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ABSTRACT Lung cancer segmentation and classification from computed tomography (CT) images play a 

vital role in early diagnosis, prognosis assessment, and effective treatment planning. Despite significant 

progress in medical image analysis, accurate lung lesion analysis remains highly challenging due to 

overlapping anatomical structures, heterogeneous tissue intensity distributions, irregular and complex 

tumor shapes, and poorly defined lesion boundaries. These factors often limit the reliability and 

generalization capability of conventional deep learning models when applied to real-world clinical data. To 

address these challenges, this paper proposes a Hybrid Swarm-Driven Vision Transformer (HSViT) 

framework that synergistically combines swarm intelligence with transformer-based deep learning. The 

processing pipeline begins with Contrast Limited Adaptive Histogram Equalization (CLAHE), which enhances 

local contrast while suppressing noise amplification, thereby improving the visibility of subtle pulmonary 

nodules and lesion regions. Subsequently, a U-Net segmentation model optimized using the Coyote 

Optimization Algorithm (COA) is employed to accurately delineate lung lesions. COA, a swarm-based 

metaheuristic, adaptively fine-tunes U-Net parameters, enabling improved convergence and more precise 

boundary detection compared to gradient-based optimization alone. Following segmentation, discriminative 

lesion features are extracted and passed to the HSViT classifier. The proposed classifier integrates a Dual-

Stage Attention Fusion (DSAF) mechanism, which effectively captures both fine-grained local spatial features 

and long-range global contextual dependencies. The framework achieves a Dice Coefficient of 0.95, an overall 

classification accuracy of 98.7%, and a minimized training loss of 0.04. These results highlight the strong 

potential of HSViT for reliable automated lung cancer diagnosis and for supporting clinical decision-making 

systems in real-world healthcare environments. 

 

Keywords Hybrid Swarm Driven Vision Transformer, Coyote Optimization Algorithm, Vision Transformer, 
Dual Stage Attention Fusion, Lung Cancer Segmentation. 
 

I. Introduction    

Lung cancer is among the most common and fatal 
diseases globally, and it contributes significantly to 
cancer-related mortality. Timely and accurate detection 
is critical for improving patient survival and informing 
successful treatment plans. Computed Tomography 
(CT) is the most widely used modality for diagnosing 
lung cancer because of its high spatial resolution and 
ability to capture fine anatomical details. But manual 

reading of CT scans is labor-intensive, error-prone, and 
variable, pointing to the necessity of smart automated 
systems for accurate segmentation and classification of 
lung lesions [1]. As medical imaging technology 
continues to advance, detecting early-stage lung 
tumors remains a significant challenge. These tumors 
often exhibit very subtle texture variations, irregular 
shapes, and low contrast, making them visually similar 
to healthy tissues in CT scans [2]. Traditional machine 
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learning algorithms and conventional image processing 
techniques struggle to achieve high accuracy due to 
their limited feature extraction capabilities and inability 
to capture complex spatial patterns [3]. Consequently, 
there is a growing need for a powerful, fully automated 
diagnostic platform capable of handling intricate lung 
structures, accurately differentiating malignant nodules 
from benign ones, and providing consistent, reliable 
results with minimal human intervention [4]. Various 
deep learning models have been extensively explored 
for lung cancer segmentation and classification tasks 
using Computed Tomography (CT) images. 
Convolutional Neural Networks (CNNs) have been 
widely adopted due to their strong ability to learn 
hierarchical, localized spatial features via convolutional 
filters. CNN-based models can effectively capture 
texture, edge, and intensity variations within lung 
nodules, making them suitable for early-stage lesion 
detection. However, their reliance on local receptive 
fields limits their ability to model long-range contextual 
relationships, which are often crucial for distinguishing 
malignant nodules from benign structures spanning 
multiple CT slices. To address these limitations, U-Net–
based encoder–decoder architectures have become a 
popular choice for medical image segmentation. U-Net 
models employ skip connections between encoder and 
decoder layers, enabling the preservation of fine-
grained spatial details while progressively learning 
high-level semantic representations.  [5]. This 
dependency often limits their adaptability, as the 
models tend to overfit to specific datasets and struggle 
to generalize well across diverse clinical imaging 
conditions. 

Moreover, their sensitivity to parameter tuning and 
variations in data acquisition protocols poses additional 
challenges, reducing their reliability and practicality in 
real-world clinical environments. The inherent 
complexities of lung cancer detection further 
complicate the task; these include low contrast 
between lesions and surrounding tissues, diverse and 
heterogeneous tumor appearances, and significant 
variation in lesion size, shape, and location [6]. Such 
factors make robust segmentation and classification 
difficult, highlighting the need for more adaptive, 
efficient, and clinically scalable deep learning 
approaches. 

