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Abstract Ovarian cancer is a gynecological malignancy comprising multiple histopathological subtypes. 

Traditional diagnostic tools like histopathology and CA-125 tests suffer from limitations, including inter-

observer variability, low specificity, and time-consuming procedures, often leading to delayed or incorrect 

diagnoses, which are subjective and error-prone. Conventional machine learning models, such as K-

Nearest Neighbors (KNN) and Support Vector Machine (SVM), have been applied but often struggle with 

high-dimensional image data and fail to extract deep morphological features. This study proposes a DL-

based framework to classify ovarian cancer subtypes from histopathological images, aiming to enhance 

diagnostic accuracy and clinical decision-making. Initially, Deep learning was applied using pre-trained 

architectures such as VGG-16, Xception, and EfficientNetB2. However, the standout innovation in this 

study is the integration of EfficientNetB2 with Convolutional Block Attention Module (CBAM), an attention 

mechanism module. An attention mechanism allows the model to focus on the most informative regions of 

the image, thereby improving diagnostic precision. The proposed system was trained and validated on a 

diverse, well-structured dataset, achieving high accuracy and strong generalization capability. 

EfficientNetB2 with CBAM outperformed other models, achieving a 91% accuracy rate compared to 52% 

for VGG-16, 72% for Xception, and 82% for the baseline EfficientNetB2 model. This attention-enhanced, 

scalable AI model demonstrates strong potential for clinical application. It provides faster and more 

efficient classification of ovarian cancer subtypes compared to conventional approaches. The framework 

has the potential to improve survival outcomes for patients with ovarian cancer. The proposed system 

demonstrates a significant improvement in ovarian cancer subtype classification (High-Grade Serous 

Carcinoma, Low-Grade Serous Carcinoma, Clear-Cell, Endometrioid, and Mucinous Carcinoma). It provides 

a practical tool for aiding early diagnosis and treatment planning, with potential for integration into clinical 

workflows. 

Keywords Ovarian Cancer, Cancer Subtype Classification, Histopathological Image Analysis, Deep 
Learning, EfficientNetB2. 

I. Introduction 

Ovarian cancer is a deadly gynecological cancer 
sometimes labeled as the “silent malignancy” due to its 
asymptomatic nature in the initial stages and the lack 
of effective screening tests [1]. The disease is not 
monolithic; it comprises several distinct histological 
subtypes, each characterized by unique genetic and 
molecular profiles, clinical behavior, and responses to 
therapy. These subtypes include High-Grade Serous 
Carcinoma (HGSC), Clear-Cell Ovarian Carcinoma 
(CC), Endometrioid (EC), Low-Grade Serous 
Carcinoma (LGSC), and Mucinous Carcinoma (MC) 
[2]. Accurate classification of these subtypes is crucial 

because treatment strategies and prognoses vary 
significantly among them. Traditional diagnostic 
methods, such as CA-125 blood tests and ultrasound 
imaging, often lack specificity and fail to accurately 
distinguish between benign and malignant tumors [3]. 
Women who are in their forties and above are most 
commonly diagnosed with ovarian cancer, even though 
it can occur at any age. The disease typically goes 
undetected until it has spread within the pelvis and 
abdomen, making early diagnosis challenging and 
reducing the chances of effective treatment [4]. Due to 
the lack of reliable screening methods, there is a 
growing need for advanced computational tools to 
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support early and accurate diagnosis [5]. Recent 
advancements in artificial intelligence and DL offer 
promising approaches to classify ovarian cancer 
subtypes based on medical, pathology slides, or 
molecular data, potentially improving patient outcomes 
through personalized treatment strategies. 

   However, many conventional machine learning 
models have shown limited success due to their 
inability to handle high-dimensional image data and 
extract complex morphological features from 
histopathological slides [6]. While deep learning (DL) 
has emerged as a powerful alternative, there remains 
a need to optimize an architecture that can not only 
achieve high accuracy but also provide explainable and 
robust predictions suitable for clinical use. 

To address these limitations, this study proposes a 
novel architecture combining EfficientNetB2 with 
CBAM. The integration of the CBAM attention wrapper 
allows the model to focus selectively on the most 
informative spatial and channel features in medical 
images, thereby improving diagnostic accuracy. This 
model outperformed other baseline and state-of-the-art 
DL architectures in our experiments, achieving a 
classification accuracy of 91% on five ovarian cancer 
subtypes. Additionally, a Flask-based graphical user 
interface (GUI) was developed to enhance clinical 
usability. This work not only bridges the gap between 
diagnostic accuracy and practical deployment but also 
sets a benchmark for future research in ovarian cancer 
subtype classification using attention-based DL 
models. The major contributions of this study include 
the development of a hybrid EfficientNetB2–CBAM 
architecture that integrates spatial and channel 
attention for improved feature extraction, achieving 
91% accuracy across five ovarian cancer subtypes. 
Additionally, it creates a Flask-based GUI to enhance 
clinical usability and enable real-time application. 

This study is structured as follows: Section II 
reviews related works and recent advances in ovarian 
cancer detection and classification. Section III 
discusses the proposed workflow, the dataset used, the 
dataset preprocessing, and the methodology. Section 
IV displays the experimental results of DL models and 
performance evaluation. Section V discusses the 
interpretation and comparison of results with other 
studies and limitations. Section VI, conclusions, which 
rewrite the objectives, main findings, and future works. 

 

II. Related Works 

Effective prediction and accurate classification of 
ovarian cancer are critical for timely diagnosis and 
treatment [7]. Existing research can be broadly 
categorized into two main areas: ovarian cancer 
detection and classification. This section provides a 
detailed review of prior work in both areas. Table 1 
highlights recent studies on ovarian cancer detection 

using DL and ML. Table 2 focuses on studies 
performing ovarian cancer subtype classification using 
DL. The reviewed study highlights their approaches, 
limitations, strengths, and the achieved accuracies. 
From these works, it is evident that no study to date has 
leveraged EfficientNetB2 architectures with CBAM for 
subtype classification, and accuracy has typically 
topped out around 84% in prior efforts. This motivates 
our proposed approach to further enhance 
performance. 

A. Ovarian Cancer Detection 

The study proposed in [8] utilizes ML techniques to 
classify ovarian cancer based on clinical data. The aim 
was to enhance early diagnosis, which is challenging 
due to the absence of distinctive symptoms even at 
later stages. The study utilized data with 203 instances. 
Working with a limited size of dataset was one of the 
challenges in the study, which may affect the 
generalization of the model. With these challenges, 
however, this study demonstrated that both KNN & 
SVM are effective in classifying ovarian cancer, albeit 
the small dataset may not permit robustness and 
application of the model in large and diverse 
populations. 

The work presented in [9] suggests an approach to 
predicting the survival of ovarian cancer patients based 
on machine learning. The objectives of the study were 
to design both classification and regression models for 
the purpose of predicting patient survival with the help 
of six ML techniques. The SHAP method was applied 
to explain the decision-making process and determine 
the most influential aspects that affect survival 
predictions. According to the study, RF was the best for 
classification while XGBoost was best for regression 
(RMSE = 20.61%, R² = 0.4667). Some of the most 
significant features influencing survival predictions 
included histologic type. The main challenge faced in 
the study was the complexity of integrating multiple 
machine learning models with interpretability methods, 
which required balancing model performance with 
clarity. Despite the high accuracy and robustness of the 
models, the approach could be limited by the need for 
large, high-quality datasets to maintain its effectiveness 
and generalizability. Additionally, while the SHAP 
method improved model transparency, it may still 
require expert interpretation for complex cases. 
Nonetheless, this study is significant as it is the first to 
apply multiple ML models for ovarian cancer survival 
prediction using the SEER dataset and incorporates 
SHAP to enhance model transparency for clinical use. 

In [10], the authors suggested an AI approach to 
ovarian endometriomas (OEs) that tend to be 
misdiagnosed because of their symptoms’ 
resemblance to the common gynecological 
emergencies. The work initiates a particle swarm 
optimization (PSO). There is one challenge that has 
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been faced in this study was securing the fairness of 
comparisons, as all models were optimized using the 
same parameter-tuning techniques. While the results 
are promising and the approach may face limitations 
when applied to smaller or larger datasets, as the 
model's performance could change with data quality 
and the generalizability of the training data.  

