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Abstract. Image processing and machine learning are being used in biomedical applications as supporting tools
for the detection and diagnosis of certain diseases. Breast cancer is one of these diseases that researchers have
devoted great effort to for decades. To accomplish this task, image-based and feature-based public datasets are
available for use. Due to several factors such as hardware limitations or preprocessing, images can become noisy.
The noise in images, which can lead to anomalies or outliers in the dataset, may decrease detection accuracy and
mislead medical staff during the diagnostic stage. Therefore, this study aims to present the effect of removing
outliers from the dataset on the detection accuracy of breast cancer. The proposed method removes outliers
detected through z-score analysis. The remaining data are normalized, and the classification accuracies of ten
methods are obtained through direct implementation. The methods include XGBoost, Neural Network, CNN, RNN,
AdaBoost, LSTM, GRU, Random Forest, SVM, and Logistic Regression. The public dataset Wisconsin Diagnostic
Breast Cancer (WDBC) was used in this study. An ablation study was conducted by fine-tuning the threshold value
of the z-score method. The results showed that the best accuracy was obtained when the threshold value was set
to 3. Additionally, a comparison was made between the results obtained using the entire dataset and the dataset
after outlier removal. The results showed that the average accuracy of all classifiers was 98.08%. In conclusion,
the findings indicate that removing outliers from the dataset increases the overall accuracy of breast cancer

detection.
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l. Introduction

Breast cancer continues to be one of the most
prevalent and life-threatening cancers among women
worldwide. According to the World Health Organization
(WHO), breast cancer accounts for approximately 25%
of all cancer diagnoses in women, with over 2.3 million
new cases reported annually as of 2020. Despite
advancements in treatment modalities, early detection
and accurate diagnosis remain the most effective
strategies for improving survival rates and reducing
breast cancer-related mortality. Early identification of
malignant tumors allows for timely intervention,
significantly improving the prognosis and quality of life
for patients [1], [2].

In recent years, the integration of Artificial Intelligence
(Al) into healthcare has revolutionized diagnostic
methods, enabling automated, efficient, and highly
accurate solutions for disease classification. Among Al-
driven technologies, Machine Learning (ML) and Deep
Learning (DL) have emerged as transformative tools in
the medical domain. These approaches leverage data-
driven algorithms to identify complex patterns and
relationships in medical data, providing actionable
insights that aid clinicians in decision-making. Their

ability to process large datasets and extract meaningful
information has made them particularly valuable in
breast cancer diagnosis, where accurate classification
of tumors as benign or malignant is critical [3], [4].

The Wisconsin Diagnostic Breast Cancer (WDBC)
dataset has become a benchmark dataset in breast
cancer research and is widely used for developing and
evaluating predictive models. This dataset contains
detailed measurements of tumor characteristics such
as cell radius, texture, perimeter, area, and
smoothness, making it an ideal resource for training
and testing machine learning algorithms. The
structured nature and accessibility of the WDBC have
allowed researchers to explore a wide range of
classification techniques, from traditional statistical
models to advanced deep learning architectures. The
primary objective of these studies is to achieve high
classification accuracy while ensuring the robustness
and generalizability of the models [5], [6].

The Mammographic Mass Dataset (MMD) [7],
another dataset frequently used in breast cancer
research, contains 961 records with features such as
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tumor shape, margin, density, and patient age. The
dataset is labeled to indicate the severity of breast
masses (benign or malignant) and is often used for
feature-based classification tasks. Studies have shown
that Decision Trees achieve 83.5% accuracy on this
dataset, but preprocessing techniques such as feature
scaling have improved this performance to 88.2% [8].
Logistic Regression (LR) has also performed well,
achieving 87% accuracy  with appropriate
preprocessing steps [9].

Achieving robustness and generalizability is crucial
for the practical application of machine learning models
in clinical settings. Robustness refers to a model's
ability to perform consistently across different datasets
and under varying conditions, while generalizability
ensures that the model can handle unseen data
effectively. However, several challenges, such as the
presence of outliers, imbalanced datasets, and
overfitting, can hinder the performance of predictive
models. Addressing these challenges is essential to
ensure that machine learning models transition
successfully from research to real-world clinical
practice.