Moreover, noise and artifacts in CT images also 
hinder segmentation accuracy. Deep models, as 
efficient as they are, tend to demand high 
computational costs and poor convergence when 
handling imbalanced datasets [7]. These difficulties, 
taken together, prevent the establishment of a 
universally efficient and reliable diagnostic model. 

In order to overcome these constraints, 
optimization-based hybrid models have become 
popular for improving model performance and 
adaptability. Swarm intelligence algorithms like Particle 

Swarm Optimization (PSO), Grey Wolf Optimizer 
(GWO), and Coyote Optimization Algorithm (COA) 
have been seen to exhibit promise in optimizing deep 
learning parameters to enhance convergence and 
avoid local minima problems. Merging such 
metaheuristic optimization methods with attention-
based architectures, such as Vision Transformers, will 
enable the balance of global and local feature learning 
effectively, resulting in enhanced segmentation and 
classification accuracy. The main contributions of the 
proposed work are listed below. 
a) Hybrid Optimization Transformer Framework is a 

novel Hybrid Swarm-Driven Vision Transformer 

(HSViT) that integrates the Coyote Optimization 

Algorithm with the Vision Transformer for precise 

lung cancer segmentation and classification. 

b) Adaptive Segmentation with Optimized U-Net 

employs a Coyote-Optimized U-Net model for 

adaptive and accurate extraction of lung lesion 

boundaries by dynamically tuning network 

parameters. 

c) Enhanced Feature Learning mechanism 

incorporates a Dual-Stage Attention Fusion 

mechanism in the Vision Transformer to effectively 

capture both global contextual information and 

fine-grained local features from CT images. 

d) It utilizes Contrast Limited Adaptive Histogram 

Equalization(CLAHE) to enhance image contrast 

and improve the visibility of tumor regions before 

segmentation. 

e) The proposed work gives a Dice Coefficient of 

0.95 and an overall accuracy of 98.7% than 

existing models. 

The remainder of the paper is organized as follows: 
Section 2 reviews related work on lung cancer 
detection and segmentation using deep learning and 
optimization-based methods. Section 3 details the 
proposed framework, including pre-processing, 
segmentation, and classification stages. Section 4 
presents the comparative analysis and results obtained 
against existing methods. Finally, Section 5 discusses 
comparative analysis with the existing model in detail, 
and finally, Section 6 concludes with key findings, 
limitations, and potential directions for future research. 
 
II. State-of-The-Art Techniques  
[8] suggested a powerful lung cancer diagnosis model 
based on pre-trained CNNs to learn hierarchical 
features from CT images. The approach utilizes 
transfer learning to enhance classification accuracy 
with a decreased training time, and proves that pre-
trained models can provide robust lung cancer 
detection with small datasets.  [9] presented the 
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Advanced Deep Lung Care Net, a novel deep learning 
architecture for lung cancer prediction. The model 
combines multiple convolutional and dense layers to 
promote feature extraction with high sensitivity and 
specificity for the detection of early-stage lung cancer 
[10] proposed a deep learning-based method for lung 
cancer diagnosis from CT-scan images. Their 
approach targets automated learning of features from 
volumetric CT data to facilitate accurate tumor 
localization and classification with less human 
intervention by resolving issues of variability of lesion 
appearance.  

[11] explored deep learning approaches for lung 
cancer detection through histopathological images. 
The research shows that CNN architectures can 
efficiently extract cellular-level features from high-
resolution slides, enhancing diagnostic accuracy and 
aiding pathologists in detecting malignancies.  [12] 
performed a benchmark study comparing several deep 
learning methods to estimate lung cancer risk 
prediction on the basis of the National Lung Screening 
Trial cohort. Their findings point out the relative 
performance of various architectures and the need for 
large-scale screening datasets to allow model 
generalization. [13] suggested a hybrid CNN-DNN 
model for the prediction of early lung cancer. 
Convolutional feature extraction coupled with fully 
connected layers in their model provides strong clinical 
translational capability and facilitates early detection 
and risk estimation in real-world practice.  
[14] utilized the ResNet–50 deep neural network 
architecture for accurate lung cancer prediction. The 
residual learning strategy enables deep networks to 
avoid vanishing gradients, thereby enhancing 

classification accuracy and stability on dense CT 
datasets.  [15] introduced SE-ResNeXt-50-CNN, a 
deep learning architecture that combines squeeze-and-
excitation modules with ResNeXt blocks. The 
architecture promotes channel-wise feature learning 
and outperforms other models in classifying lung 
cancer subtypes from CT scans.  [16] proposed new 
ensemble methods combining machine learning and 
deep learning models for computer-aided detection of 
lung cancer. Their hybrid method exploits 
complementary strengths of various algorithms to 
achieve enhanced accuracy, robustness, and 
generalization with heterogeneous datasets. [17] 
suggested joint deep learning models based on 
ResNet-50/101 and EfficientNet-B3 architectures over 
DICOM images for improved focus on multi-scale 
feature transfer and learning to achieve high-
performance classification over diverse imaging 
sources, prediction of lung cancer. The data used for 
this experiment are lung CT-scan images that are 
classified into four classes, as given in Fig. 1. The 
experimental evaluation was conducted using a 
publicly available lung CT scan dataset sourced  
From Kaggle, which contains annotated images 
representing both cancerous and normal lung tissues. 
Table 1 summarizes the hyperparameters used across 
all phases of the HSViT model. 
 
