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Abstract. Image processing and machine learning are being used in biomedical applications as supporting tools 

for the detection and diagnosis of certain diseases. Breast cancer is one of these diseases that researchers have 

devoted great effort to for decades. To accomplish this task, image-based and feature-based public datasets are 

available for use. Due to several factors such as hardware limitations or preprocessing, images can become noisy. 

The noise in images, which can lead to anomalies or outliers in the dataset, may decrease detection accuracy and 

mislead medical staff during the diagnostic stage. Therefore, this study aims to present the effect of removing 

outliers from the dataset on the detection accuracy of breast cancer. The proposed method removes outliers 

detected through z-score analysis. The remaining data are normalized, and the classification accuracies of ten 

methods are obtained through direct implementation. The methods include XGBoost, Neural Network, CNN, RNN, 

AdaBoost, LSTM, GRU, Random Forest, SVM, and Logistic Regression. The public dataset Wisconsin Diagnostic 

Breast Cancer (WDBC) was used in this study. An ablation study was conducted by fine-tuning the threshold value 

of the z-score method. The results showed that the best accuracy was obtained when the threshold value was set 

to 3. Additionally, a comparison was made between the results obtained using the entire dataset and the dataset 

after outlier removal. The results showed that the average accuracy of all classifiers was 98.08%. In conclusion, 

the findings indicate that removing outliers from the dataset increases the overall accuracy of breast cancer 

detection. 
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I. Introduction 

Breast cancer continues to be one of the most 
prevalent and life-threatening cancers among women 
worldwide. According to the World Health Organization 
(WHO), breast cancer accounts for approximately 25% 
of all cancer diagnoses in women, with over 2.3 million 
new cases reported annually as of 2020. Despite 
advancements in treatment modalities, early detection 
and accurate diagnosis remain the most effective 
strategies for improving survival rates and reducing 
breast cancer-related mortality. Early identification of 
malignant tumors allows for timely intervention, 
significantly improving the prognosis and quality of life 
for patients [1], [2]. 

   In recent years, the integration of Artificial Intelligence  
(AI) into healthcare has revolutionized diagnostic 
methods, enabling automated, efficient, and highly 
accurate solutions for disease classification. Among AI-
driven technologies, Machine Learning (ML) and Deep 
Learning (DL) have emerged as transformative tools in 
the medical domain. These approaches leverage data-
driven algorithms to identify complex patterns and 
relationships in medical data, providing actionable 
insights that aid clinicians in decision-making. Their 

ability to process large datasets and extract meaningful 
information has made them particularly valuable in 
breast cancer diagnosis, where accurate classification 
of tumors as benign or malignant is critical [3], [4]. 

The Wisconsin Diagnostic Breast Cancer (WDBC) 
dataset has become a benchmark dataset in breast 
cancer research and is widely used for developing and 
evaluating predictive models. This dataset contains 
detailed measurements of tumor characteristics such 
as cell radius, texture, perimeter, area, and 
smoothness, making it an ideal resource for training 
and testing machine learning algorithms. The 
structured nature and accessibility of the WDBC have 
allowed researchers to explore a wide range of 
classification techniques, from traditional statistical 
models to advanced deep learning architectures. The 
primary objective of these studies is to achieve high 
classification accuracy while ensuring the robustness 
and generalizability of the models [5], [6]. 

