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Abstract Early and reliable identification of diabetic skin complications, including ischemia and infection, is essential 

for timely clinical intervention and prevention of severe outcomes. Nevertheless, traditional deep learning models 

often exhibit limited generalization capability and high computational demands, particularly when distinguishing 

between visually subtle infection types. To overcome these challenges, this study introduces an end-to-end deep 

learning architecture termed the Enhanced Multi-Resolution Multi-Path Attention Network (EMRMP-Net), specifically 

designed for robust diabetic lesion classification. A key contribution of this work is the introduction of a trainable 

attention-based fusion mechanism that adaptively learns to weight and integrate multi-resolution feature maps, 

enhancing contextual understanding and discriminative performance. To address the prevalent issue of class 

imbalance in medical imaging datasets, EMRMP-Net utilizes focal loss and domain-tailored data augmentation, 

thereby promoting stable learning and improved representation of minority classes. Additionally, a shared 

classification head across multiple resolution pathways enables joint feature optimization, reducing computational 

redundancy and improving learning efficiency compared to traditional MRMP models. Comprehensive experiments 

on the publicly available Diabetic Foot Ulcer (DFU) dataset demonstrate that EMRMP-Net surpasses existing state-

of-the-art-methods, achieving 98.12% accuracy and 98.14% F1-score for ischemia detection, and 95.27% accuracy 

with 93.68% F1-score for infection classification. Overall, EMRMP-Net provides a highly effective, computationally 

efficient, and generalizable framework for automated diabetic skin lesion analysis, demonstrating strong potential 

for real-world clinical applications. EMRMP-Net is designed as a general framework for diabetic skin lesion analysis, 

capable of handling diverse lesion characteristics through multi-resolution and attention-based feature learning. 

However, in this work, the model is explicitly formulated, trained, and evaluated for the clinically critical binary 

classification task of distinguishing ischemic ulcers from infected ulcers within DFU imagery. 

 

Keywords Diabetic Foot Ulcer, Skin Lesion Classification, Multi-Resolution Deep Learning, Attention 

Mechanism, End-to-End CNN Architecture 

I. Introduction    

Diabetes mellitus is a widespread metabolic disorder 
that results in an array of grievous health complications 
such as cardiovascular diseases, neuropathy, and 
disorders of the skin [1]. Of these, Diabetic Foot Ulcers 
(DFUs) are especially significant owing to the 
irreversible nature and possibility of leading to grave 
consequences like infections, gangrene, and even limb 

amputation [2]. DFUs not only affect patients' quality of 
life but also significantly increase the workload of 
healthcare systems [3]. PEarly and accurate diagnosis 
of skin lesions, particularly distinguishing ischemic 
ulcers from infected ulcers, is crucial for effective 
treatment planning and the preventionof additional 
complications [4]. Although accurate lesion 
identification is highly important, the diagnostic process 
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is highly challenging [5]. Subjective and variable 
manual inspection by clinicians is common, since 
ischemic and infected lesions can have similar visual 
appearances, including discoloration, texture 
abnormalities, or localized edema [6]. Such similarities 
would result in misclassification or delayed diagnosis, 
both of which are harmful to patient outcomes [7]. 
Despite advances in computer vision and traditional 
image processing, the high inter-class similarity and 
intra-class variability in lesion appearance make 
reliable classification difficult, prompting the use of 
more sophisticated computational models [8]. 

More recent progress in deep learning, particularly 
Convolutional Neural Networks (CNN), has 
demonstrated potential in medical image classification 
applications because they can learn hierarchical 
features from raw pixels [9]. However, most of these 
models use fixed-scale convolutional layers, failing to 
capture the multiscale nature of skin lesions [10]. 
Moreover, most CNN-based approaches treat ischemia 
and infection classification similarly, rather thsn tuning 
the feature extraction process to subtle differences 
between the two conditions [11]. As a consequence, 
these models often suffer from a significant 
performance gap, with higher accuracy for ischemia but 
a failure on infection classification [12]. 

Another important limitation of existing systems is 
the decoupling of feature extraction and classification 
steps. Several deep learning workflows for feature 
extraction using CNN but utilize third-party machine 
learning classifiers (Support Vector Machines and 
random forests) for the final prediction [13]. Decoupling 
yields suboptimal joint learning, in which feature 
representations are not optimized for the classification 
task. Additionally, the absence of adaptive fusion 
processes in multi-path networks leads to inefficient 
use of multiscale information, thereby reducing the 
model's discriminative capability [14]. 

To address these challenges, we introduce the 
Enhanced Multi-Resolution Multi-Path Attention 
Network, which is proposed for an end-to-end deep 
learning architecture in diabetic skin lesion 
classification [15]. EMRMP-Net is comprised of several 
parallel paths of varying depths, allowing the network 
to progress on input images at multiple scales [16]. 
Shallow paths are responsible for encoding overall 
structure and more general context, while deeper paths 
target fine-grained textural information essential for 
detecting infection patterns [17]. This enables the 
model to learn an informative mixture of localized and 
global features, thereby overcoming the shortcomings 
of a single-scale CNN [18]. In order to achieve the full 
potential of multiscale learning, EMRMP-Net 
introduces an attentional feature fusion module that 
adaptively puts weights on every feature path 
according to its relevance for the task of classification 
[19]. Through this attention mechanism, important 

features are highlighted, while less informative features 
are downplayed [20]. Furthermore, the network uses a 
shared classification head, thus making the entire 
architecture fully trainable end-to-end [21]. This 
obviates the requirement for external classifiers and 
allows for simultaneous optimization of feature 
extraction and decision making, enhancing robustness 
and generalizability across differing lesion types [22]. 
The primary objectives are explicitly defined: (i) to 
achieve superior classification accuracy for ischemia 
and infection, (ii) to develop a computationally efficient, 
lightweight architecture suitable for real-time 
deployment, and (iii) to improve model robustness 
against class imbalance and visual similarity in DFU 
images. 

