an improvement over Random Forest algorithm.

Deep Forest is referred to as an alternative Deep Neural

Network (DNN), Deep Forest has parts or components,

namely a layer-by-layer structure called a cascade

forest[29]. A cascading forest is a distribution of classes

generated by each tree for each instance[30]. The image

presented below illustrates the layered nature of the

algorithm, where each layer is stacked one on top of the

other. The initial layer obtains input from the original

dataset's attributes or features, which are then handled by

the Random Forest in the next layer (FIGURE 4). The layer

will stop if the process generated Random Forest does not

increase or if the output at the given layer decreases. The

Deep Forest algorithm will average the results from layer to

layer to the final layer of each layer level. The downside is

that Deep Forests take longer to process than Random

Forests[7].

FIGURE 4. The architecture of the cascade forest[29]

E. EVALUATION OF RESULT

The features of this study were taken from 3 ReLink

datasets obtained from the github repository, each of which

has 26 features. Feature selection is an important step in

data analysis, because the right features will improve the

classification performance of the model. In this study,

feature selection was performed using the Firefly Algorithm

to improve feature selection efficiency and improve the

accuracy of the tree-based classification model. Firefly is

used to find the best feature combination that gives higher

AUC performance than the classification model. In this

study, 10 trials were carried out to find out the average

AUC value obtained. After implementing Firefly, the final

results show a comparison of the AUC between models that

use a combination of classification and selection of Firefly

features and models that use classification and

hyperparameter tuning, so that it can be seen whether the

implementation of the Firefly feature provides an increase

in AUC performance in classification on prediction of

software defects. Evaluation of the classification

performance of the Decision Tree, Random Forest and

Deep Forest models for each ReLink dataset uses the AUC

(Area under the ROC Curve) value.

The AUC represents the area under the ROC curve and has

been recommended for improving cross-study

comparability. Its potential for significantly enhancing

convergence across empirical experiments in software

defect prediction lies in its ability to disentangle predictive

performance from operating conditions, thereby serving as

a general measure of predictiveness[31].

III. RESULT

The TABLE 2 shows the performance of a tree-based

classification algorithm with the Firefly search feature on

the Apache dataset.
TABLE 2

Table of AUC results with Firefly feature selection on the Apache, Safe

and Zxing datasets

Datasets Average

Features

Avarage AUC Value

Decision

Tree (DT)

Random Forest

(RF)

Deep

Forest (DF)

Apache 11.5 0.658 0.773 0.756

Safe 12.3 0.7323 0.8388 0.8382

http://jeeemi.org/index.php/jeeemi

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 227

Datasets Average

Features

Avarage AUC Value

Decision

Tree (DT)

Random Forest

(RF)

Deep

Forest (DF)

Zxing 12.1 0.5904 0.7138 0.679

The TABLE 3 shows the number of times a feature appears

in 10 trials using Firefly feature selection on the Apache,

Safe and Zxing datasets.

TABLE 3
The number of features that appear in the dataset Apache, Safe and
Zxing

No. Features Apache Safe Zxing Average

1 AvgCyclomatic 3 4 3 3.3

2 AvgCyclomaticModified 2 3 2 2.3

3 AvgCyclomaticStrict 1 4 5 3.3

4 AvgEssential 5 4 6 5

5 MaxCyclomatic 2 3 3 2.6

6 MaxCyclomaticModified 3 6 4 4.3

7 MaxCyclomaticStrict 6 4 3 4.3

8 RatioCommentToCode 7 4 6 5.6

9 SumCyclomatic 7 6 5 6

10 SumCyclomaticModified 5 6 6 5.6

11 SumCyclomaticStrict 5 5 5 5

12 SumEssential 5 3 3 3.6

13 AvgLine 6 4 4 4.6

14 AvgLineBlank 3 7 3 4.3

15 AvgLineCode 2 5 8 5

16 AvgLineComment 4 5 5 4.6

17 CountLine 7 5 7 6.3

18 CountLineBlank 4 4 7 5

19 CountLineCode 5 7 4 5.3

20 CountLineCodeDecl 5 4 4 4.3

21 CountLineCodeExe 8 4 5 5.6

22 CountLineComment 4 3 2 3

23 CountSemicolon 1 7 4 4

24 CountStmt 4 7 3 4.6

25 CountStmtDecl 5 4 7 5.3

26 CountStmtExe 6 4 7 5.6

IV. DISCUSSION

In this study, a total of 10 trials were carried out to obtain

the average value. The results of the software defect

prediction assessment of the three ReLink datasets on the

area under the curve (AUC) values obtained from the ten

experiments conducted are presented in Tables 2, 4, and 6.