   The Mammographic Mass Dataset (MMD) [7], 
another dataset frequently used in breast cancer 
research, contains 961 records with features such as 
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tumor shape, margin, density, and patient age. The 
dataset is labeled to indicate the severity of breast 
masses (benign or malignant) and is often used for 
feature-based classification tasks. Studies have shown 
that Decision Trees achieve 83.5% accuracy on this 
dataset, but preprocessing techniques such as feature 
scaling have improved this performance to 88.2% [8]. 
Logistic Regression (LR) has also performed well, 
achieving 87% accuracy with appropriate 
preprocessing steps [9]. 
   Achieving robustness and generalizability is crucial 
for the practical application of machine learning models 
in clinical settings. Robustness refers to a model's 
ability to perform consistently across different datasets 
and under varying conditions, while generalizability 
ensures that the model can handle unseen data 
effectively. However, several challenges, such as the 
presence of outliers, imbalanced datasets, and 
overfitting, can hinder the performance of predictive 
models. Addressing these challenges is essential to 
ensure that machine learning models transition 
successfully from research to real-world clinical 
practice. 
   Outlier detection and removal are particularly 
important preprocessing steps in machine learning 
pipelines, as outliers can introduce noise, distort model 
training, and lead to biased predictions. Outliers are 
data points that deviate significantly from most of the 
dataset, and their presence can adversely affect the 
performance of both traditional and deep learning 
algorithms. Statistical methods, such as the z-score 
outlier detection method [10], have been widely 
adopted for detecting and eliminating outliers. By 
removing these anomalies, researchers can improve 
dataset quality, reduce the risk of overfitting, and 
enhance the model's ability to generalize to new data 
[11], [12]. 
   The application of machine learning techniques to the 
WDBC dataset has yielded promising results in breast 
cancer classification. Traditional algorithms, such as 
Support Vector Machine (SVM), Random Forest (RF), 
and Logistic Regression (LR), have demonstrated 
strong performance due to their ability to handle 
structured data and identify meaningful patterns. For 
instance, studies have shown that SVM achieves high 
classification accuracy when combined with 
appropriate feature selection and preprocessing 
techniques [13], [14]. Similarly, ensemble learning 
methods, such as Random Forest and boosting 
algorithms like XGBoost and AdaBoost, have been 
employed to further improve classification accuracy by 
aggregating predictions from multiple weak learners  
[15], [16]. 
   In addition to traditional models, the advent of deep 
learning has opened new possibilities for breast cancer 
diagnosis. DL models, including Convolutional Neural 
Networks (CNN) [17], Recurrent Neural Networks 

(RNN) [18], Long Short-Term Memory (LSTM) 
networks [19], and Gated Recurrent Units (GRU) [20], 
have demonstrated superior capabilities in capturing 
complex, non-linear relationships within data. CNN, for 
example, have been adapted for tabular datasets such 
as WDBC, leveraging their ability to automatically 
extract high-level features from raw data [21], [22]. 
RNN and their variants, on the other hand, are 
particularly effective in sequential data analysis and 
have been used to model temporal dependencies in 
medical datasets [23], [24]. 
   Despite their high accuracy, deep learning models 
often face challenges such as overfitting and the need 
for large labeled datasets. Hybrid approaches that 
combine traditional machine learning algorithms with 
deep learning frameworks have been proposed to 
address these limitations. Additionally, preprocessing 
techniques such as outlier removal, feature scaling, 
and dimensionality reduction have been shown to 
significantly enhance model performance by improving 
data quality and optimizing feature representation [25], 
[26]. 
   The importance of preprocessing in machine learning 
cannot be overstated, as it directly impacts the 
reliability and interpretability of predictive models. 
Studies have demonstrated that removing outliers and 
balancing datasets can lead to substantial 
improvements in classification accuracy and 
robustness. These preprocessing steps are particularly 
relevant in medical applications, where the cost of 
misclassification can be high. Moreover, integrating 
explainable AI (XAI) techniques into machine learning 
pipelines has gained traction in recent years, as it 
provides transparency and interpretability to model 
predictions. By understanding the features and 
patterns that drive a model's decisions, clinicians can 
gain confidence in its recommendations and integrate 
it into their diagnostic workflows [27], [28]. Despite the 
large number of studies utilizing machine learning in 
breast cancer detection, limited attention has been 
given to the impact of outliers. Few studies have 
addressed this issue [29], [30], [31], although they 
show that outliers can decrease model performance. 
This study addresses this gap in the literature through 
a systematic investigation into the effect of outlier 
removal on model accuracy. We aim to highlight the 
potential for improved performance in ML-based 
diagnostic systems. 
   In this study, we evaluate the impact of outlier 
removal on the performance of various machine 
learning and deep learning models applied to the 
WDBC dataset. Using the z-score method for outlier 
detection, we preprocess the dataset to eliminate 
anomalies and compare the results with conventional 
approaches. The goal is to highlight the importance of 
data preprocessing in improving classification 
accuracy, robustness, and generalizability. The 
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Fig. 1. Framework of the study. 

expected outcome of outlier removal from the dataset 
is that the feature-wise interclass difference will 
become more significant, thereby increasing detection 
accuracy. Our findings provide valuable insights into 
the role of preprocessing techniques in enhancing the 
reliability of breast cancer diagnostic models, paving 
the way for their potential integration into clinical 
practice.  

   The remainder of this paper is organized as follows: 
Section II describes the dataset, preprocessing 
methods, and machine learning models used in this 
study. Section III presents the experimental results and 
compares them with prior studies. Section IV discusses 
the findings, compares them with the state-of-the-art 
(SOTA), and outlines the limitations of the study. 
Section V concludes the paper and provides 
suggestions for potential future research. 