Outlier detection and removal are particularly
important preprocessing steps in machine learning
pipelines, as outliers can introduce noise, distort model
training, and lead to biased predictions. Outliers are
data points that deviate significantly from most of the
dataset, and their presence can adversely affect the
performance of both traditional and deep learning
algorithms. Statistical methods, such as the z-score
outlier detection method [10], have been widely
adopted for detecting and eliminating outliers. By
removing these anomalies, researchers can improve
dataset quality, reduce the risk of overfitting, and
enhance the model's ability to generalize to new data
[111, [12].

The application of machine learning techniques to the
WDBC dataset has yielded promising results in breast
cancer classification. Traditional algorithms, such as
Support Vector Machine (SVM), Random Forest (RF),
and Logistic Regression (LR), have demonstrated
strong performance due to their ability to handle
structured data and identify meaningful patterns. For
instance, studies have shown that SVM achieves high
classification accuracy when combined with
appropriate feature selection and preprocessing
techniques [13], [14]. Similarly, ensemble learning
methods, such as Random Forest and boosting
algorithms like XGBoost and AdaBoost, have been
employed to further improve classification accuracy by
aggregating predictions from multiple weak learners
[15], [16].

In addition to traditional models, the advent of deep
learning has opened new possibilities for breast cancer
diagnosis. DL models, including Convolutional Neural
Networks (CNN) [17], Recurrent Neural Networks

(RNN) [18], Long Short-Term Memory (LSTM)
networks [19], and Gated Recurrent Units (GRU) [20],
have demonstrated superior capabilities in capturing
complex, non-linear relationships within data. CNN, for
example, have been adapted for tabular datasets such
as WDBC, leveraging their ability to automatically
extract high-level features from raw data [21], [22].
RNN and their variants, on the other hand, are
particularly effective in sequential data analysis and
have been used to model temporal dependencies in
medical datasets [23], [24].

Despite their high accuracy, deep learning models
often face challenges such as overfitting and the need
for large labeled datasets. Hybrid approaches that
combine traditional machine learning algorithms with
deep learning frameworks have been proposed to
address these limitations. Additionally, preprocessing
techniques such as outlier removal, feature scaling,
and dimensionality reduction have been shown to
significantly enhance model performance by improving
data quality and optimizing feature representation [25],
[26].

The importance of preprocessing in machine learning
cannot be overstated, as it directly impacts the
reliability and interpretability of predictive models.
Studies have demonstrated that removing outliers and
balancing datasets can lead to substantial
improvements in classification accuracy and
robustness. These preprocessing steps are particularly
relevant in medical applications, where the cost of
misclassification can be high. Moreover, integrating
explainable Al (XAl) techniques into machine learning
pipelines has gained traction in recent years, as it
provides transparency and interpretability to model
predictions. By understanding the features and
patterns that drive a model's decisions, clinicians can
gain confidence in its recommendations and integrate
it into their diagnostic workflows [27], [28]. Despite the
large number of studies utilizing machine learning in
breast cancer detection, limited attention has been
given to the impact of outliers. Few studies have
addressed this issue [29], [30], [31], although they
show that outliers can decrease model performance.
This study addresses this gap in the literature through
a systematic investigation into the effect of outlier
removal on model accuracy. We aim to highlight the
potential for improved performance in ML-based
diagnostic systems.

In this study, we evaluate the impact of outlier
removal on the performance of various machine
learning and deep learning models applied to the
WDBC dataset. Using the z-score method for outlier
detection, we preprocess the dataset to eliminate
anomalies and compare the results with conventional
approaches. The goal is to highlight the importance of
data preprocessing in improving classification
accuracy, robustness, and generalizability. The
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expected outcome of outlier removal from the dataset
is that the feature-wise interclass difference will
become more significant, thereby increasing detection
accuracy. Our findings provide valuable insights into
the role of preprocessing techniques in enhancing the
reliability of breast cancer diagnostic models, paving
the way for their potential integration into clinical
practice.