III.  Proposed Work   
The procedure starts with the acquisition of lung CT 
scan datasets like LIDC-IDRI or NSCLC, having 
thousands of CT slices or 3D volumes and expert-
labeled masks and labels specifying cancerous or non-
cancerous areas. These annotations are used as 

 
Fig. 1. Distribution of Dataset Cases 
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ground truth for segmentation and classification tasks. 
With annotated data, the model can learn meaningful 
representations of lung nodules, tissue boundaries, 
and lesion features. The result of this process is a well-
organized dataset comprising CT images, associated 
lesion masks, and their clinical labels, serving as the 
basis for all subsequent processing and training [18]. 
Fig. 2 depicts the overall workflow of the proposed 
Hybrid Swarm-Driven Vision Transformer (HSViT) 
architecture for accurate lung cancer segmentation and 
classification. 

The dataset comprises four classes: 
adenocarcinoma, large cell carcinoma, squamous cell 
carcinoma, and normal lungs. Specifically, the training 
set includes 195 adenocarcinoma images, 115 large 
cell carcinoma images, 155 squamous cell carcinoma 
images, and 148 normal images, ensuring sufficient 
representation of each category for model learning. 
The validation set consists of 23 adenocarcinoma, 21 
large cell carcinoma, 15 squamous cell carcinoma, and 
13 normal images, which are used for hyper-parameter 
tuning and performance monitoring. The test set 
contains 120 adenocarcinoma images, 51 large cell 
carcinoma images, and 54 images collectively 
representing squamous cell carcinoma and normal 
cases, enabling an unbiased evaluation of 
generalization capability. All CT images were resized to 
a uniform resolution of 224 × 224 pixels, and 
annotations were provided as expert-labeled lesion 
masks, ensuring reliable ground truth for segmentation 
and classification.[19]. The Coyote Optimization 
Algorithm is a population-based swarm intelligence 
technique inspired by the social behavior and adaptive 

survival strategies of coyotes in nature. In the COA, the 
population is divided into multiple packs, each pack 
consisting of a subset of candidate solutions evolving 
collaboratively by social learning. In this context, within 
a single pack, coyotes share information and update 
their positions in the search space by learning from the 
most successful individuals, so-called alpha coyotes, 
who represent the best solution within that pack. The 
birth-death mechanism involves periodically generating 
new solutions by combining the traits of existing 
coyotes and removing poorly performing solutions. This 
maintains population diversity and prevents the 
algorithm from converging prematurely. This dynamic 
replacement strategy enables an effective exploration 
of the search space. Furthermore, COA balances the 
ratio between exploration and exploitation by allowing 
interactions at   both the within-pack and between-pack 
levels, namely, local and global information exchange, 
to ensure convergence toward the optimum solutions 
without getting stuck in any local minima. In the 
proposed framework, these characteristics enable 
COA to efficiently optimize the U-Net and HSViT 
hyperparameters, making it well-suited for challenging, 
high-dimensional medical image learning tasks. 
A. Pre-processing  

CT images are processed in this step to normalize 
intensity and enhance visual contrast. The images are 
normalized to a common scale and transformed to 
Hounsfield Units (HU) are then applied with Contrast 
Limited Adaptive Histogram Equalization (CLAHE) to 
increase local contrast so that small lesions are made 
more apparent. Further steps, such as denoising, 

Table 1:   Hyper parameters of Proposed HSViT Model 

Module / Stage Hyperparameter Value / Setting 

Pre-processing Image Size 224 × 224 

CLAHE Clip Limit 2.0 

CLAHE Tile Grid Size (8, 8) 

Coyote-Optimized U-Net 

(Segmentation) 

Learning Rate 0.001 

Convolution Filter Size 3 × 3 

Dropout Rate 0.3 

Loss Function Dice + Cross-Entropy 

HSViT Classifier Patch Size 16 × 16 

Embedding Dimension 768 

Number of Transformer Layers 12 

Number of Attention Heads 12 

Optimizer AdamW 

Initial Learning Rate 0.001 

Learning Rate Scheduler Cosine Annealing 

Training Configuration Batch Size 16 

Number of Epochs 5 

Classification Loss Loss Function Cross-Entropy / Focal Loss 
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resizing, and cropping, are performed to ensure 
consistent input sizes. This is a necessary step to 
minimize scanner variability, eliminate background 
noise, and increase lesion detectability prior to 
segmentation [20]. The result is a collection of 
improved, normalized CT slices suitable for model 
input. CLAHE was selected because lung CT images 
often exhibit low local contrast between lesions and 
parenchyma, as well as subtle texture differences in 
early-stage tumors.  

