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Abstract Complex liver resections related to hepatic tumors represent a major surgical challenge that 

requires precise preoperative planning supported by reliable three-dimensional (3D) anatomical models. In 

this context, accurate volumetric segmentation of the liver is a critical prerequisite to ensure the fidelity of 

printed models and to optimize surgical decision-making. This study compares different segmentation 

techniques integrated into open-source software to identify the most suitable approach for clinical 

application in resource-limited settings. Three semi-automatic methods, region growing, thresholding, and 

contour interpolation, were tested using the 3D Slicer platform and compared with a proprietary automatic 

method (Hepatic VCAR, GE Healthcare) and a manual segmentation reference, considered the gold 

standard. Ten anonymized abdominal CT volumes from the Medical Segmentation Decathlon dataset, 

encompassing various hepatic pathologies, were used to assess and compare the performance of each 

technique. Evaluation metrics included the Dice similarity coefficient (Dice), Hausdorff distance (HD), root 

mean square error (RMS), standard deviation (SD), and colorimetric surface discrepancy maps, enabling 

both quantitative and qualitative analysis of segmentation accuracy. Among the tested methods, the semi-

automatic region growing approach demonstrated the highest agreement with manual segmentation (Dice 

= 0.935 ± 0.013; HD = 4.32 ± 0.48 mm), surpassing both other semi-automatic techniques and the automatic 

proprietary method. These results suggest that the region growing method implemented in 3D Slicer offers 

a reliable, accurate, and reproducible workflow for generating 3D liver models, particularly in surgical 

environments with limited access to advanced commercial solutions. The proposed methodology can 

potentially improve surgical planning, enhance training through realistic patient-specific models, and 

facilitate broader adoption of 3D printing in hepatobiliary surgery worldwide. 

Keywords Hepatic resection; Surgical simulation; 3D modelling; Image segmentation; Preoperative 
planning. 

I. Introduction  

Hepatocellular carcinoma (HCC), a major form of liver 

cancer, is among the six most frequently diagnosed 

cancers globally and stands as the third most common 

cause of cancer-related deaths. Chronic hepatitis B 

and C infections are the main contributing 

factors[1][2][3]. Hepatic resection remains the standard 

and effective curative treatment for the disease[4]. 

However, the localization and precision of the ablation 

of the parts to be removed are extremely complex 

because the liver is one of the most vascularized 

organs. Indeed, the resection of tumor areas must be 

performed in such a way as to leave no chance for their 

recurrence, while preserving an adequate portion[5][6]. 

In this context, the importance of simulating the 

operation on a 3D model with the same physical 

characteristics and dimensions prepared in advance 

comes into play[7][8][9]. Indeed, surgical simulation 

plays a crucial role in the effective planning and 

precision of surgical procedures, with the main 

objective of minimizing the risks associated with human 

errors[10][11][12][13]. In modern medicine, simulation 

constitutes a practical virtual reality that allows for the 

training of new surgeons as well as the simulation of a 
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procedure before performing it on the patient, 

especially when it involves a complex or unusual 

procedure such as the removal of cancerous parts of 

an organ without affecting the surrounding healthy vital 

tissues[14][15][16][17]. These objectives can only be 

achieved if the prepared phantoms accurately reflect 

the reality of the organ to be simulated[18][19][20]. In 

general, the preparation of 3D phantoms relies on the 

segmentation of the studied organ from medical 

images such as CT or MRI scans[21][22]. Indeed, 

segmentation is the operation that involves partitioning 

the image into a set of regions sharing the same 

properties (texture, grayscale level, color...)[23][24]. 

The accuracy of the 3D model is related to the 

performance of the segmentation method 

used[25][26][27]. 

In resource-limited clinical settings, healthcare 

professionals face several concrete challenges: lack of 

high-performance workstations (especially without 

GPUs), time constraints, high costs of proprietary 

software, and limited availability of trained personnel in 

advanced imaging. These constraints significantly 

hinder the adoption of automated or commercial 

solutions, highlighting the need for accessible and 

reliable open-source alternatives. Tools like 3D Slicer 

enable local execution of semi-automatic segmentation 

with user control, while remaining compatible with 

standard computing infrastructure. This approach 

effectively compromises accuracy, reproducibility, and 

accessibility in constrained environments. 