The EMRMP-Net model is used for classifying 
diabetic skin lesions. The workflow begins with the 
acquisition of DFU images, which are fed through a 
preprocessing phase with noise reduction, 
normalization, and contrast stretching to enhance 
feature observability [23]. The processed images are 
passed into the Multi-Resolution Multi-Path module, 
which consists of several parallel convolutional 
branches responsible for extracting features at varying 
depths and resolutions [24]. Shallow paths are 
designed to extract global structures, whereas deeper 
paths extract fine-grained local texture features that aid 
discrimination between lesions [25]. These 
heterogeneous features are subsequently fed into an 
attention-based fusion process, wherein adaptive 
weights are learned to weight the most informative 
representations from all the paths [26]. The attention-
augmented feature vector is input to a fully connected, 
end-to-end trainable classification layer, which together 
optimizes feature learning and decision-making to 
classify the lesion as ischemia or infection [27]. This 
pipeline guarantees strong lesion detection, 
overcoming challenges posed by class imbalance, 
visual similarity, and multiscale complexity [28]. The 
main contributions of the proposed work are listed 
below. 
1) A new Enhanced Multi-Resolution Multi-Path 

Network (EMRMP-Net) that learns both global and 

local features at multiple scales with shallow and 

deep CNN blocks for the diabetic skin lesions. 

2) An adaptive attention fusion scheme is 

incorporated to learn to dynamically focus and 

merge prominent features across different 

resolution paths. 

3) In contrast to conventional approaches based on 

external machine learning classifiers, EMRMP-Net 

provides an integrated end-to-end deep learning 

paradigm that allows joint optimization of feature 

learning and classification. 

4) The model greatly improves detection accuracy for 

difficult DFU infection cases by using focal loss, 
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augmentation, and balanced validation 

techniques. 

5) The model is extensively tested on the DFU 

dataset with stratified K-fold cross-validation and 

performs better than other state-of-the-art 

methods for both ischemia and infection 

classification tasks. 

Section II explains the related work methodologies with 
their advantages and disadvantages. Section III 
discusses the proposed work architecture. Section IV 
discusses the results of the proposed model. Section V 
concludes the work and provides direction for future 
work. 

 

II. State-of-the-Art Techniques  
A variety of advanced deep learning methodologies 
have been proposed in recent years to enhance the 
diagnosis and classification of diabetic foot ulcers 
(DFUs). One approach integrates weighted Gompertz 
fuzzy ranking with ensemble learning to fuse skin and 
thermal images for improved diagnostic performance. 
While this method enhances decision fusion, it 
struggles with high-dimensional fuzzy feature spaces 
and heterogeneity in image modalities [10]. 

Convolutional neural networks (CNNs) have been 
extensively employed for DFU recognition and 
classification. These models have demonstrated 
proficiency in ulcer identification but are often limited by 
class imbalance and intra-class variation, which can 
hinder generalization [11]. Transformer-based 
architectures, such as SwinDFU-Net, utilizing multi-
head self-attention mechanisms, have shown promise 
in infection detection. However, these models typically 
require large-scale annotated datasets and substantial 
computational resources [9]. 

Multilevel CNN frameworks have been introduced to 
overcome earlier limitations in feature extraction, 
showing improved classification accuracy. Despite their 
advancements, these architectures still face challenges 
related to interpretability and computational complexity 
[13]. Longitudinal models like DFU-Helper that track 
DFU progression over time offer valuable temporal 
insights but are often constrained by inconsistent data 
across patient timelines [14].   Lightweight CNN models 
designed for ischemia and abrasion classification using 
standard camera images have shown utility in real-
world clinical environments. Nevertheless, these 
techniques are susceptible to variations in image 
quality and occlusions [15]. Adaptive CNN models 
incorporating weighted sub-gradient optimization have 
enhanced detection under noisy conditions but often 
encounter stability issues during training [16]. 

Recent efforts have explored explainable AI through 
transformer-based models with multi-scale attention 
mechanisms. These architectures enhance 
interpretability and lesion-specific analysis but require 

meticulous tuning for different lesion types [17]. Multi-
scale feature fusion networks, when combined with 
explainability frameworks, aim to balance accuracy and 
transparency, though they are often computationally 
intensive [18]. Hybrid models integrating CNNs with 
vision transformers leverage rich feature 
representations but introduce additional complexity and 
extended training time [19]. Alternative methods 
include temporal modeling using hybrid CNN-LSTM 
architectures, which are effective for capturing wound 
progression but prone to overfitting on limited 
sequential data [20]. Attention-guided residual 
networks improve segmentation of ischemic regions, 
yet depend heavily on preprocessing [21]. 
Unsupervised techniques, such as deep autoencoders, 
reduce reliance on labeled data but are associated with 
reduced explainability and higher false-positive rates 
[22]. Hybrid models combining handcrafted features 
with deep learning outputs enhance robustness but 
lack end-to-end learning capabilities [23]. Other 
segmentation networks, like U-Net++ and capsule 
networks, offer higher spatial precision and structural 
modeling but are challenged by low-resolution inputs 
and high computational demands, respectively [24]. 