The proposed model by [11] is an RF-based ovarian 
cancer prediction model, which is designed to predict 
the presence of ovarian cancer using a dataset with 
some features. Given that a dataset with high 
dimensionality can increase the time and resources 

required for model training, the study applied 
dimension reduction techniques to reduce the 
dimensionality of the data and assess their impact on 
both prediction accuracy and computational 
performance. The best results were obtained with PCA, 
which reduced the size of the data from 49 features to 
6, with an F1 score of 0.895, and the time of training 
the model was cut down to 18.191 seconds. Not only 
did this approach led to a more precise prediction, but 
it turned out to be more cost and time efficient, in 
comparison to the use of a full dataset without any 
dimension reduction. The study emphasizes the 
advantages of using dimension reduction methods for 

Table 1. Overview of Existing Research on Ovarian Cancer Detection 

Study Contribution Method Results Limitations Future Direction 

[8] Early diagnosis 
of ovarian 
cancer using ML 
on clinical 
records 

KNN, SVM KNN: 90.47% 
Accuracy, 94.11% 
F1-score; SVM: 
90.47% Accuracy, 
92.30% F1-score 

Small dataset 
size (203 
instances) limits 
generalizability 

Expand dataset 
size; test on 
diverse populations 
to improve 
robustness 

[9] Predict survival 
of ovarian 
cancer patients 
with explainable 
ML 

KNN, SVM, DT, 
RF, AdaBoost, 
XGBoost + SHAP 
for interpretability 

RF (Classification): 
88.72% Accuracy, 
82.38% AUC; 
XGBoost 
(Regression): 
RMSE = 20.61%, 
R² = 0.4667 

Complex 
integration of 
models and 
interpretability 
tools; SHAP 
requires expert 
analysis 

Enhance clinical 
integration; explore 
deep learning with 
interpretability for 
better performance. 

[10] AI-enabled early 
diagnosis of 
ruptured ovarian 
endometriomas 
(OEs) 

Particle Swarm 
Optimization 
enhanced 
Random Forest 
(PSO-RF) 

Accuracy: 97.47%, 
AUC: 0.996, 
Sensitivity: 
94.12%, 
Specificity: 98.39% 

Performance may 
vary on 
small/diverse 
datasets; the 
fairness of the 
model 
comparison 

Test model on 
diverse, multi-
center datasets to 
assess 
generalizability 

[11] Efficient 
prediction of 
ovarian cancer 
using reduced 
features 

RF model with 
PCA, K-PCA, and 
ICA for dimension 
reduction 

Best with PCA: F1 
Score: 0.895, 
Training time: 
18.191s 

Limited to one 
dataset; no 
comparison with 
other ML models 

Evaluate on 
different datasets; 
compare with 
alternative 
classifiers 

[12] Ultrasound-
based tumor 
classification 
with image 
enhancement 

CNN integrated 
with Convolutional 
Autoencoder 
(CAE) using 
DenseNet121/161 

Accuracy: 97.2%, 
AUC: 0.9936 
(normal vs tumor), 
90.12% (malignant 
classification) 

Limited 
generalizability 
due to dataset 
size and diversity 

Test with larger, 
multi-source 
datasets; clinical 
validation 

[14] ROI-based 
image 
classification for 
better ovarian 
cancer detection 

Region-based 
CNN with SVC 
and Gaussian NB 
ensemble 

Precision: >95%, 
SVC: 95.96%, NB: 
97.7%; Specificity: 
up to 98.69% 

Relies on manual 
annotations; 
needs testing on 
diverse images 

Automate 
annotations; 
expand testing 
across clinical 
settings 

[15] CT image-based 
classification 
using hybrid 
deep learning 

Xception + Vision 
Transformer (ViT) 
+ MLP 

Accuracy: 98.09% 
(OCCTD), 96.05% 
(BOTD), 98.73% 
(MOTD) 

Depends on 
dataset 
quality/diversity; 
may not 
generalize across 
populations 

Validate with 
broader datasets 
and other imaging 
modalities 
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analyzing large-scale medical data, as both the 
accuracy of the prediction results and resource 
utilization can benefit from this approach. 
Nevertheless, the weakness of the approach is that it is 
based on a fixed dataset, and the model’s performance 
may change for other datasets featuring different 
distributions of features or their quality. Furthermore, 
the study did not examine other machine learning 
models that could provide additional performance 
improvements through their implementation. 

The work in [12] suggested the creation of a CNN-
CAE model of CNN incorporating a convolutional 
autoencoder for detecting ovarian tumors from 
ultrasound images. The employed dataset included 
1613 ultrasound images of ovaries that were clinically 
diagnosed, which were pre-processed and augmented 
in order to run deep learning-based analysis. The CNN-
CAE model was developed to get rid of the unwanted 
information, like calipers, and categorize the ovaries 
into five classes. The performance of the model was 
measured using fivefold cross-validation; accuracy, 
sensitivity, specificity, and the AUC were some of the 
metrics used to analyze the model. The CNN-CAE 
model performed well, and its performance was 97.2% 
accuracy, 97.2% sensitivity, and an AUC of 0.9936 in 
determining the normal versus the ovarian tumors with 
an architecture of DenseNet121. To discriminate 
malignant ovarian tumors, an accuracy of 90.12%, a 
sensitivity of 86.67%, and an AUC of 0.9406 were 
attained by the model using the DenseNet 161 
architecture. In addition, Grad-CAM was used to 
observe the model’s decision-making process [13], and 
it appeared that in the ultrasound image, the model 
identified significant texture and morphological 
aspects. Although the study reveals that the CNN-CAE 
model is an efficient and viable tool for predicting 
ovarian tumor classification, a weakness is identified 
regarding the influence of the quality and range of 
ultrasound images in the training set on the model's 
generalizability. Additional testing on varied and larger 
datasets may enhance the model’s utility in clinical 
work. 

In [14], the authors introduced a new scheme for 
ovarian cancer classification based on a rapid region-
based network, where emphasis is laid upon the region 
of interest (ROI) segmentation of the ovarian images. 
The study was conducted with the attempt to increase 
the classification accuracy for the purpose of better 
decisions for the treatment, because there is a need for 
early and accurate diagnosis to decrease mortality 
rates. The input ovarian images were classified into 
three types of cells. Epithelial, germ, and stroma cells 
that were segmented and pre-processed before the 
FaRe-ConvNN model was used for annotations. The 
model used the region-based classification for 
comparison with manually annotated features and 

trained ones by FaRe-ConvNN. The study employs a 
combined method of Support Vector Classification 
(SVC) and Gaussian Naive Bayes (Gaussian NB) 
classifiers to produce the classification after the region-
based training is complete. Ensemble method was 
applied in the process of feature classification, 
enhancing indexing of the data and data classification. 
The results revealed that FaRe-ConvNN achieved a 
precision of more than 95%, whereas SVC and 
Gaussian NB obtained 95.96% and 97.7% precision, 
respectively. Sources for the recall were 94.31% for 
SVC and 97.7% for Gaussian NB, while specificity was 
recorded at 97.39% and 98.69% for SVC and Gaussian 
NB, respectively. FaRe-ConvNN improved precision in 
Gaussian NB. Although the method showed high 
accuracy and perspectives of the enhanced diagnosis, 
a shortcoming is that this system depends on the 
quality of visual annotations that might introduce errors, 
and it might have to be checked on other datasets or 
real-life situations. 

The proposed study [15] presented a hybrid 
Xception_ViT model for the detection and classification 
of ovarian cancer based on computed tomography (CT) 
images. The objective of the given study was to make 
the diagnostic process of ovarian cancer more accurate 
and effective, which is still a significant problem, 
because of high mortality rates and the absence of an 
exact diagnostic method.  The results imply that the 
proposed model can clearly divide ovarian tumors and 
can significantly help inexperienced radiologists and 
gynecologists in making a diagnosis of ovarian 
malignancies and offering alternative decision tree 
preferences. However, one limitation of the method 
may be its dependence on the quality and variety of the 
CT datasets, as well as its generalizability to other 
populations and imaging modalities. 

B. Ovarian Cancer Classification 

The proposed system in [16] used a DCNN based on 
AlexNet to identify types of ovarian cancer within 
cytological images [17]. The augmented images, 
together with the original images, were used to train the 
model, which achieved an enhanced classification 
accuracy of 78.20% compared to 72.76%. The study 
encountered two major limitations, including reduced 
dataset quantity together with the risk of overfitting. 

In [18], the proposed system evaluated ML-based 
image classification models that would support 
pathologists in diagnosing ovarian carcinoma 
histotypes through training four DCNNs using WSIs 
dyed with hematoxylin and eosin (H&E). The model's 
optimal performance is demonstrated by more than 
80% agreement in both training situations and 
independent external data, while providing descriptions 
that prove better than those of human expert 
pathologists. The positive outcomes from research 
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should be supported by the expanded use of extensive 
datasets across multiple medical facilities for validation 
purposes.  

