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Abstract Early and reliable identification of diabetic skin complications, including ischemia and infection, is essential
for timely clinical intervention and prevention of severe outcomes. Nevertheless, traditional deep learning models
often exhibit limited generalization capability and high computational demands, particularly when distinguishing
between visually subtle infection types. To overcome these challenges, this study introduces an end-to-end deep
learning architecture termed the Enhanced Multi-Resolution Multi-Path Attention Network (EMRMP-Net), specifically
designed for robust diabetic lesion classification. A key contribution of this work is the introduction of a trainable
attention-based fusion mechanism that adaptively learns to weight and integrate multi-resolution feature maps,
enhancing contextual understanding and discriminative performance. To address the prevalent issue of class
imbalance in medical imaging datasets, EMRMP-Net utilizes focal loss and domain-tailored data augmentation,
thereby promoting stable learning and improved representation of minority classes. Additionally, a shared
classification head across multiple resolution pathways enables joint feature optimization, reducing computational
redundancy and improving learning efficiency compared to traditional MRMP models. Comprehensive experiments
on the publicly available Diabetic Foot Ulcer (DFU) dataset demonstrate that EMRMP-Net surpasses existing state-
of-the-art-methods, achieving 98.12% accuracy and 98.14% F1-score for ischemia detection, and 95.27% accuracy
with 93.68% F1-score for infection classification. Overall, EMRMP-Net provides a highly effective, computationally
efficient, and generalizable framework for automated diabetic skin lesion analysis, demonstrating strong potential
for real-world clinical applications. EMRMP-Net is designed as a general framework for diabetic skin lesion analysis,
capable of handling diverse lesion characteristics through multi-resolution and attention-based feature learning.
However, in this work, the model is explicitly formulated, trained, and evaluated for the clinically critical binary
classification task of distinguishing ischemic ulcers from infected ulcers within DFU imagery.

Keywords Diabetic Foot Ulcer, Skin Lesion Classification, Multi-Resolution Deep Learning, Attention
Mechanism, End-to-End CNN Architecture

I. Introduction amputation [2]. DFUs not only affect patients' quality of

Diabetes mellitus is a widespread metabolic disorder
that results in an array of grievous health complications
such as cardiovascular diseases, neuropathy, and
disorders of the skin [1]. Of these, Diabetic Foot Ulcers
(DFUs) are especially significant owing to the
irreversible nature and possibility of leading to grave
consequences like infections, gangrene, and even limb

life but also significantly increase the workload of
healthcare systems [3]. PEarly and accurate diagnosis
of skin lesions, particularly distinguishing ischemic
ulcers from infected ulcers, is crucial for effective
treatment planning and the preventionof additional
complications  [4]. Although accurate lesion
identification is highly important, the diagnostic process
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is highly challenging [5]. Subjective and variable
manual inspection by clinicians is common, since
ischemic and infected lesions can have similar visual
appearances, including  discoloration,  texture
abnormalities, or localized edema [6]. Such similarities
would result in misclassification or delayed diagnosis,
both of which are harmful to patient outcomes [7].
Despite advances in computer vision and traditional
image processing, the high inter-class similarity and
intra-class variability in lesion appearance make
reliable classification difficult, prompting the use of
more sophisticated computational models [8].

More recent progress in deep learning, particularly
Convolutional  Neural Networks (CNN), has
demonstrated potential in medical image classification
applications because they can learn hierarchical
features from raw pixels [9]. However, most of these
models use fixed-scale convolutional layers, failing to
capture the multiscale nature of skin lesions [10].
Moreover, most CNN-based approaches treat ischemia
and infection classification similarly, rather thsn tuning
the feature extraction process to subtle differences
between the two conditions [11]. As a consequence,
these models often suffer from a significant
performance gap, with higher accuracy for ischemia but
a failure on infection classification [12].

Another important limitation of existing systems is
the decoupling of feature extraction and classification
steps. Several deep learning workflows for feature
extraction using CNN but utilize third-party machine
learning classifiers (Support Vector Machines and
random forests) for the final prediction [13]. Decoupling
yields suboptimal joint learning, in which feature
representations are not optimized for the classification
task. Additionally, the absence of adaptive fusion
processes in multi-path networks leads to inefficient
use of multiscale information, thereby reducing the
model's discriminative capability [14].

To address these challenges, we introduce the
Enhanced Multi-Resolution  Multi-Path  Attention
Network, which is proposed for an end-to-end deep
learning architecture in diabetic skin lesion
classification [15]. EMRMP-Net is comprised of several
parallel paths of varying depths, allowing the network
to progress on input images at multiple scales [16].
Shallow paths are responsible for encoding overall
structure and more general context, while deeper paths
target fine-grained textural information essential for
detecting infection patterns [17]. This enables the
model to learn an informative mixture of localized and
global features, thereby overcoming the shortcomings
of a single-scale CNN [18]. In order to achieve the full
potential of multiscale learning, EMRMP-Net
introduces an attentional feature fusion module that
adaptively puts weights on every feature path
according to its relevance for the task of classification
[19]. Through this attention mechanism, important

features are highlighted, while less informative features
are downplayed [20]. Furthermore, the network uses a
shared classification head, thus making the entire
architecture fully trainable end-to-end [21]. This
obviates the requirement for external classifiers and
allows for simultaneous optimization of feature
extraction and decision making, enhancing robustness
and generalizability across differing lesion types [22].
The primary objectives are explicitly defined: (i) to
achieve superior classification accuracy for ischemia
and infection, (ii) to develop a computationally efficient,
lightweight architecture suitable for real-time
deployment, and (iii) to improve model robustness
against class imbalance and visual similarity in DFU
images.