Due to the random selection of the Firefly feature according

to the best intensity, the selected features change with each

trial, resulting in varying AUC values, some higher and

some lower. It should be noted that the AUC values

obtained from each experiment are different, with the

optimal average number of features used being 12 features.

TABLE 3, TABLE 4, and TABLE 5 describe the frequency

of characteristic selection via the utilization of the Firefly

algorithm on the 26 features of the ReLink dataset,

organized according to their respective degree of

implementation. Among the plethora of garnered findings,

the Matrix Category Count Metric (CTM) emerges as the

most frequently employed feature. TABLE 4 and FIGURE

5 show the average AUC values achieved across all ReLink

datasets and the most frequently used feature sets.

The feature selection carried out by the fireflies on all

tree-based classification algorithms has proven successful

in elevating software defect prediction performance

compared to prior studies that employed hyperparameter

tuning. This is evidenced by the superior average

performance of each proposed method, as shown in Table

10, relative to previous methodologies.

TABLE 4

Comparison of AUC results with previous studies

Datasets Previous research methods

(AUC)

The proposed research

method(AUC)

DT[[7] RF[7] DF[7] DT RF DF

Apache 0.76 0.76 0.75 0.66 0.77 0.76

Saf 0.63 0.73 0.73 0.73 0.84 0.84

Zxing 0.64 0.67 0.70 0.59 0.71 0.68

Average 0.66 0.72 0.73 0.66 0.77 0.76

FIGURE 5. Graph of AUC performance comparison with previous
studies

Based on the data presented in TABLE 4 and FIGURE 6, a

comparison is made between the Decision Tree algorithm

that utilizes the proposed Firefly feature selection method

and the Decision Tree algorithm with hyperparameter

settings, as previously studied. Interestingly, both methods

produce an equivalent AUC value of 0.66. In contrast, the

proposed Random Forest algorithm with Firefly feature

selection shows an improvement of 5% compared to the

Random Forest algorithm with hyperparameter tuning, as

examined in previous studies. Likewise, the Deep Forest

algorithm using the proposed Firefly feature selection

method produces a 3% increase when compared to the

Deep Forest algorithm with hyperparameter settings in

previous studies.

In previous research. the Decision Tree parameter was

set to the default value or without selecting the Firefly

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

DT RF DF

A
U

C

Method

previous research with

hyperparameter tuning

proposed research with

feature selection

http://jeeemi.org/index.php/jeeemi

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 228

feature. resulting in an average AUC value of 0.66. The

Random Forest parameter is set to the default value or

without the Firefly feature selected. resulting in an average

AUC value of 0.72. And the Deep Forest parameter is set

to the default value or without the Firefly selection feature

resulting in an average AUC value of 0.73. In this study.

the Decision Tree parameters with Firefly feature selection

produced an average AUC value of 0.66. Setting the

Random Forest parameter by selecting the Firefly feature

produces an average AUC value of 0.77. And the Deep

Forest parameter is set by selecting the Firefly feature so

that it produces an average AUC value of 0.76.

Table 5

Comparison of AUC results with other research methods

Datasets Previous research methods

(AUC)

The proposed research

method

(AUC)

NB

[29]

LR

[29]

SVM[

29]

DT RF DF

Apache 0.74 0.70 0.76 0.66 0.77 0.76

Safe 0.69 0.67 0.69 0.73 0.84 0.84

Zxing 0.61 0.57 0.66 0.59 0.71 0.68

Average 0.68 0.64 0.70 0.66 0.77 0.76

FIGURE 6. Comparison of AUC results with other research methods

TABLE 5 and FIGURE 6 present a comprehensive analysis

of the results compared to previous investigations using

various methodologies. It is clear that the results of this study

outperform those of its predecessors. In particular, the

average AUC value of the Random Forest and Deep Forest

classification technique using the Firefly feature selection

method outperforms the average AUC value of other

methodologies.