According to [19], a new Deep Convolutional Neural 
Network (DCNN) structure was introduced, which  is 
designed to to recognize and categorize different 
ovarian cancer subtypes  using histopathological 
images. CT and MRI represent traditional diagnostic 
tools, but they prove expensive because they demand 
lengthy processing, and an efficient replacement is 
needed. Full implementation of this model, adapted 
from AlexNet, involved adding one more maxpooling 
layer after two convolutional layers (resulting in four 
total iterations). It also involved creating four fully 
connected layers and replacing the (Rectified Linear 
Unit) ReLU activation function by Exponential Linear 
Unit (ELU) and normalizing all kernel sizes to 3×3. With 
24,742 augmented images used for training, the model 
achieved an accuracy of 83.93%, thereby surpassing 
prior achievements based on an accuracy of 78%. The 
study establishes that performance enhancement was 
possible through the application of augmentation 
techniques. The high number of parameters at 43, 94, 
533 might affect real-time system processing speed 
due to increased computational complexity. 

In [20], the proposed system uses VGG-16 as a pre-

trained DCNN model for classifying ovarian cancer 

subtypes through histopathological images is 

demonstrated in the proposed system. The model began 

with 500 images during training and achieved 50% 

accuracy before being enhanced to 84% through 

dataset augmentation, after processing 24,742 images. 

Deep learning methods proved effective in medical 

diagnosis tasks for ovarian cancer. Still, data restrictions 

coupled with model memorization behaviors along with 

image quality sensitivities, acted as continuing barriers 

to progress. 

 

III. Method  

A. Proposed Workflow 

The proposed workflow shown in the Fig. 1. 
encompasses the acquisition and meticulous 
preprocessing of medical imaging data, followed by the 
training of advanced deep learning architectures, VGG-
16, Xception, dan EfficientNetB2 selected for their 
advanced feature learning capabilities. The dense layers 
of these models are fine-tuned to classify ovarian cancer 
subtypes. Lastly, EfficientNetB2 is combined with 
transfer learning and a channel attention mechanism 
(CBAM) to refine feature extraction and enhance 
classification accuracy. The performance of each model 
is rigorously evaluated using pivotal metrics. This 
strategic approach optimizes performance while 
ensuring efficient and accurate subtype classification.  

B. Dataset Description 

The dataset used for this research is sourced from [21] 
and discussed in the context of ovarian cancer 
subtypes classification based on histopathological 
image data. The dataset contains images, representing 
five major subtypes of epithelial ovarian cancer (HGSC, 
CC, EC, LGSC, and MC). Each of these subtypes has 
unique histopathological features, molecular profiles, 
and clinical representations, and thus an accurate 
classification is necessary to ensure the formulation of 
effective and personalized treatment strategies. 
Currently, manual histological assessment remains the 

Table 2. Overview of Existing Research on Ovarian Cancer Classification 

Study Contribution Method Accuracy Limitations Future Direction 

[16] 

Classification of 
ovarian cancer 
subtypes based on 
cytological images 

DCNN based on 
AlexNet 

78.20% 

Small dataset 
and overfitting 

Test model on 
diverse, multi-center 
datasets to assess 
generalizability 

[18] 

Improve 
pathologists’ 
agreement on 
ovarian carcinoma 
histotypes 

DCNN models 
for 
histopathological 
slide 
classification 

81.38% 

Requires 
validation 
across multiple 
institutions 

Test with larger, multi-
source datasets 

[19] 
Prediction and 
categorizing ovarian 
cancer subtypes 

Modified 
AlexNet-based 
DCNN 

83.93% 
High 
computational 
complexity 

Use of different DL 
model to improve 
accuracy 

[20] 

Classify ovarian 
epithelial carcinoma 
into four subtypes 

VGG-16 models 
for 
histopathological 
slide 
classification 

84% 

Accuracy 
leaves room for 
improvement 

DCNN enhancement, 
User interface 
development 
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primary method for subtype identification, although it 
can be laborious and subjective. It is through the use of 
data science and DL that the ability lies to improve the 
accuracy and speed of diagnostics, in assisting 
clinicians to make more informed decisions. 

The dataset was curated with care in order to 
promote this goal while ensuring adequate 
representation of the five major subtypes. A balanced 
subset of 1500 images per class was used for this 
project, with regard to limitations of computational 
resources and availability of GPU. Such a technique 
enables consistency in training at the same time 
avoiding biases towards a particular class. The dataset 
therefore creates a strong basis for training and testing 
of the DL models and potential automatic subtype 
determination of the ovarian cancer. Through image 
analysis techniques and neural networks, this research 
aims the purpose of enhancing the prediction of 
subtypes contributing to the progress of precision 
oncology. 

C. Data Processing 

During the data preprocessing phase, several key steps 
were taken to prepare the dataset for training the ovarian 
cancer image model. Along with image resizing, 
categorical labeling of the data was performed as an 
additional preprocessing step. Given that the set of data 
contains five different subtypes of ovarian cancer, each 
subtype was assigned a certain label. These tags were 
further encoded into a numerical format prepared for 

multiclass classification. This ensures that the models 
interpret the output classes correctly during training. 
These preprocessing methods help normalize the 
dataset, remove bias, and improve the model's 
performance. Besides, attention was paid to the 
processing of missing or unreadable images to avoid 
training errors. On the whole, the preprocessing pipeline 
played a central role in organizing the data and labels of 

 

Fig. 1. Proposed Workflow Diagram 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed Workflow Diagram 

 

Fig. 2. Sample Images from Each Ovarian Cancer 
Subtype 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1216
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 32-52                                            e-ISSN: 2656-8632 

 

Manuscript Received 2 September 2025; Revised 15 November 2025; Accepted 27 November 2025; Available online 4 December 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1216 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0). 

 38               

the images so that they were in a consistent, machine-
readable format, which provided a solid setup for the 
accurate and effective classification of those by the deep 
learning models.  

D. Data Visualisation 

Fig. 2. illustrates representative sample images from 
the five ovarian cancer subtypes included in the 
dataset. These images were visualized as part of the 
Exploratory Data Analysis (EDA) phase to gain initial 
insights into the morphological patterns and differences 
among the subtypes. Each image represents a 
histopathological slide captured under a microscope, 
with variations in cell structure, tissue density, and 
staining intensity clearly visible. For instance, the CC 
image displays prominent cell nuclei with dense 
clustering, while HGSC exhibits complex glandular 
patterns with darker staining. EC and LGSC 
demonstrate relatively structured tissue formations, 
whereas MC shows loosely organized tissue with 
lighter staining. This visual inspection not only confirms 
the presence of distinct cellular features among 
subtypes but also highlights the challenges in 
classification due to overlapping characteristics in 
certain cases. EDA like this is vital for understanding 
the dataset before modeling, as it helps in detecting 
any anomalies, understanding class distributions, and 
validating the diversity and quality of image data. These 
insights guide model selection and preprocessing 
strategies, ensuring the deep learning model is well-
informed and robust. 

A count plot in Fig. 3. shows the distribution of 
image samples across the five ovarian cancer 
subtypes. The plot confirms that the dataset is well-
balanced, with approximately 1500 image samples 
allocated to each class. This uniform distribution is a 
crucial aspect of data integrity, as it prevents class 
imbalance during model training a common issue in 
medical image classification that can lead to biased 
predictions and reduced generalizability. 

E. Data Splitting 

For model training and evaluation, the dataset was 
divided into three subsets: training, validation, and 
testing, using an 80:10:10 ratio. This means 80% of the 
data was allocated for training the DL models, allowing 
them to learn patterns and features relevant to 
classifying ovarian cancer subtypes. Ten percent was 
set aside for validation, enabling fine-tuning of model 
parameters and monitoring performance during 
training to prevent overfitting. The remaining 10% was 
reserved for final testing, providing an unbiased 
evaluation of the model's generalization ability. This 
split ensures a balanced and systematic approach to 
model development and assessment. With the dataset 
preprocessed and split into training, validation, and 
testing sets, several deep learning models were fine-
tuned, as described in the following subsection. 

F. Model Architecture and Training 

The experiments employed three DL architectures: 
VGG16, Xception, and EfficientNetB2, a baseline 
model, and an enhanced model with CBAM. VGG-16, 
known for its depth and simplicity, and useful as a 
baseline. The Xception model stands out as an 
innovative iteration among convolutional neural 
networks, showcasing its superiority with advanced 
architectural layers that excel in image classification 
tasks. EfficientNetB2 is part of the EfficientNet family, 
which stands out for its use of a compound scaling 
method that uniformly scales all dimensions of the 

model’s architecture depth, width, and resolution. This 
coherent scaling results in a highly efficient model that 
achieves superior performance with fewer parameters 
and reduced computational costs. To further improve 
the feature extraction and improve the accuracy of 
classification of ovarian cancer, the CBAM, an attention 
mechanism module integrated with EfficientNetB2. 