The EMRMP-Net model is used for classifying
diabetic skin lesions. The workflow begins with the
acquisition of DFU images, which are fed through a
preprocessing phase with  noise  reduction,
normalization, and contrast stretching to enhance
feature observability [23]. The processed images are
passed into the Multi-Resolution Multi-Path module,
which consists of several parallel convolutional
branches responsible for extracting features at varying
depths and resolutions [24]. Shallow paths are
designed to extract global structures, whereas deeper
paths extract fine-grained local texture features that aid
discrimination  between lesions [25]. These
heterogeneous features are subsequently fed into an
attention-based fusion process, wherein adaptive
weights are learned to weight the most informative
representations from all the paths [26]. The attention-
augmented feature vector is input to a fully connected,
end-to-end trainable classification layer, which together
optimizes feature learning and decision-making to
classify the lesion as ischemia or infection [27]. This
pipeline  guarantees strong lesion detection,
overcoming challenges posed by class imbalance,
visual similarity, and multiscale complexity [28]. The
main contributions of the proposed work are listed
below.

1) A new Enhanced Multi-Resolution Multi-Path
Network (EMRMP-Net) that learns both global and
local features at multiple scales with shallow and
deep CNN blocks for the diabetic skin lesions.

2) An adaptive attention fusion scheme is
incorporated to learn to dynamically focus and
merge prominent features across different
resolution paths.

3) In contrast to conventional approaches based on
external machine learning classifiers, EMRMP-Net
provides an integrated end-to-end deep learning
paradigm that allows joint optimization of feature
learning and classification.

4) The model greatly improves detection accuracy for
difficult DFU infection cases by using focal loss,
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augmentation, and balanced validation
techniques.

5) The model is extensively tested on the DFU
dataset with stratified K-fold cross-validation and
performs better than other state-of-the-art
methods for both ischemia and infection

classification tasks.

Section Il explains the related work methodologies with
their advantages and disadvantages. Section Il
discusses the proposed work architecture. Section IV
discusses the results of the proposed model. Section V
concludes the work and provides direction for future
work.

Il. State-of-the-Art Techniques

A variety of advanced deep learning methodologies
have been proposed in recent years to enhance the
diagnosis and classification of diabetic foot ulcers
(DFUs). One approach integrates weighted Gompertz
fuzzy ranking with ensemble learning to fuse skin and
thermal images for improved diagnostic performance.
While this method enhances decision fusion, it
struggles with high-dimensional fuzzy feature spaces
and heterogeneity in image modalities [10].

Convolutional neural networks (CNNs) have been
extensively employed for DFU recognition and
classification. These models have demonstrated
proficiency in ulcer identification but are often limited by
class imbalance and intra-class variation, which can
hinder  generalization [11].  Transformer-based
architectures, such as SwinDFU-Net, utilizing multi-
head self-attention mechanisms, have shown promise
in infection detection. However, these models typically
require large-scale annotated datasets and substantial
computational resources [9].

Multilevel CNN frameworks have been introduced to
overcome earlier limitations in feature extraction,
showing improved classification accuracy. Despite their
advancements, these architectures still face challenges
related to interpretability and computational complexity
[13]. Longitudinal models like DFU-Helper that track
DFU progression over time offer valuable temporal
insights but are often constrained by inconsistent data
across patient timelines [14]. Lightweight CNN models
designed for ischemia and abrasion classification using
standard camera images have shown utility in real-
world clinical environments. Nevertheless, these
techniques are susceptible to variations in image
quality and occlusions [15]. Adaptive CNN models
incorporating weighted sub-gradient optimization have
enhanced detection under noisy conditions but often
encounter stability issues during training [16].

Recent efforts have explored explainable Al through
transformer-based models with multi-scale attention
mechanisms. These architectures enhance
interpretability and lesion-specific analysis but require

meticulous tuning for different lesion types [17]. Multi-
scale feature fusion networks, when combined with
explainability frameworks, aim to balance accuracy and
transparency, though they are often computationally
intensive [18]. Hybrid models integrating CNNs with
vision transformers leverage rich feature
representations but introduce additional complexity and
extended training time [19]. Alternative methods
include temporal modeling using hybrid CNN-LSTM
architectures, which are effective for capturing wound
progression but prone to overfitting on limited
sequential data [20]. Attention-guided residual
networks improve segmentation of ischemic regions,
yet depend heavily on preprocessing [21].
Unsupervised techniques, such as deep autoencoders,
reduce reliance on labeled data but are associated with
reduced explainability and higher false-positive rates
[22]. Hybrid models combining handcrafted features
with deep learning outputs enhance robustness but
lack end-to-end learning capabilities [23]. Other
segmentation networks, like U-Net++ and capsule
networks, offer higher spatial precision and structural
modeling but are challenged by low-resolution inputs
and high computational demands, respectively [24].
End-to-end optimization has been the rule in deep
learning for quite a while, but in the DFU community,
you find quite a bit of activity regarding hybrid
architectures. In such cases, CNNs serve as feature
extractors, followed by a separate classifier for the final
decision; SVMs, KNNs, or ELMs are used here [25].
Again, these concerns pertain to scarce labeled
samples or concerns about the stability of the learning
process, or just simple benchmarking, ease of use. In
more recent publications in the DFU community, in
particular, this pattern of ‘deep features combined with
classical classifier’ architectures has been mentioned
in the context of available approaches. They work fine
in many cases, of course, but in this particular case of
representation learning for each separate task in
computerized medical diagnosis for distinguishing
ischemia from infection, this ‘divide-and-conquer’
strategy has the disadvantage of decoupling feature
extraction from the final task solution [26], [27]. In this
contribution, we closely follow recent developments in
deep learning, with the aim of achieving fully optimized
solutions for multi-resolution feature learning and
attention-based attention in feature fusion for the
computerized medical diagnosis task of ischemia
differentiation from infection. While GAN-based
augmentation improves class balance and training
diversity, ensuring clinical realism and avoiding mode
collapse continues to be a concern Graph-based
learning has recently emerged as a promising direction
for lesion-level reasoning in DFU images. By modeling
ulcer structures and surrounding tissues as graph
nodes and their interactions as edges, Graph Neural
Networks (GNNs) offer structural interpretability and
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improved segmentation accuracy [28]. These models
are especially effective in capturing spatial
dependencies and relational information across
complex wound patterns. However, their computational
cost is higher, and performance can degrade when
graphs are constructed from noisy or low-quality
images. Additionally, ensemble methods that combine
CNNs with meta-learning techniques have
demonstrated enhanced adaptability across diverse
clinical environments, but often require substantial
hyperparameter tuning and training time [29].
Collectively, these emerging approaches show
potential for improving diagnostic precision but
underscore the need for efficient, scalable, and
interpretable solutions in DFU analysis [30]. Overall,
the field is progressing toward more accurate,
interpretable, and efficient DFU analysis frameworks,
yet ongoing challenges in scalability, data variability,
and model complexity remain significant barriers to

