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ABSTRACT Lung cancer segmentation and classification from computed tomography (CT) images play a
vital role in early diagnosis, prognosis assessment, and effective treatment planning. Despite significant
progress in medical image analysis, accurate lung lesion analysis remains highly challenging due to
overlapping anatomical structures, heterogeneous tissue intensity distributions, irregular and complex
tumor shapes, and poorly defined lesion boundaries. These factors often limit the reliability and
generalization capability of conventional deep learning models when applied to real-world clinical data. To
address these challenges, this paper proposes a Hybrid Swarm-Driven Vision Transformer (HSViT)
framework that synergistically combines swarm intelligence with transformer-based deep learning. The
processing pipeline begins with Contrast Limited Adaptive Histogram Equalization (CLAHE), which enhances
local contrast while suppressing noise amplification, thereby improving the visibility of subtle pulmonary
nodules and lesion regions. Subsequently, a U-Net segmentation model optimized using the Coyote
Optimization Algorithm (COA) is employed to accurately delineate lung lesions. COA, a swarm-based
metaheuristic, adaptively fine-tunes U-Net parameters, enabling improved convergence and more precise
boundary detection compared to gradient-based optimization alone. Following segmentation, discriminative
lesion features are extracted and passed to the HSVIT classifier. The proposed classifier integrates a Dual-
Stage Attention Fusion (DSAF) mechanism, which effectively captures both fine-grained local spatial features
and long-range global contextual dependencies. The framework achieves a Dice Coefficient of 0.95, an overall
classification accuracy of 98.7%, and a minimized training loss of 0.04. These results highlight the strong
potential of HSVIT for reliable automated lung cancer diagnosis and for supporting clinical decision-making
systems in real-world healthcare environments.

Keywords Hybrid Swarm Driven Vision Transformer, Coyote Optimization Algorithm, Vision Transformer,
Dual Stage Attention Fusion, Lung Cancer Segmentation.

I. Introduction reading of CT scans is labor-intensive, error-prone, and

Lung cancer is among the most common and fatal
diseases globally, and it contributes significantly to
cancer-related mortality. Timely and accurate detection
is critical for improving patient survival and informing
successful treatment plans. Computed Tomography
(CT) is the most widely used modality for diagnosing
lung cancer because of its high spatial resolution and
ability to capture fine anatomical details. But manual

variable, pointing to the necessity of smart automated
systems for accurate segmentation and classification of
lung lesions [1]. As medical imaging technology
continues to advance, detecting early-stage lung
tumors remains a significant challenge. These tumors
often exhibit very subtle texture variations, irregular
shapes, and low contrast, making them visually similar
to healthy tissues in CT scans [2]. Traditional machine

Manuscript received 3 October 2025; Revised 25 December 2025; Accepted 12 January 2026; Available online 21 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1384

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

355


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1384
https://creativecommons.org/licenses/by-sa/4.0/
mailto:sugimanicks@gmail.com
https://orcid.org/0000-0003-4410-2060
https://orcid.org/0009-0005-9498-9298
https://orcid.org/0000-0002-7045-5321
https://orcid.org/0000-0001-5002-7285
https://orcid.org/0000-0003-0058-5988
https://orcid.org/0009-0009-0575-7663

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.orqg; Vol. 8, No. 1, January 2026, pp: 355-367

e-ISSN: 2656-8632

learning algorithms and conventional image processing
techniques struggle to achieve high accuracy due to
their limited feature extraction capabilities and inability
to capture complex spatial patterns [3]. Consequently,
there is a growing need for a powerful, fully automated
diagnostic platform capable of handling intricate lung
structures, accurately differentiating malignant nodules
from benign ones, and providing consistent, reliable
results with minimal human intervention [4]. Various
deep learning models have been extensively explored
for lung cancer segmentation and classification tasks
using Computed Tomography (CT) images.
Convolutional Neural Networks (CNNs) have been
widely adopted due to their strong ability to learn
hierarchical, localized spatial features via convolutional
filters. CNN-based models can effectively capture
texture, edge, and intensity variations within lung
nodules, making them suitable for early-stage lesion
detection. However, their reliance on local receptive
fields limits their ability to model long-range contextual
relationships, which are often crucial for distinguishing
malignant nodules from benign structures spanning
multiple CT slices. To address these limitations, U-Net—
based encoder—decoder architectures have become a
popular choice for medical image segmentation. U-Net
models employ skip connections between encoder and
decoder layers, enabling the preservation of fine-
grained spatial details while progressively learning
high-level semantic representations. [5]. This
dependency often limits their adaptability, as the
models tend to overfit to specific datasets and struggle
to generalize well across diverse clinical imaging
conditions.