 

II. Method 
This study focuses on improving the accuracy of breast 
cancer classification through outlier removal and the 
application of machine learning methods. The 
proposed method consists of several steps: dataset 
collection, z-score filtering, normalization, data 
splitting, classification, and comparison with previous 
studies. Fig. 1 illustrates the workflow of the model 
used in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Dataset 

The study was implemented and tested using the 
WDBC dataset for breast cancer detection. This 
dataset was obtained from the University of Wisconsin 
Hospitals. It consists of features computed from 
digitized images of fine needle aspirates (FNA) of 
breast masses. Example images for each class of the 
WDBC dataset are illustrated in Fig. 2.   

   The dataset contains 569 unique samples, of which 
212 are malignant and 357 are benign. The dataset can 
be accessed at 
https://archive.ics.uci.edu/dataset/17/breast+cancer+
wisconsin+diagnostic. Ten distinct features were 
extracted from each cell nucleus: radius, texture, 
perimeter, area, smoothness, compactness, concavity, 
concave points, symmetry, and fractal dimension. For 
every feature, three statistical values were computed—
mean, standard error, and worst—resulting in a total of 
30 features per sample. There are no missing values in 

the dataset, which makes it reliable for researchers. All 
features are numerical and have different ranges. Each 
feature was normalized within its specific range using 
the StandardScaler module as part of this study. 

B. Outlier Detection and Z-score  

In any dataset, outliers can significantly affect statistical 
predictions as well as model parameter estimates. 
They may distort the distribution of variables in the 
dataset. These values are located far from the general 
population of the distribution and can be detected using 
outlier detection methods. Therefore, outlier detection 
was applied to the dataset to identify and remove 
outliers. Several outlier detection methods are 
discussed in the literature. Isolation Forest (IF) is a 
widely used method; however, it contains randomness 
and depends on multiple parameters. Another method, 
the Interquartile Range (IQR), suffers from dependency 
on dataset size and tends to underperform with small 
datasets. Therefore, the z-score method was chosen 
for this study. It is a statistical measure that indicates 
how many standard deviations a data point deviates 
from the mean of the distribution [32], [33]. The 
calculation for each point x is shown in Eq. (1): 

𝑧𝑥 =
𝑥−𝜇

𝜎
                                (1) 

 
(a)                                 (b) 

Fig. 2. Sample images from WDBC dataset, (a) 
Malignant class, (b) Benign class. 
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{
𝑥: 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑎𝑛𝑑 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑖𝑓 𝑧𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑥: 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑒𝑙𝑠𝑒

    (2) 

where, 𝑧𝑥 is the z-score, or the distance of point 𝑥 from 

the mean; 𝜇 and 𝜎 are the mean and the standard 

deviation of the sample set, respectively. Samples with 
a z-score greater than a predetermined threshold were 
labeled as outliers and removed from the dataset. This 
operation is given in Eq. (2). In the literature, the typical 
threshold value is ±3 [34], as approximately 99.6% of 
samples in a normally distributed population fall within 
±3 standard deviations. The remaining data were used 
for training and testing. The dataset was split into 
training and testing subsets in an 80:20 ratio. Both 
subsets were normalized using standard scaling before 
the training stage was initiated. This procedure was 
repeated for each iteration of the 5-fold cross-
validation. Data splitting was performed in a random 
manner. 

C. ML Classifiers 

This section explains the ML methods we used in this 
study for breast cancer classification. The dataset after 
outlier removal was trained and tested using ten ML 
methods: XGBoost, NN (Neural Network), CNN, RNN, 
GRU, LSTM, SVM, RF, and LR. XGBoost, RF, and 
AdaBoost are tree-based methods. NN, CNN, RNN 
and LSTM are neural network–based architectures. 
SVM is a margin-based classifier, while LR is a linear 
classifier. 

1. XGBoost 

This method is a tree-based classifier defined by the 
characteristic equation in Eq. (3) [35], where 𝑙(𝑦𝑖 , 𝑦̂𝑖) is 

the loss function, 𝑦𝑖 and 𝑦𝑖̂ are the actual and predicted 

output values for the 𝑖𝑡ℎ sample, 𝛾 is penalty factor, 𝜆  

is the regularization parameter, 𝑇 is the number of 

leaves and 𝑤 is the leaf weight. 

 ℒ(𝑡) = ∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + 𝛾𝑇 + 0.5𝜆 ∑ 𝑤𝑗
2𝑇

𝑗=1
𝑛
𝑖=1    

(3) 

2. NN 

This method is a fully connected and layer-based 
method with the characteristic equation in Eq. (4) [36], 
where the final decision, weight matrix, bias vector, 

activation function of 𝑙𝑡ℎ layer is 𝑎𝑙, 𝑊 𝑙, 𝑏𝑙 and 𝜎, 
respectively. 