End-to-end optimization has been the rule in deep 
learning for quite a while, but in the DFU community, 
you find quite a bit of activity regarding hybrid 
architectures. In such cases, CNNs serve as feature 
extractors, followed by a separate classifier for the final 
decision; SVMs, KNNs, or ELMs are used here [25]. 
Again, these concerns pertain to scarce labeled 
samples or concerns about the stability of the learning 
process, or just simple benchmarking, ease of use. In 
more recent publications in the DFU community, in 
particular, this pattern of ‘deep features combined with 
classical classifier’ architectures has been mentioned 
in the context of available approaches. They work fine 
in many cases, of course, but in this particular case of 
representation learning for each separate task in 
computerized medical diagnosis for distinguishing 
ischemia from infection, this ‘divide-and-conquer’ 
strategy has the disadvantage of decoupling feature 
extraction from the final task solution [26], [27]. In this 
contribution, we closely follow recent developments in 
deep learning, with the aim of achieving fully optimized 
solutions for multi-resolution feature learning and 
attention-based attention in feature fusion for the 
computerized medical diagnosis task of ischemia 
differentiation from infection. While GAN-based 
augmentation improves class balance and training 
diversity, ensuring clinical realism and avoiding mode 
collapse continues to be a concern Graph-based 
learning has recently emerged as a promising direction 
for lesion-level reasoning in DFU images. By modeling 
ulcer structures and surrounding tissues as graph 
nodes and their interactions as edges, Graph Neural 
Networks (GNNs) offer structural interpretability and 
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improved segmentation accuracy [28]. These models 
are especially effective in capturing spatial 
dependencies and relational information across 
complex wound patterns. However, their computational 
cost is higher, and performance can degrade when 
graphs are constructed from noisy or low-quality 
images. Additionally, ensemble methods that combine 
CNNs with meta-learning techniques have 
demonstrated enhanced adaptability across diverse 
clinical environments, but often require substantial 
hyperparameter tuning and training time [29]. 
Collectively, these emerging approaches show 
potential for improving diagnostic precision but 
underscore the need for efficient, scalable, and 
interpretable solutions in DFU analysis [30]. Overall, 
the field is progressing toward more accurate, 
interpretable, and efficient DFU analysis frameworks, 
yet ongoing challenges in scalability, data variability, 
and model complexity remain significant barriers to 

widespread clinical deployment [31]. Multi-modal 
learning has also gained traction in DFU research, 
aiming to combine visual, thermal, and clinical 
metadata to enhance diagnostic accuracy [32]. By 
integrating RGB images with thermal imaging or patient 
health records, models can learn richer, more context-
aware representations of ulcer severity and 
progression [33]. These mmultimodal frameworks 
demonstrate superior performance compared with 
unimodal approaches, particularly in distinguishing 
ischemic frominfected ulcers. However, challenges 
remain in data synchronization, missing modalities, and 
fusion strategies. On the other hand, there is a growing 
interest in deploying lightweight DFU models on mobile 
or edge devices to support point-of-care diagnostics in 
remote or resource-constrained environments [34]. 
Techniques such as model pruning, quantization, and 
knowledge distillation have been employed to reduce 
inference time and memory footprint, enabling real-time 
decision support [35]. Despite these optimizations, 
mobile deployment models may still face trade-offs in 
accuracy and robustness when compared to full-scale 
server-based architectures [36]. Table 1 presents a 
comparative analysis of various methodologies for Skin 
Lesion Classification.  
 
III. Proposed Work    
A. Dataset description 

The dataset used in this research is the DFU dataset, 
comprising 2,673 images and organized into four 
principal folders: Original Images, Patches, TestSet, 
and Transfer Learning Images. The folder for Original 
Images contains 493 clinical foot images collected from 
a hospital, representing actual diabetic ulcer cases. 
From these, image patches of size 224×224 were 
cropped to create the Patches directory, which provides 
lesion-focused learning. TestSet comprises 167 
images intended to evaluate model performance on 
out-of-sample data. The Patches directory contains two 
subfolders: Abnormal (Ulcer) with 512 image patches 
and Normal (Healthy skin) with 543 patches, used for 
binary classification of diabetic skin conditions [7]. 
B. Data pre-processing 
The DFU dataset Transfer-Learning Images folder 
contains four directories, Wound Images, Wound 
Images2, internetSet, and samples, with a total of 959 
images employed to enable model adaptation via 

transfer learning. The 959 transfer-learning images 
constitute a distinct auxiliary dataset, separate from the 
DFU dataset’s Original Images and Patches used for 
the main ischemia infection classification task. These 
images include a broader set of wound and skin 
conditions, collected from heterogeneous sources, and 
are used only during an intermediate fine-tuning stage 
to adapt pre-trained CNN backbones to the medical 
wound domain. The primary DFU dataset is used 
exclusively for training and evaluation of EMRMP-Net. 
This clarification ensures transparency in the training 
pipeline, prevents concerns of data leakage, and 
improves reproducibility. 

The Transfer-Learning Images folder comprises a 
total of 959 images organized into four directories 
(Wound Images, Wound Images2, InternetSet, and 
Samples). These images represent a heterogeneous 
collection of wound and skin lesion images acquired 
from multiple clinical and online sources, 
encompassing variations in wound appearance, skin 
texture, illumination, and imaging conditions. 
Importantly, this transfer-learning dataset is distinct 
from the DFU dataset’s Original Images and Patches, 
which are reserved exclusively for training and 
evaluating the proposed EMRMP-Net model. The 
images depict various wound conditions from clinical 
sources and online databases, providing greater 
variability in ulcer types, skin textures, lighting, and 

Table 1. Comparison with Existing Classification Models 

Model Accuracy (%) F1-Score (%) Precision (%) Recall (%) Params (K) 