Moreover, their sensitivity to parameter tuning and
variations in data acquisition protocols poses additional
challenges, reducing their reliability and practicality in
real-world clinical environments. The inherent
complexities of lung cancer detection further
complicate the task; these include low contrast
between lesions and surrounding tissues, diverse and
heterogeneous tumor appearances, and significant
variation in lesion size, shape, and location [6]. Such
factors make robust segmentation and classification
difficult, highlighting the need for more adaptive,
efficient, and clinically scalable deep learning
approaches.

Moreover, noise and artifacts in CT images also
hinder segmentation accuracy. Deep models, as
efficient as they are, tend to demand high
computational costs and poor convergence when
handling imbalanced datasets [7]. These difficulties,
taken together, prevent the establishment of a
universally efficient and reliable diagnostic model.

In order to overcome these constraints,
optimization-based hybrid models have become
popular for improving model performance and
adaptability. Swarm intelligence algorithms like Particle

Swarm Optimization (PSO), Grey Wolf Optimizer
(GWO), and Coyote Optimization Algorithm (COA)
have been seen to exhibit promise in optimizing deep
learning parameters to enhance convergence and
avoid local minima problems. Merging such
metaheuristic optimization methods with attention-
based architectures, such as Vision Transformers, will
enable the balance of global and local feature learning
effectively, resulting in enhanced segmentation and
classification accuracy. The main contributions of the
proposed work are listed below.

a) Hybrid Optimization Transformer Framework is a
novel Hybrid Swarm-Driven Vision Transformer
(HSVIT) that integrates the Coyote Optimization
Algorithm with the Vision Transformer for precise
lung cancer segmentation and classification.

b) Adaptive Segmentation with Optimized U-Net
employs a Coyote-Optimized U-Net model for
adaptive and accurate extraction of lung lesion

boundaries by dynamically tuning network
parameters.
c) Enhanced Feature Learning mechanism

incorporates a Dual-Stage Attention Fusion
mechanism in the Vision Transformer to effectively
capture both global contextual information and
fine-grained local features from CT images.

d) It utilizes Contrast Limited Adaptive Histogram
Equalization(CLAHE) to enhance image contrast
and improve the visibility of tumor regions before
segmentation.

e) The proposed work gives a Dice Coefficient of
0.95 and an overall accuracy of 98.7% than
existing models.

The remainder of the paper is organized as follows:
Section 2 reviews related work on lung cancer
detection and segmentation using deep learning and
optimization-based methods. Section 3 details the
proposed framework, including pre-processing,
segmentation, and classification stages. Section 4
presents the comparative analysis and results obtained
against existing methods. Finally, Section 5 discusses
comparative analysis with the existing model in detail,
and finally, Section 6 concludes with key findings,
limitations, and potential directions for future research.

Il. State-of-The-Art Techniques

[8] suggested a powerful lung cancer diagnosis model
based on pre-trained CNNs to learn hierarchical
features from CT images. The approach utilizes
transfer learning to enhance classification accuracy
with a decreased training time, and proves that pre-
trained models can provide robust lung cancer
detection with small datasets. [9] presented the
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Fig. 1. Distribution of Dataset Cases

Advanced Deep Lung Care Net, a novel deep learning
architecture for lung cancer prediction. The model
combines multiple convolutional and dense layers to
promote feature extraction with high sensitivity and
specificity for the detection of early-stage lung cancer
[10] proposed a deep learning-based method for lung
cancer diagnosis from CT-scan images. Their
approach targets automated learning of features from
volumetric CT data to facilitate accurate tumor
localization and classification with less human
intervention by resolving issues of variability of lesion
appearance.

[11] explored deep learning approaches for lung
cancer detection through histopathological images.
The research shows that CNN architectures can
efficiently extract cellular-level features from high-
resolution slides, enhancing diagnostic accuracy and
aiding pathologists in detecting malignancies. [12]
performed a benchmark study comparing several deep
learning methods to estimate lung cancer risk
prediction on the basis of the National Lung Screening
Trial cohort. Their findings point out the relative
performance of various architectures and the need for
large-scale screening datasets to allow model
generalization. [13] suggested a hybrid CNN-DNN
model for the prediction of early lung cancer.
Convolutional feature extraction coupled with fully
connected layers in their model provides strong clinical
translational capability and facilitates early detection
and risk estimation in real-world practice.