The remainder of this paper is organized as follows:
Section |l describes the dataset, preprocessing
methods, and machine learning models used in this
study. Section Ill presents the experimental results and
compares them with prior studies. Section IV discusses
the findings, compares them with the state-of-the-art
(SOTA), and outlines the limitations of the study.
Section V concludes the paper and provides
suggestions for potential future research.

ll. Method

This study focuses on improving the accuracy of breast
cancer classification through outlier removal and the
application of machine learning methods. The
proposed method consists of several steps: dataset
collection, z-score filtering, normalization, data
splitting, classification, and comparison with previous
studies. Fig. 1 illustrates the workflow of the model
used in this study.

WDBC
Dataset

Remove outliers by z-
score

v

Data splitting

¢ A\ 4

Train (80%) Test (20%)

v v

Evaluation

v

Classification
results

ML classifiers

Fig. 1. Framework of the study.

A. Dataset

The study was implemented and tested using the
WDBC dataset for breast cancer detection. This
dataset was obtained from the University of Wisconsin
Hospitals. It consists of features computed from
digitized images of fine needle aspirates (FNA) of
breast masses. Example images for each class of the
WDBC dataset are illustrated in Fig. 2.

The dataset contains 569 unique samples, of which
212 are malignant and 357 are benign. The dataset can
be accessed at
https://archive.ics.uci.edu/dataset/17/breast+cancer+
wisconsin+diagnostic. Ten distinct features were
extracted from each cell nucleus: radius, texture,
perimeter, area, smoothness, compactness, concavity,
concave points, symmetry, and fractal dimension. For
every feature, three statistical values were computed—
mean, standard error, and worst—resulting in a total of
30 features per sample. There are no missing values in

L v T YR
FA LA T 8 &%
o

Fig. 2. Sample images from WDBC dataset, (a)
Malignant class, (b) Benign class.

the dataset, which makes it reliable for researchers. All
features are numerical and have different ranges. Each
feature was normalized within its specific range using
the StandardScaler module as part of this study.

B. Outlier Detection and Z-score

In any dataset, outliers can significantly affect statistical
predictions as well as model parameter estimates.
They may distort the distribution of variables in the
dataset. These values are located far from the general
population of the distribution and can be detected using
outlier detection methods. Therefore, outlier detection
was applied to the dataset to identify and remove
outliers. Several outlier detection methods are
discussed in the literature. Isolation Forest (IF) is a
widely used method; however, it contains randomness
and depends on multiple parameters. Another method,
the Interquartile Range (IQR), suffers from dependency
on dataset size and tends to underperform with small
datasets. Therefore, the z-score method was chosen
for this study. It is a statistical measure that indicates
how many standard deviations a data point deviates
from the mean of the distribution [32], [33]. The
calculation for each point x is shown in Eq. (1):

2 =" (1)
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{x: outlier and removed if z, = threshold
)
x:normal data sample else

where, z, is the z-score, or the distance of point x from
the mean; pand o are the mean and the standard
deviation of the sample set, respectively. Samples with
a z-score greater than a predetermined threshold were
labeled as outliers and removed from the dataset. This
operation is given in Eq. (2). In the literature, the typical
threshold value is +3 [34], as approximately 99.6% of
samples in a normally distributed population fall within
13 standard deviations. The remaining data were used
for training and testing. The dataset was split into
training and testing subsets in an 80:20 ratio. Both
subsets were normalized using standard scaling before
the training stage was initiated. This procedure was
repeated for each iteration of the 5-fold cross-
validation. Data splitting was performed in a random
manner.

C. ML Classifiers

This section explains the ML methods we used in this
study for breast cancer classification. The dataset after
outlier removal was trained and tested using ten ML
methods: XGBoost, NN (Neural Network), CNN, RNN,
GRU, LSTM, SVM, RF, and LR. XGBoost, RF, and
AdaBoost are tree-based methods. NN, CNN, RNN
and LSTM are neural network—based architectures.
SVM is a margin-based classifier, while LR is a linear
classifier.

1. XGBoost

This method is a tree-based classifier defined by the
characteristic equation in Eq. (3) [35], where I(y;,y;) is
the loss function, y; and ¥, are the actual and predicted
output values for the i*"* sample, y is penalty factor, 1
is the regularization parameter, T is the number of
leaves and w is the leaf weight.