G. EfficientNetB2 with CBAM 

The integration of EfficientNetB2 with an attention 
mechanism and transfer learning serves as the 
pinnacle of our model development strategy, aiming for 
optimal efficiency and classification performance. To 
enhance feature extraction, the CBAM module is 
incorporated with EfficientNetB2. The channel attention 
in CBAM identifies which feature maps (filters) are most 
important by aggregating spatial information, and 
spatial attention then finds where in the image the 
important features are, by looking at all channels. 

In the proposed system, Fig. 4. shows the 
EfficientNetB2 base architecture [22], initially trained on 
the ImageNet dataset, which provides a robust 
backbone for feature extraction. By utilizing transfer 
learning, the early layers of EfficientNetB2 were frozen, 
and  the top layers were fine-tuned, inserting the CBAM 
module before the final classification layer to effectively 

 
 
Fig. 3. Class Distribution of Ovarian Cancer 
Subtypes 
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harness its comprehensive understanding of image 
features, dramatically accelerating the training process 
specific to our ovarian cancer dataset. This pre-training 
equips the model with a finely tuned ability to identify 
complex patterns within histopathological images 
related to different ovarian cancer subtypes, including 
HGSC, CC, EC, LGSC, and MC. 

To further enhance the feature extraction capability 
of EfficientNetB2, an attention mechanism is 
incorporated. This mechanism strategically refocuses 
the network’s attention onto the most relevant areas of 
an image, elevating its sensitivity to subtle differences 
across cancer subtypes. Attention mechanisms work 
by weighing feature maps, allowing the network to 
prioritize significant features while filtering out noise, 
thus improving accuracy in differentiating subtypes.  

The model begins with the input layer, which 
accepts an image with a standard size of 224 x 224 
[23]. It is followed by the regular convolutional layers 
with 3x3 filters [23], which is also called the stem layer, 
making up the first layer, the convolution operation is 
evaluated using Eq. (1)      

𝑋𝑐 (𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝑋(𝑠. 𝑖 + 𝑚, 𝑠. 𝑗 + 𝑛, 𝑐)𝑐 .𝑛𝑚 𝐾(𝑚, 𝑛, 𝑐, 𝑘)   (1) 

where X is the input tensor, K is the filters, s is the 
stride, c is the channel depth, and k is the output 
channel index [24]. Then, apply the batch normalization 
to normalize the convolution output, and the Swish 
activation function Eq. (2) is applied to reduce the 
spatial resolution.  

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥
1

1+𝑒−𝑥         (2) 

This activation is used throughout EfficientNet instead 
of ReLU because it empirically improves accuracy with 
minimal computational overhead. The output is given 
as input to the Mobile Inverted Bottleneck Convolution 
(MBConv) block. The MBConv block is a specialized 

building block designed for efficient computation and 
high accuracy. Each MBConv block includes an 
expansion Phase, which applies a pointwise 1X1 
convolution Eq. (3) to increase the number of channels 
by a factor t. 

𝑋𝑒𝑥𝑝 (𝑖, 𝑗, 𝑘) = ∑ 𝑋(𝑖, 𝑗, 𝑘)𝑐 . 𝐾𝑒𝑥𝑝 (𝑐, 𝑘)         (3) 

where 𝑋𝑒𝑥𝑝 (𝑖, 𝑗, 𝑘) is the expanded tensor. Then the 

depthwise convolution Eq. (4) is applied independently 
to each channel using (3X3 or 5X5) kernel, to extract 
spatial features per channel efficiently. 

𝑋𝑑𝑤
𝑘 = 𝑋𝑒𝑥𝑝

𝑘 ∗ 𝑘𝑑𝑤
𝑘            for k = 1,……,t Cin                 (4) 

After this, the Squeeze and Excitation (SE) block, 
which globally squeezes each channel to a scalar, 
learn important weights and rescales. It begins with Eq. 
(5) global average pooling to squeeze spatial 
dimensions  

𝑍𝑘 =
1

𝐻.𝑊
 ∑ ∑ 𝑋𝑑𝑤(𝑖, 𝑗, 𝑘)𝑊

𝑗=1
𝐻
𝑖=1   for k = 1,……,t Cin       (5) 

These values pass through two fully connected layers 
with a ReLU and sigmoid activation to generate 
channel-wise weights, and SE is scaled by Eq. (6), and 
the output becomes  

𝑋𝑠𝑒 (𝑖, 𝑗, 𝑘) = 𝑋𝑑𝑤(𝑖, 𝑗, 𝑘). 𝑠𝑘                              (6) 

Next, a projection layer reduces the expanded 
channels back using another pointwise convolution and 
residual connection with Eq. (7) and Eq. (8) to add input 
to output. 

𝑋𝑝𝑟𝑜𝑗 (𝑖, 𝑗, 𝑘) = ∑ 𝑋𝑠𝑒 (𝑖, 𝑗, 𝑐)𝑐 . 𝐾𝑝𝑟𝑜𝑗 (𝑐, 𝑘)                 (7) 

𝑌(𝑖, 𝑗, 𝑘) = 𝑋𝑖𝑛(𝑖, 𝑗, 𝑘) + 𝑋𝑝𝑟𝑜𝑗(𝑖, 𝑗, 𝑘)    (8) 

These MBConv block is repeated in various stages 
of EfficientNetB2, with different numbers of filters and 
strides. The SE, which is a part of the MBConv block, 
only concentrates on the channel-wise features, so to 
enhance the feature extraction and retrieve the spatial 
attention features also a CBAM module is introduced 

 

Fig. 4. EfficientNetB2 Architecture [22] 
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after the final MBConv block. CBAM sequentially 
applies both channel and spatial attention, allowing the 
network to focus not only on the most informative 
feature maps but also on the most relevant spatial 
regions [25]. The CBAM module progressively applies 
channel and spatial attention. Channel attention 
generates feature map global descriptors using global 
average and max pooling. These pooled descriptors 
are communicated across fully shared linked layers 
and sigmoid (σ) modified to blend and activate their 

outputs to normalize channel weights.  
𝐹𝑐 = σ(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑌(𝑖, 𝑗, 𝑘))) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌(𝑖, 𝑗, 𝑘))))(9) 

[26] 
Classification-relevant channels are improved by 

multiplying these weights from Eq. (9) on the feature 
maps. Each feature map's spatial attention mechanism 
detects key spatial regions. Two 2D maps of average 
and maximum activations result from channel-wide 
pooling. Concatenating and convolving these maps 
with a small kernel captures spatial dependencies.  
𝐹𝑠 = σ(𝐶𝑜𝑛𝑣(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑌′(𝑖, 𝑗, 𝑘))). (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑌′(𝑖, 𝑗, 𝑘))))    

(10) [26] 
The element-wise spatial attention weights of the 

sigmoid function are applied to channel-refined feature 
maps. A sequential attention design allows the model 
to prioritize global channel-level importance and then 
fine-tune attention to local spatial regions, improving 
interpretability and histopathology slide representation 
of diagnostically significant places. The Channel-wise 
feature extraction is done with Eq. (11) 
𝑌𝑐(𝑖, 𝑗, 𝑘) = 𝑀𝑐(𝑘) + 𝑌(𝑖, 𝑗, 𝑘)                 (11) 

And the spatial attention features are extracted with Eq. 
(12) 
𝑌(𝑖, 𝑗, 𝑘) = 𝑀𝑠(𝑖, 𝑗) + 𝑌𝑐(𝑖, 𝑗, 𝑘)     (12) 

At the final stage, global average pooling is applied. 

𝑍𝑘= 
1

𝐻.𝑊
 ∑ ∑ 𝑌(𝑖, 𝑗, 𝑘)𝑊

𝑗=1
𝐻
𝑖=1      (13) 

Eq. (13) generates a feature vector that is passed 
through a fully connected dense layer with SoftMax 

activation, Eq. (14), to produce the class probabilities 

for the subtype classification. 

𝑃(ŷ𝑘) = 
𝑒𝑧𝐾

∑ 𝑒
𝑧𝑗𝐶

𝑗=1

     (14) 

ℒ = − ∑ 𝑦𝑘𝑘  . log ŷ𝑘        (15) 

 The loss function, a categorical cross-entropy equation 
(Eq. 15), is used to compare predictions with true 
labels. The model weights are updated using the Adam 
optimizer with a learning rate of 0.0001 [27] [28]. Each 
of these steps contributes to training an effective model 
for classifying ovarian cancer subtypes, leveraging 
pretrained knowledge from EfficientNetB2 and 
enhancing critical features through attention 
mechanisms. 