𝑎𝑙 = 𝜎(𝑊𝑙𝑎(𝑙−1) + 𝑏𝑙)                   (4) 

3. CNN 

This method uses convolutions, activation functions 
and pooling steps to extract low- and high-level futures 
from an input image and generates an output label. Its 
general formula is as shown in Eq. (5) [37]. 

𝑎𝑖,𝑗 = 𝜎 ∑ ∑ ∑ 𝐼𝑐(𝑖 + 𝑚, 𝑗 + 𝑛)

𝑁

𝑛=1

𝑀

𝑚=1

𝐶

𝑐=1

𝐾𝑐(𝑚, 𝑛) + 𝑏 

(5) 

In Eq. (5), 𝑎𝑖,𝑗 is the output, 𝜎 is the activation function, 

𝐼 is the input image with the dimension 𝑚 × 𝑛, 𝐾 is the 

kernel function and 𝑏 is the bias.  

4. RNN 

This method uses recurrent computation for hidden 
states during each layer of the network. Its equations are 

as shown in Eq. (6) and Eq. (7) [38] with ℎ𝑡 and 𝑦𝑡 are 

the hidden states and output, 𝑊 is the weight matrix, 𝑏 

and 𝑐 are bias coefficients. The parameters 𝜎 and 𝜙 are 

activation functions. 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)         (6) 

  𝑦𝑡 = 𝜙(𝑊𝑦ℎ𝑡 + 𝑐)                         (7) 

5. LSTM 

This method is a type of RNN that incorporates gates 
and cell states, as represented by Eq. (8), Eq. (9), 
Eq. (10), Eq. (11), Eq. (12) and Eq. (13) [38]. In the 
following equations, 𝜎 is the activation function, 𝑏 is the 

bias constant, 𝑊 is the weight matrix, 𝑥 is input, ℎ is 

hidden state, 𝑓𝑡 is forget gate, 𝑜 is the output gate and 

𝐶 is the cell state. 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)               (8) 

       𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                 (9) 

 𝐶̃𝑡 = tanh(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)        (10) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡               (11) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)             (12) 

  ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡                          (13) 

6. AdaBoost 

This method constructs a strong classifier by combining 
multiple weak classifiers using adaptive weighting. It is 
calculated as shown in Eq. (14) [39], 𝑥  is the input, 𝛼 

is the weight of the weak classifier ℎ. 

𝐹(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚ℎ𝑚(𝑥)𝑀
𝑚=1 )         (14) 

7. SVM 

This method classifies samples by finding the optimal 
hyperplane that separates data points into distinct 
classes with minimal classification error. Eq. (15) [40] 
shows the characteristic equation for SVM, where 𝛼 is 

the weight, 𝑦 is the label, 𝛼 is the Lagrange multiplier, 

𝐾 is the kernel function and 𝑏 is the bias. 

𝑦̂ = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)𝑛
𝑖=1 + 𝑏)           (15) 

8. GRU 

This method is a simplified version of LSTM with fewer 
gates and no explicit cell state. It is represented by 
Eq. (16) for gate update, Eq. (17) gate reset, Eq. (18) 
activation, and Eq. (19) for calculating the new hidden 

states [41]. In the following equations, 𝑥 is the input, ℎ 

is output, ℎ̃ is the candidate activation vector, 𝑧 and 𝑟 

are the update gate and reset gate vectors, 𝑊 and 𝑏 
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are the weight matrix and bias vector, 𝜎 is the activation 

function. 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)                    (16) 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)                    (17) 

ℎ̃𝑡 = tanh(𝑊ℎ[𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)     (18) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡          (19) 

9. RF 

This is a tree-based method consisting of an ensemble 
of decision trees.  Eq. (20) represents the characteristic 
equation of this method, where 𝑦̂ is the final decision 

taking the majority vote of all sub decision ℎ𝑡 [42]. 