LO = iy (Yi,f’i(t_l) + ft(xi)) +yT +0.54 Z;T'=1 sz

@)
2. NN

This method is a fully connected and layer-based
method with the characteristic equation in Eq. (4) [36],
where the final decision, weight matrix, bias vector,
activation function of [** layer is a!, W!, b! and o,
respectively.

al = O.(Wla(l—l) + bl) (4)
3. CNN

This method uses convolutions, activation functions
and pooling steps to extract low- and high-level futures
from an input image and generates an output label. Its
general formula is as shown in Eq. (5) [37].

Cc M N

I.(0+m,j+n)K.(mn)+b

®)
In Eq. (5), a;; is the output, o is the activation function,
I is the input image with the dimension m X n, K is the
kernel function and b is the bias.
4. RNN
This method uses recurrent computation for hidden
states during each layer of the network. Its equations are
as shown in Eq. (6) and Eq. (7) [38] with h; and y, are
the hidden states and output, W is the weight matrix, b
and c are bias coefficients. The parameters ¢ and ¢ are
activation functions.

ht = O-(Whht—l + Wxxt + b) (6)

ye = p(Wyhe +c) (7
5. LSTM
This method is a type of RNN that incorporates gates
and cell states, as represented by Eq. (8), Eq. (9),
Eqg. (10), Eq. (1), Eq. (12) and Eq. (13) [38]. In the
following equations, ¢ is the activation function, b is the
bias constant, W is the weight matrix, x is input, h is
hidden state, f; is forget gate, o is the output gate and
C is the cell state.

fe = U(Wf[ht—bxt] + bf) (8)
ip = o(Wilhe_y, %] + by) 9)
Ce = tanh(W¢[he_q, x¢] + be) (10)
CtzftQCt—l-l'itOCt (11)
0r = o(W,[he—1,x¢] + by) (12)
hs = oy © tanh C; (13)

6. AdaBoost

This method constructs a strong classifier by combining
multiple weak classifiers using adaptive weighting. It is
calculated as shown in Eq. (14) [39], x is the input, a
is the weight of the weak classifier h.

F(x) = Sign(Z%:lamhm(x)) (14)
7. SVM

This method classifies samples by finding the optimal
hyperplane that separates data points into distinct
classes with minimal classification error. Eq. (15) [40]
shows the characteristic equation for SVM, where a is
the weight, y is the label, a is the Lagrange multiplier,
K is the kernel function and b is the bias.

Y = sign(Xi=, a;yiK (x;, x) + b) (15)
8. GRU
This method is a simplified version of LSTM with fewer
gates and no explicit cell state. It is represented by
Eq. (16) for gate update, Eq. (17) gate reset, Eq. (18)
activation, and Eq. (19) for calculating the new hidden
states [41]. In the following equations, x is the input, h
is output, h is the candidate activation vector, z and r
are the update gate and reset gate vectors, W and b
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are the weight matrix and bias vector, ¢ is the activation
function.

zy = o(Wy[he—q, x¢] + b,) (16)
1y = o(Wrlhe—q, x¢] + by) (17)
he = tanh(Wy [y © he_y, %] + by)  (18)

he=(1-2)OQhi1+2 Ok (19)
9. RF

This is a tree-based method consisting of an ensemble
of decision trees. Eq. (20) represents the characteristic
equation of this method, where y is the final decision
taking the majority vote of all sub decision h; [42].

¥ = majority vote{h;(x)|t =1, ...,T} (20)
10.LR

This is a well-known method for binary classification. It
calculates the probability of each sample belonging to
one of two classes, as shown in Eq. (21) where x is
input, b is bias and w is weight matrix. Eq. (22) [43] is
the negative log-likelihood function to be minimized
with inputs of weight matrix, y; and ¥, are the actual and
predicted output values.
1

P(y=1|x)=m (21)
L(w,b) = = XiLlyilogd; + (1 — yi) log(1 — y;)]
(22)

D. Implementation Details

The proposed model in this study was implemented
using Python 3.11 on the Google Colaboratory (Colab)
platform. Dataset analysis and evaluation were carried
out using the scikit-learn, pandas, xgboost, and numpy
libraries along with their submodules. For the CNN,
RNN, LSTM, and GRU methods, Keras was utilized. The
hyperparameter values for each classifier are presented
in Table 1. The hyperparameters for the deep learning—
based methods, namely CNN, NN, GRU, RNN, and
LSTM, include the number of epochs, batch size,
optimizer type, and loss function. No data augmentation
or balancing technique was applied to the dataset. The
other ML-based methods were used with their default
parameter settings in scikit-learn. Since an 80:20 ratio
was used for the training and testing sets, the random
data split was repeated, and testing was performed five
times. The results reported in this study are the average
of the five runs.