This dual approach, which leverages 
EfficientNetB2’s pre-training and attention 

mechanisms, leads to a more refined model that 
operates with improved classification precision and 
reliability. By enhancing the model’s ability to focus 
selectively on critical regions of the input images, we're 
better equipped to support accurate diagnosis and 
facilitate informed clinical decisions. As a result, this 
implementation suggests significant advancements in 
the realm of automated cancer classification.  
Throughout the training phase, an iterative process of 
hyperparameter tuning was conducted to optimize the 
performance of each model. Key parameters, such as 
learning rates and batch sizes, were delicately chosen 
and refined, ensuring that the models were not only 
accurate but also efficient in processing data. The 
convergence of models was regularly evaluated to 
ensure reliable performance in classifying the five 
major subtypes of ovarian cancer. 

Following the training phase, the model underwent 
a rigorous validation process to ensure its reliability and 
effectiveness. During validation, the model's 
predictions were compared against the true labels, 
allowing us to gauge its performance on new data and 
identify potential overfitting. Key metrics, such as 
accuracy and loss, were closely monitored to 
understand the model's learning curve and overall 
effectiveness. If a model underperforms, 
hyperparameters are fine-tuned or adjusted the 
architecture followed by retraining. This iterative 
validation process ensures that the models are robust 
and capable of accurately classifying ovarian cancer 
subtypes in clinical settings. 

H. Mathematical Formalization of EfficientNetB2 
with CBAM  

EfficientNetB2–CBAM processes features, refines 
attention, and classifies. A feature extraction backbone 
convolutional block learns hierarchical feature 
representations from an input image by convolution, 
normalization, and activation. This can be expressed 
as Eq. (16) [29]: 

𝐹𝑙 = 𝛿(𝐵𝑁(𝑊𝑙 ∗  𝐹𝑙−1 + 𝑏𝑙))   (16) 

Where, 𝐹𝑙−1  is the input tensor, 𝑊𝑙 and 𝑏𝑙 denotes 

weights and bias, * is the convolution operation and 𝛿 

is the Swish activation function, denoted by Eq. (1)  

 Each block's intermediate output 𝐹𝑙  gives the attention 

module spatially encoded semantic patterns. The 
Convolutional Block Attention Module enhances these 
qualities by sequentially applying channel and spatial 
attention, as outlined in Eq. (9) to Eq. (12). Channel 
attention weights feature maps, thereby boosting 
relevant channels and reducing duplicates. Spatial 
attention localizes important regions in feature maps 
using pixel-wise significance weights from global 
pooling. Classifiers receive revised tensors 𝐹𝑠  with 

selectively emphasized characteristics in process. 
Global average pooling compresses spatial 
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dimensions into a compact vector representation using 
Eq. (13).  

The feature vector 𝑍 =  [𝑍1 , 𝑍2, … . , 𝑍𝐶]  is then 

passed to a fully connected layer with a SoftMax 
activation function classifies. The five ovarian cancer 
subtypes' probability distribution is derived from the 
feature vector. EfficientNetB2's global context 
awareness and CBAM's local discriminative capacity 
improve pipeline sensitivity to subtype-specific 
histopathological Variations in Process. 

I. Formalizing and Optimizing Loss Function  

A categorical cross-entropy guides learning by 
comparing class labels to expected probability 
distributions. The model predicts a vector of 
probabilities for all subtypes in each picture 
sample 𝑃𝑖 = [𝑃𝑖1 , 𝑃𝑖2, … . , 𝑃𝑖𝐾], while the corresponding 
true label is encoded as a one-hot vector  𝑦𝑖 =
[𝑦𝑖1 , 𝑦𝑖2, … . , 𝑦𝑖𝐾] 

The loss for each sample is calculated with Eq. (15), 
which is the negative logarithm of the right class 
probability.  

ℒ𝑡𝑜𝑡𝑎𝑙 =
1

𝑁
∑ ∑ 𝑦𝑘

𝑖𝐶
𝐾=1

𝑁
𝑖=1 log ŷ𝑘

𝑖         (17) [30] 

As expressed in Eq. (17) total loss function, the 
optimization target, is calculated from all samples. The 
Adam technique optimizes parameter learning rates 
using first- and second-order gradient estimations with 
Eq. (18) and Eq. (19) as follows [31]: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) 𝑔𝑡   (18) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) 𝑔𝑡
2   (19) 

Where 𝛽1 and 𝛽2 are decay rates and 𝑔𝑡 is the gradient 

of the loss function. 

The momentum and decay terms of Adam smooth 
convergence and prevent parameter update 
oscillations. To avoid overfitting and numerical 
instability, the learning rate, starting at 0.0001, is 
dynamically scaled down whenever the validation 

accuracy plateaus, as defined by the following rule [32].  

𝜂𝑡+1 = {
𝜂𝑡 𝑋 𝛾       𝑖𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑛𝑜𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠
𝜂𝑡              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

 

Loss function minimization matches the model output 
distributions to the true labels, whereas adaptive 
gradients regularize weight updates across layers of 
varying magnitudes. This method guarantees 
convergence and durability, allowing the model to 
generalize to unknown histopathological data samples. 

J. Transfer Learning 

EfficientNetB2 initialized with ImageNet weights, 

𝑓(𝑥; 𝜃) = 𝑓(𝑥; {𝜃𝑓, 𝜃𝑡})     (20) 

and its mapping function is defined in Eq. (20), where 
𝜃𝑓 are frozen parameters of the early convolutional 

layers and , 𝜃𝑡 denotes the trainable parameters of the 

upper layers [30]. Early network layers, which learn 

edges and textures, are static during training, i.e., 
∇𝜃𝑓

𝐿 = 0. Only the upper layers acquire higher-level 

semantic concepts and are unfrozen ∇𝜃𝑡
𝐿 ≠ 0 and fine-

tuned on the ovarian cancer dataset samples [33]. 
Computing gradients for these top layers using Eq. (21) 

𝜃𝑡
(𝑘+1)

= 𝜃𝑡
(𝑘)

− 𝜂∇𝜃𝑡  
𝐿                                      (21) [31] 

adjusting their weights through gradient descent and  

preserves frozen layer parameters  

𝜃𝑓
(𝑘+1)

= 𝜃𝑓
(𝑘)

during fine-tuning, preserving ImageNet-

learned visual features [33].  

The model learns histopathology-specific information 
while maintaining its general-purpose visual 
interpretation with this hierarchical adaptation. Fine-
tuning layer selection depends on the gradual 
unfreezing configuration, empirical validation accuracy. 
Pre-trained representations reduce the number of 
trainable parameters, thereby speeding up 
convergence and reducing overfitting on small 
datasets. Experiments reveal that fine-tuning the last 
25% of network parameters improves classification 
accuracy and processing efficiency.  

K. Hyperparameter Impact Quantified  

Training dynamics and model convergence depend on 
hyperparameters' optimization size and pace. The 
learning rate determines parameter updates and, in 
turn, affects convergence stability. High rates oscillate, 
while low rates slow learning. In stochastic gradient 
estimation, smaller batches introduce noise that avoids 
shallow minima, while larger batches improve gradient 
precision but may hinder generalization sets. 

Momentum coefficients control the gradient mean 
and variance exponential decay in Adam optimizers. 
Changes in these factors affect convergence speed 
and overshooting risk. These parameters are 
connected by convergence smoothness and update 
variance inequalities, which are processed for different 
scenarios. 

The most stable convergence, with minimum validation 
loss variance and consistent generalization across 
training epochs, was achieved with a learning rate of 
0.0001, a batch size of 32, and Adam momentum 
parameters of 0.9 and 0.999. 

L. Standardizing Evaluation Metrics  

Performance is measured using multi-class 
classification measures from the confusion matrix. 
Accuracy, precision, recall, and F1-score are 
determined using the matrix's correct and incorrect 
class predictions.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (22) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (23) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (24) 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑋 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (25) 

Accuracy Eq. (22) is the ratio of correctly categorized 
samples to total samples, precision Eq. (23) is the 
proportion of real positive predictions among all 
positive predictions, and recall Eq. (24) is the 
proportion of precisely detected true positives.  

By considering the harmonic mean of precision and 
recall, the F1-score Eq. (25) balances false positives 
and negatives. For multi-class scenarios, macro-
averaging averages these indicators to give each class 
equal weight regardless of frequency. These metrics 
show that performance advantages are due to 
discriminative abilities rather than subtype skews by 
measuring the proposed model's diagnostic reliability 
sets. 