The image normalization is given in Eq. (1) [4] 
where, I is the input CT image, 𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 are the 

minimum  and maximum intensities in the image and 
𝐼𝐶𝐿𝐴𝐻𝐸 in Eq. (2) [4] represents contrast-enhanced 

output. 

𝐼𝑛𝑜𝑟𝑚 =
(𝐼 − 𝐼𝑚𝑖𝑛)

(𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛)
            (1) 

𝐼𝐶𝐿𝐴𝐻𝐸 =  𝐶𝐿𝐴𝐻𝐸(𝐼𝑛𝑜𝑟𝑚)            (2) 

Unlike global histogram equalization, CLAHE 
enhances local contrast in CT scans with small or ill-
defined nodules. Based on the comparative analysis in 

Table 2, CLAHE is selected as it offers superior local 
contrast enhancement while effectively suppressing 
noise, which is crucial for accurate lung lesion 
segmentation in CT images. 
B. Data Augmentation and Splitting  
To improve generalization and protect against 
overfitting, data augmentation methods such as 
rotation, flipping, scaling, and intensity jittering are 
applied to the preprocessed images. The augmented 
data are split into training, validation, and test sets by 
patient ID to prevent data leakage. This helps the 
model learn invariant features across different 
orientations and imaging scenarios. Augmented data 
enhances robustness and variety, enabling the model 
to learn better in unseen scenarios. The output is a 
diverse and balanced set of training batches utilized in 
model learning [21]. It covers preprocessing 
parameters like image resampling and CLAHE contrast 
adjustment, segmentation parameters of the Coyote-
Optimized U-Net like learning rate, filter size, and 
dropout, and classifier parameters like embedding 
dimension, transformer layers, attention heads, and 
optimizer options. Training specifications like batch 
size, epochs, and the loss functions for segmentation 
and classification are also given. This table facilitates 
reproducibility and illustrates the rigorous tuning 
required for optimal performance [22]. 
C. Coyote-Optimized U-Net Segmentation 
The segmentation module utilizes a U-Net architecture 
optimized by the Coyote Optimization Algorithm (COA). 
COA dynamically adjusts the hyperparameters of U-
Net, like learning rate, filter dimensions, and dropout 
values, based on mimicking the social behavior of 
coyotes to determine the optimal set of parameters. 
This allows the U-Net to properly segment lung nodules 
and detect their boundaries regardless of size 
variability and texture. The segmentation is trained with 
Dice and cross-entropy losses to improve accuracy and 
balance the lesion-background region ratio. The output 
here is a binary or probability lesion mask indicating the 
tumor edges. These features are concatenated and 

Table 2. Comparison of Pre-processing Techniques for Lung CT Images 

Pre-processing 
Method 

Operation Scope Noise 
Sensitivity 

Ability to 
Enhance Subtle 
Lesions 

Suitability for 
Lung CT Scans 

Intensity 
Normalization 

Global Low Low Moderate 

Histogram 
Equalization (HE) 

Global High Moderate Low 

Adaptive 
Histogram 
Equalization (AHE) 

Local Very High High Moderate 

CLAHE (Proposed) Local (Tile-based) Low High High 

Gaussian / Median 
Filtering 

Local Low Low Low 

 

Fig. 2. Working flow of the proposed Hybrid 
Swarm-Driven Vision Transformer 
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tokenized before being passed to the HSViT classifier. 
After segmenting the lesion region in the images, the 
proposed system obtains a discriminative and inclusive 
feature representation by fusing three components. 
First, unlike direct U-Net architectures, the probability 
maps produced by the Coyote-Optimized U-Net are 
preserved rather than converted to binary maps. This 
is because these maps represent the confidence levels 
of the pixels regarding the presence of a lesion. 
Second, ROI-based deep features are extracted from 
intermediate encoder layers of the U-Net. Using the 
predicted lesion masks, regions of interest 
corresponding to tumor areas are cropped and 
forwarded through selected convolutional blocks of the 
encoder to capture multi-scale texture, edge, and 
structural characteristics specific to the lesion while 
suppressing irrelevant background information. Third, 
to make it easier to understand and interpret the results 
of these models, optional hand-crafted lesion 
descriptions can be generated from the segmented 
lesions. Geometric measures used for this purpose 
include lesion area, eccentricity, and compactness. 
The proposed approach enables the classification 
model to leverage both confidence information, deep 
semantic information, and interpretable lesion 
information, thereby enhancing its resilience for lung 
cancer classification. Eq. (3) – (5) [6] represents the 
steps in the mask, 𝑀𝐺𝑇 is the ground truth mask, 𝐿𝑠𝑒𝑔 is 

the combined Dice + cross entropy loss. COA 
optimizes 𝜃 dynamically. The combined segmentation 

loss, dice loss, and cross entropy loss components are 
given in  Eq. (6) – (8) [7] where α, β are loss weights 
(typically α=0.5, β=0.5), ε is a smoothing factor 
(typically 1e-6), and |·| denotes cardinality/sum 
operation. 
𝑀 =  𝑈𝜃 (𝐼𝐶𝐿𝐴𝐻𝐸)                        (3) 