Table 1. The Hypermeters for the ML methods.

Method Hyperparameters
XGBoost label_encoder = False
NN Epoch = 10, batch size = 32
Optimizer = adam
loss = binary_crossentropy
CNN Epoch = 10, batch size = 32

Optimizer = adam

loss = binary_crossentropy

RNN Epoch = 10, batch size = 32
Optimizer = adam
loss = binary_crossentropy
LSTM Epoch = 10, batch size = 32
Optimizer = adam
loss = binary_crossentropy
AdaBoost n_estimators =100
GRU Epoch = 10, batch size = 32
Optimizer = adam
loss = binary_crossentropy
SVM Kernel = linear
RF n_estimators=200, max_depth=20
LR max_iter = 1000

E. Performance Metric

The performance of the ML methods in this study was
measured using accuracy and F1-score, formulated in
Eq. (23) and Eq. (24) [44].

Accuracy = L — (23)
TP+TN+FP+FN
F1 score = S L — (24)

TP+0.5(FP+FN)

Accuracy, defined in Eq. (23), is the ratio of correct
predictions to the total number of predictions, where
TP, TN, FP, and FN represent True Positive, True
Negative, False Positive, and False Negative,
respectively. The F1-score, on the other hand, is a
combined metric that is particularly useful when there
is an imbalance between dataset classes.

Ill. Result

This section presents the implementation details,
performance metrics, and classification accuracies on
the WDBC dataset. The classification accuracy
subsection includes comparisons with previous studies
and evaluates the performance of the proposed model
using different z-score threshold values.

A. Classification accuracy of ML classifiers
according to the z-score threshold

As mentioned in part B of Section I, the z-score filtering
method identifies a data point as an outlier if it is located
farther from the dataset mean than a defined threshold.
The value of this threshold can significantly influence
both the outcome of the z-score method and the
classifier's accuracy. Therefore, the threshold value
must be selected to achieve the highest classification
accuracy. To this end, the training and testing
processes were repeated 20 times for all ML classifiers
using threshold values in the range of [1, -+ ,4.8] with an
increment of 0.2. Previous studies [45], [46] reported
that z-score thresholds between 1 and 3 provide the
best performance. Figure 3 illustrates the relationship
between classification accuracy and z-score threshold
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Table 2. The Classification Accuracy Results of 10 Classifiers according to z-score Threshold Tuning (%).

Threshold XGBoost NN CNN RNN AB LSTM GRU RF SVM LR Avg

1.0 88.89 77.78 8889 8889 88.89 5555 88.89 88.89 100 100  86.67
1.2 91.67 9583 9167 875 9583 9583 87.5 95.83 100  95.83 93.75
1.4 97.56 9756 9756 8049 9512 90.24 9512 9512 9268 97.56 93.90
1.6 98.18 100 100 92.72 96.36  87.27 89.09 98.18 98.18 100 95.99
1.8 100 98.51 9851 9254 98.51 9254 94.03 100 98.51 98.51 97.16
2.0 94.81 9481 9740 9221 9740 89.61 9221 9740 9740 9740 95.07
2.2 97.59 100 100 98.8 98.8  90.36 94.0 97.6 100 100 97.71
24 93.33 9556 9556 9111 9111 88.89 9111 90.0 93.33 9444 9244
2.6 95.75 98.94 98.94 96.81 96.81 9042 93.62 9575 96.81 98.94 96.28
2.8 93.81 93.81 93.81 86.6 96.91 8454 8557 9485 9485 9485 91.96
3.0 98.99 100 100 96.97 98.99 9293 9495 98.99 98.99 100  98.08
3.2 97.06 97.06  99.02 98.04 99.02 90.2 9412 98.04 99.02 99.02 97.06
3.4 97.12 99.04 98.08 97.12 98.08 8558 9231 9712 99.04 98.08 96.16
3.6 98.10 99.05 99.05 9333 9810 9048 87.62 9714 981 99.05 96.0
3.8 98.13 98.13 99.07 96.26 98.13 9346 9533 9533 97.20 97.20 96.82
4.0 95.33 96.26 972 9252 9720 89.72 9159 9439 9533 97.19 94.67
4.2 99.07 98.15 972 9537 99.07 9537 95.37 96.29 97.22 97.22 97.04
4.4 97.25 98.17 98.17 9541 99.08 91.74 9449 96.33 9541 9541 96.15
4.6 99.09 99.09 99.09 97.27 99.09 90.91 9545 98.18 98.18 99.09 97.55
4.8 97.29 96.4 97.3 9099 9730 8559 9189 97.30 9549 93.70 94.32
Avg 96.45 96.71  97.33 93.05 97.0 8856 9222 96.14 97.29 97.67