𝑦̂ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒{ℎ𝑡(𝑥)|𝑡 = 1, … , 𝑇}    (20) 

10. LR 

This is a well-known method for binary classification. It 
calculates the probability of each sample belonging to 
one of two classes, as shown in Eq. (21) where 𝑥 is 

input, 𝑏 is bias and 𝑤 is weight matrix. Eq. (22) [43] is 

the negative log-likelihood function to be minimized 
with inputs of weight matrix, 𝑦𝑖 and 𝑦𝑖̂ are the actual and 

predicted output values. 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−(𝑤𝑇𝑥+𝑏)
             (21) 

ℒ(𝑤, 𝑏) = − ∑ [𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)]𝑛
𝑖=1  

(22) 

D. Implementation Details  

The proposed model in this study was implemented 

using Python 3.11 on the Google Colaboratory (Colab) 

platform. Dataset analysis and evaluation were carried 

out using the scikit-learn, pandas, xgboost, and numpy 

libraries along with their submodules. For the CNN, 

RNN, LSTM, and GRU methods, Keras was utilized. The 

hyperparameter values for each classifier are presented 

in Table 1. The hyperparameters for the deep learning–

based methods, namely CNN, NN, GRU, RNN, and 

LSTM, include the number of epochs, batch size, 

optimizer type, and loss function. No data augmentation 

or balancing technique was applied to the dataset. The 

other ML-based methods were used with their default 

parameter settings in scikit-learn. Since an 80:20 ratio 

was used for the training and testing sets, the random 

data split was repeated, and testing was performed five 

times. The results reported in this study are the average 

of the five runs. 

Table 1. The Hypermeters for the ML methods. 

Method Hyperparameters 

XGBoost label_encoder = False 

NN Epoch = 10, batch size = 32 

Optimizer = adam 

loss = binary_crossentropy 

CNN Epoch = 10, batch size = 32 

Optimizer = adam 

loss = binary_crossentropy 

RNN Epoch = 10, batch size = 32 

Optimizer = adam 

loss = binary_crossentropy 

LSTM Epoch = 10, batch size = 32 

Optimizer = adam 

loss = binary_crossentropy 

AdaBoost n_estimators =100 

GRU Epoch = 10, batch size = 32 

Optimizer = adam 

loss = binary_crossentropy 

SVM Kernel = linear 

RF n_estimators=200, max_depth=20 

LR max_iter = 1000 

E. Performance Metric 

The performance of the ML methods in this study was 
measured using accuracy and F1-score, formulated in 
Eq. (23) and Eq. (24) [44]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (23) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)
                  (24) 

Accuracy, defined in Eq. (23), is the ratio of correct 
predictions to the total number of predictions, where 
TP, TN, FP, and FN represent True Positive, True 
Negative, False Positive, and False Negative, 
respectively. The F1-score, on the other hand, is a 
combined metric that is particularly useful when there 
is an imbalance between dataset classes. 

 

III. Result  

This section presents the implementation details, 
performance metrics, and classification accuracies on 
the WDBC dataset. The classification accuracy 
subsection includes comparisons with previous studies 
and evaluates the performance of the proposed model 
using different z-score threshold values.  

A. Classification accuracy of ML classifiers 

according to the z-score threshold 

As mentioned in part B of Section II, the z-score filtering 
method identifies a data point as an outlier if it is located 
farther from the dataset mean than a defined threshold. 
The value of this threshold can significantly influence 
both the outcome of the z-score method and the 
classifier’s accuracy. Therefore, the threshold value 
must be selected to achieve the highest classification 
accuracy. To this end, the training and testing 
processes were repeated 20 times for all ML classifiers 
using threshold values in the range of [1, ⋯ ,4.8] with an 

increment of 0.2. Previous studies [45], [46] reported 
that z-score thresholds between 1 and 3 provide the 
best performance. Figure 3 illustrates the relationship 
between classification accuracy and z-score threshold 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1165
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1355-1366                                     e-ISSN: 2656-8632 

 
Manuscript received July 5, 2024; Revised September 15, 2025; Accepted October 28, 2025; date of publication October 30, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1165 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 1360               

values. The vertical axis represents accuracy (in 
percentage), while the horizontal axis represents the z-
score threshold. The classification accuracy of several 
methods reached 100% at certain threshold values. For 
instance, four classifiers—NN, CNN, SVM, and LR—
achieved 100% accuracy when the threshold was 2.2, 
with the average accuracy of all classifiers being 
97.71% at the same threshold. At a threshold of 3, only 
NN, CNN, and LR achieved 100% accuracy, while the 
overall average accuracy increased slightly to 98.08%. 
Although more classifiers achieved 100% accuracy at 
the threshold of 2.2, the threshold of 3 was selected in 
this study because it yielded the highest overall 
average accuracy. This finding is consistent with 
existing literature. A curve-fitting model was applied to 
the average accuracy of all classifiers as a function of 
the z-score threshold. The polynomial equation of the 
best-fitting curve is shown in Eq. (25).  