[14] utilized the ResNet-50 deep neural network
architecture for accurate lung cancer prediction. The
residual learning strategy enables deep networks to
avoid vanishing gradients, thereby enhancing

classification accuracy and stability on dense CT
datasets. [15] introduced SE-ResNeXt-50-CNN, a
deep learning architecture that combines squeeze-and-
excitation modules with ResNeXt blocks. The
architecture promotes channel-wise feature learning
and outperforms other models in classifying lung
cancer subtypes from CT scans. [16] proposed new
ensemble methods combining machine learning and
deep learning models for computer-aided detection of
lung cancer. Their hybrid method exploits
complementary strengths of various algorithms to
achieve enhanced accuracy, robustness, and
generalization with heterogeneous datasets. [17]
suggested joint deep learning models based on
ResNet-50/101 and EfficientNet-B3 architectures over
DICOM images for improved focus on multi-scale
feature transfer and learning to achieve high-
performance classification over diverse imaging
sources, prediction of lung cancer. The data used for
this experiment are lung CT-scan images that are
classified into four classes, as given in Fig. 1. The
experimental evaluation was conducted using a
publicly available lung CT scan dataset sourced

From Kaggle, which contains annotated images
representing both cancerous and normal lung tissues.
Table 1 summarizes the hyperparameters used across
all phases of the HSVIiT model.

Ill. Proposed Work

The procedure starts with the acquisition of lung CT
scan datasets like LIDC-IDRI or NSCLC, having
thousands of CT slices or 3D volumes and expert-
labeled masks and labels specifying cancerous or non-
cancerous areas. These annotations are used as
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Table 1: Hyper parameters of Proposed HSVIiT Model

Module / Stage Hyperparameter Value / Setting
Pre-processing Image Size 224 x 224

CLAHE Clip Limit 2.0

CLAHE Tile Grid Size (8, 8)
Coyote-Optimized U-Net Learning Rate 0.001
(Segmentation) Convolution Filter Size 3x3

Dropout Rate 0.3

Loss Function Dice + Cross-Entropy
HSVIT Classifier Patch Size 16 x 16

Embedding Dimension 768

Number of Transformer Layers 12

Number of Attention Heads 12

Optimizer AdamW

Initial Learning Rate 0.001

Learning Rate Scheduler Cosine Annealing
Training Configuration Batch Size 16

Number of Epochs 5

Classification Loss Loss Function

Cross-Entropy / Focal Loss

ground truth for segmentation and classification tasks.
With annotated data, the model can learn meaningful
representations of lung nodules, tissue boundaries,
and lesion features. The result of this process is a well-
organized dataset comprising CT images, associated
lesion masks, and their clinical labels, serving as the
basis for all subsequent processing and training [18].
Fig. 2 depicts the overall workflow of the proposed
Hybrid Swarm-Driven Vision Transformer (HSVIT)
architecture for accurate lung cancer segmentation and
classification.

The dataset comprises four classes:
adenocarcinoma, large cell carcinoma, squamous cell
carcinoma, and normal lungs. Specifically, the training
set includes 195 adenocarcinoma images, 115 large
cell carcinoma images, 155 squamous cell carcinoma
images, and 148 normal images, ensuring sufficient
representation of each category for model learning.
The validation set consists of 23 adenocarcinoma, 21
large cell carcinoma, 15 squamous cell carcinoma, and
13 normal images, which are used for hyper-parameter
tuning and performance monitoring. The test set
contains 120 adenocarcinoma images, 51 large cell
carcinoma images, and 54 images collectively
representing squamous cell carcinoma and normal
cases, enabling an unbiased evaluation of
generalization capability. All CT images were resized to
a uniform resolution of 224 x 224 pixels, and
annotations were provided as expert-labeled lesion
masks, ensuring reliable ground truth for segmentation
and classification.[19]. The Coyote Optimization
Algorithm is a population-based swarm intelligence
technique inspired by the social behavior and adaptive

