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Abstract Ovarian cancer is a gynecological malignancy comprising multiple histopathological subtypes.
Traditional diagnostic tools like histopathology and CA-125 tests suffer from limitations, including inter-
observer variability, low specificity, and time-consuming procedures, often leading to delayed or incorrect
diagnoses, which are subjective and error-prone. Conventional machine learning models, such as K-
Nearest Neighbors (KNN) and Support Vector Machine (SVM), have been applied but often struggle with
high-dimensional image data and fail to extract deep morphological features. This study proposes a DL-
based framework to classify ovarian cancer subtypes from histopathological images, aiming to enhance
diagnostic accuracy and clinical decision-making. Initially, Deep learning was applied using pre-trained
architectures such as VGG-16, Xception, and EfficientNetB2. However, the standout innovation in this
study is the integration of EfficientNetB2 with Convolutional Block Attention Module (CBAM), an attention
mechanism module. An attention mechanism allows the model to focus on the most informative regions of
the image, thereby improving diagnostic precision. The proposed system was trained and validated on a
diverse, well-structured dataset, achieving high accuracy and strong generalization capability.
EfficientNetB2 with CBAM outperformed other models, achieving a 91% accuracy rate compared to 52%
for VGG-16, 72% for Xception, and 82% for the baseline EfficientNetB2 model. This attention-enhanced,
scalable Al model demonstrates strong potential for clinical application. It provides faster and more
efficient classification of ovarian cancer subtypes compared to conventional approaches. The framework
has the potential to improve survival outcomes for patients with ovarian cancer. The proposed system
demonstrates a significant improvement in ovarian cancer subtype classification (High-Grade Serous
Carcinoma, Low-Grade Serous Carcinoma, Clear-Cell, Endometrioid, and Mucinous Carcinoma). It provides
a practical tool for aiding early diagnosis and treatment planning, with potential for integration into clinical
workflows.

Keywords Ovarian Cancer, Cancer Subtype Classification, Histopathological Image Analysis, Deep
Learning, EfficientNetB2.

l. Introduction

Ovarian cancer is a deadly gynecological cancer
sometimes labeled as the “silent malignancy” due to its
asymptomatic nature in the initial stages and the lack

because treatment strategies and prognoses vary
significantly among them. Traditional diagnostic
methods, such as CA-125 blood tests and ultrasound
imaging, often lack specificity and fail to accurately

of effective screening tests [1]. The disease is not
monolithic; it comprises several distinct histological
subtypes, each characterized by unique genetic and
molecular profiles, clinical behavior, and responses to
therapy. These subtypes include High-Grade Serous
Carcinoma (HGSC), Clear-Cell Ovarian Carcinoma
(CC), Endometrioid (EC), Low-Grade Serous
Carcinoma (LGSC), and Mucinous Carcinoma (MC)
[2]. Accurate classification of these subtypes is crucial

distinguish between benign and malignant tumors [3].
Women who are in their forties and above are most
commonly diagnosed with ovarian cancer, even though
it can occur at any age. The disease typically goes
undetected until it has spread within the pelvis and
abdomen, making early diagnosis challenging and
reducing the chances of effective treatment [4]. Due to
the lack of reliable screening methods, there is a
growing need for advanced computational tools to
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support early and accurate diagnosis [5]. Recent
advancements in artificial intelligence and DL offer
promising approaches to classify ovarian cancer
subtypes based on medical, pathology slides, or
molecular data, potentially improving patient outcomes
through personalized treatment strategies.

However, many conventional machine learning
models have shown limited success due to their
inability to handle high-dimensional image data and
extract complex morphological features from
histopathological slides [6]. While deep learning (DL)
has emerged as a powerful alternative, there remains
a need to optimize an architecture that can not only
achieve high accuracy but also provide explainable and
robust predictions suitable for clinical use.

To address these limitations, this study proposes a
novel architecture combining EfficientNetB2 with
CBAM. The integration of the CBAM attention wrapper
allows the model to focus selectively on the most
informative spatial and channel features in medical
images, thereby improving diagnostic accuracy. This
model outperformed other baseline and state-of-the-art
DL architectures in our experiments, achieving a
classification accuracy of 91% on five ovarian cancer
subtypes. Additionally, a Flask-based graphical user
interface (GUI) was developed to enhance clinical
usability. This work not only bridges the gap between
diagnostic accuracy and practical deployment but also
sets a benchmark for future research in ovarian cancer
subtype classification using attention-based DL
models. The major contributions of this study include
the development of a hybrid EfficientNetB2—-CBAM
architecture that integrates spatial and channel
attention for improved feature extraction, achieving
91% accuracy across five ovarian cancer subtypes.
Additionally, it creates a Flask-based GUI to enhance
clinical usability and enable real-time application.

This study is structured as follows: Section II
reviews related works and recent advances in ovarian
cancer detection and classification. Section I
discusses the proposed workflow, the dataset used, the
dataset preprocessing, and the methodology. Section
IV displays the experimental results of DL models and
performance evaluation. Section V discusses the
interpretation and comparison of results with other
studies and limitations. Section VI, conclusions, which
rewrite the objectives, main findings, and future works.

Il. Related Works

Effective prediction and accurate classification of
ovarian cancer are critical for timely diagnosis and
treatment [7]. Existing research can be broadly
categorized into two main areas: ovarian cancer
detection and classification. This section provides a
detailed review of prior work in both areas. Table 1
highlights recent studies on ovarian cancer detection

using DL and ML. Table 2 focuses on studies
performing ovarian cancer subtype classification using
DL. The reviewed study highlights their approaches,
limitations, strengths, and the achieved accuracies.
From these works, it is evident that no study to date has
leveraged EfficientNetB2 architectures with CBAM for
subtype classification, and accuracy has typically
topped out around 84% in prior efforts. This motivates
our proposed approach to further enhance
performance.

A. Ovarian Cancer Detection

The study proposed in [8] utilizes ML techniques to
classify ovarian cancer based on clinical data. The aim
was to enhance early diagnosis, which is challenging
due to the absence of distinctive symptoms even at
later stages. The study utilized data with 203 instances.
Working with a limited size of dataset was one of the
challenges in the study, which may affect the
generalization of the model. With these challenges,
however, this study demonstrated that both KNN &
SVM are effective in classifying ovarian cancer, albeit
the small dataset may not permit robustness and
application of the model in large and diverse
populations.

The work presented in [9] suggests an approach to
predicting the survival of ovarian cancer patients based
on machine learning. The objectives of the study were
to design both classification and regression models for
the purpose of predicting patient survival with the help
of six ML techniques. The SHAP method was applied
to explain the decision-making process and determine
the most influential aspects that affect survival
predictions. According to the study, RF was the best for
classification while XGBoost was best for regression
(RMSE = 20.61%, R? = 0.4667). Some of the most
significant features influencing survival predictions
included histologic type. The main challenge faced in
the study was the complexity of integrating multiple
machine learning models with interpretability methods,
which required balancing model performance with
clarity. Despite the high accuracy and robustness of the
models, the approach could be limited by the need for
large, high-quality datasets to maintain its effectiveness
and generalizability. Additionally, while the SHAP
method improved model transparency, it may still
require expert interpretation for complex cases.
Nonetheless, this study is significant as it is the first to
apply multiple ML models for ovarian cancer survival
prediction using the SEER dataset and incorporates
SHAP to enhance model transparency for clinical use.