 𝑦(𝑥) = −0.3737𝑥6 + 6.9722𝑥5 − 52.889𝑥4 +
207.98𝑥3 − 444.96𝑥2 + 488.51𝑥 − 118.52    

                                (25) 

   The classification accuracy of all classifiers used in 
this study are presented in Table 2. Moreover, the 
average accuracy of each classifier over the threshold 
range is also provided in the last row of Table 2. As 
shown, the highest accuracy belongs to Logistic 
Regression (LR) with 97.67%, followed by CNN and 
SVM with 97.33% and 97.29%, respectively. The 
highest average accuracies are shown in bold. The 

reason LR achieves such high accuracy is that it 
performs very well on linearly separable and clean 
datasets, especially when there are no outliers. On the 
other hand, CNN’s strong performance is due to its 
ability to capture high-level features through 

Table 2. The Classification Accuracy Results of 10 Classifiers according to z-score Threshold Tuning (%). 

Threshold XGBoost NN CNN RNN AB LSTM GRU RF SVM LR Avg 
1.0 88.89 77.78 88.89 88.89 88.89 55.55 88.89 88.89 100 100 86.67 

1.2 91.67 95.83 91.67 87.5 95.83 95.83 87.5 95.83 100 95.83 93.75 

1.4 97.56 97.56 97.56 80.49 95.12 90.24 95.12 95.12 92.68 97.56 93.90 

1.6 98.18 100 100 92.72 96.36 87.27 89.09 98.18 98.18 100 95.99 

1.8 100 98.51 98.51 92.54 98.51 92.54 94.03 100 98.51 98.51 97.16 

2.0 94.81 94.81 97.40 92.21 97.40 89.61 92.21 97.40 97.40 97.40 95.07 

2.2 97.59 100 100 98.8 98.8 90.36 94.0 97.6 100 100 97.71 

2.4 93.33 95.56 95.56 91.11 91.11 88.89 91.11 90.0 93.33 94.44 92.44 

2.6 95.75 98.94 98.94 96.81 96.81 90.42 93.62 95.75 96.81 98.94 96.28 

2.8 93.81 93.81 93.81 86.6 96.91 84.54 85.57 94.85 94.85 94.85 91.96 

3.0 98.99 100 100 96.97 98.99 92.93 94.95 98.99 98.99 100 98.08 

3.2 97.06 97.06 99.02 98.04 99.02 90.2 94.12 98.04 99.02 99.02 97.06 

3.4 97.12 99.04 98.08 97.12 98.08 85.58 92.31 97.12 99.04 98.08 96.16 

3.6 98.10 99.05 99.05 93.33 98.10 90.48 87.62 97.14 98.1 99.05 96.0 

3.8 98.13 98.13 99.07 96.26 98.13 93.46 95.33 95.33 97.20 97.20 96.82 

4.0 95.33 96.26 97.2 92.52 97.20 89.72 91.59 94.39 95.33 97.19 94.67 

4.2 99.07 98.15 97.2 95.37 99.07 95.37 95.37 96.29 97.22 97.22 97.04 

4.4 97.25 98.17 98.17 95.41 99.08 91.74 94.49 96.33 95.41 95.41 96.15 

4.6 99.09 99.09 99.09 97.27 99.09 90.91 95.45 98.18 98.18 99.09 97.55 

4.8 97.29 96.4 97.3 90.99 97.30 85.59 91.89 97.30 95.49 93.70 94.32 

Avg 96.45 96.71 97.33 93.05 97.0 88.56 92.22 96.14 97.29 97.67  

 

 

 

 

Fig. 3. Classification Accuracy of Classifiers 
for Different Threshold Values. 
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convolution. Figure 4 shows the confusion matrix of the 
Logistic Regression method on the dataset.  

B. Breast Cancer Classification Results on WDBC 

Using ML Methods with and without z-score 

Filtering 

This section presents the accuracy and F1-score results 
of the ML classifier methods used in this study, both with 
and without outlier removal on the WDBC dataset. The 
comparison is shown in Table 3. The “Proposed” 
columns refer to the results obtained on the dataset after 
applying z-score filtering with a threshold value of 3. The 
results represent the average of 5-fold cross-validation 
with an 80:20 train–test split.  
 According to the results in Table 3, for all models, the   
proposed method yields a substantial increase in both 
accuracy and F1-score on the WDBC dataset. The most 
significant improvement (effect) is observed in the RNN 
model. Removing the outliers using the z-score filtering 
method increased the accuracy of RNN by 6.49%. The 
Neural Network (NN), CNN, and LR classifiers achieved 
100% accuracy and F1-score using the proposed 
method. This indicates that the technique, when applied 
with an appropriately selected threshold, can effectively 
handle outliers for these specific models, resulting in 
perfect classification on the given dataset. As shown in 
Table 3, in terms of both accuracy and F1-score, the 
least significant improvement belongs to Long Short-
Term Memory (LSTM), with 92.93% and 92.77%, 
respectively. 