In clinical environments with limited resources, such 

as public hospitals or regional centers, open-source 

software, particularly platforms like 3D Slicer or ITK-

SNAP, provides a reliable, accessible, and 

economically viable alternative for volumetric liver 

segmentation. Unlike fully automated approaches 

based on artificial intelligence, which require massive 

annotated databases, advanced hardware resources 

(notably GPUs), and specific algorithmic expertise 

[28][29][30], the semi-automatic methods integrated 

into these environments (region growing, thresholding, 

contour interpolation) allow for an effective compromise 

between precision, flexibility, and ease of use [31][32]. 

In addition to operating locally, which enhances the 

protection of sensitive data, these tools offer clinicians 

the ability to manually intervene on the segmented 

contours, an essential asset for addressing complex 

clinical situations, such as multifocal liver tumors or 

poor-quality images [33][34]. Moreover, the open-

source ecosystem benefits from active support from the 

scientific community, with abundant documentation, 

regular updates, and robust validation in specialized 

literature [30]. These characteristics ensure the results' 

reproducibility, transparency, and reliability, 

fundamental conditions for secure integration into 

clinical protocols. As a result, these solutions prove to 

be particularly relevant for personalized surgical 

planning assisted by 3D models, providing healthcare 

professionals with, practical tools without 

compromising the quality or safety of care, even in a 

constrained economic context. 

Although several recent works have demonstrated 

the growing interest in 3D liver segmentation using 

open-source platforms such as 3D Slicer, the majority 

of these studies focus either on specific technical 

extensions, such as hepatic and vascular seg-

mentation in the R Vessel X project [35][36], or on the 

integration of advanced artificial intelligence models 

such as 3D U Net networks or the Segment Anything 

(SAM) model via extensions like FastSAM 3DSlicer 

[37][38]. Although effective in terms of algorithmic 

precision, these approaches present several major 

limitations in a clinical context with limited resources: 

they generally require heavy computing infrastructure 

(GPU, cloud), massive annotated databases, and 

advanced technical expertise. Other, more applied 

works focus on specific structures such as the bile 

ducts or reconstructions from ultrasound images, 

without offering a systematic comparison between 

different segmentation methods usable in a 

standardized preoperative workflow. However, no 

standardized comparative study has systematically 

evaluated these semi-automatic tools under real 

clinical constraints[39][40][41]. 

Faced with this gap, the choice to resort to semi-

automatic methods is based on their ease of integration 

into real clinical environments, robustness against 

heterogeneous data, and ability to combine user 

guidance with effective algorithmic processing. 

Preliminary results from the literature and clinical 

experimentation indicate that some of these methods, 

particularly those natively integrated into 3D Slicer, 

achieve accuracy comparable to proprietary solutions 

while offering crucial interactive control in complex 

cases. However, in the absence of validated, 

accessible comparative studies in constrained clinical 

environments, it becomes necessary to evaluate these 

tools using a standardized and clinically realistic 

approach. 

To provide a precise methodological framework, 

this study is structured around the following research 

questions: 

1. Can semi-automatic region growing achieve a 

geometric accuracy comparable to manual 

segmentation? 

2. Which native segmentation method in 3D Slicer 

offers the best compromise between accuracy, 

reproducibility, and clinical usability? 
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3. To what extent can open-source segmentation 

methods be used to generate 3D-printable liver 

models for surgical planning in patients with hepatic 

metastases? 

Accordingly, the main objective of this work is to 

propose a reproducible, low-cost, and clinically 

applicable workflow for liver segmentation and 3D 

model generation using only native semi-automatic 

tools available in 3D Slicer, without relying on artificial 

intelligence or commercial software. Based on 

contrast-enhanced abdominal CT data from patients 

with liver metastases. Three approaches were 

explored: automatic segmentation (Hepatic VCAR), 

semi-automatic segmentation (region growing, 

thresholding, and contour interpolation) using the open-

source software 3D Slicer, and manual segmentation, 

which served as a reference. The study aims to identify 

the method offering the best compromise between 

precision, result stability, and operational efficiency, 

particularly in clinical contexts with limited resources. 