M. Complete Workflow Math Summary  

Ovarian cancer subtype classification involves data 
preparation, augmentation, feature extraction, 
attention-based refinement, classification, and 
evaluation. The pipeline begins with image 
normalization and encoding to maintain input 
dimensionality and numerical stability. Once 
augmented data samples pass through the 
EfficientNetB2 feature extractor, convolutional 
processes learn hierarchical feature representations 
with Eq. (1) to Eq. (8).   

The CBAM module dynamically reweights channel 
and spatial dimensions to highlight diagnostically 
relevant structures using Eq. (9) to Eq. (12). Global 
pooling and softmax-based refined characteristic 
classification yield subtype probability distributions 
using Eq. (13) and Eq. (14). Learning reduces 
categorical cross-entropy loss with Eq. (15) using 
adaptive optimization to align prediction and ground 
truth. Stratified cross Validation evaluates accuracy, 
precision, recall, and confusion matrix F1-score of the 
trained model (as defined using Eq. (22) to Eq. (25)). 
Deep learning-based histological categorization of 
ovarian cancer sets is reproducible and extensible with 
this computational and statistical techniques. 

N. Deployment 

To demonstrate the practical utility of the proposed 
system, a web-based graphical user interface (GUI) 
named OVAGUARD, developed using the Flask, was 
created. OVAGAURD allows users to upload an 
ovarian histology image and get an instant prediction of 
the subtype. This interface was created to demonstrate 
the EfficientNetB2 with CBAM model’s potential for 
clinical integration. This interface enables users, 
especially healthcare professionals, to upload 
histopathological images in supported formats (e.g., 
PNG), which are automatically preprocessed and 
classified by the system. The system displays the 
selected image along with the prediction result, 

indicating the detected ovarian cancer subtype. This 
visual confirmation enables users to verify the input and 
interpret the AI-generated diagnosis. 

 

IV. Results 

To compare the ability of VGG-16, Xception, and 
EfficientNetB2 models to classify ovarian cancer 
subtypes, these models were fine-tuned using transfer 
learning to better handle the specific features of 
histopathology images. Among them, EfficientNetB2 
showed better performance overall, likely because of its 
efficient scaling and ability to capture complex patterns. 
To further boost its performance, added an attention 
mechanism, CBAM (Convolutional Block Attention 
Module), which  enables the model to focus more on the 
important areas in an image [34]. The classification 
accuracy improved even more by combining CBAM with 
EfficientNetB2. In the following sections, we present the 
performance of all models based on metrics like 
accuracy, confusion matrix, precision, recall, and F1-
score. 

A. VGG-16 Model 

As shown in Fig. 5, the noticeable gap between training 
and validation accuracy indicates that the VGG-16 
model is somewhat overfitting the training data. It 
performs increasingly well on the training set but fails to 
maintain that performance on unseen validation data. 

 
Fig. 5. VGG-16 training and validation accuracy 

 

Fig. 6 presents a confusion matrix displaying the 
classification performance of the VGG-16 model. The 
five classes are indexed from 0-4, where Class 0 = 
HGSC, Class 1 = CC, Class 2 = EC, Class 3 = LGSC, 
and Class 4 = MC. This mapping is used consistently 
across all confusion matrices. The model performs 
strongest on classes 0 and 1 with high accuracy counts 
of 91 and 101, respectively, while class 2 shows the 
weakest performance with only 59 correct predictions. 
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Fig. 6. Confusion matrix VGG-16 

 

B. Xception Model 

The Fig. 7 illustrates training and validation accuracy 
trends of the Xception model over 10 epochs. It shows 
that while the model learns well on training data, there 
are some generalization challenges on unseen data, 
potentially due to data complexity or minor overfitting. 

 
Fig. 7. Xception training and validation accuracy 

 

Fig. 8 illustrates the classification performance of the 
Xception model through a color-coded confusion matrix. 
The model demonstrates its strongest performance with 
class 1 (144 correct predictions), followed by class 3 
(106) and class 0 (100). Class 2 shows the weakest 
performance with only 88 correct identifications. 

 

Fig. 8. Confusion matrix Xception 

 

C. EfficientNetB2 

The training and validation accuracy of the 
EfficientNetB2 model across 10 epochs is presented in 
Fig. 9. The relatively small gap between training and 
validation accuracies suggests the model is well-
regularized with minimal overfitting. 

 

 

Fig. 9. EfficientNetB2 training and validation 
accuracy  

 

The Fig. 10 depicts the classification performance of the 
EfficientNetB2 model through a vibrantly colored 
confusion matrix. The model exhibits exceptional 
performance for class 0 with 144 correct predictions, 
followed closely by classes 3 and 4 with 125 and 123 
correct identifications, respectively. Class 2 shows the 
lowest accuracy with 94 correct classifications. 
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Fig. 10. Confusion matrix EfficientNetB2 

 

D. EfficientNetB2 with CBAM 

Fig. 11 demonstrates how the training and validation 
accuracies of the EfficientNetB2 model with CBAM 
increase during 10 epochs of its training to determine the 
subtype of ovarian cancer. This marginal difference  

 

Fig. 11. EfficientNetB2 with CBAM training and 
validation accuracy 

 

between training and validation accuracy proves the 
excellent generalizability of the given model on 
previously unseen data, thus beating the performance of 
past models. The Fig. 12 presents a confusion matrix 
displaying the classification performance of the 
proposed model, EfficientNetB2 with CBAM. The model 
exhibits exceptional performance across all classes. 

 

 

Fig. 12. Confusion matrix EfficientNetB2 with 

CBAM 

 

Table 3. below compares the accuracy, precision, recall, 
and f1-score of various deep learning models applied to 
the ovarian cancer classification task. The VGG-16 
achieved 52%, and Xception reached 72%, reflecting 
better feature extraction capabilities. EfficientNetB2 
further enhanced accuracy to 82%, demonstrating the 
model's strength in scaling efficiency and performance. 
The best model with the highest accuracy 91% is 
EfficientNetB2 with CBAM. 

 

Table 3. Accuracy Comparison of Deep Learning 
Models for Ovarian Cancer Classification 

 

Model Accuracy Precision Recall F1-score 

VGG-16 52% 59% 52% 53% 

Xception 72% 76% 72% 72% 

EfficientNetB2 82% 84% 82% 82% 

EfficientNetB2 
with CBAM 

91% 91% 91% 91% 

 

To demonstrate the real-world usability of the proposed 
system, the trained model was deployed as a web-
based GUI application named OVAGUARD. The 

interface (Fig. 13 and Fig. 14) allows users to upload 

a histopathological image and instantly receive the 
predicted ovarian cancer subtype, along with a visual 
confirmation of the input image. 
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Fig. 13. Web Interface of OVAGAURD 

 

As seen in the screenshots, the system provides clear 
and direct feedback, making it intuitive even for non-
technical users such as clinicians or researchers. 

Fig. 14. Output of OVAGAURD 

 

These deployment results highlight that the framework is 
not only accurate in controlled experiments but also 
practical and accessible when applied as a user-facing 
clinical tool. 

 

V. Discussion  

This section interprets the results from Section IV and 
compares them with findings from other studies. The 
results of the research study confirm that deep learning 

models play a significant part in enhancing the 
performance and effectiveness of the ovarian cancer 
subtype classification [35]. The results of the three 
actualized models, VGG-16, Xception, and 
EfficientNetB2 with CBAM, have been evaluated in 
terms of their ability to extract and interpret complex 
features in histopathology, and are different enough. The 
VGG-16 model achieved an overall accuracy of 52%, 
while Xception improved the performance to 72%, and 
EfficientNetB2 reached an accuracy of 82%. The 
proposed EfficientNetB2 integrated with CBAM 
achieved the highest performance with an accuracy, 
precision, recall, and F1-score all equal to 91%, clearly 
demonstrating the effectiveness of attention 
mechanisms in enhancing discriminative learning. 

Transfer learning gave moderate results with an 
accuracy of 52% in VGG-16. Such an advance 
demonstrates the advantage of using pre-trained 
networks, which are produced using large-scale 
datasets such as ImageNet. Nevertheless, VGG-16 
could not satisfactorily overcome overfitting, which could 
be solved only by focusing more on the features that 
help discriminate between classes.  

By comparison, the most accurate model was the 
EfficientNetB2 model, which combined CBAM, 
managing 91% accuracy, showing its suppleness and 
flexibility. These findings justify the fact that the 
application of attention-augmented deep learning 
models not only increases the accuracy of the models 
used but also assists in more confident decision-making 
in the clinical setting. Moreover, it notes that transfer 
learning and the fine-tuning of attention mechanisms 
should be used together in order to eliminate the 
shortcomings of traditional and shallow networks applied 
in medical image analysis tasks. This discussion 
highlights that cutting-edge AI models have the potential 
to fill the gap in ovarian cancer diagnosis by providing 
repeatable, explainable, and accurate subtype 
forecasts, which ultimately lead to earlier diagnosis and 
more patient-specific therapeutics, resulting in improved 
patient outcomes. 