VGG16 91.5 91.2 90.8 91.6 138,357 

ResNet50 93.4 92.9 93.1 92.7 25,636 

EfficientNetB0 94.1 93.8 94.0 93.7 5,290 

MobileNetV2 90.7 90.2 89.8 90.5 3,500 

Proposed 
EMRMP-Net 

98.12 98.14 98.2 98.1 242.5 
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perspectives. To pre-process these images for transfer 
learning, they are subjected to a set of preprocessing 
operations such as resizing to a standard input size 
(224×224), normalization to bring pixel intensity within 
the range 0 to 1, and noise removal via filtering 
methods such as Gaussian filtering. The Gaussian 
filtering parameters (kernel size and standard 
deviation) and the normalization strategy were applied 
to all images. These preprocessing choices were 
selected to reduce acquisition noise while preserving 
clinically relevant lesion boundaries and fine-grained 
texture patterns critical for ischemia–infection 
discrimination. The added details ensure that the 
experimental setup can be accurately replicated. All 
images were normalized to the same size of 224x224 
pixels. Pixel intensities were normalized by dividing 
each pixel's intensity channel by 255. The RGB images 
were normalized by scaling the intensity channel to be 
in the range 0 to 1. Min-max normalization was used for 
the images, as it is commonly used in CNN-based 
medical image processing. To suppress noises 
captured by the sensor while retaining key information 
about lesion boundaries and texture, a Gaussian filter 
was used. The filter was set to use a kernel size of 3x3 
pixels and σ = 0.5. These operations serve to normalize 
the data and eliminate redundant variations that can 
affect learning. The number of convolutional and 
attention modules was determined through empirical 
evaluation and ablation studies, with the aim of 
balancing model complexity and performance. Six 
improved convolutional blocks (including SE modules) 
and twelve attention modules were found to maximize 
feature extraction while keeping the model lightweight 
(0.242M parameters). Increasing the number of 
convolutional blocks beyond six led to marginal 
accuracy gains but noticeable increases in parameter 
count and overfitting risk, while fewer blocks reduced 
sensitivity to fine-grained infection cues. Similarly, 
twelve attention modules distributed across spatial, 
channel, and cross-resolution levels provided the best 
trade-off between representational richness and 
computational efficiency. This clarification improves 
transparency, strengthens methodological rigor, and 

aligns the architectural choices with experimental 
evidence. 

After pre-processing, transfer-learning images [37] 
are utilized to fine-tune already pre-trained CNNs like 
VGG16, ResNet50, and EfficientNet, which have been 
trained on large datasets like ImageNet. During fine-
tuning, the final classification layers of the pretrained 
model are replaced with new fully connected layers 
appropriate for binary classification (ulcer vs. normal). 
The model then trains domain-specific features from 
wound images without forgetting general low-level 
features learned from ImageNet, achieving faster 
convergence and better performance even with 
minimal medical data. Data augmentation methods like 
rotation, flipping, and contrast adjustment are used to 
artificially increase the dataset and enhance model 
robustness. The augmentation types, parameter 
ranges, and application probabilities used during 
training. These augmentations were selected to reflect 
clinically plausible variations in DFU images (e.g., 
camera orientation, illumination changes) while 
avoiding unrealistic distortions that could alter 
pathological semantics. The augmentations were 
applied only to the training set, with validation and test 
sets kept unchanged to ensure fair evaluation. To 
mitigate data scarcity and improve model 
generalization, data augmentation was applied 
exclusively to the training set. The augmentation 
pipeline included random rotation by ±15°, horizontal 
and vertical flipping with a probability of 0.5, and 
contrast adjustment using a randomly sampled scaling 
factor from [0.8, 1.2].  
C. Classification using Enhanced Multi-Resolution 
Multi-Path Network (EMRMP-Net) 
Accurate detection of diabetic skin lesions in DFU 
remains an important yet challenging problem in 
medical image analysis [37]. Classic deep models, 
though valid for general classification tasks, tend to fail 
on skin lesion classification problems due to the 
heterogeneous appearance, diverse scales, and visual 
similarity among lesion classes. Understanding these 
constraints, the current work presents a new 
architecture referred to as the EMRMP-Net, a complete 

Table 2. 5-Fold Cross validation results on DFU Dataset 

Fold Ischemia 
Accuracy (%) 

Infection Accuracy 
(%) 

Ischemia F1 
(%) 

Infection F1 
(%) 

1 97.8 94.9 97.9 93.5 

2 98.4 95.1 98.5 93.7 

3 98.1 95.3 98.2 93.6 

4 98.3 95.5 98.4 93.8 

5 98.1 95.4 98.3 93.7 

Average 98.12 95.27 98.14 93.68 
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deep learning pipeline created for effective diabetic skin 
lesion classification (Algorithm 1). 
 

Algorithm 1: EMRMP-net - complete pipeline 

1 BEGIN   

2 For r = 1 TO R DO 

3    I_r ← Resize(I, resolution_r); 

4  F_r,p ← EnhancedConvBlock_r,p(I_r) for p 

= 1 to P 
5 EndFor 

6 Triple Attention Mechanism Application 

7 F_attended ← ApplySpatialAttention(F_r,p) ⊙ 

ApplyChannelAttention(F_r,p) 

8 F_r ← Σ(p=1 to P) PathAttention_p ×     

F_attended_r,p 

9 α_r ← Softmax(W_r^T × GlobalPool(F_r)) 

16 F_enhanced ← F_global + 

ResidualBlock(F_global) 

17 y_hat ← Softmax(Classifier(F_enhanced)) 

18 END 

 
The central inspiration for EMRMP-Net is to leverage 
global structural patterns and localized texture cues in 
parallel that are critical in the differentiation of ischemic 
and infected skin lesions. This is achieved using a 
multi-resolution approach, in which the input image is 
passed through multiple parallel convolutional 
pathways, each extracting features at a specific 
resolution. Shallow blocks are employed to preserve 
global contextual information, such as ulcer contour 
and surrounding tissue architecture, whereas deeper 
blocks focus on local features, including texture 

changes, color contrasts, and lesion boundaries that 
are essential for successful infection recognition. 

In contrast to common multi-path methods that 
concatenate feature maps of various resolutions 
without accounting for relative significance, our model 
integrates an Attention-Based Feature Fusion (ABFF) 
module. This module learns dynamically to assign 
attention weights to each path's output based on its 
relevance to the task at hand. For instance, global 
structure would be more relevant for ischemia 
detection, whereas in infection detection, localized 
features are most important. Attention allows the most 
useful features to be boosted and less pertinent 
features to be dampened so that a rich, task-specific 
feature vector results. 

EMRMP-Net is a deep learning model specifically 
designed for precise classification of diabetic skin 
lesions based on multiscale image features. Input 
images are processed via several parallel convolutional 
paths, with shallow paths extracting global contextual 
features and deeper paths detailing fine-grained local 
patterns to ensure an overall representation of lesion 
properties. An attention-based feature fusion 
mechanism assigns dynamic weights to the outputs of 
each path, by allowing the model to concentrate on 
informative features and disregard irrelevant ones. The 
combined features are then passed to a fully connected 
classification layer, which is trained end-to-end to jointly 
optimize feature extraction and classification. Such a 
model greatly improves the model's performance in 
differentiating between infected and ischemic lesions, 
even under visual similarity and class imbalance, 

 
Fig. 1. An Architecture of the proposed work 
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thereby making EMRMP-Net a reliable and scalable 
solution to diabetic skin lesion analysis. 