values. The vertical axis represents accuracy (in 100

percentage), while the horizontal axis represents the z-

score threshold. The classification accuracy of several 95

methods reached 100% at certain threshold values. For

instance, four classifiers—NN, CNN, SVM, and LR— 90

achieved 100% accuracy when the threshold was 2.2,

with the average accuracy of all classifiers being - 85

97.71% at the same threshold. At a threshold of 3, only s 80

NN, CNN, and LR achieved 100% accuracy, while the 8

overall average accuracy increased slightly to 98.08%. & 75

Although more classifiers achieved 100% accuracy at S

the threshold of 2.2, the threshold of 3 was selected in £ 70

this study because it yielded the highest overall D —— XGBosst NN

average accuracy. This finding is consistent with 65 CNN RNN

existing literature. A curve-fitting model was applied to AdaBoost = —— GRU

the average accuracy of all classifiers as a function of 60 —  RF —3VM

the z-score threshold. The polynomial equation of the 11

best-fitting curve is shown in Eq. (25). o L0g: Reg. M

y(x) = —0.3737x% + 6.9722x> — 52.889x* + 50

207.98x3 — 444.96x? + 488.51x — 118.52
(25)
The classification accuracy of all classifiers used in
this study are presented in Table 2. Moreover, the
average accuracy of each classifier over the threshold
range is also provided in the last row of Table 2. As
shown, the highest accuracy belongs to Logistic
Regression (LR) with 97.67%, followed by CNN and
SVM with 97.33% and 97.29%, respectively. The
highest average accuracies are shown in bold. The

1 141822 26 3 343842 4.6
Threshold

Fig. 3. Classification Accuracy of Classifiers
for Different Threshold Values.

reason LR achieves such high accuracy is that it
performs very well on linearly separable and clean
datasets, especially when there are no outliers. On the
other hand, CNN'’s strong performance is due to its
ability to capture high-level features through
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Table 3. The Accuracy and F1-Score Comparison of the Proposed Model with Base Methods.

Method Proposed Without outlier removal

Acc F1 Pr Rc Conf. Int. Acc F1 Pr Rc Conf. Int.
XGBoost 98.99 98.99 99.00 98.99 [97.02, 100] 95.61 9558 95.69 95.61 [91.85,99.37]
NN 100 100 100 100 [100, 100] 97.37 97.37 97.37 97.36 [94.87,99.87]
CNN 100 100 100 100 [100, 100] 98.25 98.25 98.23 98.25 [96.63, 99.87]
RNN 95.96 95.89 9584 95.96 [93.25,98.67] 89.47 89.56 92.98 92.98 [88.19, 91.10]
LSTM 9293 92.77 93.01 92.93 [87.88,97.98] 87.72 87.39 89.63 89.47 [83.84,92.11]
AdaBoost 98.99 98.99 99.01 98.98 [97.02, 100] 95.61 9558 95.69 95.61 [91.85,99.37]
GRU 94.95 94.89 9524 9495 [90.64,99.26] 90.35 90.45 90.60 90.23 [85.03, 95.42]
SVM 98.99 98.99 99.01 98.98 [97.02,100] 97.37 97.37 97.39 97.37 [94.43, 100]
RF 98.99 98.99 99.01 98.98 [97.02, 100] 95.61 9560 95.60 95.61 [91.85,99.37]
LR 100 100 100 100 [100, 100] 98.25 98.25 98.25 98.25 [95.84, 100]

convolution. Figure 4 shows the confusion matrix of the
Logistic Regression method on the dataset.