 
Table 4. Performance Comparison of Proposed 

Model with Existing Models on Basis of Accuracy 

Method Year Accuracy (%) 

Aamir [47] (MLP) 2022 99.12 

Aamir [47] (RF) 2022 98.07 

Aamir [47] (ANN) 2022 97.35 

Mushtaq et al. [48] 2019 91.00 

Rajaguru et al.[49] 2019 95.95 

Khan et al.[50] 2020 97.06 

Al-Azzam et al. [51] 2021 98.00 

Rasool et al.[52] 2022 99.03 

Zhou et al.[53] 2023 99.12 

Proposed model 2025 100 

Ghosh [54] 2024 98.25 

IV. Discussion 

This study aims to analyze and evaluate the effect of 

outlier removal from the dataset for the task of breast 

cancer classification. The findings in Table 3 show that 

removing outliers or noisy data samples improves the 

overall classification accuracy for breast cancer 

detection. In terms of accuracy, F1-score, precision and 

recall, the methods CNN, LR and NN achieved 100% 

when the outliers were removed. When the outliers were 

retained in the dataset, CNN and LR achieved 98.25%, 

while NN reached 97.37% across all metrics. The 

possible reason behind this high performance is that 

after the outliers are removed from the dataset, the 

distribution of the samples becomes more distinct and 

representative. The findings also show that the value of 

the threshold in the z-score method is a strong 

parameter influencing performance. When examining 

the results of XGBoost, there is approximately a 3% 

difference between the proposed and conventional 

models across all metrics.  

Table 3. The Accuracy and F1-Score Comparison of the Proposed Model with Base Methods. 

Method Proposed Without outlier removal 

Acc F1 Pr Rc Conf. Int. Acc F1 Pr Rc Conf. Int. 

XGBoost 98.99 98.99 99.00 98.99 [97.02, 100] 95.61 95.58 95.69 95.61 [91.85, 99.37] 

NN 100 100 100 100 [100, 100] 97.37 97.37 97.37 97.36 [94.87, 99.87] 

CNN 100 100 100 100 [100, 100] 98.25 98.25 98.23 98.25 [96.63, 99.87] 

RNN 95.96 95.89 95.84 95.96 [93.25, 98.67] 89.47 89.56 92.98 92.98 [88.19, 91.10] 

LSTM 92.93 92.77 93.01 92.93 [87.88, 97.98] 87.72 87.39 89.63 89.47 [83.84, 92.11] 

AdaBoost 98.99 98.99 99.01 98.98 [97.02, 100] 95.61 95.58 95.69 95.61 [91.85, 99.37] 

GRU 94.95 94.89 95.24 94.95 [90.64, 99.26]  90.35 90.45 90.60 90.23 [85.03, 95.42] 

SVM 98.99 98.99 99.01 98.98 [97.02, 100] 97.37 97.37 97.39 97.37 [94.43, 100] 

RF 98.99 98.99 99.01 98.98 [97.02, 100] 95.61 95.60 95.60 95.61 [91.85, 99.37] 

LR 100 100 100 100 [100, 100] 98.25 98.25 98.25 98.25 [95.84, 100] 

 

 

 

 

 
Fig. 4. Confusion Matrix for LR Classifier. 
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Recurrent models such as RNN, GRU and LSTM 

showed the largest improvements since they are more 

sensitive to noisy data. In the case of RNN, the accuracy 

increased from 89.47% to 95.96%, while for LSTM, it 

rose from 87.72% to 92.93%. GRU improved from 

90.35% to 94.95%. For AdaBoost and RF methods, a 

smaller improvement was observed, with an 

approximate 2% increase in accuracy between the 

proposed and conventional methods. Another important 

aspect is the swing in the confidence interval. A larger 

swing refers to high variation among the results of the 

same test in different trials, whereas a smaller swing 

indicates more consistent outcomes. This means that 

the performance of a method is less likely to be random. 

According to the confidence interval results shown in 

Table 3, the swing in the proposed method is smaller 

than that of the conventional method for all classifiers. 

This shows that outlier removal makes a systematic and 

deterministic contribution to classifier performance. An 

analysis of the precision and recall metrics provides 

deeper insights into the study. In the proposed method, 

both metrics are exceptionally high and balanced across 

all models. This implies that the classifiers can maintain 

a low false positive rate (high precision) while capturing 

most of the true positive cases (high recall). The strong 

correlation between precision and recall indicates that all 

models achieve a solid balance between sensitivity and 

specificity. This means that improvements in accuracy 

do not come at the cost of increased false alarms. 