V. CONCLUSION

This study aims to predict software defects in the ReLink

dataset through the application of Decision Tree, Random

Forest, and Deep Forest tree-based classification with Firefly

feature selection. The performance of these models varies, as

evidenced by the comparison results in experimental trials.

Specifically, Firefly's feature selection was found to improve

AUC performance when compared to previous studies using

hyperparameter tuning for tree-based classification. In

addition, Firefly feature selection combined with tree-based

classification outperformed previous studies using the Naïve

Bayes (NB) method, as well as Logistic Regression (LR) and

Support Vector Machine (SVM). Overall, these findings

highlight the potential benefits of using Firefly feature

selection with tree-based classification to perform well in

predicting software crashes.

The findings of the research indicate that the application

of the Firefly feature selection in conjunction with Random

Forest classification yields superior performance in

comparison to feature selection utilizing other classifications

based on trees. This is evidenced by an average AUC value

of 0.77, an average feature usage of 12 out of 26 features,

and the most frequently occurring feature belonging to the

Count Metric category. Thus, the results suggest that the

features categorized under CountMetric are the most

effective. In future studies, the tree-based algorithm will be

tested with the firefly selection feature on other datasets that

have a higher score ratio. The goal is to find out better

algorithm performance in predicting software defects.

Another further research is experimenting with firefly

features with other classification algorithms in predicting

software defects. The aim is to find out the search for firefly

features with a classification algorithm that is expected to get

a better performance value.

ACKNOWLEDGMENT

We would like to thank all the lecturers and staff of the

Computer Science study program, Faculty of Mathematics

and Natural Sciences, University of Lambung Mangkurat

who have provided the necessary resources and helped

complete this research.

 REFERENCES
[1] H. K. Dam, J. Grundy, T. Kim, and C. Kim, “A deep tree-based

model for software defect prediction”.

[2] F. Yucalar, A. Ozcift, E. Borandag, and D. Kilinc, “Multiple-

classifiers in software quality engineering: Combining predictors to

improve software fault prediction ability,” Eng. Sci. Technol. an Int.

J., vol. 23, no. 4, pp. 938–950, 2020, doi:

10.1016/j.jestch.2019.10.005.

[3] M. S. Rawat and S. K. Dubey, “Software defect prediction models

for quality improvement: A literature study,” Int. J. Comput. Sci.

Issues, vol. 9, no. 5 5–2, pp. 288–296, 2018.

[4] J. Ren, K. Qin, Y. Ma, and G. Luo, “Survey on Software Defect

Prediction Using Machine Learning Techniques,” J. Appl. Math.,

vol. 3, no. 12, pp. 2319–7064, 2018, doi: 10.1155/2014/785435.

[5] J. Grundy, T. Kim, and C. Kim, “Lessons learned from using a deep

tree-based model for software defect prediction in practice,” no.

May, pp. 26–27, 2019.

[6] Z. Li, X. Y. Jing, and X. Zhu, “Progress on approaches to software

defect prediction,” IET Softw., vol. 12, no. 3, pp. 161–175, 2018, doi:

10.1049/iet-sen.2017.0148.

[7] E. Andini, M. R. Faisal, and R. Herteno, “Software Defect Prediction

Performance Improvement With Hyperparameter Tuning In Deep

Forest Classification Algorithm,” vol. 5, no. 2, pp. 119–127, 2022.

[8] N. Gayatri, S. Nickolas, and A. V Reddy, “Feature Selection Using

Decision Tree Induction in Class level Metrics Dataset for Software

Defect Predictions,” World Congr. Eng. Comput. Sci. Vols 1 2, vol. I,

pp. 124–129, 2020.

[9] S. Ghosh, A. Rana, and V. Kansal, “A Nonlinear Manifold Detection

based Model for Software Defect Prediction,” Procedia Comput.

0.68
0.64

0.7
0.66

0.77 0.76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NB LR SVM DT RF DF

A
U

C

Method

http://jeeemi.org/index.php/jeeemi

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 229

Sci., vol. 132, pp. 581–594, 2018, doi: 10.1016/j.procs.2018.05.012.

[10] H. Wei, C. Hu, S. Chen, Y. Xue, and Q. Zhang, “Establishing a

software defect prediction model via effective dimension reduction,”

Inf. Sci. (Ny)., vol. 477, pp. 399–409, 2019, doi:

10.1016/j.ins.2018.10.056.