B. Breast Cancer Classification Results on WDBC
Using ML Methods with and without z-score
Filtering

This section presents the accuracy and F1-score results
of the ML classifier methods used in this study, both with
and without outlier removal on the WDBC dataset. The
comparison is shown in Table 3. The “Proposed”
columns refer to the results obtained on the dataset after
applying z-score filtering with a threshold value of 3. The
results represent the average of 5-fold cross-validation
with an 80:20 train—test split.

According to the results in Table 3, for all models, the
proposed method yields a substantial increase in both
accuracy and F1-score on the WDBC dataset. The most
significant improvement (effect) is observed in the RNN
model. Removing the outliers using the z-score filtering
method increased the accuracy of RNN by 6.49%. The
Neural Network (NN), CNN, and LR classifiers achieved
100% accuracy and F1-score using the proposed
method. This indicates that the technique, when applied
with an appropriately selected threshold, can effectively
handle outliers for these specific models, resulting in
perfect classification on the given dataset. As shown in
Table 3, in terms of both accuracy and F1-score, the
least significant improvement belongs to Long Short-
Term Memory (LSTM), with 92.93% and 92.77%,
respectively.

Benign(P) Malignant(P)
Benign(A) 357 0
Malignant(A) 0 212

Fig. 4. Confusion Matrix for LR Classifier.

Table 4. Performance Comparison of Proposed
Model with Existing Models on Basis of Accuracy

Method Year Accuracy (%)
Aamir [47] (MLP) 2022 99.12
Aamir [47] (RF) 2022 98.07
Aamir [47] (ANN) 2022 97.35
Mushtaq et al. [48] 2019 91.00
Rajaguru et al.[49] 2019 95.95
Khan et al.[50] 2020 97.06
Al-Azzam et al. [51] 2021 98.00
Rasool et al.[52] 2022 99.03
Zhou et al.[53] 2023 99.12
Proposed model 2025 100
Ghosh [54] 2024 98.25

IV. Discussion

This study aims to analyze and evaluate the effect of
outlier removal from the dataset for the task of breast
cancer classification. The findings in Table 3 show that
removing outliers or noisy data samples improves the
overall classification accuracy for breast cancer
detection. In terms of accuracy, F1-score, precision and
recall, the methods CNN, LR and NN achieved 100%
when the outliers were removed. When the outliers were
retained in the dataset, CNN and LR achieved 98.25%,
while NN reached 97.37% across all metrics. The
possible reason behind this high performance is that
after the outliers are removed from the dataset, the
distribution of the samples becomes more distinct and
representative. The findings also show that the value of
the threshold in the z-score method is a strong
parameter influencing performance. When examining
the results of XGBoost, there is approximately a 3%
difference between the proposed and conventional
models across all metrics.
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Recurrent models such as RNN, GRU and LSTM
showed the largest improvements since they are more
sensitive to noisy data. In the case of RNN, the accuracy
increased from 89.47% to 95.96%, while for LSTM, it
rose from 87.72% to 92.93%. GRU improved from
90.35% to 94.95%. For AdaBoost and RF methods, a
smaller improvement was observed, with an
approximate 2% increase in accuracy between the
proposed and conventional methods. Another important
aspect is the swing in the confidence interval. A larger
swing refers to high variation among the results of the
same test in different trials, whereas a smaller swing
indicates more consistent outcomes. This means that
the performance of a method is less likely to be random.
According to the confidence interval results shown in
Table 3, the swing in the proposed method is smaller
than that of the conventional method for all classifiers.
This shows that outlier removal makes a systematic and
deterministic contribution to classifier performance. An
analysis of the precision and recall metrics provides
deeper insights into the study. In the proposed method,
both metrics are exceptionally high and balanced across
all models. This implies that the classifiers can maintain
a low false positive rate (high precision) while capturing
most of the true positive cases (high recall). The strong
correlation between precision and recall indicates that all
models achieve a solid balance between sensitivity and
specificity. This means that improvements in accuracy
do not come at the cost of increased false alarms.