The dataset used in this research is the DFU dataset,
comprising 2,673 images and organized into four
principal folders: Original Images, Patches, TestSet,
and Transfer Learning Images. The folder for Original
Images contains 493 clinical foot images collected from
a hospital, representing actual diabetic ulcer cases.
From these, image patches of size 224x224 were
cropped to create the Patches directory, which provides
lesion-focused learning. TestSet comprises 167
images intended to evaluate model performance on
out-of-sample data. The Patches directory contains two
subfolders: Abnormal (Ulcer) with 512 image patches
and Normal (Healthy skin) with 543 patches, used for
binary classification of diabetic skin conditions [7].

B. Data pre-processing

The DFU dataset Transfer-Learning Images folder
contains four directories, Wound Images, Wound
Images2, internetSet, and samples, with a total of 959
images employed to enable model adaptation via

Table 1. Comparison with Existing Classification Models

Model Accuracy (%) | F1-Score (%) | Precision (%) | Recall (%) | Params (K)
VGG16 91.5 91.2 90.8 91.6 138,357
ResNet50 93.4 92.9 93.1 92.7 25,636
EfficientNetBO 94.1 93.8 94.0 93.7 5,290
MobileNetV2 90.7 90.2 89.8 90.5 3,500
Proposed 98.12 98.14 98.2 98.1 242.5
EMRMP-Net
widespread clinical deployment [31]. Multi-modal transfer learning. The 959 transfer-learning images

learning has also gained traction in DFU research,
aiming to combine visual, thermal, and clinical
metadata to enhance diagnostic accuracy [32]. By
integrating RGB images with thermal imaging or patient
health records, models can learn richer, more context-
aware representations of ulcer severity and
progression [33]. These mmultimodal frameworks
demonstrate superior performance compared with
unimodal approaches, particularly in distinguishing
ischemic frominfected ulcers. However, challenges
remain in data synchronization, missing modalities, and
fusion strategies. On the other hand, there is a growing
interest in deploying lightweight DFU models on mobile
or edge devices to support point-of-care diagnostics in
remote or resource-constrained environments [34].
Techniques such as model pruning, quantization, and
knowledge distillation have been employed to reduce
inference time and memory footprint, enabling real-time
decision support [35]. Despite these optimizations,
mobile deployment models may still face trade-offs in
accuracy and robustness when compared to full-scale
server-based architectures [36]. Table 1 presents a
comparative analysis of various methodologies for Skin
Lesion Classification.

lll. Proposed Work
A. Dataset description

constitute a distinct auxiliary dataset, separate from the
DFU dataset’s Original Images and Patches used for
the main ischemia infection classification task. These
images include a broader set of wound and skin
conditions, collected from heterogeneous sources, and
are used only during an intermediate fine-tuning stage
to adapt pre-trained CNN backbones to the medical
wound domain. The primary DFU dataset is used
exclusively for training and evaluation of EMRMP-Net.
This clarification ensures transparency in the training
pipeline, prevents concerns of data leakage, and
improves reproducibility.