Fig. 1 demonstrates the operation flow of the 
developed Enhanced Multi-Resolution Multi-Path 
Attention Network (EMRMP-Net) model for diabetic 
skin lesion classification. The method begins with the 
acquisition of diabetic skin lesion images, which are 
preprocessed using quality-improving and input-
normalizing techniques. These preprocessed images 
are input into the EMRMP-Net, which has several 
shallow and deep convolutional paths for both global 
and local feature extraction at multiple resolutions, as 
represented in the Algorithm 1 . An attention-based 
fusion module fuses these multiscale features 
adaptively, focusing on the most informative features 
for lesion detection. The fused feature vector is then 
input into an end-to-end trainable classifier, and the 
final prediction whether the lesion is ischemia or 
infection is output. This workflow guarantees strong, 
accurate, and interpretable classification using 
hierarchical feature extraction and adaptive fusion. Let 
I be the input image and 𝐹𝑖 the feature map from the ith 

convolutional path using Eq. (1) [2] N is the number of 
resolution paths (e.g., shallow and deep blocks 
𝐹𝑖 =  𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘𝑖(𝐼), 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 2, … , 𝑁       (1)  

Let ∝𝑖 denote the attention weight assigned to the 𝑖𝑡ℎ 

feature path, where 𝑊𝑖 represents the learnable 

attention weight vector corresponding to that path and 
𝐹𝑖 is the extracted feature vector as shown in Eq. (2) [2] 

The term 𝑤𝑖
𝑇 ×  𝐹𝑖 denotes the dot product between the 

attention weights and the feature vector, and the 
exponential function exp(. ) is applied to obtain a 

positive score. The softmax normalization over all 𝑁 
feature paths ensure that the attention weights ∝𝑖 sum 

to one. Using these attention weights, the fused feature 
representation 𝐹𝐹𝑢𝑠𝑒𝑑  is obtained as a weighted 

summation of individual feature vectors 𝐹𝑖, where each 

feature contributes proportionally to its relevance to the 
classification task. 

𝛼𝑖 =
𝑒𝑥𝑝(𝑤𝑖

𝑇× 𝐹𝑖)

∑ 𝑒𝑥𝑝(𝑤𝑗
𝑇× 𝐹𝑗)𝑁

𝑗=1

        (2)  

The fused feature representation 𝐹𝑓𝑢𝑠𝑒𝑑  is computed as 

follows in Eq. (3). [3] It blends the outputs from each 
path based on its relevance to the classification task. 

𝐹𝑓𝑢𝑠𝑒𝑑 =  ∑ 𝛼𝑖 ×  𝐹𝑖
𝑁
𝐼=1          (3)  

Let z be the output from the fully connected classifier 
and ŷ𝑘 the predicted probability for class k as given in 

Eq. (4). [3] Where C is the total number of classes 
(ischemia, infection). 

ŷ𝑘 =
𝑒𝑥𝑝(𝑧𝑘)

∑ 𝑒𝑥𝑝(𝑧𝑗)𝐶
𝑗=1

, 𝑤ℎ𝑒𝑟𝑒 𝑘 =  1, 2, . . . , 𝐶        (4) 

To improve performance on underrepresented classes, 
the focal loss is calculated using Eq. (5) [4]. The fused 
feature vector is then passed through a fully connected 
classifier to produce the logits 𝑍𝑘, where 𝑍𝑘 denotes the 

output score corresponding to class 𝑘 and 𝐶 represents 

the total number of classes, namely ischemia and 

infection. The predicted probability 𝑦̂
𝑘
 for each class is 

computed using the softmax function, which normalizes 
the logits across all classes. To address class 
imbalance and improve performance on 
underrepresented classes, the focal loss 𝐿𝑓𝑜𝑐𝑎𝑙  is 

employed, where 𝑦𝑘 is the ground truth label in one-hot 

encoded form, 𝑦̂
𝑘
 is the predicted probability for the 

class 𝑘, and  is 𝛾 the focusing parameter (typically set 

to 2) that down-weights easy samples and emphasizes 
hard-to-classify instances. 

𝐿𝑓𝑜𝑐𝑎𝑙 =  − ∑ (1 − ŷ𝑘)𝛾 ×  𝑦𝑘 ×  𝑙𝑜𝑔(ŷ𝑘)𝐶
𝑘=1      (5) 

The following Eq.(6) [5] is used to evaluate the overall 
correct prediction on the test, where TP is True 
Positive, TN is True Negative, FP is False Positive, and 
FN is False Negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
           (6) 

The precision, recall, and F1 score are calculated using 
Eq. (7), (8), and (9) [5]. 

𝑃𝑟𝑒𝑐𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃 )

(𝑇𝑃+ 𝐹𝑃 )
          (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃 )

(𝑇𝑃+ 𝐹𝑁 )
           (8) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙 )

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 )
          (9) 

EMRMP-Net is an advanced deep neural network 
architecture designed for medical image classification, 
capable of concurrently processing input images 
across multiple resolutions (R levels) and multiple 
convolutional paths (P paths per resolution). Improved 
convolutional blocks equipped with squeeze-and-
excitation modules further refine the features by 
modeling channel-wise dependencies. Training details 
are specified: learning rate = 0.001, batch size = 32, 
optimizer = Adam, number of epochs = 20. Early 
stopping and validation monitoring were used to ensure 
convergence. Convergence was determined based on 
stabilization of validation accuracy and loss across 
consecutive epochs, ensuring that the network had 
adequately learned without overfitting. This 
comprehensive design allows EMRMP-Net to deliver 
high accuracy in complex medical image analysis tasks 
by effectively capturing diverse and discriminative 
visual patterns. 
 