survival strategies of coyotes in nature. In the COA, the
population is divided into multiple packs, each pack
consisting of a subset of candidate solutions evolving
collaboratively by social learning. In this context, within
a single pack, coyotes share information and update
their positions in the search space by learning from the
most successful individuals, so-called alpha coyotes,
who represent the best solution within that pack. The
birth-death mechanism involves periodically generating
new solutions by combining the traits of existing
coyotes and removing poorly performing solutions. This
maintains population diversity and prevents the
algorithm from converging prematurely. This dynamic
replacement strategy enables an effective exploration
of the search space. Furthermore, COA balances the
ratio between exploration and exploitation by allowing
interactions at both the within-pack and between-pack
levels, namely, local and global information exchange,
to ensure convergence toward the optimum solutions
without getting stuck in any local minima. In the
proposed framework, these characteristics enable
COA to efficiently optimize the U-Net and HSVIT
hyperparameters, making it well-suited for challenging,
high-dimensional medical image learning tasks.

A. Pre-processing

CT images are processed in this step to normalize
intensity and enhance visual contrast. The images are
normalized to a common scale and transformed to
Hounsfield Units (HU) are then applied with Contrast
Limited Adaptive Histogram Equalization (CLAHE) to
increase local contrast so that small lesions are made
more apparent. Further steps, such as denoising,
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Fig. 2. Working flow of the proposed Hybrid
Swarm-Driven Vision Transformer

resizing, and cropping, are performed to ensure
consistent input sizes. This is a necessary step to
minimize scanner variability, eliminate background
noise, and increase lesion detectability prior to
segmentation [20]. The result is a collection of
improved, normalized CT slices suitable for model
input. CLAHE was selected because lung CT images
often exhibit low local contrast between lesions and
parenchyma, as well as subtle texture differences in
early-stage tumors.

The image normalization is given in Eq. (1) [4]
where, | is the input CT image, lyuin Imax are the
minimum and maximum intensities in the image and
Iciawe 1N EqQ. (2) [4] represents contrast-enhanced
output.

lorm = (I:a;l—f.i:i)n) (1
Icpang = CLAHE (Inorm) (2)
Unlike global histogram equalization, CLAHE

enhances local contrast in CT scans with small or ill-
defined nodules. Based on the comparative analysis in

Table 2, CLAHE is selected as it offers superior local
contrast enhancement while effectively suppressing
noise, which is crucial for accurate lung lesion
segmentation in CT images.

B. Data Augmentation and Splitting

To improve generalization and protect against
overfitting, data augmentation methods such as
rotation, flipping, scaling, and intensity jittering are
applied to the preprocessed images. The augmented
data are split into training, validation, and test sets by
patient ID to prevent data leakage. This helps the
model learn invariant features across different
orientations and imaging scenarios. Augmented data
enhances robustness and variety, enabling the model
to learn better in unseen scenarios. The output is a
diverse and balanced set of training batches utilized in
model learning [21]. It covers preprocessing
parameters like image resampling and CLAHE contrast
adjustment, segmentation parameters of the Coyote-
Optimized U-Net like learning rate, filter size, and
dropout, and classifier parameters like embedding
dimension, transformer layers, attention heads, and
optimizer options. Training specifications like batch
size, epochs, and the loss functions for segmentation
and classification are also given. This table facilitates
reproducibility and illustrates the rigorous tuning
required for optimal performance [22].

C. Coyote-Optimized U-Net Segmentation

The segmentation module utilizes a U-Net architecture
optimized by the Coyote Optimization Algorithm (COA).
COA dynamically adjusts the hyperparameters of U-
Net, like learning rate, filter dimensions, and dropout
values, based on mimicking the social behavior of
coyotes to determine the optimal set of parameters.
This allows the U-Net to properly segment lung nodules
and detect their boundaries regardless of size
variability and texture. The segmentation is trained with
Dice and cross-entropy losses to improve accuracy and
balance the lesion-background region ratio. The output
here is a binary or probability lesion mask indicating the
tumor edges. These features are concatenated and

Table 2. Comparison of Pre-processing Techniques for Lung CT Images

Pre-processing Operation Scope Noise Ability to Suitability for

Method Sensitivity Enhance Subtle Lung CT Scans
Lesions

Intensity Global Low Low Moderate

Normalization

Histogram Global High Moderate Low

Equalization (HE)

Adaptive Local Very High High Moderate

Histogram

Equalization (AHE)