In [10], the authors suggested an Al approach to

ovarian endometriomas (OEs) that tend to be
misdiagnosed  because of their symptoms’
resemblance to the common gynecological

emergencies. The work initiates a particle swarm
optimization (PSO). There is one challenge that has
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Table 1. Overview of Existing Research on Ovarian Cancer Detection
Study Contribution Method Results Limitations Future Direction
[8] Early diagnosis  KNN, SVM KNN: 90.47% Small dataset Expand dataset
of ovarian Accuracy, 94.11% size (203 size; test on
cancer using ML F1-score; SVM: instances) limits diverse populations
on clinical 90.47% Accuracy, generalizability to improve
records 92.30% F1-score robustness
[9] Predict survival KNN, SVM, DT, RF (Classification): Complex Enhance clinical
of ovarian RF, AdaBoost, 88.72% Accuracy, integration of integration; explore
cancer patients ~ XGBoost + SHAP  82.38% AUC; models and deep learning with
with explainable for interpretability =~ XGBoost interpretability interpretability for
ML (Regression): tools; SHAP better performance.
RMSE = 20.61%, requires expert
R2 = 0.4667 analysis
[10] Al-enabled early Particle Swarm Accuracy: 97.47%, Performance may Test model on
diagnosis of Optimization AUC: 0.996, vary on diverse, multi-
ruptured ovarian enhanced Sensitivity: small/diverse center datasets to
endometriomas = Random Forest 94.12%, datasets; the assess
(OEs) (PSO-RF) Specificity: 98.39%  fairness of the generalizability
model
comparison
[11]  Efficient RF model with Best with PCA: F1  Limited to one Evaluate on
prediction of PCA, K-PCA, and  Score: 0.895, dataset; no different datasets;
ovarian cancer ICA for dimension  Training time: comparison with compare with
using reduced reduction 18.191s other ML models  alternative
features classifiers
[12]  Ultrasound- CNN integrated Accuracy: 97.2%, Limited Test with larger,
based tumor with Convolutional AUC: 0.9936 generalizability multi-source
classification Autoencoder (normal vs tumor),  due to dataset datasets; clinical
with image (CAE) using 90.12% (malignant  size and diversity  validation
enhancement DenseNet121/161  classification)
[14] ROIl-based Region-based Precision: >95%, Relies on manual Automate
image CNN with SVC SVC: 95.96%, NB:  annotations; annotations;
classification for and Gaussian NB ~ 97.7%; Specificity: ~ needs testingon  expand testing
better ovarian ensemble up to 98.69% diverse images across clinical
cancer detection settings
[15] CTimage-based Xception + Vision  Accuracy: 98.09%  Depends on Validate with
classification Transformer (ViT)  (OCCTD), 96.05%  dataset broader datasets
using hybrid + MLP (BOTD), 98.73% quality/diversity; and other imaging
deep learning (MOTD) may not modalities
generalize across
populations
been faced in this study was securing the fairness of required for model training, the study applied
comparisons, as all models were optimized using the dimension reduction techniques to reduce the

same parameter-tuning techniques. While the results
are promising and the approach may face limitations
when applied to smaller or larger datasets, as the
model's performance could change with data quality
and the generalizability of the training data.

The proposed model by [11] is an RF-based ovarian
cancer prediction model, which is designed to predict
the presence of ovarian cancer using a dataset with
some features. Given that a dataset with high
dimensionality can increase the time and resources

dimensionality of the data and assess their impact on
both  prediction accuracy and computational
performance. The best results were obtained with PCA,
which reduced the size of the data from 49 features to
6, with an F1 score of 0.895, and the time of training
the model was cut down to 18.191 seconds. Not only
did this approach led to a more precise prediction, but
it turned out to be more cost and time efficient, in
comparison to the use of a full dataset without any
dimension reduction. The study emphasizes the
advantages of using dimension reduction methods for
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analyzing large-scale medical data, as both the
accuracy of the prediction results and resource
utilization can benefit from this approach.
Nevertheless, the weakness of the approach is that itis
based on a fixed dataset, and the model’s performance
may change for other datasets featuring different
distributions of features or their quality. Furthermore,
the study did not examine other machine learning
models that could provide additional performance
improvements through their implementation.

The work in [12] suggested the creation of a CNN-
CAE model of CNN incorporating a convolutional
autoencoder for detecting ovarian tumors from
ultrasound images. The employed dataset included
1613 ultrasound images of ovaries that were clinically
diagnosed, which were pre-processed and augmented
in order to run deep learning-based analysis. The CNN-
CAE model was developed to get rid of the unwanted
information, like calipers, and categorize the ovaries
into five classes. The performance of the model was
measured using fivefold cross-validation; accuracy,
sensitivity, specificity, and the AUC were some of the
metrics used to analyze the model. The CNN-CAE
model performed well, and its performance was 97.2%
accuracy, 97.2% sensitivity, and an AUC of 0.9936 in
determining the normal versus the ovarian tumors with
an architecture of DenseNet121. To discriminate
malignant ovarian tumors, an accuracy of 90.12%, a
sensitivity of 86.67%, and an AUC of 0.9406 were
attained by the model using the DenseNet 161
architecture. In addition, Grad-CAM was used to
observe the model’s decision-making process [13], and
it appeared that in the ultrasound image, the model
identified significant texture and morphological
aspects. Although the study reveals that the CNN-CAE
model is an efficient and viable tool for predicting
ovarian tumor classification, a weakness is identified
regarding the influence of the quality and range of
ultrasound images in the training set on the model's
generalizability. Additional testing on varied and larger
datasets may enhance the model's utility in clinical
work.

In [14], the authors introduced a new scheme for
ovarian cancer classification based on a rapid region-
based network, where emphasis is laid upon the region
of interest (ROI) segmentation of the ovarian images.
The study was conducted with the attempt to increase
the classification accuracy for the purpose of better
decisions for the treatment, because there is a need for
early and accurate diagnosis to decrease mortality
rates. The input ovarian images were classified into
three types of cells. Epithelial, germ, and stroma cells
that were segmented and pre-processed before the
FaRe-ConvNN model was used for annotations. The
model used the region-based classification for
comparison with manually annotated features and

trained ones by FaRe-ConvNN. The study employs a
combined method of Support Vector Classification
(SVC) and Gaussian Naive Bayes (Gaussian NB)
classifiers to produce the classification after the region-
based training is complete. Ensemble method was
applied in the process of feature -classification,
enhancing indexing of the data and data classification.
The results revealed that FaRe-ConvNN achieved a
precision of more than 95%, whereas SVC and
Gaussian NB obtained 95.96% and 97.7% precision,
respectively. Sources for the recall were 94.31% for
SVC and 97.7% for Gaussian NB, while specificity was
recorded at 97.39% and 98.69% for SVC and Gaussian
NB, respectively. FaRe-ConvNN improved precision in
Gaussian NB. Although the method showed high
accuracy and perspectives of the enhanced diagnosis,
a shortcoming is that this system depends on the
quality of visual annotations that might introduce errors,
and it might have to be checked on other datasets or
real-life situations.

The proposed study [15] presented a hybrid
Xception_ViT model for the detection and classification
of ovarian cancer based on computed tomography (CT)
images. The objective of the given study was to make
the diagnostic process of ovarian cancer more accurate
and effective, which is still a significant problem,
because of high mortality rates and the absence of an
exact diagnostic method. The results imply that the
proposed model can clearly divide ovarian tumors and
can significantly help inexperienced radiologists and
gynecologists in making a diagnosis of ovarian
malignancies and offering alternative decision tree
preferences. However, one limitation of the method
may be its dependence on the quality and variety of the
CT datasets, as well as its generalizability to other
populations and imaging modalities.

B. Ovarian Cancer Classification

The proposed system in [16] used a DCNN based on
AlexNet to identify types of ovarian cancer within
cytological images [17]. The augmented images,
together with the original images, were used to train the
model, which achieved an enhanced classification
accuracy of 78.20% compared to 72.76%. The study
encountered two major limitations, including reduced
dataset quantity together with the risk of overfitting.