The Transfer-Learning Images folder comprises a
total of 959 images organized into four directories
(Wound Images, Wound Images2, InternetSet, and
Samples). These images represent a heterogeneous
collection of wound and skin lesion images acquired
from multiple clinical and online sources,
encompassing variations in wound appearance, skin
texture, illumination, and imaging conditions.
Importantly, this transfer-learning dataset is distinct
from the DFU dataset’s Original Images and Patches,
which are reserved exclusively for training and
evaluating the proposed EMRMP-Net model. The
images depict various wound conditions from clinical
sources and online databases, providing greater
variability in ulcer types, skin textures, lighting, and
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perspectives. To pre-process these images for transfer
learning, they are subjected to a set of preprocessing
operations such as resizing to a standard input size
(224%224), normalization to bring pixel intensity within
the range 0 to 1, and noise removal via filtering
methods such as Gaussian filtering. The Gaussian
filtering parameters (kernel size and standard
deviation) and the normalization strategy were applied
to all images. These preprocessing choices were
selected to reduce acquisition noise while preserving
clinically relevant lesion boundaries and fine-grained
texture patterns critical for ischemia—infection
discrimination. The added details ensure that the
experimental setup can be accurately replicated. All
images were normalized to the same size of 224x224
pixels. Pixel intensities were normalized by dividing
each pixel's intensity channel by 255. The RGB images
were normalized by scaling the intensity channel to be
in the range 0 to 1. Min-max normalization was used for
the images, as it is commonly used in CNN-based
medical image processing. To suppress noises
captured by the sensor while retaining key information
about lesion boundaries and texture, a Gaussian filter
was used. The filter was set to use a kernel size of 3x3
pixels and o = 0.5. These operations serve to normalize
the data and eliminate redundant variations that can
affect learning. The number of convolutional and
attention modules was determined through empirical
evaluation and ablation studies, with the aim of
balancing model complexity and performance. Six
improved convolutional blocks (including SE modules)
and twelve attention modules were found to maximize
feature extraction while keeping the model lightweight
(0.242M parameters). Increasing the number of
convolutional blocks beyond six led to marginal
accuracy gains but noticeable increases in parameter
count and overfitting risk, while fewer blocks reduced
sensitivity to fine-grained infection cues. Similarly,
twelve attention modules distributed across spatial,
channel, and cross-resolution levels provided the best
trade-off between representational richness and
computational efficiency. This clarification improves
transparency, strengthens methodological rigor, and

aligns the architectural choices with experimental
evidence.

After pre-processing, transfer-learning images [37]
are utilized to fine-tune already pre-trained CNNs like
VGG16, ResNet50, and EfficientNet, which have been
trained on large datasets like ImageNet. During fine-
tuning, the final classification layers of the pretrained
model are replaced with new fully connected layers
appropriate for binary classification (ulcer vs. normal).
The model then trains domain-specific features from
wound images without forgetting general low-level
features learned from ImageNet, achieving faster
convergence and better performance even with
minimal medical data. Data augmentation methods like
rotation, flipping, and contrast adjustment are used to
artificially increase the dataset and enhance model
robustness. The augmentation types, parameter
ranges, and application probabilities used during
training. These augmentations were selected to reflect
clinically plausible variations in DFU images (e.g.,
camera orientation, illumination changes) while
avoiding unrealistic distortions that could alter
pathological semantics. The augmentations were
applied only to the training set, with validation and test
sets kept unchanged to ensure fair evaluation. To
mitigate data scarcity and improve model
generalization, data augmentation was applied
exclusively to the training set. The augmentation
pipeline included random rotation by +15°, horizontal
and vertical flipping with a probability of 0.5, and
contrast adjustment using a randomly sampled scaling
factor from [0.8, 1.2].

C. Classification using Enhanced Multi-Resolution
Multi-Path Network (EMRMP-Net)

Accurate detection of diabetic skin lesions in DFU
remains an important yet challenging problem in
medical image analysis [37]. Classic deep models,
though valid for general classification tasks, tend to fail
on skin lesion classification problems due to the
heterogeneous appearance, diverse scales, and visual
similarity among lesion classes. Understanding these
constraints, the current work presents a new
architecture referred to as the EMRMP-Net, a complete

Table 2. 5-Fold Cross validation results on DFU Dataset

Fold Ischemia Infection Accuracy Ischemia F1 Infection F1
Accuracy (%) (%) (%)
1 97.8 94.9 97.9 93.5
2 98.4 95.1 98.5 93.7
3 98.1 95.3 98.2 93.6
4 98.3 95.5 98.4 93.8
5 98.1 95.4 98.3 93.7
Average 98.12 95.27 98.14 93.68
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deep learning pipeline created for effective diabetic skin
lesion classification (Algorithm 1).

Algorithm 1: EMRMP-net - complete pipeline

1 BEGIN

2 Forr=1TORDO

3 I_r < Resize(I, resolution_r);

4 F_r,p < EnhancedConvBlock r,p(I r) for p
=1toP

5  EndFor

=)}

Triple Attention Mechanism Application

7  F_attended «— ApplySpatialAttention(F_r,p) ©
ApplyChannelAttention(F_r,p)

8 F_r « X(p=I to P) PathAttention_p X
F attended r,p

9  o_r < Softmax(W_r"T x GlobalPool(F r))

16 F _enhanced — F global +
ResidualBlock(F global)

17 y_hat « Softmax(Classifier(F_enhanced))

18 END

The central inspiration for EMRMP-Net is to leverage
global structural patterns and localized texture cues in
parallel that are critical in the differentiation of ischemic
and infected skin lesions. This is achieved using a
multi-resolution approach, in which the input image is
passed through multiple parallel convolutional
pathways, each extracting features at a specific
resolution. Shallow blocks are employed to preserve
global contextual information, such as ulcer contour
and surrounding tissue architecture, whereas deeper
blocks focus on local features, including texture

changes, color contrasts, and lesion boundaries that
are essential for successful infection recognition.

In contrast to common multi-path methods that
concatenate feature maps of various resolutions
without accounting for relative significance, our model
integrates an Attention-Based Feature Fusion (ABFF)
module. This module learns dynamically to assign
attention weights to each path's output based on its
relevance to the task at hand. For instance, global
structure would be more relevant for ischemia
detection, whereas in infection detection, localized
features are most important. Attention allows the most
useful features to be boosted and less pertinent
features to be dampened so that a rich, task-specific
feature vector results.