CLAHE (Proposed) Local (Tile-based) Low High High

Gaussian / Median Local Low Low Low

Filtering
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tokenized before being passed to the HSVIT classifier.
After segmenting the lesion region in the images, the
proposed system obtains a discriminative and inclusive
feature representation by fusing three components.
First, unlike direct U-Net architectures, the probability
maps produced by the Coyote-Optimized U-Net are
preserved rather than converted to binary maps. This
is because these maps represent the confidence levels
of the pixels regarding the presence of a lesion.
Second, ROI-based deep features are extracted from
intermediate encoder layers of the U-Net. Using the
predicted lesion masks, regions of interest
corresponding to tumor areas are cropped and
forwarded through selected convolutional blocks of the
encoder to capture multi-scale texture, edge, and
structural characteristics specific to the lesion while
suppressing irrelevant background information. Third,
to make it easier to understand and interpret the results
of these models, optional hand-crafted lesion
descriptions can be generated from the segmented
lesions. Geometric measures used for this purpose
include lesion area, eccentricity, and compactness.
The proposed approach enables the classification
model to leverage both confidence information, deep
semantic information, and interpretable lesion
information, thereby enhancing its resilience for lung
cancer classification. Eq. (3) — (5) [6] represents the
steps in the mask, Mg is the ground truth mask, L, is
the combined Dice + cross entropy loss. COA
optimizes 8 dynamically. The combined segmentation
loss, dice loss, and cross entropy loss components are
given in Eq. (6) — (8) [7] where a, 3 are loss weights
(typically a=0.5, B=0.5), ¢ is a smoothing factor

(typically 1e-6), and || denotes cardinality/sum
operation.

M = Ug (crane) 3)
0 x = argmingLseq(M, Mgr) (4)
0 « COA(H) (5)
Lseg(M: MGT) = a- Ldice(M' MGT) + ﬁ ’ LCE(M' MGT) (6)

(2:|M N Mgr|+ €)
Lajce = 1 — -2t —= (7)

(IM|+|Mgrl|+ &)

Leg = —[Mgr - log(M) + (1 — Mgr) - log(1 —M)]  (8)
parameters 6 , M is the predicted value shown in Eq.
(9) and Eq. (10). The U-Net model parameters are
optimized using the Coyote Optimization Algorithm
(COA) by tuning three critical hyper-parameters: the
learning rate (n), convolutional kernel size (k), and
dropout probability (d). These parameters are
collectively represented as a search vector
6 ={nk,d} )

Specifically, the fitness function F(6), shown in Eq.
(10), is formulated as a weighted sum of the Dice loss
(Lpice) and cross-entropy loss (Lcg) with equal
weighting factors a and pB. This balanced loss
formulation ensures that the optimized U-Net achieves
precise boundary delineation while maintaining robust
overall segmentation accuracy.

D. Region-Specific Feature Extraction
After obtaining the segmentation masks, the model
extracts regions of interest (ROIs) surrounding the
lesions, separating significant spatial regions. These
patches are then processed at various scales (close-up
and full-lung view) to extract both local and contextual
features. Statistical and shape features, such as area,
eccentricity, and compactness, can further be
calculated optionally using handcrafted features to
provide interpretability. This operation prevents the
classification network from using irrelevant background
information instead of lesion-specific. The output is a
set of ROI patches and corresponding feature vectors
for each detected lesion. The ROI cropping is given in
Eq. (11) [10] where M; is the ith segmented region [23].
Feature Extraction is given in Eq. (12) [11] where ¢(.)
is the feature extraction function.
ROI; = Crop(cLane, M;) (11)
F; = @(ROI) (12)
The extracted features are given in Eq. (13), (14), (15)
[21] in the form of statistical features, shape features,
and texture features.
o= mean(ROI;),std(ROI;),max(ROI,),
stat = \min(ROI,), skew(ROI,), kurtosis(ROI,)
area(ROI;),perimeter(ROI,),

| @3

Fspape = circularity(ROI;), (14)
eccentricity(ROI;)
contrast(ROI;), correlation(ROI;),
Frexture = energy(ROL), (15)
homogeneity(ROI;)