𝜃 ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐿𝑠𝑒𝑔(𝑀, 𝑀𝐺𝑇)                (4) 

𝜃 ←  𝐶𝑂𝐴(𝜃)                               (5) 

𝐿𝑠𝑒𝑔(𝑀, 𝑀𝐺𝑇) =  𝛼 · 𝐿𝑑𝑖𝑐𝑒(𝑀, 𝑀𝐺𝑇) +  𝛽 · 𝐿𝐶𝐸(𝑀, 𝑀𝐺𝑇) (6) 

𝐿𝑑𝑖𝑐𝑒 =  1 −
(2·|𝑀 ∩ 𝑀𝐺𝑇|+ 𝜀)

(|𝑀|+ |𝑀𝐺𝑇|+ 𝜀) 
          (7) 

𝐿𝐶𝐸 =  −[𝑀𝐺𝑇 · 𝑙𝑜𝑔(𝑀) + (1 − 𝑀𝐺𝑇) · 𝑙𝑜𝑔(1 − 𝑀)]     (8) 

parameters 𝜃 , M is the predicted value shown in Eq. 

(9) and Eq. (10). The U-Net model parameters are 
optimized using the Coyote Optimization Algorithm 
(COA) by tuning three critical hyper-parameters: the 
learning rate (η), convolutional kernel size (k), and 
dropout probability (d). These parameters are 
collectively represented as a search vector 
𝜃 = {𝜂, 𝑘, 𝑑}       (9) 
   Specifically, the fitness function ℱ(𝜃), shown in Eq. 

(10), is formulated as a weighted sum of the Dice loss 
(ℒ𝐷𝑖𝑐𝑒) and cross-entropy loss (ℒ𝐶𝐸) with equal 

weighting factors 𝛼 and 𝛽. This balanced loss 

formulation ensures that the optimized U-Net achieves 
precise boundary delineation while maintaining robust 
overall segmentation accuracy. 

D. Region-Specific Feature Extraction 
After obtaining the segmentation masks, the model 
extracts regions of interest (ROIs) surrounding the 
lesions, separating significant spatial regions. These 
patches are then processed at various scales (close-up 
and full-lung view) to extract both local and contextual 
features. Statistical and shape features, such as area, 
eccentricity, and compactness, can further be 
calculated optionally using handcrafted features to 
provide interpretability. This operation prevents the 
classification network from using irrelevant background 
information instead of lesion-specific. The output is a 
set of ROI patches and corresponding feature vectors 
for each detected lesion. The ROI cropping is given in 
Eq. (11) [10] where 𝑀𝑖 is the ith segmented region [23]. 

Feature Extraction is given in Eq. (12) [11] where 𝜑(. ) 
is the feature extraction function. 
𝑅𝑂𝐼𝑖 =  𝐶𝑟𝑜𝑝(𝐼𝐶𝐿𝐴𝐻𝐸 , 𝑀𝑖)      (11) 

𝐹𝑖 =  𝜑(𝑅𝑂𝐼𝑖)                 (12) 

The extracted features are given in Eq. (13), (14), (15) 
[21] in the form of statistical features, shape features, 
and texture features. 

𝐹𝑠𝑡𝑎𝑡 =  [
𝑚𝑒𝑎𝑛(𝑅𝑂𝐼𝑖), 𝑠𝑡𝑑(𝑅𝑂𝐼𝑖), 𝑚𝑎𝑥(𝑅𝑂𝐼𝑖),

𝑚𝑖𝑛(𝑅𝑂𝐼𝑖), 𝑠𝑘𝑒𝑤(𝑅𝑂𝐼𝑖), 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑅𝑂𝐼𝑖)
]   (13) 

𝐹𝑠ℎ𝑎𝑝𝑒 =  [

𝑎𝑟𝑒𝑎(𝑅𝑂𝐼𝑖), 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑅𝑂𝐼𝑖),

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑅𝑂𝐼𝑖),

𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑅𝑂𝐼𝑖)
]    (14) 

𝐹𝑡𝑒𝑥𝑡𝑢𝑟𝑒 =  [

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑅𝑂𝐼𝑖), 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑅𝑂𝐼𝑖),

𝑒𝑛𝑒𝑟𝑔𝑦(𝑅𝑂𝐼𝑖),

 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦(𝑅𝑂𝐼𝑖)
]   (15) 