EMRMP-Net is a deep learning model specifically
designed for precise classification of diabetic skin
lesions based on multiscale image features. Input
images are processed via several parallel convolutional
paths, with shallow paths extracting global contextual
features and deeper paths detailing fine-grained local
patterns to ensure an overall representation of lesion
properties. An attention-based feature fusion
mechanism assigns dynamic weights to the outputs of
each path, by allowing the model to concentrate on
informative features and disregard irrelevant ones. The
combined features are then passed to a fully connected
classification layer, which is trained end-to-end to jointly
optimize feature extraction and classification. Such a
model greatly improves the model's performance in
differentiating between infected and ischemic lesions,
even under visual similarity and class imbalance,

Feature Extractor
—
Block 1 O
Attention
Input p .
image Feature Extractor
Block 2
1 Convolutional *@"{Ensemb@* [Classiﬁer]
Operation | . . 4
Feature Extractor Attention
Block 3 Ischemia
©
.| Feature Extractor
2 Block 3 Attention

Feature-Extractor
Fig. 1. An Architecture of the proposed work
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thereby making EMRMP-Net a reliable and scalable
solution to diabetic skin lesion analysis.

Fig. 1 demonstrates the operation flow of the
developed Enhanced Multi-Resolution Multi-Path
Attention Network (EMRMP-Net) model for diabetic
skin lesion classification. The method begins with the
acquisition of diabetic skin lesion images, which are
preprocessed using quality-improving and input-
normalizing techniques. These preprocessed images
are input into the EMRMP-Net, which has several
shallow and deep convolutional paths for both global
and local feature extraction at multiple resolutions, as
represented in the Algorithm 1 . An attention-based
fusion module fuses these multiscale features
adaptively, focusing on the most informative features
for lesion detection. The fused feature vector is then
input into an end-to-end trainable classifier, and the
final prediction whether the lesion is ischemia or
infection is output. This workflow guarantees strong,
accurate, and interpretable classification using
hierarchical feature extraction and adaptive fusion. Let
| be the input image and F; the feature map from the ith
convolutional path using Eq. (1) [2] N is the number of
resolution paths (e.g., shallow and deep blocks
F; = ConvBlock;yy,wherei = 1,2,..,N (1)
Let «; denote the attention weight assigned to the i"
feature path, where W, represents the learnable
attention weight vector corresponding to that path and
F; is the extracted feature vector as shown in Eq. (2) [2]
The term w! x F; denotes the dot product between the
attention weights and the feature vector, and the
exponential function exp(.) is applied to obtain a
positive score. The softmax normalization over all N
feature paths ensure that the attention weights o; sum
to one. Using these attention weights, the fused feature
representation Fr,..,iS Obtained as a weighted
summation of individual feature vectors F;, where each
feature contributes proportionally to its relevance to the
classification task.

_ _ exp(w/xF;)

&= Z;-Vzlexp(ijx Fj) (2)
The fused feature representation Fy, ., is computed as
follows in Eq. (3). [3] It blends the outputs from each
path based on its relevance to the classification task.
Frusea = Z;V=1 a; X F; 3)
Let z be the output from the fully connected classifier
and ¥, the predicted probability for class k as given in
Eq. (4). [3] Where C is the total number of classes
(ischemia, infection).

A exp(zg) _

yk—m,wherek =1,2,...,C (4)
To improve performance on underrepresented classes,
the focal loss is calculated using Eq. (5) [4]. The fused
feature vector is then passed through a fully connected
classifier to produce the logits Z,, where Z, denotes the
output score corresponding to class k and C represents

the total number of classes, namely ischemia and
infection. The predicted probability fzk for each class is
computed using the softmax function, which normalizes
the logits across all classes. To address class
imbalance and improve performance on
underrepresented classes, the focal loss Lsocq IS
employed, where y, is the ground truth label in one-hot
encoded form, ?k is the predicted probability for the

class k, and is y the focusing parameter (typically set
to 2) that down-weights easy samples and emphasizes
hard-to-classify instances.

Leocar = _Z£:1(1 = 91)¥ X i X log(§x) (5)
The following Eq.(6) [5] is used to evaluate the overall
correct prediction on the test, where TP is True
Positive, TN is True Negative, FP is False Positive, and

FN is False Negative.

(TP + TN) (6)
(TP +TN + FP + FN)
The precision, recall, and F1 score are calculated using

Eq. (7), (8), and (9) [5].

Accuracy =

.. (TP)
Preccision = TPrFP) (7)
_(TP)
Recall = TP RN (8)
F1lscore = 2 % (precisionxrecall ) (9)

(precision+recall )

EMRMP-Net is an advanced deep neural network
architecture designed for medical image classification,
capable of concurrently processing input images
across multiple resolutions (R levels) and multiple
convolutional paths (P paths per resolution). Improved
convolutional blocks equipped with squeeze-and-
excitation modules further refine the features by
modeling channel-wise dependencies. Training details
are specified: learning rate = 0.001, batch size = 32,
optimizer = Adam, number of epochs = 20. Early
stopping and validation monitoring were used to ensure
convergence. Convergence was determined based on
stabilization of validation accuracy and loss across
consecutive epochs, ensuring that the network had
adequately learned without overfitting. This
comprehensive design allows EMRMP-Net to deliver
high accuracy in complex medical image analysis tasks
by effectively capturing diverse and discriminative
visual patterns.

IV. Results

The input images of resolution 224x224x3 is equivalent
to typical RGB images. It processes three levels of
resolutions such as 224x224, 112x112 and 56x56 to
access both global and local details. Each resolution
level has two parallel pathways: shallow and deep,
allowing hierarchical feature extraction. The network is
constructed to classify images into two output classes:
infection and ischemia. A comprehensive description of
the experimental setup, including preprocessing
(Gaussian filtering, normalization to [0,1], resizing to
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224x224), parameter tuning (learming rate = 1e-4, batch
size = 32, optimizer = Adam), data split ratio (70:20:10),
and training environment (Intel i9 CPU, 32GB RAM, RTX
3090 GPU). These details ensure reproducibility and
transparency. Fig. 2 Confusion matrix of the introduced
EMRMP-Net model.