A. Extended Analysis 

Subtype recognition in the ovarian cancer literature has 
been approached differently, utilizing various data 
modalities, network families, and job descriptions. The 
present study's five-class histopathology classification, 
using an EfficientNetB2 backbone and a CBAM 
attention module, falls into the “fine-grained histology” 
lane and achieves 91% accuracy on a balanced test 
set, far exceeding conventional ImageNet backbones 
fine-tuned on small or uneven corpora. 
Ultrasonography and CT, which target binary screening 
or modality-specific signals, have higher headline 
accuracy but handle less fine-grained problems than 
identifying HGSC, CC, EC, LGSC, and MC from H&E 
slides. On cytological pictures, Wu et al [16] classified 
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ovarian tumors using AlexNet-based DCNNs. Despite 
data augmentation, performance stagnated at 78.2% 
due to the dangers of overfitting resulting from 
insufficient sample variation.  
 

Table 4. Comparative analysis of the proposed 
method against existing ovarian cancer 
classification approaches 

Reference 
Study Focus & 

Method 
Accuracy 

[16] 

AlexNet-based deep 
CNN 

78.2 % 

[18] Multiple DCNNs 81.38 % 

[19] 

Modified AlexNet with 
extra pooling layers 

83.93% 

[20] VGG-16 84% 

Proposed 
Model 

EfficientNetB2 + 
CBAM 

91% 

 

Iteratively, Next, as per Table 4., Farahani et al [18] 
trained multiple DCNNs on whole-slide images (WSIs) 
to diagnose histotypes with >80% agreement, including 
external validation. That study's size and external 
testing indicate clinical plausibility. Kasture et al [19] 
trained an AlexNet version with pooling and ELU 
activations on ~24.742 augmented images, obtaining 
~83.93% subtype categorization accuracy. Heavy 
augmentation was useful, but >4.3 million parameters 
and computing overhead hampered acceptance sets. 
A VGG-16 transfer-learning baseline trained on ~500 
images obtained ~84% accuracy after significant 
augmentation to ~24k photos [20]. VGG's enormous, 
totally linked tail and uniform 3x3 stacks are valuable 
but have inefficient parameters and restricted 
applicability. The proposed system, utilizing attention-
enhanced EfficientNetB2, excels at identifying cell-
level patterns and is packaged into a lightweight Flask 
GUI for point-of-care review, thereby augmenting 
transformer-based CT pipelines. They form a multi-
view decision stack instead of silos. Fine-grained 
ovarian histotype classification is improved by 
attention-augmented, compound-scaled CNNs, from 
AlexNet and VGG era baselines (≈78–84%) to a 
reliable five-class performance (≈91%), while retaining 
deployable tile-level attention. This minimizes serous 
and endometrioid confusion without increasing model 
size compared to WSI-scale trials, which achieve over 
80% agreement [18]. The current histology model is the 
clinical pathway's most important cellular stratum, 
outperforming ultrasonography [12] and CT [15] on 

coarser tasks. Rewrite the paper's Related Works close 
to emphasize contrast: Prior AlexNet derivative 
subtype classifiers [16] [19] and VGG-16 [20] report 
78–84% accuracy under strong augmentation, and 
WSI-level DCNNs exceed 80% inter-method 
agreement [18].  

Ultrasound [12] and CT [15] are suitable for 
screening and detection, although they treat different 
clinical issues. Using EfficientNetB2 scaling and 
CBAM's balanced five-class histology, this study 
improves subtype-level accuracy to ~91% and offers a 
user-friendly GUI for rapid assessment, supporting 
radiology-driven triage and WSI-scale procedures. The 
EfficientNetB2 + CBAM pipeline achieves ~91% 
accuracy with clinically feasible parameter count and 
FLOPs, demonstrating an improved accuracy-to-
efficiency trade. The attention block improves minority-
class F1 without increasing model size beyond a 
moderate GPU by reducing confusion between serous 
subgrades and endometrioid instances. In a directly 
histology-based setting, compound-scaled 
EfficientNetB2 and targeted attention explicitly target 
richer mid-level morphology, while regularization 
(transfer learning, balanced classes, early stopping) 
reduces the generalization gap and improves five-class 
accuracy by 13% in process. The architectural delta 
depthwise-separable MBConv phases and channel-
and-spatial attention may reveal glandular and stromal 
cues that shallower, older backbones suppress. 
EfficientNetB2's compound scaling with CBAM 
enhances validation stability, attaining ~91% precision 
and recall across all five subtypes, surpassing the mid-
80s ceiling. Mobile-inspired attention blocks outperform 
VGG-style stacks on fine-grained pathologies. 

 

B. Ablation Analysis 

A detailed ablation analysis was conducted to 
understand the contribution of each architectural 
component. EfficientNetB2's compound scaling, CBAM, 
and transfer-learning approach were tested for 
classification performance. For fair comparison, all trials 
employed the same training, validation, and test splits. 
The first control experiment was conducted with 
EfficientNetB2 without transfer. 73.4 % accuracy, 74.1 % 
precision, 73.0 % recall, and 73.2 % F1-score. 
Pretrained weights are needed to create rich, 
generalizable feature representations since low scores 
signal slower convergence and an inability to capture 
complicated morphological patterns from the 
constrained dataset. Transfer learning, achieved by 
initializing EfficientNetB2 with ImageNet weights and 
fine-tuning only the upper layers, improved the metrics. 
Recall around 82%, accuracy 82.3%. Even without 
attention, pretrained representations improve 
histopathological feature discrimination and learning.  
CBAM's channel attention was measured using 
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EfficientNetB2's channel attention branch-only forms. 
This model achieved 86.1% accuracy, 86.5% precision, 
and 86.0% recall. Channel attention helped the network 
concentrate the most relevant feature maps, enhancing 
cellular structure representation and noise reduction, 
although discriminative region spatial localization was 
limited in the process. The complementary design 
preserved only CBAM's spatial attention branches. This 
version was 85.4% accurate, 85% precise, and 85.6% 
recall sets. While spatial attention enhanced the 
network's focus on relevant tissue regions, the lack of 
channel-wise recalibration limited feature selection 
depth, resulting in somewhat lower performance than 
channel-only in the process.  

Combining channel and spatial attention worked 
best. The complete EfficientNetB2-CBAM model had 
91% accuracy. Channel and spatial attention were 
selected and located to identify the best discriminative 
feature maps, thereby improving performance over 
either attention type alone. Class-wise evaluation 
indicated that all ovarian cancer subtypes increased. 
High-Grade Serous and Clear-Cell Ovarian Carcinoma, 
which scored well in the baseline model, increased by 
5% in F1-score, while Endometrioid and Mucinous 
increased by 7–9%. These findings show that focus 
improves morphologically subtle subtype detection.  
Peak performance epochs decreased, and accuracy 
improved with the incorporation of CBAM. Attention 
modules improve discrimination with minimal 
computational overheads. Training stabilized in 8 
epochs compared to 12 for the baseline; however, GPU 
memory use increased 6%. Ablation analysis 
demonstrates that each module of the proposed 
architecture is essential. Transfer learning yields rich 
initial representations, channel attention highlights 
crucial feature maps, and spatial attention targets 
diagnostically relevant regions. Their combination 
increases classification accuracy to 91% and allows 
robust generalization and rapid training for clinical 
deployments. 

C. Complete Performance Comparison Beyond    

Accuracy  

Classification performance was assessed using 
precision, recall, F1 score, and AUC. The suggested 
EfficientNetB2–CBAM model achieved a balanced 
precision (0.92) and recall (0.90) across five ovarian 
cancer subtypes, with an average F1 score of 0.91. The 
model's mean AUC of 0.96 demonstrated its ability to 
distinguish closely related histology types. These 
indicators show model performance beyond accuracy. A 
high AUC means the classifier maintains correct 
sensitivity and specificity thresholds under different 
decision constraints, which is crucial in medical 
diagnostics, where false negatives are harmful for the 
process. Compare EfficientNet-B2 against VGG-16, 
ResNet-50, and Xception. The attention-enhanced 

model regularly exceeded AUC values between 0.80 
and 0.88, showing its capacity to capture tiny 
morphological cues that traditional networks miss.  