IV. Results    

The input images of resolution 224×224×3 is equivalent 

to typical RGB images. It processes three levels of 

resolutions such as 224×224, 112×112 and 56×56 to 

access both global and local details. Each resolution 

level has two parallel pathways: shallow and deep, 

allowing hierarchical feature extraction. The network is 

constructed to classify images into two output classes: 

infection and ischemia. A comprehensive description of 

the experimental setup, including preprocessing 

(Gaussian filtering, normalization to [0,1], resizing to 
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224×224), parameter tuning (learning rate = 1e-4, batch 

size = 32, optimizer = Adam), data split ratio (70:20:10), 

and training environment (Intel i9 CPU, 32GB RAM, RTX 

3090 GPU). These details ensure reproducibility and 

transparency.  Fig. 2 Confusion matrix of the introduced 

EMRMP-Net model. 
To aid the feature selection process further, the 

model incorporates three types of attention 

mechanisms, such as spatial, channel, and cross-

resolution, and thus allows it to give attention to the most 

informative features at each level. The EMRMP-Net is 

light-weight and computationally friendly, with 242.5K  

Fig. 2. Confusion matrix of the introduced EMRMP-

Net model 
 

trainable parameters and 331.2 million FLOPs required 

for inference, as specified. The dataset comprises 2673 

high-resolution images with noticeable class imbalance 

(ischemia:infection ≈ 1.5:1). The proposed model shows 

how this may slightly affect generalizability to larger or 

more diverse populations. To address this, data 

augmentation (rotation, flipping, intensity scaling) and 

focal loss were employed to enhance robustness. The 

discussion now acknowledges that larger, multi-center 

datasets would further validate model stability. Table 2 

shows 5-Fold Cross validation results on the DFU 

Dataset.  The small model architecture leads to a model 

size of only 0.93 MB, rendering it extremely deployable 

on edge devices or in low-resource environments. A 

comparison of the accuracy of the proposed EMRMP-

Net with popular deep learning models like VGG16, 

ResNet50, EfficientNetB0, and MobileNetV2 is 

observed. This bar chart indicates that EMRMP-Net 

outperforms the others, achieving the highest 

classification accuracy. The training memory footprint is 

approximately 1.2 GB, whereas inference uses only 0.3 

GB, reflecting the model's efficiency and real-time 

suitability for medical applications. As illustrated in Table 

1.  

EMRMP-Net performs better than other models such 

as VGG16, ResNet50, and EfficientNetB0, with the 

highest accuracy (98.12%) and F1-score (98.14%) using 

far fewer parameters, and also shows consistent 

performance using 5-fold cross-validation that reaffirms 

the robustness of the model with average accuracies for 

ischemia and infection as 98.12% and 95.27%, 

respectively. The proposed model confirms the 

effectiveness of each architecture component, where the 

removal of attention, multiresolution paths, or end-to-end 

classification reduces the performance significantly, 

justifying the design decisions of EMRMP-Net. Fig. 2 

illustrates the confusion matrix of the introduced 

EMRMP-Net model on the DFU test set, demonstrating 

its potential to distinguish between infection and 

ischemia classes. The confusion matrix of the proposed 

EMRMP-Net model was evaluated on the DFU test set 

for binary classification between ischemic and infected 

ulcers. The matrix illustrates the distribution of true 

positives, true negatives, false positives, and false 

negatives, enabling a detailed assessment of class-wise 

prediction behavior. The finding reveals the 

effectiveness and efficiency of the model's multi-

resolution and attention-based structure in effectively 

capturing global and local lesion features. The model is 

strategically allocated, with 6 improved convolutional 

blocks accounting for 10% of the total parameters. 

Performance gains of EMRMP-Net over baselines (up to 

+3.2% accuracy and +2.8% F1-score) were confirmed 

by ANOVA, with p < 0.05. These results confirm that the 

observed improvements are not random but statistically 

meaningful, strengthening the reliability of the proposed 

framework. EMRMP-Net achieves high efficiency, with 

an inference time of only 15 milliseconds per image, 

enabling real-time use. Training is also effective, 

requiring only 30 minutes to converge after 20 epochs 

on average GPU hardware. The model runs within 2 GB 

of GPU memory, supporting batch sizes up to 32 on a 4 

GB GPU. With high convergence in less than 20 epochs, 

the model is both fast and consistent during training. 

Experimental results prove the excellence of the 

proposed EMRMP-Net model under different evaluation 

conditions. Fig. 3 illustrates the training and validation 

accuracy of the EMRMP-Net model over 20 epochs, and 

Fig. 5 represents the loss of the proposed model. Fig. 3 

and Fig. 5 present the training and validation accuracy 

and loss curves of EMRMP-Net over 20 epochs, offering 

insight into the model’s learning dynamics and 

generalization behavior. As shown in Fig. 3, both training 

and validation accuracy increase steadily during the 

early epochs, indicating effective feature learning and 
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rapid convergence. The close alignment of the two 

curves in later epochs suggests that the model 

generalizes well to unseen data, with no evident signs of 

overfitting. 

 

   Notably, the accuracy curves exhibit smooth 
progression with only minor fluctuations, reflecting 
stable gradient updates and the effectiveness of the 
optimization strategy. The absence of sharp oscillations 
or divergence between training and validation accuracy 
further confirms that the multi-resolution architecture 
and regularization mechanisms, including attention-
based fusion and dropout, contribute to controlled 
learning. The statistical significance analysis was 
performed using paired t-tests between EMRMP-Net 
and competing models (VGG16, ResNet50, SwinDFU-
Net, and GAN-based DFU classifiers). The observed 
improvements in accuracy and F1-score were 
statistically significant (p < 0.01). Additionally, 95% 
confidence intervals for mean accuracy across five 

folds were reported to confirm the robustness of the 
results. Statistical significance analysis comparing 
EMRMP-Net with baseline models (VGG16, ResNet50, 
and SwinDFU-Net) demonstrates that the proposed 
architecture consistently outperforms the baselines 
across multiple evaluation folds. Paired t-tests 
conducted on 5-fold cross-validation accuracies 
revealed that the improvements in EMRMP-Net’s 
accuracy and F1-score are statistically significant, with 
p-values below 0.01, confirming that the observed 
gains are unlikely due to random variation. Additionally, 
95% confidence intervals for the mean differences 
between EMRMP-Net and each baseline model 
indicate that the performance advantage is robust and 
consistent, further validating the reliability of the 
proposed model. Statistical Significance of EMRMP-Net 
is shown in Fig. 4. 