The main contributions of this study are as follows: (1) 

a systematic comparison of native 3D Slicer semi-

automatic segmentation methods applied to liver CT 

data; (2) the integration of this workflow into a real 

clinical scenario involving hepatic metastases; (3) the 

evaluation of segmentation results in terms of 

geometric accuracy and reproducibility; and (4) the 

demonstration of a reproducible, low-cost, and clinically 

viable process for 3D printing liver phantoms in 

resource-limited settings. The remainder of this paper 

is organized as follows: Section II presents the 

materials and methods, including the clinical case and 

segmentation techniques. Section III details the 

evaluation metrics and results. Section IV discusses 

the findings in the context of existing literature. Finally, 

Section V concludes the study and outlines future 

directions. 

 

II. Materials and Methods 
The main steps of the experimental protocol followed in 
this study are summarized in Fig.1 . Although the steps 
of 3D modelling, performance evaluation, and 
comparative analysis are detailed in the Results 
section, their logical sequence is presented here to 
provide a structured overall view of the methodology.   

A. CT image processing 

The computed tomography (CT) images of the liver 
used in this study were extracted from the open-source 
Medical Segmentation Decathlon (MSD) database 
dedicated to liver segmentation. A subset of ten 
anonymized abdominal volumes was selected from 
portal venous phase acquisitions, each corresponding 
to a different patient with various hepatic pathologies, 
including metastases and hepatocellular carcinoma. 
These volumes represent a variety of clinical conditions 
in terms of tumor size, liver morphology, and image 
quality, making them suitable for evaluating the 
reproducibility and robustness of segmentation 
techniques. 

The CT scans were acquired using standard clinical 
protocols, with a matrix size of 512×512 pixels, slice 
thickness and interslice spacing of 1.25 mm, a tube 
voltage of 120 kVp, and a current of 35 mA, resulting in 
high-resolution volumetric data. The acquisition time 
was approximately 3 minutes and 45 seconds. All 
datasets were provided in DICOM format, preserving 
the essential metadata required for accurate medical 
image analysis. Before segmentation, all CT volumes 
were visually inspected, and manual reorientation was 
performed when necessary to ensure spatial 
consistency and homogeneous preprocessing across 
the dataset. These steps were crucial to standardize 
the input data before applying the different 
segmentation methods evaluated in this study. 

B. Clinical Dataset and Case Selection 

Ten cases were carefully selected from the CT volumes 
described. Each case corresponds to a different adult 
patient presenting with hepatic tumors, mainly 
metastases or hepatocellular carcinoma, conditions 
commonly encountered in preoperative planning for 
liver surgery. Selection was based on: 
1. Inclusion criteria: clear visibility of hepatic lesions in 

 
Fig.  1. Diagram of the experimental 
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the portal venous phase; full liver coverage; sufficient 
image quality to allow accurate segmentation; 
2. Exclusion criteria: major motion or reconstruction 
artifacts, incomplete liver volume, or low-contrast 
enhancement impairing tumor boundary detection. 

Two independent observers validated the final set 
of cases through visual inspection. This selection 
aimed to capture a diverse range of tumor sizes, 
anatomical locations, and liver morphologies, thereby 
ensuring the clinical applicability and external validity of 
the segmentation performance evaluation. 

C. Segmentation 

Segmentation is a crucial process for extracting 
anatomical components from volumetric medical 
pictures, especially in 3D modelling for preoperative 
surgery.  This section outlines and contrasts various 
liver segmentation techniques applied to CT data, 
including an automatic method (VCAR, GE 
Healthcare), semi-automatic methods (region growing, 
thresholding, and contour interpolation) executed with 
the open-source software 3D Slicer, and a manual 
segmentation that serves as a reference standard. 

1. Automatic Segmentation 

The CT volumes from the open-source Medical 
Segmentation Decathlon database were imported into 
the proprietary software Hepatic VCAR (GE 
Healthcare) for automatic segmentation. This module 
allows for automatically segmenting the liver, tumors, 
and intrahepatic vascular structures. However, in the 
context of this study, only the overall shape of the 
hepatic volume was considered. The automatically 
segmented vascular structures were ignored, our 
objective being to compare the quality of the 3D 
reconstruction of the hepatic parenchyma for accurate 
anatomical modelling for surgical planning. 