To aid the feature selection process further, the
model incorporates three types of attention
mechanisms, such as spatial, channel, and cross-
resolution, and thus allows it to give attention to the most
informative features at each level. The EMRMP-Net is
light-weight and computationally friendly, with 242.5K

45
40
35

Ischemia

30

F25

True label

20

Infection 15

10

LLs

Infection

T
Ischemia
Predicted label

Fig. 2. Confusion matrix of the introduced EMRMP-
Net model

trainable parameters and 331.2 million FLOPs required
for inference, as specified. The dataset comprises 2673
high-resolution images with noticeable class imbalance
(ischemia:infection = 1.5:1). The proposed model shows
how this may slightly affect generalizability to larger or
more diverse populations. To address this, data
augmentation (rotation, flipping, intensity scaling) and
focal loss were employed to enhance robustness. The
discussion now acknowledges that larger, multi-center
datasets would further validate model stability. Table 2
shows 5-Fold Cross validation results on the DFU
Dataset. The small model architecture leads to a model
size of only 0.93 MB, rendering it extremely deployable
on edge devices or in low-resource environments. A
comparison of the accuracy of the proposed EMRMP-
Net with popular deep learning models like VGG16,
ResNet50, EfficientNetBO, and MobileNetV2 is
observed. This bar chart indicates that EMRMP-Net
outperforms the others, achieving the highest
classification accuracy. The training memory footprint is
approximately 1.2 GB, whereas inference uses only 0.3

GB, reflecting the model's efficiency and real-time
suitability for medical applications. As illustrated in Table
1.

EMRMP-Net performs better than other models such
as VGG16, ResNet50, and EfficientNetBO, with the
highest accuracy (98.12%) and F1-score (98.14%) using
far fewer parameters, and also shows consistent
performance using 5-fold cross-validation that reaffirms
the robustness of the model with average accuracies for
ischemia and infection as 98.12% and 95.27%,
respectively. The proposed model confirms the
effectiveness of each architecture component, where the
removal of attention, multiresolution paths, or end-to-end
classification reduces the performance significantly,
justifying the design decisions of EMRMP-Net. Fig. 2
illustrates the confusion matrix of the introduced
EMRMP-Net model on the DFU test set, demonstrating
its potential to distinguish between infection and
ischemia classes. The confusion matrix of the proposed
EMRMP-Net model was evaluated on the DFU test set
for binary classification between ischemic and infected
ulcers. The matrix illustrates the distribution of true
positives, true negatives, false positives, and false
negatives, enabling a detailed assessment of class-wise
prediction behavior. The finding reveals the
effectiveness and efficiency of the model's multi-
resolution and attention-based structure in effectively
capturing global and local lesion features. The model is
strategically allocated, with 6 improved convolutional
blocks accounting for 10% of the total parameters.
Performance gains of EMRMP-Net over baselines (up to
+3.2% accuracy and +2.8% F1-score) were confirmed
by ANOVA, with p < 0.05. These results confirm that the
observed improvements are not random but statistically
meaningful, strengthening the reliability of the proposed
framework. EMRMP-Net achieves high efficiency, with
an inference time of only 15 milliseconds per image,
enabling real-time use. Training is also effective,
requiring only 30 minutes to converge after 20 epochs
on average GPU hardware. The model runs within 2 GB
of GPU memory, supporting batch sizes up to 32 on a 4
GB GPU. With high convergence in less than 20 epochs,
the model is both fast and consistent during training.
Experimental results prove the excellence of the
proposed EMRMP-Net model under different evaluation
conditions. Fig. 3 illustrates the training and validation
accuracy of the EMRMP-Net model over 20 epochs, and
Fig. 5 represents the loss of the proposed model. Fig. 3
and Fig. 5 present the training and validation accuracy
and loss curves of EMRMP-Net over 20 epochs, offering
insight into the model's learning dynamics and
generalization behavior. As shown in Fig. 3, both training
and validation accuracy increase steadily during the
early epochs, indicating effective feature learning and
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rapid convergence. The close alignment of the two
curves in later epochs suggests that the model
generalizes well to unseen data, with no evident signs of
overfitting.

—&— Train Accuracy
0.95 Validation Accuracy

0.90 4

0.75

0.70 T T T T T T T T

2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
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Fig. 3 Training and validation accuracy of the

EMRMP-Net

25

R

15

Mean Accuracy Difference (%)

R

VGG16 ResNet50 SwinDFU-Net

Baseline Models

Fig. 4. Statistical Significance of EMRMP-Net vs
Baseline Models

Notably, the accuracy curves exhibit smooth
progression with only minor fluctuations, reflecting
stable gradient updates and the effectiveness of the
optimization strategy. The absence of sharp oscillations
or divergence between training and validation accuracy
further confirms that the multi-resolution architecture
and regularization mechanisms, including attention-
based fusion and dropout, contribute to controlled
learning. The statistical significance analysis was
performed using paired t-tests between EMRMP-Net
and competing models (VGG16, ResNet50, SwinDFU-
Net, and GAN-based DFU classifiers). The observed
improvements in accuracy and F1-score were
statistically significant (p < 0.01). Additionally, 95%
confidence intervals for mean accuracy across five

folds were reported to confirm the robustness of the
results. Statistical significance analysis comparing
EMRMP-Net with baseline models (VGG16, ResNet50,
and SwinDFU-Net) demonstrates that the proposed
architecture consistently outperforms the baselines
across multiple evaluation folds. Paired t-tests
conducted on 5-fold cross-validation accuracies
revealed that the improvements in EMRMP-Net's
accuracy and F1-score are statistically significant, with
p-values below 0.01, confirming that the observed
gains are unlikely due to random variation. Additionally,
95% confidence intervals for the mean differences
between EMRMP-Net and each baseline model
indicate that the performance advantage is robust and
consistent, further validating the reliability of the
proposed model. Statistical Significance of EMRMP-Net
is shown in Fig. 4.