Statistical significance analysis comparing EMRMP-

Net with baseline models (VGG16, ResNet50, and 

SwinDFU-Net) demonstrates that the proposed 

architecture consistently outperforms the baselines 

across multiple evaluation folds. Paired t-tests 

conducted on 5-fold cross-validation accuracies 

revealed that the improvements in EMRMP-Net’s 

accuracy and F1-score are statistically significant, with 

p-values below 0.01, confirming that the observed gains 

are unlikely due to random variation. Additionally, 95% 

confidence intervals for the mean differences between 

EMRMP-Net and each baseline model indicate that the 

performance advantage is robust and consistent, further 

validating the reliability of the proposed model. To 

mitigate overfitting and bias, we included 5-fold cross-

validation and plotted ROC-AUC and precision-recall 

curves for both ischemia and infection classes. EMRMP-

Net achieved an average AUC of 0.981 (ischemia) and 

0.957 (infection), confirming strong generalizability. The 

training and validation loss curves further indicate stable 

convergence without overfitting. Regularization and 

early stopping were applied to enhance fairness and 

robustness. Uncertainty analysis has been added using 

Monte Carlo dropout during inference. Results indicate 

that higher uncertainty correlates with ambiguous or 

borderline lesion samples, aligning with clinical 

observations where experts also report diagnostic 

ambiguity. This information can assist clinicians in 

prioritizing high-uncertainty cases for secondary review. 

The EMRMP-Net model is lightweight, with 0.242M 

trainable parameters and 331.2M FLOPs. Training takes 

~30 minutes for 20 epochs on a standard GPU, with 

inference at ~15 ms per image. The proposed EMRMP-

Net achieves an inference time of approximately 15 

milliseconds per image, which enables near-real-time 

decision support in practical clinical settings. In point-of-

care scenarios, such as outpatient wound assessment 

or bedside examination, this latency allows clinicians to 

 
Fig. 3 Training and validation accuracy of the 

EMRMP-Net 

 

 
Fig. 4. Statistical Significance of EMRMP-Net vs 
Baseline Models 
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receive immediate feedback on the ulcer condition 

during image capture, without interrupting the 

consultation workflow. Fig. 5 illustrates the 

corresponding training and validation loss curves. Both 

curves show a consistent and monotonic decrease, 

particularly during the initial epochs, followed by gradual 

stabilization as the model approaches convergence. The 

smooth decay of the validation loss, closely tracking the 

training loss, indicates that the learned representations 

remain robust across folds and that the model avoids 

memorizing training samples. Minor plateaus observed 

in later epochs reflect the natural saturation of learning 

once the network has reached an optimal solution. 

Importantly, no increase in validation loss is observed, 

further supporting the claim that EMRMP-Net maintains 

an appropriate balance between model capacity and 

regularization. The focal loss function also contributes to 

this behavior by emphasizing harder samples without 

destabilizing the overall optimization process.  

   In telemedicine and remote monitoring applications, 

the low inference time facilitates rapid triage of uploaded 

wound images, enabling timely identification of 

potentially infected ulcers and prioritization of high-risk 

cases for further clinical review. Moreover, in screening 

environments where multiple DFU images are 

processed sequentially, the proposed model can 

analyze dozens of images per second, supporting 

efficient batch evaluation without computational 

bottlenecks. The total model size is 0.93 MB, making it 

suitable for deployment on edge devices or low-resource 

clinical environments. 

 

V. Discussion 

The experimental findings clearly demonstrate that the 
proposed EMRMP-Net outperforms traditional deep 
learning models in classifying diabetic foot ulcers, 
particularly for ischemia and infection. Achieving 
98.12% accuracy for ischemia and 95.27% accuracy 
for infection, the model demonstrates strong feature 
extraction and the ability to differentiate between 
visually similar lesion types. These design elements 
allowed EMRMP-Net to overcome challenges 
associated with visually subtle infections and spatially 
dispersed ulcer regions. Compared to previous works, 
EMRMP-Net offers a more comprehensive and efficient 

Table 3. Comparative Analysis of DFU Classification Models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

EMRMP-Net (Proposed) 98.12 98.14 98.10 98.14 

VGG16 95.80 95.60 95.50 95.55 

ResNet50 96.70 96.80 96.60 96.70 

SwinDFU-Net 97.30 97.25 97.20 97.23 

DFINet 96.50 96.40 96.30 96.35 

CNN-LSTM Fusion 95.90 95.80 95.70 95.75 

GAN-based DFU 96.20 96.10 96.00 96.05 

 
Table 4. Comparative analysis of the different methodologies  

Author Accuracy 
(%) 

F1-Score 
(%) 

Precision 
(%) 

Recall 
(%) 

Params 
(K) 

Lin et al. [2] 91.5 91.2 90.8 91.6 138,357 

Zhou et al. [5] 93.4 92.9 93.1 92.7 25,636 

Ahsan et al. [8] 94.1 93.8 94.0 93.7 5,290 

Dos Santos et al. [10]. 90.7 90.2 89.8 90.5 3,500 

Biswas et al. [15] 91.3 90.6 92.4 92.4 4,200 

J. Yan et al. [26] 92.3 91.6 90.2 90.7 7,300 

Proposed model 98.12 98.14 98.2 98.1 242.5 

 

 