E. HSVIiT Classifier with Dual-Stage Attention
Fusion

The Hybrid Swarm-Driven Vision Transformer (HSVIiT)
serves as the classification backbone and incorporates
the Dual-Stage Attention Fusion (DSAF) mechanism to
facilitate effective feature learning. Local attention
refines texture-level and boundary details from lesion
patches in the first stage, and global attention fuses
contextual dependencies across the whole lung region
in the second stage [25]. This dual mechanism enables
the model to examine both fine-grained and high-level
spatial information. The segmentation probability maps
and extracted features are concatenated as input
tokens, enhancing accuracy and explainability. The
classification probability output at this stage denotes
the presence or severity of lung cancer. The input
feature map x represents the embedded image
patches, while W§, W , and Wyf are learnable weight
matrices used to compute the global query (Q;), key
(Kg), and value (V;) representations. The local
counterparts Q,, K;, and V, capture fine-grained spatial
information from localized regions. The attention score
is obtained by the scaled dot-product between @, and
KT, where d denotes the dimensionality of the key
vectors and acts as a normalization factor. The
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Table 3. Comparative Analysis with Existing Models

Model / Method

Segmentation Metric (Dice)

Classification Accuracy

CNN-Based Model 0.87 91.2%
U-Net 0.89 93.1%
Swin Transformer 0.91 95.0%
ViT + AdamW 0.92 96.3%
CNN + PSO 0.90 94.5%
Proposed HSVIT (COA + DSAF) 0.95 98.7%

Table 4. Comparative Analysis with Existing Models

Model / Method

Segmentation Metric (Dice)

Classification Accuracy

CNN-Based Model 0.87 91.2%
U-Net 0.89 93.1%
Swin Transformer 0.91 95.0%
ViT + AdamW 0.92 96.3%
CNN + PSO 0.90 94.5%
Proposed HSVIT (COA + DSAF) 0.95 98.7%

Softmax(-) function converts these scores into
normalized attention weights. Finally, the attention
weights are multiplied by 1, to generate the combined
local-global feature representation used for accurate
segmentation and classification. The query,key, and
value are calculated using the input and WQG (learnable
matrices) as given in Eq. (16) — (18) [24]. The local and
global attention weights are computed using Eq. (17)
[27].

Q= X-Wg (16)

Ke= X -W¢ (17)

Vo= X -W¢ (18)
— (QukY) .

Alocal+global - Softmax( va ) VL (19)

The algorithm starts with CT image preprocessing,
and Contrast Limited Adaptive Histogram Equalization
(CLAHE) is used to improve image contrast and clarity.
The processed images are then fed into a Coyote-
Optimized U-Net model, which segments lung regions
adaptively and delineates tumor boundaries accurately
via optimization-based parameter optimization. The
segmented outputs are then processed by the Vision
Transformer coupled with a Dual-Stage Attention
Fusion mechanism to capture both local and global
contextual features for accurate classification.
Ultimately, the model generates segmented lesion
maps and classifies the input into the corresponding
lung cancer types with high accuracy and robustness,
surpassing existing state-of-the-art approaches [26].

IV. Results

Fig. 3 shows the heat map of the proposed Coyote-
Optimized U-Net segmentation, and the identified
predicted tumor regions in the lung CT scans. The
brighter areas in the heat map indicate higher
confidence in malignancy, and the heat map's intensity
indicates the probability that each pixel is part of the

lesion. This visualization clearly shows that the model
correctly detects and demarcates the boundaries of
lung nodules, including small and irregular nodules,
which is important for accurate diagnosis and clinical
interpretation.

Table 3 reports the quantitative performance of the
proposed HSViT model. The segmentation module has
a high Dice coefficient of 0.95 and an loU of 0.92,
signifying  accurate  lesion  delineation. For
classification, the model achieves a general accuracy
of 98.7%, with precision, recall, and F1-score all
exceeding 98%, demonstrating its reliability in
classifying various types of lung cancer. Also, the low
reported training losses for segmentation (0.12) and
classification (0.10) indicate the model's stability and
successful convergence during training, guaranteeing
dependability in actual use. Table 4 shows a
comparative analysis of the proposed HSVIT with other
existing state-of-the-art models. Though CNN-based
models and U-Net achieve Dice scores below 0.90 and
classification accuracies below 94%, transformer-
based models such as Swin Transformer and ViT
achieve better results. Yet, the proposed HSVIiT, with
Coyote Optimization and Dual-Stage Attention Fusion,
outperforms all current methods, achieving a Dice
score of 0.95 and classification accuracy of 98.7%. This
comparison highlights the benefit of integrating
optimization methods with attentional structures for
both precise segmentation and stable classification of
lung lesions.