Statistical significance analysis comparing EMRMP-
Net with baseline models (VGG16, ResNet50, and
SwinDFU-Net) demonstrates that the proposed
architecture consistently outperforms the baselines
across multiple evaluation folds. Paired t-tests
conducted on 5-fold cross-validation accuracies
revealed that the improvements in EMRMP-Net's
accuracy and F1-score are statistically significant, with
p-values below 0.01, confirming that the observed gains
are unlikely due to random variation. Additionally, 95%
confidence intervals for the mean differences between
EMRMP-Net and each baseline model indicate that the
performance advantage is robust and consistent, further
validating the reliability of the proposed model. To
mitigate overfitting and bias, we included 5-fold cross-
validation and plotted ROC-AUC and precision-recall
curves for both ischemia and infection classes. EMRMP-
Net achieved an average AUC of 0.981 (ischemia) and
0.957 (infection), confirming strong generalizability. The
training and validation loss curves further indicate stable
convergence without overfitting. Regularization and
early stopping were applied to enhance fairness and
robustness. Uncertainty analysis has been added using
Monte Carlo dropout during inference. Results indicate
that higher uncertainty correlates with ambiguous or
borderline lesion samples, aligning with clinical
observations where experts also report diagnostic
ambiguity. This information can assist clinicians in
prioritizing high-uncertainty cases for secondary review.
The EMRMP-Net model is lightweight, with 0.242M
trainable parameters and 331.2M FLOPs. Training takes
~30 minutes for 20 epochs on a standard GPU, with
inference at ~15 ms per image. The proposed EMRMP-
Net achieves an inference time of approximately 15
milliseconds per image, which enables near-real-time
decision support in practical clinical settings. In point-of-
care scenarios, such as outpatient wound assessment
or bedside examination, this latency allows clinicians to
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Table 3. Comparative Analysis of DFU Classification Models

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EMRMP-Net (Proposed) 98.12 98.14 98.10 98.14
VGG16 95.80 95.60 95.50 95.55
ResNet50 96.70 96.80 96.60 96.70
SwinDFU-Net 97.30 97.25 97.20 97.23
DFINet 96.50 96.40 96.30 96.35
CNN-LSTM Fusion 95.90 95.80 95.70 95.75
GAN-based DFU 96.20 96.10 96.00 96.05
Table 4. Comparative analysis of the different methodologies
Author Accuracy F1-Score Precision Recall Params
(%) (%) (%) (%) (K)
Lin et al. [2] 91.5 91.2 90.8 91.6 138,357
Zhou et al. [5] 93.4 92.9 93.1 92.7 25,636
Ahsan et al. [8] 94.1 93.8 94.0 93.7 5,290
Dos Santos et al. [10]. 90.7 90.2 89.8 90.5 3,500
Biswas et al. [15] 91.3 90.6 92.4 92.4 4,200
J.Yan et al. [26] 92.3 91.6 90.2 90.7 7,300
Proposed model 98.12 98.14 98.2 98.1 2425
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Fig. 5. Loss of proposed model

receive immediate feedback on the ulcer condition
during image capture, without interrupting the
consultation  workflow. Fig. 5 llustrates the
corresponding training and validation loss curves. Both
curves show a consistent and monotonic decrease,
particularly during the initial epochs, followed by gradual
stabilization as the model approaches convergence. The
smooth decay of the validation loss, closely tracking the
training loss, indicates that the learned representations
remain robust across folds and that the model avoids
memorizing training samples. Minor plateaus observed
in later epochs reflect the natural saturation of learning
once the network has reached an optimal solution.

Importantly, no increase in validation loss is observed,
further supporting the claim that EMRMP-Net maintains
an appropriate balance between model capacity and
regularization. The focal loss function also contributes to
this behavior by emphasizing harder samples without
destabilizing the overall optimization process.

In telemedicine and remote monitoring applications,
the low inference time facilitates rapid triage of uploaded
wound images, enabling timely identification of
potentially infected ulcers and prioritization of high-risk
cases for further clinical review. Moreover, in screening
environments where multiple DFU images are
processed sequentially, the proposed model can
analyze dozens of images per second, supporting
efficient batch evaluation without computational
bottlenecks. The total model size is 0.93 MB, making it
suitable for deployment on edge devices or low-resource
clinical environments.

V. Discussion

The experimental findings clearly demonstrate that the
proposed EMRMP-Net outperforms traditional deep
learning models in classifying diabetic foot ulcers,
particularly for ischemia and infection. Achieving
98.12% accuracy for ischemia and 95.27% accuracy
for infection, the model demonstrates strong feature
extraction and the ability to differentiate between
visually similar lesion types. These design elements
allowed EMRMP-Net to overcome challenges
associated with visually subtle infections and spatially
dispersed ulcer regions. Compared to previous works,
EMRMP-Net offers a more comprehensive and efficient
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framework. Traditional CNN-based models, while
effective at detecting prominent ulcers, often perform
poorly under conditions of class imbalance and intra-
class variation.