[11] B. Kovalerchuk, “Enhancement of Cross Validation Using Hybrid

Visual and Analytical Means with Shannon Function,” Stud. Comput.

Intell., vol. 835, pp. 517–543, 2020, doi: 10.1007/978-3-030-31041-

7_29.

[12] H. Xu, S. Yu, J. Chen, and X. Zuo, “An Improved Firefly Algorithm

for Feature Selection in Classification,” Wirel. Pers. Commun., 2018,

doi: 10.1007/s11277-018-5309-1.

[13] J. Wang, “A novel firefly algorithm for portfolio optimization

problem,” IAENG Int. J. Appl. Math., vol. 49, no. 1, 2019.

[14] E. M. Mashhour, E. M. F. El Houby, K. T. Wassif, and A. I. Salah,

“Feature selection approach based on firefly algorithm and chi-

square,” Int. J. Electr. Comput. Eng., vol. 8, no. 4, pp. 2338–2350,

2018, doi: 10.11591/ijece.v8i4.pp2338-2350.

[15] R. F. Najeeb and B. N. Dhannoon, “A feature selection approach

using binary Firefly Algorithm for network intrusion detection

system A FEATURE SELECTION APPROACH USING BINARY

FIREFLY ALGORITHM FOR NETWORK INTRUSION

DETECTION SYSTEM,” no. March, 2018.

[16] L. Zhang, K. Mistry, C. P. Lim, and S. C. Neoh, “Feature selection

using firefly optimization for classification and regression models,”

Decis. Support Syst., vol. 106, pp. 64–85, 2018, doi:

10.1016/j.dss.2017.12.001.

[17] A. H. Damia, “Automated Test Data Generation Using a

Combination of Firefly Algorithm and Asexual Reproduction

Optimization Algorithm,” 2020.

[18] S. Larabi Marie-Sainte and N. Alalyani, “Firefly Algorithm based

Feature Selection for Arabic Text Classification,” J. King Saud Univ.

- Comput. Inf. Sci., vol. 32, no. 3, pp. 320–328, 2020, doi:

10.1016/j.jksuci.2018.06.004.

[19] T. Fan, J. Wang, M. Feng, X. Zhang, J. Wang, and R. Wu,

“Application of multi-objective firefly algorithm based on archive

learning in robot path planning,” Int. J. Intell. Inf. Database Syst.,

vol. 12, no. 3, pp. 199–211, 2019, doi: 10.1504/IJIIDS.2019.102939.

[20] A. K. Hamoud, A. S. Hashim, and W. A. Awadh, “Predicting

Student Performance in Higher Education Institutions Using

Decision Tree Analysis,” Int. J. Interact. Multimed. Artif. Intell., vol.

5, no. 2, p. 26, 2018, doi: 10.9781/ijimai.2018.02.004.

[21] M. A. Febriantono, S. H. Pramono, Rahmadwati, and G. Naghdy,

“Classification of multiclass imbalanced data using cost-sensitive

decision tree c5.0,” IAES Int. J. Artif. Intell., vol. 9, no. 1, pp. 65–72,

2020, doi: 10.11591/ijai.v9.i1.pp65-72.

[22] H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree

Based Classification Algorithms,” Int. J. Comput. Sci. Eng., vol. 6,

no. 10, pp. 74–78, 2018, doi: 10.26438/ijcse/v6i10.7478.

[23] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah,

“Software Bug Prediction using machine learning approach,” Int. J.

Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 78–83, 2018, doi:

10.14569/IJACSA.2018.090212.

[24] F. M. J. M. Shamrat et al., “CART Decision Tree Algorithms”.

[25] R. Rama Devi and M. Abualkibash, “Intrusion Detection System

Classification Using Different Machine Learning Algorithms on

KDD-99 and NSL-KDD Datasets - A Review Paper,” Int. J. Comput.

Sci. Inf. Technol., vol. 11, no. 03, pp. 65–80, 2019, doi:

10.5121/ijcsit.2019.11306.

[26] H. Tyralis, G. Papacharalampous, and A. Langousis, “A brief review

of random forests for water scientists and practitioners and their

recent history in water resources,” Water (Switzerland), vol. 11, no.