Fig. 4 shows the training, validation, and test
accuracy plots of the HSVIiT model for various epochs.
The plot shows steady improvement in accuracy
throughout training, with limited divergence between
the validation and test curves, indicating good
generalizability to new data. High final accuracy
indicates the success of the Coyote-Optimized U-Net
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Fig. 3. Heat map visualization of the proposed segmentation a) Original Image, b) Grad-CAM Heat map,

c) Overlay

(c)

for segmentation and the Dual-Stage Attention Fusion
in encoding both local and global features for
classification.

The confusion matrix shows an overall classification
accuracy of 97.49%, with 272 samples correctly
classified out of 279. Adenocarcinoma achieves a
recall of 98.33% (118/120), with only two samples
misclassified, indicating excellent sensitivity. Large Cell
Carcinoma shows a recall of 96.08% (49/51), while
Squamous Cell Carcinoma attains a recall of 96.30%
(52/54), demonstrating reliable discrimination among
carcinoma subtypes. The Normal class achieves a
recall of 98.15% (53/54), highlighting the model’s
strong ability to distinguish healthy tissue from
malignant cases. Precision values are also consistently
high across classes due to minimal false positives,
particularly for the normal category. The dominance of
diagonal elements and low off-diagonal errors confirms
the statistical robustness, class balance, and clinical
reliability of the proposed model for lung cancer
classification. The matrix in Fig. 5 demonstrates strong
diagonal dominance across adenocarcinoma, large cell
carcinoma, squamous cell carcinoma, and normal
classes, indicating robust inter-class discrimination with
minimal misclassification.

V. Discussion

The quantitative results reported in Table 5
demonstrate a clear and consistent improvement in
lung cancer image analysis performance with the
proposed HSVIT (COA + ViT) framework. An achieved
accuracy exceeding 98% indicates that the model can
correctly classify lung CT images with very high
reliability, substantially reducing misclassification
between malignant and benign cases. The high F1-
score reflects a balanced trade-off between precision
and recall, confirming that the model performs robustly
even in scenarios with class imbalance, which is
common in medical datasets. The precision value

signifies a low false-positive rate, implying that the
HSVIT model minimizes incorrect cancer predictions,
thereby reducing unnecessary clinical follow-ups.
Meanwhile, the recall (sensitivity) highlights the
model’'s strong ability to correctly identify cancer-
positive cases, which is critical for early diagnosis and
treatment planning. The AUC value approaching unity
further confirms the superior discriminative capability of
the proposed framework across varying classification
thresholds, demonstrating stable and consistent
performance rather than threshold-dependent gains.
Collectively, these numerical results indicate that the

integration of global self-attention (ViT) with
—8— Train Accuracy
0.950 + validation Accuracy
—8— Test Accuracy
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0.900 -
g 0.875 -
[+
3
£ 0.850 -
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T
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Fig. 4. Accuracy of the proposed model

metaheuristic hyperparameter optimization (COA)
enables more accurate feature representation, optimal
convergence, and enhanced generalization across
diverse lung CT patterns. A comparative analysis with
prior studies clearly highlights the advantages of the
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proposed HSVIT model. Conventional CNN-based
approaches reported by Huang et al. [4], employing
architectures such as ResNet, VGG, and DenseNet,
achieve accuracies between 85-92% with an AUC of
approximately 0.90. While effective in extracting local
spatial features, these models lack the ability to capture

long-range dependencies, resulting in limited
performance in complex lung CT images with
heterogeneous tumor textures. Encoder—decoder

architectures such as U-Net and U-Net++, investigated
by Rawashdeh et al. [8], primarily emphasize
segmentation accuracy, achieving Dice scores in the
range of 0.80-0.88. Although skip connections help
preserve spatial information, the reliance on
convolutional operations and fixed hyperparameters
restrict adaptability to inter-patient variability and
irregular tumor morphologies. The work by
Bhattacharyya et al. [11] demonstrates that GAN-

based data augmentation improves classification
accuracy to 90-94% and AUC values of 0.92-0.95 by
increasing dataset diversity. However, GAN ftraining
introduces instability and computational overhead, and
the resulting performance gains remain incremental
compared to attention-driven models. Transformer-
based methods, such as the ViT framework proposed
by Lakide et al. [14], further improve performance to
92-95% accuracy with an AUC of around 0.95,
confirming the effectiveness of self-attention in
modeling global contextual relationships. Nevertheless,
these models depend on manually tuned
hyperparameters, which may lead to suboptimal
convergence. Hybrid swarm-based CNN optimization
methods, such as those by Kumar et al. [17], show
moderate improvements (90-93% accuracy), but the
absence of global attention mechanisms limits their
representational power. In contrast, the proposed
HSVIT framework uniquely combines global attention
modeling  with swarm-driven hyperparameter
optimization, leading to the highest overall performance
among the compared methods.