In [18], the proposed system evaluated ML-based
image classification models that would support
pathologists in diagnosing ovarian carcinoma
histotypes through training four DCNNs using WSIs
dyed with hematoxylin and eosin (H&E). The model's
optimal performance is demonstrated by more than
80% agreement in both training situations and
independent external data, while providing descriptions
that prove better than those of human expert
pathologists. The positive outcomes from research
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Table 2. Overview of Existing Research on Ovarian Cancer Classification

Study Contribution Method Accuracy Limitations Future Direction

Classification of DCNN based on Small dataset Test model on

[16] ovarian cancer AlexNet 78.20% and overfitting  diverse, multi-center
subtypes based on e datasets to assess
cytological images generalizability
Improve DCNN models Requires Test with larger, multi-
pathologists’ for validation source datasets

[18] agreement on histopathological 81.38% across multiple
ovarian carcinoma slide institutions
histotypes classification
Prediction and Modified High Use of different DL

[19] categorizing ovarian  AlexNet-based 83.93% computational model to improve
cancer subtypes DCNN complexity accuracy
Classify ovarian VGG-16 models Accuracy DCNN enhancement,
epithelial carcinoma  for leaves room for User interface

[20] into four subtypes histopathological 84% improvement development

slide
classification

should be supported by the expanded use of extensive
datasets across multiple medical facilities for validation
purposes.

According to [19], a new Deep Convolutional Neural
Network (DCNN) structure was introduced, which is
designed to to recognize and categorize different
ovarian cancer subtypes using histopathological
images. CT and MRI represent traditional diagnostic
tools, but they prove expensive because they demand
lengthy processing, and an efficient replacement is
needed. Full implementation of this model, adapted
from AlexNet, involved adding one more maxpooling
layer after two convolutional layers (resulting in four
total iterations). It also involved creating four fully
connected layers and replacing the (Rectified Linear
Unit) ReLU activation function by Exponential Linear
Unit (ELU) and normalizing all kernel sizes to 3x3. With
24,742 augmented images used for training, the model
achieved an accuracy of 83.93%, thereby surpassing
prior achievements based on an accuracy of 78%. The
study establishes that performance enhancement was
possible through the application of augmentation
techniques. The high number of parameters at 43, 94,
533 might affect real-time system processing speed
due to increased computational complexity.

In [20], the proposed system uses VGG-16 as a pre-
trained DCNN model for classifying ovarian cancer
subtypes through histopathological images is
demonstrated in the proposed system. The model began
with 500 images during training and achieved 50%
accuracy before being enhanced to 84% through
dataset augmentation, after processing 24,742 images.
Deep learning methods proved effective in medical

diagnosis tasks for ovarian cancer. Still, data restrictions
coupled with model memorization behaviors along with
image quality sensitivities, acted as continuing barriers
to progress.

lll. Method

A. Proposed Workflow

The proposed workflow shown in the Fig. 1.
encompasses the acquisition and meticulous

preprocessing of medical imaging data, followed by the
training of advanced deep learning architectures, VGG-
16, Xception, dan EfficientNetB2 selected for their
advanced feature learning capabilities. The dense layers
of these models are fine-tuned to classify ovarian cancer
subtypes. Lastly, EfficientNetB2 is combined with
transfer learning and a channel attention mechanism
(CBAM) to refine feature extraction and enhance
classification accuracy. The performance of each model
is rigorously evaluated using pivotal metrics. This
strategic approach optimizes performance while
ensuring efficient and accurate subtype classification.

B. Dataset Description

The dataset used for this research is sourced from [21]
and discussed in the context of ovarian cancer
subtypes classification based on histopathological
image data. The dataset contains images, representing
five major subtypes of epithelial ovarian cancer (HGSC,
CC, EC, LGSC, and MC). Each of these subtypes has
unique histopathological features, molecular profiles,
and clinical representations, and thus an accurate
classification is necessary to ensure the formulation of
effective and personalized treatment strategies.
Currently, manual histological assessment remains the
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Dataset Description ‘
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Fig. 1. Proposed Workflow Diagram

Data Splitting ‘
o Training set (80%)
e Validation Set (10%)
® Testing Set (10%) ’

GUI Implementation
» Flask-based web interface
e User can upload histopathological images
e Real-time prediction display
. *Bridges gap between model & clinical use

primary method for subtype identification, although it
can be laborious and subjective. It is through the use of
data science and DL that the ability lies to improve the
accuracy and speed of diagnostics, in assisting
clinicians to make more informed decisions.

The dataset was curated with care in order to
promote this goal while ensuring adequate
representation of the five major subtypes. A balanced
subset of 1500 images per class was used for this
project, with regard to limitations of computational
resources and availability of GPU. Such a technique
enables consistency in training at the same time
avoiding biases towards a particular class. The dataset
therefore creates a strong basis for training and testing
of the DL models and potential automatic subtype
determination of the ovarian cancer. Through image
analysis techniques and neural networks, this research
aims the purpose of enhancing the prediction of
subtypes contributing to the progress of precision
oncology.

C. Data Processing

During the data preprocessing phase, several key steps
were taken to prepare the dataset for training the ovarian
cancer image model. Along with image resizing,
categorical labeling of the data was performed as an
additional preprocessing step. Given that the set of data
contains five different subtypes of ovarian cancer, each
subtype was assigned a certain label. These tags were
further encoded into a numerical format prepared for

multiclass classification. This ensures that the models
interpret the output classes correctly during training.
These preprocessing methods help normalize the
dataset, remove bias, and improve the model's
performance. Besides, attention was paid to the
processing of missing or unreadable images to avoid
training errors. On the whole, the preprocessing pipeline
played a central role in organizing the data and labels of

EC

HGSC

%0 100 150 200

LGSC

B

0 100 150 200 0 150 200

Fig. 2. Sample Images from Each Ovarian Cancer
Subtype
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the images so that they were in a consistent, machine-
readable format, which provided a solid setup for the
accurate and effective classification of those by the deep
learning models.

D. Data Visualisation

Fig. 2. illustrates representative sample images from
the five ovarian cancer subtypes included in the
dataset. These images were visualized as part of the
Exploratory Data Analysis (EDA) phase to gain initial
insights into the morphological patterns and differences
among the subtypes. Each image represents a
histopathological slide captured under a microscope,
with variations in cell structure, tissue density, and
staining intensity clearly visible. For instance, the CC
image displays prominent cell nuclei with dense
clustering, while HGSC exhibits complex glandular
patterns with darker staining. EC and LGSC
demonstrate relatively structured tissue formations,
whereas MC shows loosely organized tissue with
lighter staining. This visual inspection not only confirms
the presence of distinct cellular features among
subtypes but also highlights the challenges in
classification due to overlapping characteristics in
certain cases. EDA like this is vital for understanding
the dataset before modeling, as it helps in detecting
any anomalies, understanding class distributions, and
validating the diversity and quality of image data. These
insights guide model selection and preprocessing
strategies, ensuring the deep learning model is well-
informed and robust.

A count plot in Fig. 3. shows the distribution of
image samples across the five ovarian cancer
subtypes. The plot confirms that the dataset is well-
balanced, with approximately 1500 image samples
allocated to each class. This uniform distribution is a
crucial aspect of data integrity, as it prevents class
imbalance during model training a common issue in
medical image classification that can lead to biased
predictions and reduced generalizability.

E. Data Splitting

For model training and evaluation, the dataset was
divided into three subsets: training, validation, and
testing, using an 80:10:10 ratio. This means 80% of the
data was allocated for training the DL models, allowing
them to learn patterns and features relevant to
classifying ovarian cancer subtypes. Ten percent was
set aside for validation, enabling fine-tuning of model
parameters and monitoring performance during
training to prevent overfitting. The remaining 10% was
reserved for final testing, providing an unbiased
evaluation of the model's generalization ability. This
split ensures a balanced and systematic approach to
model development and assessment. With the dataset
preprocessed and split into training, validation, and
testing sets, several deep learning models were fine-
tuned, as described in the following subsection.