5, 2019, doi: 10.3390/w11050910.

[27] A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of

machine-learning classification in remote sensing: An applied

review,” Int. J. Remote Sens., vol. 39, no. 9, pp. 2784–2817, 2018,

doi: 10.1080/01431161.2018.1433343.

[28] H. B. Kibria and A. Matin, “The severity prediction of the binary and

multi-class cardiovascular disease − A machine learning-based

fusion approach,” Comput. Biol. Chem., vol. 98, no. March, 2022,

doi: 10.1016/j.compbiolchem.2022.107672.

[29] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect

prediction with deep forest,” Inf. Softw. Technol., vol. 114, no. July

2018, pp. 204–216, 2019, doi: 10.1016/j.infsof.2019.07.003.

[30] L. V. Utkin, M. S. Kovalev, and A. A. Meldo, “A deep forest

classifier with weights of class probability distribution subsets,”

Knowledge-Based Syst., vol. 173, pp. 15–27, 2019, doi:

10.1016/j.knosys.2019.02.022.

[31] R. S. Wahono and N. Suryana, “Combining particle swarm

optimization based feature selection and bagging technique for

software defect prediction,” Int. J. Softw. Eng. its Appl., vol. 7, no. 5,

pp. 153–166, 2013, doi: 10.14257/ijseia.2013.7.5.16.

BIOGRAPHY

Vina Maulida originated in Amuntai, Hulu

Sungai Utara, South Kalimantan. Since 2018, she

has pursued her academic endeavors as a student

of Computer Science Department at Universitas

Lambung Mangkurt. Her current area of research

lies within the realm of software engineering.

Additionally, his final assignment involves

research centered on predicting defects in

software. The goal of this research effort is to

predict defects in software.

Rudy Herteno, was born in Banjarmasin, South

Kalimantan. After graduating from high school,

he pursued his undergraduate studies in the

Computer Science Department at Lambung

Mangkurat University and graduated in 2011.

After completing his undergraduate program, he

worked as a software developer to gather

experience for several years. He developed a lot

of software, especially for local governments. In

2017, He completed his master's degree in

Informatics from STMIK Amikom University.

Currently, he is a lecturer in the Faculty of Mathematics and Natural

Science at Lambung Mangkurat University. His research interests include

software engineering, software defect prediction, and deep learning.

Mohammad Reza Faisal was born in

Banjarmasin. Following his graduation from high

school, he pursued his undergraduate studies in

the Informatics department at Pasundan

University in 1995, and later majored in Physics

at Bandung Institute of Technology in 1997.

After completing his bachelor's program, he

gained experience as a training trainer in the field

of information technology and software

development. Since 2008, he has been a lecturer

in computer science at Universitas Lambung

Mangkurat, while also pursuing his master's program in Informatics at

Bandung Institute of Technology in 2010. In 2015, he furthered his

education by pursuing a doctoral degree in Bioinformatics at Kanazawa

University, Japan. To this day, he continues his work as a lecturer in

Computer Science at Universitas Lambung Mangakurat. His research

interests encompass Data Science, Software Engineering, and

Bioinformatic.

Dwi Kartini received her bachelor’s and master’s

degrees in computer science from the Faculty of

Computer Science, Putra Indonesia University
“YPTK” Padang, Indonesia. Her research interests

include the applications of Artificial Intelligence

and Data Mining. She is an assistant professor in the

Department of Computer Science, Faculty of

Mathematics and Natural Sciences, Lambung

Mangkurat University in Banjarbaru, Indonesia.

http://jeeemi.org/index.php/jeeemi

Journal of Electronics, Electromedical Engineering, and Medical Informatics
Multidisciplinary: Rapid Review: Open Access Journal Vol. 5, No. 4, October 2023, pp: 223-230; eISSN: 2656-8632

Homepage: jeeemi.org 230

Friska Abadi finished his bachelor's degree in

Computer Science from Universitas Lambung

Mangakurat in 2011. Subsequently, in 2016, he

obtained her master's degree from the Department

of Informatics at STIMIK Amikom, Yogyakarta.

Following that, he joined Universitas Lambung

Mangakurat as a lecturer in Computer Science.

Currently, he holds the position of head of the

software engineering laboratory. Him current area

of research revolves around software engineering.

http://jeeemi.org/index.php/jeeemi