 
E. HSViT Classifier with Dual-Stage Attention 
Fusion 
The Hybrid Swarm-Driven Vision Transformer (HSViT) 
serves as the classification backbone and incorporates 
the Dual-Stage Attention Fusion (DSAF) mechanism to 
facilitate effective feature learning. Local attention 
refines texture-level and boundary details from lesion 
patches in the first stage, and global attention fuses 
contextual dependencies across the whole lung region 
in the second stage [25]. This dual mechanism enables 
the model to examine both fine-grained and high-level 
spatial information. The segmentation probability maps 
and extracted features are concatenated as input 
tokens, enhancing accuracy and explainability. The 
classification probability output at this stage denotes 
the presence or severity of lung cancer. The input 
feature map 𝑥 represents the embedded image 

patches, while 𝑊𝑄
𝐺, 𝑊𝐾

𝐺 , and 𝑊𝑉
𝐺 are learnable weight 

matrices used to compute the global query (𝑄𝐺), key 

(𝐾𝐺), and value (𝑉𝐺) representations. The local 
counterparts 𝑄𝐿, 𝐾𝐿, and 𝑉𝐿 capture fine-grained spatial 

information from localized regions. The attention score 
is obtained by the scaled dot-product between 𝑄𝐿 and 

𝐾𝐿
𝑇, where 𝑑 denotes the dimensionality of the key 

vectors and acts as a normalization factor. The 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1384
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 355-367                                         e-ISSN: 2656-8632 

 

Manuscript received 3 October 2025; Revised 25 December 2025; Accepted 12 January 2026; Available online 21 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1384 

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 361               

Softmax(·) function converts these scores into 
normalized attention weights. Finally, the attention 
weights are multiplied by 𝑉𝐿 to generate the combined 

local–global feature representation used for accurate 
segmentation and classification. The query,key, and 

value are calculated using the input and 𝑊𝑄
𝐺  (learnable 

matrices) as given in Eq. (16) – (18) [24]. The local and 
global attention weights are computed using Eq. (17) 
[27]. 

𝑄𝐺 =  𝑋 · 𝑊𝑄
𝐺                      (16) 

𝐾𝐺 =  𝑋 · 𝑊𝐾
𝐺                             (17) 

𝑉𝐺 =  𝑋 · 𝑊𝑉
𝐺                        (18) 

𝐴𝑙𝑜𝑐𝑎𝑙+𝑔𝑙𝑜𝑏𝑎𝑙 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑄𝐿·𝐾𝐿

𝑇)

√𝑑
) · 𝑉𝐿         (19) 

   The algorithm starts with CT image preprocessing, 
and Contrast Limited Adaptive Histogram Equalization 
(CLAHE) is used to improve image contrast and clarity. 
The processed images are then fed into a Coyote-
Optimized U-Net model, which segments lung regions 
adaptively and delineates tumor boundaries accurately 
via optimization-based parameter optimization. The 
segmented outputs are then processed by the Vision 
Transformer coupled with a Dual-Stage Attention 
Fusion mechanism to capture both local and global 
contextual features for accurate classification. 
Ultimately, the model generates segmented lesion 
maps and classifies the input into the corresponding 
lung cancer types with high accuracy and robustness, 
surpassing existing state-of-the-art approaches [26]. 
 
IV. Results  
Fig. 3 shows the heat map of the proposed Coyote-
Optimized U-Net segmentation, and the identified 
predicted tumor regions in the lung CT scans. The 
brighter areas in the heat map indicate higher 
confidence in malignancy, and the heat map's intensity 
indicates the probability that each pixel is part of the 

lesion. This visualization clearly shows that the model 
correctly detects and demarcates the boundaries of 
lung nodules, including small and irregular nodules, 
which is important for accurate diagnosis and clinical 
interpretation.  
   Table 3 reports the quantitative performance of the 
proposed HSViT model. The segmentation module has 
a high Dice coefficient of 0.95 and an IoU of 0.92, 
signifying accurate lesion delineation. For 
classification, the model achieves a general accuracy 
of 98.7%, with precision, recall, and F1-score all 
exceeding 98%, demonstrating its reliability in 
classifying various types of lung cancer. Also, the low 
reported training losses for segmentation (0.12) and 
classification (0.10) indicate the model's stability and 
successful convergence during training, guaranteeing 
dependability in actual use. Table 4 shows a 
comparative analysis of the proposed HSViT with other 
existing state-of-the-art models. Though CNN-based 
models and U-Net achieve Dice scores below 0.90 and 
classification accuracies below 94%, transformer-
based models such as Swin Transformer and ViT 
achieve better results. Yet, the proposed HSViT, with 
Coyote Optimization and Dual-Stage Attention Fusion, 
outperforms all current methods, achieving a Dice 
score of 0.95 and classification accuracy of 98.7%. This 
comparison highlights the benefit of integrating 
optimization methods with attentional structures for 
both precise segmentation and stable classification of 
lung lesions. 