F. Model Architecture and Training

The experiments employed three DL architectures:
VGG16, Xception, and EfficientNetB2, a baseline
model, and an enhanced model with CBAM. VGG-16,
known for its depth and simplicity, and useful as a
baseline. The Xception model stands out as an
innovative iteration among convolutional neural
networks, showcasing its superiority with advanced
architectural layers that excel in image classification
tasks. EfficientNetB2 is part of the EfficientNet family,
which stands out for its use of a compound scaling
method that uniformly scales all dimensions of the

Count Plot of Target Class
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Fig. 3. Class Distribution of Ovarian Cancer
Subtypes

model’s architecture depth, width, and resolution. This
coherent scaling results in a highly efficient model that
achieves superior performance with fewer parameters
and reduced computational costs. To further improve
the feature extraction and improve the accuracy of
classification of ovarian cancer, the CBAM, an attention
mechanism module integrated with EfficientNetB2.

G. EfficientNetB2 with CBAM

The integration of EfficientNetB2 with an attention
mechanism and transfer learning serves as the
pinnacle of our model development strategy, aiming for
optimal efficiency and classification performance. To
enhance feature extraction, the CBAM module is
incorporated with EfficientNetB2. The channel attention
in CBAM identifies which feature maps (filters) are most
important by aggregating spatial information, and
spatial attention then finds where in the image the
important features are, by looking at all channels.

In the proposed system, Fig. 4. shows the
EfficientNetB2 base architecture [22], initially trained on
the ImageNet dataset, which provides a robust
backbone for feature extraction. By utilizing transfer
learning, the early layers of EfficientNetB2 were frozen,
and the top layers were fine-tuned, inserting the CBAM
module before the final classification layer to effectively
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Fig. 4. EfficientNetB2 Architecture [22]

harness its comprehensive understanding of image
features, dramatically accelerating the training process
specific to our ovarian cancer dataset. This pre-training
equips the model with a finely tuned ability to identify
complex patterns within histopathological images
related to different ovarian cancer subtypes, including
HGSC, CC, EC, LGSC, and MC.

To further enhance the feature extraction capability
of EfficientNetB2, an attention mechanism is
incorporated. This mechanism strategically refocuses
the network’s attention onto the most relevant areas of
an image, elevating its sensitivity to subtle differences
across cancer subtypes. Attention mechanisms work
by weighing feature maps, allowing the network to
prioritize significant features while filtering out noise,
thus improving accuracy in differentiating subtypes.

The model begins with the input layer, which

accepts an image with a standard size of 224 x 224
[23]. It is followed by the regular convolutional layers
with 3x3 filters [23], which is also called the stem layer,
making up the first layer, the convolution operation is
evaluated using Eq. (1)
X, k) =YmIn X X(s.i+m,s.j+nc).K(mmn,c k) (1)
where X is the input tensor, K is the filters, s is the
stride, ¢ is the channel depth, and k is the output
channel index [24]. Then, apply the batch normalization
to normalize the convolution output, and the Swish
activation function Eq. (2) is applied to reduce the
spatial resolution.

Swish(x) = xﬁ (2)

This activation is used throughout EfficientNet instead
of ReLU because it empirically improves accuracy with
minimal computational overhead. The output is given
as input to the Mobile Inverted Bottleneck Convolution
(MBConv) block. The MBConv block is a specialized

building block designed for efficient computation and
high accuracy. Each MBConv block includes an
expansion Phase, which applies a pointwise 1X1
convolution Eq. (3) to increase the number of channels
by a factor t.

Xexp(i'j' k) =X X(0,), k) -Kexp (¢ k) (3)
where X..,(i,j,k) is the expanded tensor. Then the
depthwise convolution Eq. (4) is applied independently

to each channel using (3X3 or 5X5) kernel, to extract
spatial features per channel efficiently.

X[Iifw — Xécxp * kgw fork=1..... it Cin (4)

After this, the Squeeze and Excitation (SE) block,
which globally squeezes each channel to a scalar,
learn important weights and rescales. It begins with Eq.
(5) global average pooling to squeeze spatial
dimensions

1 ..
Zk = W flzlzyvzlxdw(l!jl k) fOI‘k= 1, ...... 'y tan (5)

These values pass through two fully connected layers
with a ReLU and sigmoid activation to generate
channel-wise weights, and SE is scaled by Eq. (6), and
the output becomes
Xse (L, k) = Xaw (L, ], k). sic (6)
Next, a projection layer reduces the expanded
channels back using another pointwise convolution and
residual connection with Eq. (7) and Eq. (8) to add input
to output.
Xproj(i'jv k) = Eche(i'j: C) -Kproj(c’ k) (7)
Y(i'j‘ k) = Xin(i:j' k) +Xproj(i'j' k) (8)
These MBConv block is repeated in various stages
of EfficientNetB2, with different numbers of filters and
strides. The SE, which is a part of the MBConv block,
only concentrates on the channel-wise features, so to

enhance the feature extraction and retrieve the spatial
attention features also a CBAM module is introduced
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after the final MBConv block. CBAM sequentially
applies both channel and spatial attention, allowing the
network to focus not only on the most informative
feature maps but also on the most relevant spatial
regions [25]. The CBAM module progressively applies
channel and spatial attention. Channel attention
generates feature map global descriptors using global
average and max pooling. These pooled descriptors
are communicated across fully shared linked layers
and sigmoid (o) modified to blend and activate their
outputs to normalize channel weights.

Fc = o(MLP(AvgPool(Y(i, j, k))) + MLP(MaxPool(Y (i, j, k))))(9)
(26]

Classification-relevant channels are improved by
multiplying these weights from Eq. (9) on the feature
maps. Each feature map's spatial attention mechanism
detects key spatial regions. Two 2D maps of average
and maximum activations result from channel-wide
pooling. Concatenating and convolving these maps
with a small kernel captures spatial dependencies.

Fs = o(Conv(AvgPool(Y'(i, j, k))). (MaxPool(Y'(i, j, k))))

(10) [26]

The element-wise spatial attention weights of the
sigmoid function are applied to channel-refined feature
maps. A sequential attention design allows the model
to prioritize global channel-level importance and then
fine-tune attention to local spatial regions, improving
interpretability and histopathology slide representation
of diagnostically significant places. The Channel-wise
feature extraction is done with Eq. (11)

Yc(ifj: k) = Mc(k) + Y(i'j! k) (11)
And the spatial attention features are extracted with Eq.
(12)

Y(i,j k) = Ms (i, j) + Ye (i, j, k) (12)
Atthe final stage, global average pooling is applied.
Zi= o T T Y (0, K (13)

Eq. (13) generates a feature vector that is passed
through a fully connected dense layer with SoftMax
activation, Eq. (14), to produce the class probabilities
for the subtype classification.

~ _ e’k
PR =5 (14)
L=— Yy -log¥y (15)

The loss function, a categorical cross-entropy equation
(Eg. 15), is used to compare predictions with true
labels. The model weights are updated using the Adam
optimizer with a learning rate of 0.0001 [27] [28]. Each
of these steps contributes to training an effective model
for classifying ovarian cancer subtypes, leveraging
pretrained knowledge from EfficientNetB2 and

enhancing critical features through attention
mechanisms.

This dual approach, which leverages
EfficientNetB2’s pre-training and attention

mechanisms, leads to a more refined model that
operates with improved classification precision and
reliability. By enhancing the model’s ability to focus
selectively on critical regions of the input images, we're
better equipped to support accurate diagnosis and
facilitate informed clinical decisions. As a result, this
implementation suggests significant advancements in
the realm of automated cancer classification.
Throughout the training phase, an iterative process of
hyperparameter tuning was conducted to optimize the
performance of each model. Key parameters, such as
learning rates and batch sizes, were delicately chosen
and refined, ensuring that the models were not only
accurate but also efficient in processing data. The
convergence of models was regularly evaluated to
ensure reliable performance in classifying the five
major subtypes of ovarian cancer.