To demonstrate the effect of this study, a
comparison was made with previous studies in the
literature using the same dataset. Only studies
conducted within the last five years were considered.
During this comparison, we selected the result of the LR
classifier with a z-score threshold of 3. The
benchmarking results presented in Table 4 show the
superior performance of the proposed model compared
to previously reported state-of-the-art (SOTA) methods
on the WDBC dataset. The proposed model achieved an
accuracy of 100%, establishing a new benchmark in this
domain and outperforming all prior approaches. This
finding underscores the effectiveness of the
methodological innovations introduced in this work and
highlights their potential to address longstanding
limitations of existing classification frameworks.

Earlier studies have reported varying degrees of
success depending on methodological design and
computational strategy. In [47], the authors applied
different classifiers on the same dataset and obtained
accuracies of 98.07%, 97.35%, and 99.12% for RF,
ANN, and MLP, respectively. For instance, Mushtaq et
al. [48] focused on evaluating k-nearest neighbor (KNN)
performance using several distance functions and k
values to identify an effective KNN configuration and

obtained 91% accuracy. Rajaguru et al. [49] achieved
95.95% by applying Principal Component Analysis
(PCA) + KNN. In a more recent study [50], the authors
used fuzzy logic and SVM together to detect breast
cancer and achieved 97.06% accuracy.

Al-Azzam et al. [51] demonstrated incremental
improvements with an accuracy of 98.00%. Their study
focused on the leamning type rather than the classifier,
showing that using a small sample of labeled data and
low computational power, semi-supervised learning can
replace supervised learning algorithms in tumor type
diagnosis. Rasool et al. [52] and Zhou et al. [53]
approached near-perfect classification with accuracies
exceeding 99%. Zhou et al. conducted data exploratory
techniques (DET) and developed four predictive models
to improve breast cancer diagnostic accuracy. Prior to
model development, four essential DET stages—feature
distribution, correlation, elimination, and
hyperparameter optimization—were performed.
Advances in deep learning, optimization, and data
augmentation are steadily pushing model performance
closer to the theoretical maximum. Similarly, Ghosh [54]
in 2024 reported an accuracy of 98.25%, further
confirming the trend toward increasingly sophisticated
methodologies with high predictive fidelity.

The proposed model’'s 100% accuracy and F1-score
represent a significant improvement. This achievement
suggests that removing abnormal data samples from the
dataset enhances discriminative capacity through better
representation learning, optimization of feature
hierarchies, and superior handling of intra-class
variability. The elimination of misclassifications implies
that the model captures both global and local
discriminative features with unprecedented precision,
thus mitigating the error sources evident in prior
approaches. The proposed model has the potential to
support medical staff in cancer diagnosis. To apply this
model in a real clinical environment, it should be
considered a supportive system for doctors and imaging
technicians. Its performance may be affected by data
diversity and size, which can cause overfitting during
training. In a medical application where patients require
fast and reliable decisions based on their scanned
images, additional measures might be necessary to
prevent errors.

The proposed model demonstrably outperforms state-
of-the-art (SOTA) methods. The model can classify
breast cancer without errors. Future research should
focus on generalizing the method to larger datasets and
maintaining robustness to ensure the model's high
accuracy can be applied in real-world scenarios.

V. Conclusion
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This paper aims to present a framework for breast
cancer detection. The proposed framework includes
several stages: outlier detection and removal,
hyperparameter tuning (hypertuning), and classification.
Before training, a hyperparameter tuning study was
conducted using the threshold value of the z-score
outlier detection method to determine the optimal
setting. The classification experiments were performed
using XGBoost, NN, CNN, RNN, GRU, LSTM, SVM, RF,
and LR on the WDBC dataset. With 100% accuracy and
F1-score, the proposed model showed a significant
improvement compared to the classifiers without outlier
removal. Several classifiers achieved 100% accuracy;
however, LR provided the best overall performance. The
results indicate that the proposed model outperformed
the state-of-the-art (SOTA) methods on the WDBC
dataset. For future work, we plan to use ML to determine
the threshold value based on dataset characteristics. In
addition, we will focus on generalizing the model to
larger and deeper datasets. Integration of
hyperparameter tuning via the Optuna library will also be
investigated.
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