Despite its strong performance, the proposed
HSVIT framework has certain limitations. First,
incorporating transformer modules and COA-based
optimization increases computational complexity and
training time, potentially limiting deployment in
resource-constrained clinical environments. Second,
although the model demonstrates strong generalization
on the evaluated datasets, its robustness across multi-
center, heterogeneous CT datasets with varying
acquisition protocols has not yet been fully validated.
Third, the interpretability of transformer-based models
remains limited, which may pose challenges for clinical
adoption where explainability is critical. Finally, the
current study focuses primarily on static CT images and

Table 5. Comparative Analysis with Existing Models

Author Model Architecture Optimization Performance
Type Method (Accuracy/AUC)
Huang, D et al., CNN-based Models Convolutional SGD / Adam 85-92%, AUC
[4] (ResNet/VGG/DenseNet) Neural Networks ~0.90
Rawashdeh et Encoder—decoder _ _
al., [8] U-Net / U-Net++ CNN for _ Gradient-based Dice 0.80-0.88
" segmentation
CNN + GAN- o
Bhattacharyya et GAN-Augmented CNN based GAN-driven 90-94%, AUC
al., [11] . ~0.92-0.95
augmentation
(o)
Lakide et al., [14]  Vision Transformer (ViT) ~ [fanSformer- agamyy 92-95%, AUC
ased ~0.95
Kumar et al., [17] PSO/GA + CNN 8"”.“ with Swarm 55 ) oA 90-93%
ptimization
Hybrid Swarm- Coyote 96.8% accuracy,
Proposed Work HSVIT (COA + ViT) Driven Vision Optimization F1 96.5%, AUC >
Transformer Algorithm 0.98
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does not explore longitudinal disease progression,
which could further enhance clinical decision-making.

The combination of self-attention mechanisms and
metaheuristic optimization supports more reliable
feature extraction and optimal learning, aligning with
recent findings that transformer-based models
outperform CNNs in medical imaging tasks requiring
global context modeling [14], [18]. The integration of
swarm intelligence for hyper-parameter tuning reduces
reliance on manual trial-and-error approaches,
consistent with studies emphasizing the effectiveness
of metaheuristic optimization in deep learning-based
medical image analysis [17], [19]. Clinically, the high
sensitivity and precision achieved by HSVIT suggest its
potential to assist radiologists in early-stage lung
cancer detection, thereby improving patient outcomes
through timely intervention. From a research
perspective, the proposed framework establishes a
scalable and adaptable paradigm for integrating
transformers with evolutionary optimization, which can
be extended to other medical imaging modalities such
as MRI and PET scans [20], [21]. These implications
reinforce the relevance of HSVIT as a promising
direction for next-generation intelligent diagnostic
systems.

VL. Conclusion

This article proposed a Hybrid Swarm-Driven Vision
Transformer (HSVIT) framework for precise lung
cancer segmentation and classification based on CT
images, incorporating a Coyote Optimization Algorithm
(COA) optimized U-Net and a Dual-Stage Attention
Fusion Vision Transformer. By combining CLAHE-
based contrast correction, adaptive swarm-driven
image segmentation, and global-local feature learning
with a transformer model, the proposed approach
effectively addresses challenges in lung cancer
diagnosis, including low contrast between lesions and
healthy tissue, irregularly shaped tumors with complex
borders, and diverse visual appearances. Experimental
results based on popular lung CT image datasets
showed the superiority of the proposed approach, with
a Dice score measurement of 95% and a total
classification accuracy rate of 98.7%, performing better
compared with the results of various CNN models, U-
NET variants, and the transformer model frameworks.
While the addition of the COA fraining process
increases the overall training time complexity, this
complexity is not affected and plays a crucial role in
improving the approach's stability and robustness. This
HSVIT approach holds great potential as a useful and
practical tool for the automation and diagnosis of lung
cancer diagnosis.
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