   To demonstrate the effect of this study, a 

comparison was made with previous studies in the 

literature using the same dataset. Only studies 

conducted within the last five years were considered. 

During this comparison, we selected the result of the LR 

classifier with a z-score threshold of 3. The 

benchmarking results presented in Table 4 show the 

superior performance of the proposed model compared 

to previously reported state-of-the-art (SOTA) methods 

on the WDBC dataset. The proposed model achieved an 

accuracy of 100%, establishing a new benchmark in this 

domain and outperforming all prior approaches. This 

finding underscores the effectiveness of the 

methodological innovations introduced in this work and 

highlights their potential to address longstanding 

limitations of existing classification frameworks. 

   Earlier studies have reported varying degrees of 

success depending on methodological design and 

computational strategy. In [47], the authors applied 

different classifiers on the same dataset and obtained 

accuracies of 98.07%, 97.35%, and 99.12% for RF, 

ANN, and MLP, respectively. For instance, Mushtaq et 

al. [48] focused on evaluating k-nearest neighbor (KNN) 

performance using several distance functions and k 

values to identify an effective KNN configuration and 

obtained 91% accuracy. Rajaguru et al. [49] achieved 

95.95% by applying Principal Component Analysis 

(PCA) + KNN. In a more recent study [50], the authors 

used fuzzy logic and SVM together to detect breast 

cancer and achieved 97.06% accuracy.   

   Al-Azzam et al. [51] demonstrated incremental 

improvements with an accuracy of 98.00%. Their study 

focused on the learning type rather than the classifier, 

showing that using a small sample of labeled data and 

low computational power, semi-supervised learning can 

replace supervised learning algorithms in tumor type 

diagnosis. Rasool et al. [52] and Zhou et al. [53] 

approached near-perfect classification with accuracies 

exceeding 99%. Zhou et al. conducted data exploratory 

techniques (DET) and developed four predictive models 

to improve breast cancer diagnostic accuracy. Prior to 

model development, four essential DET stages—feature 

distribution, correlation, elimination, and 

hyperparameter optimization—were performed. 

Advances in deep learning, optimization, and data 

augmentation are steadily pushing model performance 

closer to the theoretical maximum. Similarly, Ghosh [54] 

in 2024 reported an accuracy of 98.25%, further 

confirming the trend toward increasingly sophisticated 

methodologies with high predictive fidelity.  

  The proposed model’s 100% accuracy and F1-score 

represent a significant improvement. This achievement 

suggests that removing abnormal data samples from the 

dataset enhances discriminative capacity through better 

representation learning, optimization of feature 

hierarchies, and superior handling of intra-class 

variability. The elimination of misclassifications implies 

that the model captures both global and local 

discriminative features with unprecedented precision, 

thus mitigating the error sources evident in prior 

approaches. The proposed model has the potential to 

support medical staff in cancer diagnosis. To apply this 

model in a real clinical environment, it should be 

considered a supportive system for doctors and imaging 

technicians. Its performance may be affected by data 

diversity and size, which can cause overfitting during 

training. In a medical application where patients require 

fast and reliable decisions based on their scanned 

images, additional measures might be necessary to 

prevent errors.  

   The proposed model demonstrably outperforms state-

of-the-art (SOTA) methods. The model can classify 

breast cancer without errors. Future research should 

focus on generalizing the method to larger datasets and 

maintaining robustness to ensure the model’s high 

accuracy can be applied in real-world scenarios. 

 

V. Conclusion 
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This paper aims to present a framework for breast 

cancer detection. The proposed framework includes 

several stages: outlier detection and removal, 

hyperparameter tuning (hypertuning), and classification. 

Before training, a hyperparameter tuning study was 

conducted using the threshold value of the z-score 

outlier detection method to determine the optimal 

setting. The classification experiments were performed 

using XGBoost, NN, CNN, RNN, GRU, LSTM, SVM, RF, 

and LR on the WDBC dataset. With 100% accuracy and 

F1-score, the proposed model showed a significant 

improvement compared to the classifiers without outlier 

removal. Several classifiers achieved 100% accuracy; 

however, LR provided the best overall performance. The 

results indicate that the proposed model outperformed 

the state-of-the-art (SOTA) methods on the WDBC 

dataset. For future work, we plan to use ML to determine 

the threshold value based on dataset characteristics. In 

addition, we will focus on generalizing the model to 

larger and deeper datasets. Integration of 

hyperparameter tuning via the Optuna library will also be 

investigated. 
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