Following the training phase, the model underwent
a rigorous validation process to ensure its reliability and
effectiveness. During validation, the model's
predictions were compared against the true labels,
allowing us to gauge its performance on new data and
identify potential overfitting. Key metrics, such as
accuracy and loss, were closely monitored to
understand the model's learning curve and overall
effectiveness. If a model underperforms,
hyperparameters are fine-tuned or adjusted the
architecture followed by retraining. This iterative
validation process ensures that the models are robust
and capable of accurately classifying ovarian cancer
subtypes in clinical settings.

H. Mathematical Formalization of EfficientNetB2
with CBAM

EfficientNetB2-CBAM processes features, refines
attention, and classifies. A feature extraction backbone
convolutional block learns hierarchical feature
representations from an input image by convolution,
normalization, and activation. This can be expressed
as Eq. (16) [29]:

F,=8(BN(W, x Fi_y + b)) (16)

Where, F;_, is the input tensor, W; and b; denotes
weights and bias, * is the convolution operation and §
is the Swish activation function, denoted by Eq. (1)

Each block's intermediate output F; gives the attention
module spatially encoded semantic patterns. The
Convolutional Block Attention Module enhances these
qualities by sequentially applying channel and spatial
attention, as outlined in Eq. (9) to Eq. (12). Channel
attention weights feature maps, thereby boosting
relevant channels and reducing duplicates. Spatial
attention localizes important regions in feature maps
using pixel-wise significance weights from global
pooling. Classifiers receive revised tensors F, with
selectively emphasized characteristics in process.
Global average pooling compresses spatial
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dimensions into a compact vector representation using
Eq. (13).

The feature vector Z = [Z,,Z,,...,Z;] is then
passed to a fully connected layer with a SoftMax
activation function classifies. The five ovarian cancer
subtypes' probability distribution is derived from the
feature vector. EfficientNetB2's global context
awareness and CBAM's local discriminative capacity
improve pipeline sensitivity to subtype-specific
histopathological Variations in Process.

. Formalizing and Optimizing Loss Function

A categorical cross-entropy guides learning by
comparing class labels to expected probability
distributions. The model predicts a vector of
probabilities for all subtypes in each picture
sample P; = [P;;, Pi3, -..., Pix], while the corresponding
true label is encoded as a one-hot vector y; =
[yillin""'!yiK]

The loss for each sample is calculated with Eq. (15),
which is the negative logarithm of the right class
probability.

Leotar = 7 Zi1 X1 Vi log 9k (17) [30]

As expressed in Eq. (17) total loss function, the
optimization target, is calculated from all samples. The
Adam technique optimizes parameter learning rates
using first- and second-order gradient estimations with
Eqg. (18) and Eq. (19) as follows [31]:

me = Bime_q + (1= B1) ge (18)
Ve =BV + (1 — B2) .9t2 (19)
Where B, and B, are decay rates and g, is the gradient
of the loss function.

The momentum and decay terms of Adam smooth
convergence and prevent parameter update
oscillations. To avoid overfitting and numerical
instability, the learning rate, starting at 0.0001, is
dynamically scaled down whenever the validation
accuracy plateaus, as defined by the following rule [32].
neXy if validation accuracy not improves
Ne otherwise

Loss function minimization matches the model output
distributions to the true labels, whereas adaptive
gradients regularize weight updates across layers of
varying magnitudes. This method guarantees
convergence and durability, allowing the model to
generalize to unknown histopathological data samples.
J. Transfer Learning

EfficientNetB2 initialized with ImageNet weights,
f(x0) = f(x;{6.6.}) (20)

and its mapping function is defined in Eq. (20), where
6, are frozen parameters of the early convolutional
layers and , 8, denotes the trainable parameters of the
upper layers [30]. Early network layers, which learn

Ntv1 = {

edges and textures, are static during training, i.e.,
ngL = 0. Only the upper layers acquire higher-level

semantic concepts and are unfrozen Vg L # 0 and fine-

tuned on the ovarian cancer dataset samples [33].
Computing gradients for these top layers using Eq. (21)

6, = 0. Vo, L (21) [31]
adjusting their weights through gradient descent and
preserves frozen layer parameters
6]9‘*1) = ijk)during fine-tuning, preserving ImageNet-
learned visual features [33].

The model learns histopathology-specific information
while  maintaining its general-purpose  visual
interpretation with this hierarchical adaptation. Fine-
tuning layer selection depends on the gradual
unfreezing configuration, empirical validation accuracy.
Pre-trained representations reduce the number of
trainable  parameters, thereby speeding up
convergence and reducing overfitting on small
datasets. Experiments reveal that fine-tuning the last
25% of network parameters improves classification
accuracy and processing efficiency.

K. Hyperparameter Impact Quantified

Training dynamics and model convergence depend on
hyperparameters' optimization size and pace. The
learning rate determines parameter updates and, in
turn, affects convergence stability. High rates oscillate,
while low rates slow learning. In stochastic gradient
estimation, smaller batches introduce noise that avoids
shallow minima, while larger batches improve gradient
precision but may hinder generalization sets.

Momentum coefficients control the gradient mean
and variance exponential decay in Adam optimizers.
Changes in these factors affect convergence speed
and overshooting risk. These parameters are
connected by convergence smoothness and update
variance inequalities, which are processed for different
scenarios.

The most stable convergence, with minimum validation
loss variance and consistent generalization across
training epochs, was achieved with a learning rate of
0.0001, a batch size of 32, and Adam momentum
parameters of 0.9 and 0.999.

L. Standardizing Evaluation Metrics

Performance is measured using multi-class
classification measures from the confusion matrix.
Accuracy, precision, recall, and F1-score are
determined using the matrix's correct and incorrect
class predictions.
TP+TN

ACC’U,TG,C_’Y = m (22)
Precision = (23)
TP+FP
Recall = —= (24)
TP+FN
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PrecisionXRecall
F1—score =2X Precision+Recall (25)
Accuracy Eq. (22) is the ratio of correctly categorized
samples to total samples, precision Eq. (23) is the
proportion of real positive predictions among all
positive predictions, and recall Eq. (24) is the
proportion of precisely detected true positives.

By considering the harmonic mean of precision and
recall, the F1-score Eq. (25) balances false positives
and negatives. For multi-class scenarios, macro-
averaging averages these indicators to give each class
equal weight regardless of frequency. These metrics
show that performance advantages are due to
discriminative abilities rather than subtype skews by
measuring the proposed model's diagnostic reliability
sets.

M. Complete Workflow Math Summary
Ovarian cancer subtype classification involves data

preparation, augmentation, feature extraction,
attention-based refinement, classification, and
evaluation. The pipeline begins with image
normalization and encoding to maintain input
dimensionality and numerical stability. Once
augmented data samples pass through the
EfficientNetB2  feature  extractor, convolutional

processes learn hierarchical feature representations
with Eqg. (1) to Eq. (8).

The CBAM module dynamically reweights channel
and spatial dimensions to highlight diagnostically
relevant structures using Eq. (9) to Eq. (12). Global
pooling and softmax-based refined characteristic
classification yield subtype probability distributions
using Eq. (13) and Eq. (14). Learning reduces
categorical cross-entropy loss with Eq. (15) using
adaptive optimization to align prediction and ground
truth. Stratified cross Validation evaluates accuracy,
precision, recall, and confusion matrix F1-score of the
trained model (as defined using Eq. (22) to Eq. (25)).
Deep learning-based histological categorization of
ovarian cancer sets is reproducible and extensible with
this computational and statistical techniques.

N. Deployment

To demonstrate the practical utility of the proposed
system, a web-based graphical user interface (GUI)
named OVAGUARD, developed using the Flask, was
created. OVAGAURD allows users to upload an
ovarian histology image and get an instant prediction of
the subtype. This interface was created to demonstrate
the EfficientNetB2 with CBAM model’'s potential for
clinical integration. This interface enables users,
especially healthcare professionals, to upload
histopathological images in supported formats (e.g.,
PNG), which are automatically preprocessed and
classified by the system. The system displays the
selected image along with the prediction result,

indicating the detected ovarian cancer subtype. This
visual confirmation enables users to verify the input and
interpret the Al-generated diagnosis.