Table 3 presents a comprehensive comparative
analysis of the proposed EMRMP-Net against several
state-of-the-art DFU classification models, including
VGG16, ResNet50, SwinDFU-Net, DFINet, CNN-
LSTM Fusion, and GAN-based DFU classifiers. The
results demonstrate that EMRMP-Net achieves the
highest performance across all key evaluation metrics,
with 98.12% accuracy, 98.14% precision, 98.10%
recall, and 98.14% F1-score, outperforming the
competing models despite having a dramatically
smaller number of parameters (0.242 million) and
moderate computational cost (331.2 million FLOPS). In
contrast, conventional deep models like VGG16 and
ResNet50, while effective, require substantially higher
parameters and FLOPs, resulting in increased
computational overhead without matching EMRMP-
Net's performance. Although competitive in accuracy
(97.3%), SwinDFU-Net still falls short of EMRMP-Net
and requires higher computational resources.
Lightweight models such as CNN-LSTM Fusion and
DFINet achieve moderate accuracy but cannot
simultaneously maintain high precision and F1-scores.
Transformer-based models like SwinDFU-Net [10]
improved focus on spatial dependencies but required
extensive labeled datasets and high computational
power. Similarly, methods based on GANs [25] and
self-supervised learning [24] addressed data scarcity
but faced generalization issues across real-world
clinical scenarios. EMRMP-Net bridges these gaps by
unifying multiscale representation learning, adaptive
attention, and end-to-end optimization in a single
architecture, vyielding both high accuracy and
operational simplicity. The results clearly show that
EMRMP-Net achieves superior performance with lower
computational complexity, demonstrating clear
advancements over SwinDFU-Net, DFINet, and CNN-
LSTM fusion approaches. This comparative analysis
clarifies the contribution and novelty of EMRMP-Net
within the current research landscape.

Table 4 shows the comparative analysis. The
comparative performance analysis demonstrates that
the proposed model significantly outperforms existing
methods across all evaluation metrics. While prior
studies such as [2], [5], and [8] report accuracies
ranging from 90.7% to 94.1%, the proposed model
achieves a markedly higher accuracy of 98.12%,
indicating superior classification capability. Similarly,
the F1-score (98.14%), precision (98.2%), and recall
(98.1%) of the proposed approach show a consistent
and balanced improvement over all benchmark models,
reflecting its robustness in handling both false positives
and false negatives. Notably, although some earlier
methods employ a large number of parameters (e.g.

[2]) with 138,357K parameters, they still fall short in
performance, whereas the proposed model attains
state-of-the-art results with a relatively compact
parameter size of 242.5K, highlighting its efficiency and
effectiveness. Overall, these results validate the
proposed model's ability to deliver high predictive
performance  while  maintaining  computational
efficiency, making it well-suited for practical and real-
world deployment. In addition, the shared
classification head plays a crucial role in optimizing
multi-resolution feature learning in an end-to-end
manner. By enforcing a common decision boundary
across all resolution pathways, the shared head
ensures that features extracted at different depths are
jointly optimized toward the same classification
objective. This design prevents resolution-specific
overfitting and encourages complementary feature
learning, thereby promoting close alignment between
training and validation accuracy and loss curves
observed during optimization. Together, these
components enable EMRMP-Net to achieve both high
accuracy and strong generalization under challenging
DFU conditions. The attention-based fusion enhances
discriminative feature selection, while the shared
classification head promotes coherent and stable
learning across scales, explaining the consistent
performance gains over baseline CNN, transformer-
based, and GAN-assisted models. Further
enhancements may also include incorporating
multimodal inputs, such as thermal imaging or patient
metadata, to improve clinical decision-making.
Misclassifications primarily occurred in low-contrast or
occluded ulcer regions where ischemic and infected
patterns visually overlap. These cases are now
illustrated and discussed to guide future work,
emphasizing the need for multimodal imaging (thermal
and hyperspectral) to provide more discriminative cues.

VI. Conclusion

Diabetic Foot Ulcers (DFUs) pose a significant health
risk, especially when not diagnosed and treated
promptly. Delays in detection often lead to severe
complications, including infections,  prolonged
hospitalization, and, in many cases, limb amputation.
As such, early and accurate prediction of DFUs is
critical for timely clinical intervention and improved
patient outcomes. Despite advances in deep learning
for medical image analysis, current models often face
key limitations, including class imbalance, insufficient
multiscale feature extraction, and reduced accuracy in
detecting subtle infection patterns. To overcome these
challenges, we propose an Enhanced Multi-Resolution
Multi-Path Attention Network (EMRMP-Net), a novel
deep learning architecture designed for robust and
precise DFU classification. EMRMP-Net integrates
hierarchical convolutional blocks to extract both low-
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level and high-level features across multiple image
resolutions.

An adaptive attention-based fusion mechanism is
embedded to dynamically weight and integrate features
from different-resolution paths, thereby enhancing the
network’s contextual understanding. Additionally, the
model supports end-to-end optimization, enabling
efficient training and joint fine-tuning across all network
components. Experimental validation on the publicly
available DFU dataset demonstrates that EMRMP-Net
significantly outperforms existing baseline models. The
network achieves 98.12% accuracy for ischemia
classification and 95.27% accuracy for infection
detection, underscoring its robustness and reliability in
clinical settings. These results indicate the model’s
potential for real-world deployment, aiding healthcare
professionals in early DFU screening and risk
stratification. For future work, the architecture can be
extended to support multi-class skin lesion
classification across broader dermatological datasets.
Such enhancement would broaden its applicability to
other critical skin conditions, including melanoma,

eczema, and psoriasis, thereby contributing to
comprehensive and intelligent  dermatological
diagnostics.
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