Fig. 4 shows the training, validation, and test 
accuracy plots of the HSViT model for various epochs. 
The plot shows steady improvement in accuracy 
throughout training, with limited divergence between 
the validation and test curves, indicating good 
generalizability to new data. High final accuracy 
indicates the success of the Coyote-Optimized U-Net 

Table 4.  Comparative Analysis with Existing Models 

Model / Method Segmentation Metric (Dice) Classification Accuracy 

CNN-Based Model 0.87 91.2% 

U-Net 0.89 93.1% 

Swin Transformer 0.91 95.0% 

ViT + AdamW 0.92 96.3% 

CNN + PSO 0.90 94.5% 

Proposed HSViT (COA + DSAF) 0.95 98.7% 

 

Table 3. Comparative Analysis with Existing Models 

Model / Method Segmentation Metric (Dice) Classification Accuracy 

CNN-Based Model 0.87 91.2% 

U-Net 0.89 93.1% 

Swin Transformer 0.91 95.0% 

ViT + AdamW 0.92 96.3% 

CNN + PSO 0.90 94.5% 

Proposed HSViT (COA + DSAF) 0.95 98.7% 
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for segmentation and the Dual-Stage Attention Fusion 
in encoding both local and global features for 
classification. 
  The confusion matrix shows an overall classification 
accuracy of 97.49%, with 272 samples correctly 
classified out of 279. Adenocarcinoma achieves a 
recall of 98.33% (118/120), with only two samples 
misclassified, indicating excellent sensitivity. Large Cell 
Carcinoma shows a recall of 96.08% (49/51), while 
Squamous Cell Carcinoma attains a recall of 96.30% 
(52/54), demonstrating reliable discrimination among 
carcinoma subtypes. The Normal class achieves a 
recall of 98.15% (53/54), highlighting the model’s 
strong ability to distinguish healthy tissue from 
malignant cases. Precision values are also consistently 
high across classes due to minimal false positives, 
particularly for the normal category. The dominance of 
diagonal elements and low off-diagonal errors confirms 
the statistical robustness, class balance, and clinical 
reliability of the proposed model for lung cancer 
classification. The matrix in Fig. 5 demonstrates strong 
diagonal dominance across adenocarcinoma, large cell 
carcinoma, squamous cell carcinoma, and normal 
classes, indicating robust inter-class discrimination with 
minimal misclassification. 

 
V. Discussion 
The quantitative results reported in Table 5 
demonstrate a clear and consistent improvement in 
lung cancer image analysis performance with the 
proposed HSViT (COA + ViT) framework. An achieved 
accuracy exceeding 98% indicates that the model can 
correctly classify lung CT images with very high 
reliability, substantially reducing misclassification 
between malignant and benign cases. The high F1-
score reflects a balanced trade-off between precision 
and recall, confirming that the model performs robustly 
even in scenarios with class imbalance, which is 
common in medical datasets. The precision value 

signifies a low false-positive rate, implying that the 
HSViT model minimizes incorrect cancer predictions, 
thereby reducing unnecessary clinical follow-ups. 
Meanwhile, the recall (sensitivity) highlights the 
model’s strong ability to correctly identify cancer-
positive cases, which is critical for early diagnosis and 
treatment planning. The AUC value approaching unity 
further confirms the superior discriminative capability of 
the proposed framework across varying classification 
thresholds, demonstrating stable and consistent 
performance rather than threshold-dependent gains. 
Collectively, these numerical results indicate that the 
integration of global self-attention (ViT) with 

metaheuristic hyperparameter optimization (COA) 
enables more accurate feature representation, optimal 
convergence, and enhanced generalization across 
diverse lung CT patterns. A comparative analysis with 
prior studies clearly highlights the advantages of the 

 

 
Fig. 4. Accuracy of the proposed model 

 

Fig. 3. Heat map visualization of the proposed segmentation a) Original Image, b) Grad-CAM Heat map, 
c) Overlay 
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proposed HSViT model. Conventional CNN-based 
approaches reported by Huang et al. [4], employing 
architectures such as ResNet, VGG, and DenseNet, 
achieve accuracies between 85–92% with an AUC of 
approximately 0.90. While effective in extracting local 
spatial features, these models lack the ability to capture 
long-range dependencies, resulting in limited 
performance in complex lung CT images with 
heterogeneous tumor textures. Encoder–decoder 
architectures such as U-Net and U-Net++, investigated 
by Rawashdeh et al. [8], primarily emphasize 
segmentation accuracy, achieving Dice scores in the 
range of 0.80–0.88. Although skip connections help 
preserve spatial information, the reliance on 
convolutional operations and fixed hyperparameters 
restrict adaptability to inter-patient variability and 
irregular tumor morphologies. The work by 
Bhattacharyya et al. [11] demonstrates that GAN-

based data augmentation improves classification 
accuracy to 90–94% and AUC values of 0.92–0.95 by 
increasing dataset diversity. However, GAN training 
introduces instability and computational overhead, and 
the resulting performance gains remain incremental 
compared to attention-driven models. Transformer-
based methods, such as the ViT framework proposed 
by Lakide et al. [14], further improve performance to 
92–95% accuracy with an AUC of around 0.95, 
confirming the effectiveness of self-attention in 
modeling global contextual relationships. Nevertheless, 
these models depend on manually tuned 
hyperparameters, which may lead to suboptimal 
convergence. Hybrid swarm-based CNN optimization 
methods, such as those by Kumar et al. [17], show 
moderate improvements (90–93% accuracy), but the 
absence of global attention mechanisms limits their 
representational power. In contrast, the proposed 
HSViT framework uniquely combines global attention 
modeling with swarm-driven hyperparameter 
optimization, leading to the highest overall performance 
among the compared methods.  