IV. Results

To compare the ability of VGG-16, Xception, and
EfficientNetB2 models to classify ovarian cancer
subtypes, these models were fine-tuned using transfer
learning to better handle the specific features of
histopathology images. Among them, EfficientNetB2
showed better performance overall, likely because of its
efficient scaling and ability to capture complex patterns.
To further boost its performance, added an attention
mechanism, CBAM (Convolutional Block Attention
Module), which enables the model to focus more on the
important areas in an image [34]. The classification
accuracy improved even more by combining CBAM with
EfficientNetB2. In the following sections, we present the
performance of all models based on metrics like
accuracy, confusion matrix, precision, recall, and F1-
score.

A. VGG-16 Model

As shown in Fig. 5, the noticeable gap between training
and validation accuracy indicates that the VGG-16
model is somewhat overfitting the training data. It
performs increasingly well on the training set but fails to
maintain that performance on unseen validation data.

Model Accuracy

—— Train Accuracy
0.7 { —#— Validation Accuracy

0.6

0.5+

Accuracy

0.4 4

0.3 1

0 2 4 6 8
Epoch

Fig. 5. VGG-16 training and validation accuracy

Fig. 6 presents a confusion matrix displaying the
classification performance of the VGG-16 model. The
five classes are indexed from 0-4, where Class 0 =
HGSC, Class 1 = CC, Class 2 = EC, Class 3 = LGSC,
and Class 4 = MC. This mapping is used consistently
across all confusion matrices. The model performs
strongest on classes 0 and 1 with high accuracy counts
of 91 and 101, respectively, while class 2 shows the
weakest performance with only 59 correct predictions.
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Fig. 6. Confusion matrix VGG-16

B. Xception Model

The Fig. 7 illustrates training and validation accuracy
trends of the Xception model over 10 epochs. It shows
that while the model learns well on training data, there
are some generalization challenges on unseen data,
potentially due to data complexity or minor overfitting.
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Fig. 7. Xception training and validation accuracy

Fig. 8 illustrates the classification performance of the
Xception model through a color-coded confusion matrix.
The model demonstrates its strongest performance with
class 1 (144 correct predictions), followed by class 3
(106) and class 0 (100). Class 2 shows the weakest
performance with only 88 correct identifications.
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Fig. 8. Confusion matrix Xception

C. EfficientNetB2

The training and validation accuracy of the
EfficientNetB2 model across 10 epochs is presented in
Fig. 9. The relatively small gap between training and
validation accuracies suggests the model is well-
regularized with minimal overfitting.
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Fig. 9. EfficientNetB2 training and validation
accuracy

The Fig. 10 depicts the classification performance of the
EfficientNetB2 model through a vibrantly colored
confusion matrix. The model exhibits exceptional
performance for class 0 with 144 correct predictions,
followed closely by classes 3 and 4 with 125 and 123
correct identifications, respectively. Class 2 shows the
lowest accuracy with 94 correct classifications.
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Fig. 10. Confusion matrix EfficientNetB2

D. EfficientNetB2 with CBAM

Fig. 11 demonstrates how the training and validation
accuracies of the EfficieniNetB2 model with CBAM
increase during 10 epochs of its training to determine the
subtype of ovarian cancer. This marginal difference
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Fig. 11. EfficientNetB2 with CBAM training and
validation accuracy

between training and validation accuracy proves the
excellent generalizability of the given model on
previously unseen data, thus beating the performance of
past models. The Fig. 12 presents a confusion matrix
displaying the classification performance of the
proposed model, EfficientNetB2 with CBAM. The model
exhibits exceptional performance across all classes.
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Fig. 12. Confusion matrix EfficientNetB2 with
CBAM

Table 3. below compares the accuracy, precision, recall,
and f1-score of various deep learning models applied to
the ovarian cancer classification task. The VGG-16
achieved 52%, and Xception reached 72%, reflecting
better feature extraction capabilities. EfficientNetB2
further enhanced accuracy to 82%, demonstrating the
model's strength in scaling efficiency and performance.
The best model with the highest accuracy 91% is
EfficientNetB2 with CBAM.

Table 3. Accuracy Comparison of Deep Learning
Models for Ovarian Cancer Classification

Model Accuracy Precision Recall F1-score
VGG-16 52% 59% 52% 53%
Xception 72% 76% 72% 72%
EfficientNetB2 82% 84% 82% 82%
B e > 91% 91% 91% 91%

To demonstrate the real-world usability of the proposed
system, the trained model was deployed as a web-
based GUI application named OVAGUARD. The
interface (Fig. 13 and Fig. 14) allows users to upload
a histopathological image and instantly receive the
predicted ovarian cancer subtype, along with a visual
confirmation of the input image.
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CLICK TO CLASSIFY OVARAN CANCES SURTYPE

Fig. 13. Web Interface of OVAGAURD

As seen in the screenshots, the system provides clear
and direct feedback, making it intuitive even for non-
technical users such as clinicians or researchers.

OVAGUARD Sacn Foee

Service - Ovarian Cancer Subtype

Classification System

UPLOAD / SELECT IMAGE FOR DETECTING OVARIAN CANCER

ks b P8

(S

Selecred / Uploaded Ovarian Cancer Image

DETECTED SUBTYPES OF OVARIAN
CANCER IS: HIGH-GRADE SEROUS
CARCINOMA (HGSC)

Fig. 14. Output of OVAGAURD

These deployment results highlight that the framework is
not only accurate in controlled experiments but also
practical and accessible when applied as a user-facing
clinical tool.

V. Discussion

This section interprets the results from Section IV and
compares them with findings from other studies. The
results of the research study confirm that deep learning

models play a significant part in enhancing the
performance and effectiveness of the ovarian cancer
subtype classification [35]. The results of the three
actualized models, VGG-16, Xception, and
EfficientNetB2 with CBAM, have been evaluated in
terms of their ability to extract and interpret complex
features in histopathology, and are different enough. The
VGG-16 model achieved an overall accuracy of 52%,
while Xception improved the performance to 72%, and
EfficientNetB2 reached an accuracy of 82%. The
proposed EfficientNetB2 integrated with CBAM
achieved the highest performance with an accuracy,
precision, recall, and F1-score all equal to 91%, clearly
demonstrating the effectiveness of attention
mechanisms in enhancing discriminative learning.

Transfer learning gave moderate results with an
accuracy of 52% in VGG-16. Such an advance
demonstrates the advantage of using pre-trained
networks, which are produced using large-scale
datasets such as ImageNet. Nevertheless, VGG-16
could not satisfactorily overcome overfitting, which could
be solved only by focusing more on the features that
help discriminate between classes.

By comparison, the most accurate model was the
EfficientNetB2 model, which combined CBAM,
managing 91% accuracy, showing its suppleness and
flexibility. These findings justify the fact that the
application of attention-augmented deep learning
models not only increases the accuracy of the models
used but also assists in more confident decision-making
in the clinical setting. Moreover, it notes that transfer
learning and the fine-tuning of attention mechanisms
should be used together in order to eliminate the
shortcomings of traditional and shallow networks applied
in medical image analysis tasks. This discussion
highlights that cutting-edge Al models have the potential
to fill the gap in ovarian cancer diagnosis by providing
repeatable, explainable, and accurate subtype
forecasts, which ultimately lead to earlier diagnosis and
more patient-specific therapeutics, resulting in improved
patient outcomes.