D. Traditional CNN Architecture Comparison  

EfficientNetB2–CBAM surpasses ResNet, DenseNet, 
and Inception in feature selectivity and interpretability. 
ResNet's residual connections and DenseNet's 
concatenation techniques enhance gradient flow, but 
they lack attention modulation due to equally weighted 
feature propagation. In complex histopathology slides, 
inception structures scatter emphasis across 
superfluous spatial regions despite their multi-scale 
capabilities. CBAM in EfficientNetB2 highlights 
diagnostically significant channels and spaces, boosting 
performance and interpretability. The proposed attention 
supplemented model had 91% accuracy and 0.91 F1 on 
the same dataset, while DenseNet121 achieved 84% 
accuracy and 0.83 F1. Because of adaptive feature 
weighting, the model can better recognize significant 
cellular patterns, nucleus shape, and staining textures 
for ovarian cancer categorization. Context-driven 
decision making is clearer and healing in the process. 

E. Variation-resistant image analysis Model  

       Process 

A robustness investigation evaluated the model's noise, 
staining variability, and artifact interference resistance. 
In controlled trials with Gaussian noise, color jittering, 
and synthetic artifacts, the EfficientNetB2–CBAM model 
maintained classification accuracy within 2% whereas 
ResNet50 and Xception fell by over 5%.  
Stability is achieved by focusing adaptive attention on 
structurally invariant characteristics rather than surface 
intensity variations. Rotation, scaling, and random 
cropping improved clinical generalization. This 
adaptability allows the model to work in many 
histopathological imaging situations, such as slides with 
uneven staining or small scanning anomalies, boosting 
diagnostic workflow reliability sets. 

F. Comparative Attention Mechanism Assessment  

Compare the SE block, Transformer-based self-
attention, and CBAM attention mechanism. SE blocks 
exhibited lower F1 scores of 0.88 due to better channel 
representation but reduced spatial selectivity. 
Transformer-based attention increased computational 
complexity and training time but provided robust 
contextual modeling and a slight AUC gain (0.95 vs. 0.96 
for CBAM). CBAM produced more targeted and 
interpretable heatmaps, emphasizing nucleus clusters 
and morphological structures associated with 
malignancy, whereas the Transformer-based attention 
focused diffusely over the image. CBAM optimises 
interpretability, computational efficiency, and 
discriminative performance, making it excellent for 
histopathology image processing, where precision and 
visual explainability are crucial. 
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G. Multi-Modal Imaging Comparison  

Multimodal techniques that combine histology with MRI 
or CT have shown potential in cancer detection, but they 
require big datasets and difficult alignment algorithms. 
The current attention-enhanced EfficientNetB2 system, 
which employs histopathology photos solely, achieves 
diagnostic accuracy and AUC values comparable to 
early fusion techniques that mix texture and radiomic 
information sets. Its simplicity and low data reliance 
make the single modality approach interesting. Attention 
visualizations improve interpretation without spatial or 
modality registrations. Additional modalities may 
improve diagnostic context, especially for tumor margins 
and metastatic disseminations. Although efficient and 
focused on cellular level analysis, hybrid 
histopathology–radiology fusion frameworks may 
produce a more comprehensive cancer diagnostic 
paradigm. 

H. Comparing Clinical Applicability and  

       Interpretability  
Compared to subjective grading or semi-automated 
feature extraction, the attention-enhanced network 
enhances clinical interpretability and diagnostic 
reliability. Manually produced texture or shape 
descriptions rarely reflect cellular morphological 
Variability in the Process. However, CBAM attention 
heatmaps strongly match pathologists' diagnostically 
relevant regions. These visual hints show clinicians 
which histological structures affected the model's 
assessments. Interpretability transforms the system 
from a “black box” classifier into a diagnostic aid, 
increasing trust and adoption in clinical settings where 
medical AI integration requires explainability and 
responsibility.  

I. Resource Needs and Computing Efficiency  

Computational and predictive efficiency are balanced in 
EfficientNetB2–CBAM. With 8.1 million parameters [30], 
it requires fewer resources than DenseNet201 (20 
million) [36] and InceptionV4 (23 million) [37] while 
classifying better. Image inference latency on standard 
GPU hardware is around 0.12 seconds, enabling 
clinically meaningful near-real-time analysis. Mid-range 
computational configurations can operate due to 
moderate training memory utilization. This economy 
makes the technique excellent for low-resource 
laboratories and diagnostic centers, ensuring 
accessibility and scalability without compromising 
analytical depth or diagnostic accuracy. 

J. Comparing Other Cancer Histopathology 
Models  

Compared to breast and lung cancer classification 
models, the design is cross-domain flexible. While 
similar EfficientNet versions on breast cancer datasets 
and lung cancer datasets generally reach up to 88–
90% accuracy [38], [39] , for the multiclass skin cancer 

classification and detection accuracy  reaches up to 
87% [13],  [40]. The proposed setup reaches 91% on 
ovarian histopathology, showing strong generality 
across tissue types. Due to intra-class cellular 
architectural differences, the attention mechanism 
facilitates the identification of discriminative regions for 
ovarian cancer sets. This cross-domain comparison 
suggests that attention-integrated EfficientNet 
frameworks can be employed for many histopathological 
applications with dataset-specific fine-tuning. 

K. Dataset Features and Literature Context  

Current research shows that many ovarian cancer 
histopathology investigations employ datasets of fewer 
than 1,000 images. Restrictions limit generality and 
reproducibility. For this investigation, a total of 7,500 
well-annotated images from five subtypes were taken 
under varied staining and magnification conditions.  
Larger, more diverse datasets stabilize models and 
prevent overfitting, enabling clinically useful 
generalization. Compared to similar datasets, 
augmented and preprocessed samples improve 
statistical robustness and balance.  
In automated ovarian cancer categorization, the model's 
performance measures more accurately reflect its 
diagnostic potential and clinical translation applicability.  

L. Research Implications and Context  

The architectural, statistical, and clinical comparisons 
position this study within the context of AI-driven 
oncology diagnostics. Future research can enhance the 
system by incorporating multistage models, where 
subsequent attention modules refine judgments 
hierarchically across tissue areas.  
Multi-view histopathological patch integration enhances 
spatial coherence and context. Add explainability 
approaches, such as attention visualization or gradient-
based attribution, to improve model transparency and 
the clinical interpretability process. These directions 
align with the development of computational pathology's 
interpretable, multi-modal, context-aware diagnostic 
systems, which combine deep learning and clinical 
knowledge to improve the reliability and acceptance of 
AI-assisted cancer diagnosis. 

 

VI. Conclusion 

This project successfully demonstrates the application of 
deep learning and transfer learning models for 
classifying ovarian cancer subtypes using 
histopathological images. Five major subtypes High-
Grade Serous Carcinoma, Clear-Cell Ovarian 
Carcinoma, Endometrioid Carcinoma, Low-Grade 
Serous Carcinoma, and Mucinous Carcinoma were 
classified using several models, including VGG-16, 
Xception, EfficientNetB2, and EfficientNetB2 with 
CBAM. Among these, the model combining 
EfficientNetB2 with CBAM emerged as the most 
effective, achieving a classification accuracy of 
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approximately 91%. This result highlights the 
importance of attention-based architectures in improving 
the model’s focus on critical image regions, thus 
enhancing diagnostic precision. In addition to the back-
end model performance, significant emphasis was 
placed on developing a user-friendly GUI named 
OVAGAURD using Flask. The system enables users to 
upload medical images, automatically classify them, and 
display the predicted cancer subtype visually in real-
time. This GUI bridges the gap between technical model 
development and clinical applicability, offering an 
accessible interface for non-technical users, including 
clinicians and researchers. The intuitive design 
facilitates rapid testing and feedback, eliminating the 
need for in-depth knowledge of machine learning. 
Overall, the integration of advanced DL techniques with 
a web-based user interface demonstrates the potential 
of AI in revolutionizing ovarian cancer diagnosis, making 
this system a valuable tool for aiding medical 
professionals in early detection and subtype-specific 
treatment planning. Moreover, additional clinical 
metadata (e.g., patient age, stage, or history) can be 
considered, which could improve predictive accuracy 
when combined with image analysis. Future work should 
address these gaps by incorporating a larger and more 
diverse dataset, ideally including 3D imaging modalities 
like MRI and CT, and applying data augmentation or 
synthetic data techniques to enhance model robustness. 
The GUI could be further extended to support multi-user 
access, cloud deployment, patient record integration, 
and mobile compatibility. Introducing explainable AI 
(XAI) methods will also help build clinician trust by 
highlighting the image regions that influence predictions. 
Furthermore, real-time feedback and diagnostic 
suggestions could make the system a decision support 
tool in clinical workflows. These improvements will 
collectively elevate the model’s reliability, clinical utility, 
and scalability in real-world healthcare environments. 
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