Despite its strong performance, the proposed 
HSViT framework has certain limitations. First, 
incorporating transformer modules and COA-based 
optimization increases computational complexity and 
training time, potentially limiting deployment in 
resource-constrained clinical environments. Second, 
although the model demonstrates strong generalization 
on the evaluated datasets, its robustness across multi-
center, heterogeneous CT datasets with varying 
acquisition protocols has not yet been fully validated. 
Third, the interpretability of transformer-based models 
remains limited, which may pose challenges for clinical 
adoption where explainability is critical. Finally, the 
current study focuses primarily on static CT images and 

Table 5.  Comparative Analysis with Existing Models 

Author  Model 
Architecture 

Type 
Optimization 

Method 
Performance 

(Accuracy/AUC) 

Huang, D et al.,  
[4] 

CNN-based Models 
(ResNet/VGG/DenseNet) 

Convolutional 
Neural Networks 

SGD / Adam 
85–92%, AUC 
~0.90 

Rawashdeh et 
al., [8] 

U-Net / U-Net++ 
Encoder–decoder 
CNN for 
segmentation 

Gradient-based Dice 0.80–0.88 

Bhattacharyya et 
al., [11] 

GAN-Augmented CNN 
CNN + GAN-
based 
augmentation 

GAN-driven 
90–94%, AUC 
~0.92–0.95 

Lakide et al., [14] Vision Transformer (ViT) 
Transformer-
based 

AdamW 
92–95%, AUC 
~0.95 

Kumar et al., [17] PSO/GA + CNN 
CNN with Swarm 
Optimization 

PSO / GA 90–93% 

Proposed Work HSViT (COA + ViT) 
Hybrid Swarm-
Driven Vision 
Transformer 

Coyote 
Optimization 
Algorithm 

96.8% accuracy, 
F1 96.5%, AUC > 
0.98 

 

 
Fig. 5. Confusion matrix 
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does not explore longitudinal disease progression, 
which could further enhance clinical decision-making. 

The combination of self-attention mechanisms and 
metaheuristic optimization supports more reliable 
feature extraction and optimal learning, aligning with 
recent findings that transformer-based models 
outperform CNNs in medical imaging tasks requiring 
global context modeling [14], [18]. The integration of 
swarm intelligence for hyper-parameter tuning reduces 
reliance on manual trial-and-error approaches, 
consistent with studies emphasizing the effectiveness 
of metaheuristic optimization in deep learning-based 
medical image analysis [17], [19]. Clinically, the high 
sensitivity and precision achieved by HSViT suggest its 
potential to assist radiologists in early-stage lung 
cancer detection, thereby improving patient outcomes 
through timely intervention. From a research 
perspective, the proposed framework establishes a 
scalable and adaptable paradigm for integrating 
transformers with evolutionary optimization, which can 
be extended to other medical imaging modalities such 
as MRI and PET scans [20], [21]. These implications 
reinforce the relevance of HSViT as a promising 
direction for next-generation intelligent diagnostic 
systems.  
 
VI. Conclusion 
This article proposed a Hybrid Swarm-Driven Vision 
Transformer (HSViT) framework for precise lung 
cancer segmentation and classification based on CT 
images, incorporating a Coyote Optimization Algorithm 
(COA) optimized U-Net and a Dual-Stage Attention 
Fusion Vision Transformer. By combining CLAHE-
based contrast correction, adaptive swarm-driven 
image segmentation, and global-local feature learning 
with a transformer model, the proposed approach 
effectively addresses challenges in lung cancer 
diagnosis, including low contrast between lesions and 
healthy tissue, irregularly shaped tumors with complex 
borders, and diverse visual appearances. Experimental 
results based on popular lung CT image datasets 
showed the superiority of the proposed approach, with 
a Dice score measurement of 95% and a total 
classification accuracy rate of 98.7%, performing better 
compared with the results of various CNN models, U-
NET variants, and the transformer model frameworks. 
While the addition of the COA training process 
increases the overall training time complexity, this 
complexity is not affected and plays a crucial role in 
improving the approach's stability and robustness. This 
HSViT approach holds great potential as a useful and 
practical tool for the automation and diagnosis of lung 
cancer diagnosis.  
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