A. Extended Analysis

Subtype recognition in the ovarian cancer literature has
been approached differently, utilizing various data
modalities, network families, and job descriptions. The
present study's five-class histopathology classification,
using an EfficientNetB2 backbone and a CBAM
attention module, falls into the “fine-grained histology”
lane and achieves 91% accuracy on a balanced test
set, far exceeding conventional ImageNet backbones
fine-tuned on small or uneven corpora.
Ultrasonography and CT, which target binary screening
or modality-specific signals, have higher headline
accuracy but handle less fine-grained problems than
identifying HGSC, CC, EC, LGSC, and MC from H&E
slides. On cytological pictures, Wu et al [16] classified
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ovarian tumors using AlexNet-based DCNNs. Despite
data augmentation, performance stagnated at 78.2%
due to the dangers of overfitting resulting from
insufficient sample variation.

Table 4. Comparative analysis of the proposed

method against existing ovarian cancer
classification approaches
Study Focus &
Reference Method Accuracy
[16] AIexNetéﬁ;ed deep 78.2 %
[18] Multiple DCNNs 81.38 %
[19] Modified AI_exNet with 83.93%
extra pooling layers
[20] VGG-16 84%
Proposed EfficientNetB2 + 91%
Model CBAM °

Iteratively, Next, as per Table 4., Farahani et al [18]
trained multiple DCNNs on whole-slide images (WSIs)
to diagnose histotypes with >80% agreement, including
external validation. That study's size and external
testing indicate clinical plausibility. Kasture et al [19]
trained an AlexNet version with pooling and ELU
activations on ~24.742 augmented images, obtaining
~83.93% subtype categorization accuracy. Heavy
augmentation was useful, but >4.3 million parameters
and computing overhead hampered acceptance sets.
A VGG-16 transfer-learning baseline trained on ~500
images obtained ~84% accuracy after significant
augmentation to ~24k photos [20]. VGG's enormous,
totally linked tail and uniform 3x3 stacks are valuable
but have inefficient parameters and restricted
applicability. The proposed system, utilizing attention-
enhanced EfficientNetB2, excels at identifying cell-
level patterns and is packaged into a lightweight Flask
GUI for point-of-care review, thereby augmenting
transformer-based CT pipelines. They form a multi-
view decision stack instead of silos. Fine-grained
ovarian histotype classification is improved by
attention-augmented, compound-scaled CNNs, from
AlexNet and VGG era baselines (=78-84%) to a
reliable five-class performance (=91%), while retaining
deployable tile-level attention. This minimizes serous
and endometrioid confusion without increasing model
size compared to WSI-scale trials, which achieve over
80% agreement [18]. The current histology model is the
clinical pathway's most important cellular stratum,
outperforming ultrasonography [12] and CT [15] on

coarser tasks. Rewrite the paper's Related Works close
to emphasize contrast: Prior AlexNet derivative
subtype classifiers [16] [19] and VGG-16 [20] report
78-84% accuracy under strong augmentation, and
WSI-level DCNNs exceed 80% inter-method
agreement [18].

Ultrasound [12] and CT [15] are suitable for
screening and detection, although they treat different
clinical issues. Using EfficientNetB2 scaling and
CBAM's balanced five-class histology, this study
improves subtype-level accuracy to ~91% and offers a
user-friendly GUI for rapid assessment, supporting
radiology-driven triage and WSI-scale procedures. The
EfficientNetB2 + CBAM pipeline achieves ~91%
accuracy with clinically feasible parameter count and
FLOPs, demonstrating an improved accuracy-to-
efficiency trade. The attention block improves minority-
class F1 without increasing model size beyond a
moderate GPU by reducing confusion between serous
subgrades and endometrioid instances. In a directly
histology-based setting, compound-scaled
EfficientNetB2 and targeted attention explicitly target
richer mid-level morphology, while regularization
(transfer learning, balanced classes, early stopping)
reduces the generalization gap and improves five-class
accuracy by 13% in process. The architectural delta
depthwise-separable MBConv phases and channel-
and-spatial attention may reveal glandular and stromal
cues that shallower, older backbones suppress.
EfficientNetB2's compound scaling with CBAM
enhances validation stability, attaining ~91% precision
and recall across all five subtypes, surpassing the mid-
80s ceiling. Mobile-inspired attention blocks outperform
VGG-style stacks on fine-grained pathologies.

B. Ablation Analysis

A detailed ablation analysis was conducted to
understand the contribution of each architectural
component. EfficientNetB2's compound scaling, CBAM,
and transfer-leaming approach were tested for
classification performance. For fair comparison, all trials
employed the same training, validation, and test splits.
The first control experiment was conducted with
EfficientNetB2 without transfer. 73.4 % accuracy, 74.1 %
precision, 73.0 % recal, and 73.2 % F1-score.
Pretrained weights are needed to create rich,
generalizable feature representations since low scores
signal slower convergence and an inability to capture
complicated morphological patterns  from  the
constrained dataset. Transfer learning, achieved by
initializing EfficientNetB2 with ImageNet weights and
fine-tuning only the upper layers, improved the metrics.
Recall around 82%, accuracy 82.3%. Even without
attention, pretrained representations improve
histopathological feature discrimination and learning.
CBAM's channel attention was measured using
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EfficientNetB2's channel attention branch-only forms.
This model achieved 86.1% accuracy, 86.5% precision,
and 86.0% recall. Channel attention helped the network
concentrate the most relevant feature maps, enhancing
cellular structure representation and noise reduction,
although discriminative region spatial localization was
limited in the process. The complementary design
preserved only CBAM's spatial attention branches. This
version was 85.4% accurate, 85% precise, and 85.6%
recall sets. While spatial attention enhanced the
network's focus on relevant tissue regions, the lack of
channel-wise recalibration limited feature selection
depth, resulting in somewhat lower performance than
channel-only in the process.

Combining channel and spatial attention worked
best. The complete EfficientNetB2-CBAM model had
91% accuracy. Channel and spatial attention were
selected and located to identify the best discriminative
feature maps, thereby improving performance over
either attention type alone. Class-wise evaluation
indicated that all ovarian cancer subtypes increased.
High-Grade Serous and Clear-Cell Ovarian Carcinoma,
which scored well in the baseline model, increased by
5% in F1-score, while Endometrioid and Mucinous
increased by 7-9%. These findings show that focus
improves morphologically subtle subtype detection.
Peak performance epochs decreased, and accuracy
improved with the incorporation of CBAM. Attention
modules improve discrimination with  minimal
computational overheads. Training stabilized in 8
epochs compared to 12 for the baseline; however, GPU
memory use increased 6%. Ablation analysis
demonstrates that each module of the proposed
architecture is essential. Transfer learning yields rich
initial representations, channel attention highlights
crucial feature maps, and spatial attention targets
diagnostically relevant regions. Their combination
increases classification accuracy to 91% and allows
robust generalization and rapid training for clinical
deployments.

C. Complete Performance Comparison Beyond
Accuracy

Classification performance was assessed using
precision, recall, F1 score, and AUC. The suggested
EfficientNetB2—-CBAM model achieved a balanced
precision (0.92) and recall (0.90) across five ovarian
cancer subtypes, with an average F1 score of 0.91. The
model's mean AUC of 0.96 demonstrated its ability to
distinguish closely related histology types. These
indicators show model performance beyond accuracy. A
high AUC means the classifier maintains correct
sensitivity and specificity thresholds under different
decision constraints, which is crucial in medical
diagnostics, where false negatives are harmful for the
process. Compare EfficientNet-B2 against VGG-16,
ResNet-50, and Xception. The attention-enhanced

model regularly exceeded AUC values between 0.80
and 0.88, showing its capacity to capture tiny
morphological cues that traditional networks miss.

D. Traditional CNN Architecture Comparison

EfficientNetB2—-CBAM surpasses ResNet, DenseNet,
and Inception in feature selectivity and interpretability.
ResNet's residual connections and DenseNet's
concatenation techniques enhance gradient flow, but
they lack attention modulation due to equally weighted
feature propagation. In complex histopathology slides,
inception  structures scatter emphasis across
superfluous spatial regions despite their multi-scale
capabilities. CBAM in EfficientNetB2 highlights
diagnostically significant channels and spaces, boosting
performance and interpretability. The proposed attention
supplemented model had 91% accuracy and 0.91 F1 on
the same dataset, while DenseNet121 achieved 84%
accuracy and 0.83 F1. Because of adaptive feature
weighting, the model can better recognize significant
cellular patterns, nucleus shape, and staining textures
for ovarian cancer categorization. Context-driven
decision making is clearer and healing in the process.