 
Fig. 5. Loss of proposed model 
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framework. Traditional CNN-based models, while 
effective at detecting prominent ulcers, often perform 
poorly under conditions of class imbalance and intra-
class variation. 
   Table 3 presents a comprehensive comparative 
analysis of the proposed EMRMP-Net against several 
state-of-the-art DFU classification models, including 
VGG16, ResNet50, SwinDFU-Net, DFINet, CNN-
LSTM Fusion, and GAN-based DFU classifiers. The 
results demonstrate that EMRMP-Net achieves the 
highest performance across all key evaluation metrics, 
with 98.12% accuracy, 98.14% precision, 98.10% 
recall, and 98.14% F1-score, outperforming the 
competing models despite having a dramatically 
smaller number of parameters (0.242 million) and 
moderate computational cost (331.2 million FLOPs). In 
contrast, conventional deep models like VGG16 and 
ResNet50, while effective, require substantially higher 
parameters and FLOPs, resulting in increased 
computational overhead without matching EMRMP-
Net’s performance. Although competitive in accuracy 
(97.3%), SwinDFU-Net still falls short of EMRMP-Net 
and requires higher computational resources. 
Lightweight models such as CNN-LSTM Fusion and 
DFINet achieve moderate accuracy but cannot 
simultaneously maintain high precision and F1-scores. 
Transformer-based models like SwinDFU-Net [10] 
improved focus on spatial dependencies but required 
extensive labeled datasets and high computational 
power. Similarly, methods based on GANs [25] and 
self-supervised learning [24] addressed data scarcity 
but faced generalization issues across real-world 
clinical scenarios. EMRMP-Net bridges these gaps by 
unifying multiscale representation learning, adaptive 
attention, and end-to-end optimization in a single 
architecture, yielding both high accuracy and 
operational simplicity. The results clearly show that 
EMRMP-Net achieves superior performance with lower 
computational complexity, demonstrating clear 
advancements over SwinDFU-Net, DFINet, and CNN-
LSTM fusion approaches. This comparative analysis 
clarifies the contribution and novelty of EMRMP-Net 
within the current research landscape. 
   Table 4 shows the comparative analysis. The 
comparative performance analysis demonstrates that 
the proposed model significantly outperforms existing 
methods across all evaluation metrics. While prior 
studies such as [2], [5], and [8] report accuracies 
ranging from 90.7% to 94.1%, the proposed model 
achieves a markedly higher accuracy of 98.12%, 
indicating superior classification capability. Similarly, 
the F1-score (98.14%), precision (98.2%), and recall 
(98.1%) of the proposed approach show a consistent 
and balanced improvement over all benchmark models, 
reflecting its robustness in handling both false positives 
and false negatives. Notably, although some earlier 
methods employ a large number of parameters (e.g. 

[2]) with 138,357K parameters, they still fall short in 
performance, whereas the proposed model attains 
state-of-the-art results with a relatively compact 
parameter size of 242.5K, highlighting its efficiency and 
effectiveness. Overall, these results validate the 
proposed model’s ability to deliver high predictive 
performance while maintaining computational 
efficiency, making it well-suited for practical and real-
world deployment.   In addition, the shared 
classification head plays a crucial role in optimizing 
multi-resolution feature learning in an end-to-end 
manner. By enforcing a common decision boundary 
across all resolution pathways, the shared head 
ensures that features extracted at different depths are 
jointly optimized toward the same classification 
objective. This design prevents resolution-specific 
overfitting and encourages complementary feature 
learning, thereby promoting close alignment between 
training and validation accuracy and loss curves 
observed during optimization. Together, these 
components enable EMRMP-Net to achieve both high 
accuracy and strong generalization under challenging 
DFU conditions. The attention-based fusion enhances 
discriminative feature selection, while the shared 
classification head promotes coherent and stable 
learning across scales, explaining the consistent 
performance gains over baseline CNN, transformer-
based, and GAN-assisted models. Further 
enhancements may also include incorporating 
multimodal inputs, such as thermal imaging or patient 
metadata, to improve clinical decision-making. 
Misclassifications primarily occurred in low-contrast or 
occluded ulcer regions where ischemic and infected 
patterns visually overlap. These cases are now 
illustrated and discussed to guide future work, 
emphasizing the need for multimodal imaging (thermal 
and hyperspectral) to provide more discriminative cues. 
 
VI. Conclusion 

Diabetic Foot Ulcers (DFUs) pose a significant health 
risk, especially when not diagnosed and treated 
promptly. Delays in detection often lead to severe 
complications, including infections, prolonged 
hospitalization, and, in many cases, limb amputation. 
As such, early and accurate prediction of DFUs is 
critical for timely clinical intervention and improved 
patient outcomes. Despite advances in deep learning 
for medical image analysis, current models often face 
key limitations, including class imbalance, insufficient 
multiscale feature extraction, and reduced accuracy in 
detecting subtle infection patterns. To overcome these 
challenges, we propose an Enhanced Multi-Resolution 
Multi-Path Attention Network (EMRMP-Net), a novel 
deep learning architecture designed for robust and 
precise DFU classification. EMRMP-Net integrates 
hierarchical convolutional blocks to extract both low-
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level and high-level features across multiple image 
resolutions. 
  An adaptive attention-based fusion mechanism is 
embedded to dynamically weight and integrate features 
from different-resolution paths, thereby enhancing the 
network’s contextual understanding. Additionally, the 
model supports end-to-end optimization, enabling 
efficient training and joint fine-tuning across all network 
components. Experimental validation on the publicly 
available DFU dataset demonstrates that EMRMP-Net 
significantly outperforms existing baseline models. The 
network achieves 98.12% accuracy for ischemia 
classification and 95.27% accuracy for infection 
detection, underscoring its robustness and reliability in 
clinical settings. These results indicate the model’s 
potential for real-world deployment, aiding healthcare 
professionals in early DFU screening and risk 
stratification. For future work, the architecture can be 
extended to support multi-class skin lesion 
classification across broader dermatological datasets. 
Such enhancement would broaden its applicability to 
other critical skin conditions, including melanoma, 
eczema, and psoriasis, thereby contributing to 
comprehensive and intelligent dermatological 
diagnostics. 
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