E. Variation-resistant image analysis Model
Process

A robustness investigation evaluated the model's noise,
staining variability, and artifact interference resistance.
In controlled trials with Gaussian noise, color jittering,
and synthetic artifacts, the EfficientNetB2-CBAM model
maintained classification accuracy within 2% whereas
ResNet50 and Xception fell by over 5%.
Stability is achieved by focusing adaptive attention on
structurally invariant characteristics rather than surface
intensity variations. Rotation, scaling, and random
cropping improved clinical generalization. This
adaptability allows the model to work in many
histopathological imaging situations, such as slides with
uneven staining or small scanning anomalies, boosting
diagnostic workflow reliability sets.

F. Comparative Attention Mechanism Assessment

Compare the SE block, Transformer-based self-
attention, and CBAM attention mechanism. SE blocks
exhibited lower F1 scores of 0.88 due to better channel
representation but reduced spatial selectivity.
Transformer-based attention increased computational
complexity and training time but provided robust
contextual modeling and a slight AUC gain (0.95 vs. 0.96
for CBAM). CBAM produced more targeted and
interpretable heatmaps, emphasizing nucleus clusters
and morphological structures associated with
malignancy, whereas the Transformer-based attention
focused diffusely over the image. CBAM optimises
interpretability, computational efficiency, and
discriminative performance, making it excellent for
histopathology image processing, where precision and
visual explainability are crucial.
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G. Multi-Modal Imaging Comparison

Multimodal techniques that combine histology with MRI
or CT have shown potential in cancer detection, but they
require big datasets and difficult alignment algorithms.
The current attention-enhanced EfficientNetB2 system,
which employs histopathology photos solely, achieves
diagnostic accuracy and AUC values comparable to
early fusion techniques that mix texture and radiomic
information sets. Its simplicity and low data reliance
make the single modality approach interesting. Attention
visualizations improve interpretation without spatial or
modality registrations. Additional modalites may
improve diagnostic context, especially for tumor margins
and metastatic disseminations. Although efficient and
focused on cellular level analysis, hybrid
histopathology—radiology fusion frameworks may
produce a more comprehensive cancer diagnostic
paradigm.

H. Comparing Clinical Applicability and

Interpretability
Compared to subjective grading or semi-automated
feature extraction, the attention-enhanced network

enhances clinical interpretability and diagnostic
reliability. Manually produced texture or shape
descriptions rarely reflect cellular morphological

Variability in the Process. However, CBAM attention
heatmaps strongly match pathologists' diagnostically
relevant regions. These visual hints show clinicians
which histological structures affected the model's
assessments. Interpretability transforms the system
from a “black box” classifier into a diagnostic aid,
increasing trust and adoption in clinical settings where
medical Al integration requires explainability and
responsibility.

I. Resource Needs and Computing Efficiency

Computational and predictive efficiency are balanced in
EfficientNetB2—CBAM. With 8.1 million parameters [30],
it requires fewer resources than DenseNet201 (20
million) [36] and InceptionV4 (23 million) [37] while
classifying better. Image inference latency on standard
GPU hardware is around 0.12 seconds, enabling
clinically meaningful near-real-time analysis. Mid-range
computational configurations can operate due to
moderate training memory utilization. This economy
makes the technique excellent for low-resource
laboratories and diagnostic centers, ensuring
accessibility and scalability without compromising
analytical depth or diagnostic accuracy.

J. Comparing Other Cancer
Models

Compared to breast and lung cancer classification
models, the design is cross-domain flexible. While
similar EfficientNet versions on breast cancer datasets
and lung cancer datasets generally reach up to 88—
90% accuracy [38], [39] , for the multiclass skin cancer

Histopathology

classification and detection accuracy reaches up to
87% [13], [40]. The proposed setup reaches 91% on
ovarian histopathology, showing strong generality
across tissue types. Due to intra-class cellular
architectural differences, the attention mechanism
facilitates the identification of discriminative regions for
ovarian cancer sets. This cross-domain comparison
suggests that attention-integrated  EfficientNet
frameworks can be employed for many histopathological
applications with dataset-specific fine-tuning.

K. Dataset Features and Literature Context

Current research shows that many ovarian cancer
histopathology investigations employ datasets of fewer
than 1,000 images. Restrictions limit generality and
reproducibility. For this investigation, a total of 7,500
well-annotated images from five subtypes were taken
under varied staining and magnification conditions.
Larger, more diverse datasets stabilize models and

prevent  overfitting, enabling clinically  useful
generalization. Compared to similar datasets,
augmented and preprocessed samples improve
statistical robustness and balance.

In automated ovarian cancer categorization, the model's
performance measures more accurately reflect its
diagnostic potential and clinical translation applicability.

L. Research Implications and Context

The architectural, statistical, and clinical comparisons
position this study within the context of Al-driven
oncology diagnostics. Future research can enhance the
system by incorporating multistage models, where
subsequent attention modules refine judgments
hierarchically across tissue areas.
Multi-view histopathological patch integration enhances
spatial coherence and context. Add explainability
approaches, such as attention visualization or gradient-
based attribution, to improve model transparency and
the clinical interpretability process. These directions
align with the development of computational pathology's
interpretable, multi-modal, context-aware diagnostic
systems, which combine deep learning and clinical
knowledge to improve the reliability and acceptance of
Al-assisted cancer diagnosis.

VI. Conclusion

This project successfully demonstrates the application of
deep leaming and transfer learning models for
classifying ovarian cancer  subtypes using
histopathological images. Five major subtypes High-
Grade Serous Carcinoma, Clear-Cell Ovarian
Carcinoma, Endometrioid Carcinoma, Low-Grade
Serous Carcinoma, and Mucinous Carcinoma were
classified using several models, including VGG-16,
Xception, EfficientNetB2, and EfficientNetB2 with
CBAM. Among these, the model combining
EfficientNetB2 with CBAM emerged as the most
effective, achieving a classification accuracy of
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approximately 91%. This result highlights the
importance of attention-based architectures in improving
the model's focus on critical image regions, thus
enhancing diagnostic precision. In addition to the back-
end model performance, significant emphasis was
placed on developing a user-friendly GUI named
OVAGAURD using Flask. The system enables users to
upload medical images, automatically classify them, and
display the predicted cancer subtype visually in real-
time. This GUI bridges the gap between technical model
development and clinical applicability, offering an
accessible interface for non-technical users, including
clinicians and researchers. The intuitive design
facilitates rapid testing and feedback, eliminating the
need for in-depth knowledge of machine learning.
Overall, the integration of advanced DL techniques with
a web-based user interface demonstrates the potential
of Al in revolutionizing ovarian cancer diagnosis, making
this system a valuable tool for aiding medical
professionals in early detection and subtype-specific
treatment planning. Moreover, additional clinical
metadata (e.g., patient age, stage, or history) can be
considered, which could improve predictive accuracy
when combined with image analysis. Future work should
address these gaps by incorporating a larger and more
diverse dataset, ideally including 3D imaging modalities
like MRI and CT, and applying data augmentation or
synthetic data techniques to enhance model robustness.
The GUI could be further extended to support multi-user
access, cloud deployment, patient record integration,
and mobile compatibility. Introducing explainable Al
(XAl) methods will also help build clinician trust by
highlighting the image regions that influence predictions.
Furthermore, real-time feedback and diagnostic
suggestions could make the system a decision support
tool in clinical workflows. These improvements will
collectively elevate the model’s reliability, clinical utility,
and scalability in real-world healthcare environments.
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