Each CT scan can be represented as a 3D matrix of 
intensity values 𝐼(𝑥, 𝑦, 𝑧) in Hounsfield Units (HU), Eq. 

gives each voxel volume (1) [42]: 

𝑉𝑣𝑜𝑥𝑒𝑙 = ∆𝑥 ∙ ∆𝑦 ∙ ∆𝑧                       (1) 

and the segmented liver volume is computed as Eq. (2) 
[43]: 

𝑉𝑠𝑒𝑔 = 𝑁𝑣𝑜𝑥𝑒𝑙𝑠 ∙ 𝑉𝑣𝑜𝑥𝑒𝑙                      (2) 

where 𝑁𝑣𝑜𝑥𝑒𝑙𝑠 is the number of voxels belonging to the 

segmented region. 

Segmentation in Hepatic VCAR relies on intensity-
based filtering and connectivity analysis. A binary mask 
𝑆𝑡ℎ𝑟𝑒𝑠ℎ is first generated using thresholding Eq. (3) [44]: 

𝑆𝑡ℎ𝑟𝑒𝑠ℎ(𝑥, 𝑦, 𝑧) = {
1, 𝑖𝑓 𝐻𝑈𝑚𝑖𝑛 ≤ 𝐼(𝑥, 𝑦, 𝑧) ≤ 𝐻𝑈𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

to isolate liver tissue intensities in the portal venous 
phase. The mask is then refined using a connectivity-
based region growing process, Eq. (4) [45]: 

𝑅𝑘+1 = 𝑅𝑘 ∪ {𝑞 ∈ 𝑁(𝑃) ||𝐼(𝑞) − 𝑢𝑅𝑘
| < 𝑇}  (4) 

where 𝑁(𝑝) is the neighbourhood of voxel 𝑃, 𝑢𝑅𝑘
 is the 

mean intensity of the current region, and 𝑇 is a 

tolerance threshold. Post-processing steps involve 
morphological operations such as erosion (A⊖B) and 

dilation (A⊕B) to smooth boundaries and remove 

noise, Eq. (5) [46]: 

𝐴 ⊖ 𝐵 = {𝑧|𝐵𝑧 ⊆ 𝐴} ;         𝐴 ⨁ 𝐵 = {𝑧|(𝐵𝑧 ∩ 𝐴) ≠ ∅} (5) 

Finally, a 3D surface mesh of the hepatic volume is 
reconstructed using the marching cubes algorithm, 
which extracts the isosurface Eq. (6) [47]: 

{(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝐼(𝑥, 𝑦, 𝑧) = 𝐼𝑖𝑠𝑜}   (6) 

and tessellates it into triangular facets for accurate 
anatomical modelling. 

2. Region Growth segmentation (Semi-Automatic)  

To identify membership in a particular region, we used 
the region-growing algorithm available in the 3D Slicer 
software, which primarily considers voxel intensity. This 
semi-automatic segmentation method relies on 
intensity similarity between voxels and an initial seed, 
within a predefined tolerance. It enables progressive 
expansion of the segmented region starting from 
manually defined seed points. 

The segmentation process can be mathematically 
expressed using Eq. (7), as follows [48][45]: 

𝑅 = {𝑥 ∈ 𝐷||𝐼(𝑥) − 𝐼(𝑠)| ≤ 𝜀} (7) 

where 𝑅 denotes the growing region, 𝐷 is the image 

domain, 𝐼(𝑥) is the intensity of a candidate voxel, 𝐼(𝑠) 
is the intensity of the seed voxel, and 𝜖 is the intensity 

tolerance threshold. 

In our protocol, we manually defined two types of 
seed regions: one corresponding to the liver, and the 
other to the background (non-hepatic regions). Once 
the seeds were placed, the "Grow from seeds" tool was 
activated. The algorithm then proceeded with an 
automatic expansion of the regions to be segmented 
from these areas, considering the spatial proximity and 
intensity similarity of neighbouring voxels. voxels that 
satisfied the intensity condition described in Eq. (7). 
The parameters used include a tolerance of ±20 HU 
around the seed intensity, with a 3D connectivity of the 
26-neighbors type. 

3. Thresholding-based segmentation (Semi-

Automatic) 

We used the 3D Slicer software to segment the liver 
with an initial intensity threshold range between 70 and 
160 Hounsfield Units (HU). This approach allowed for 
the selection of liver tissue; however, other adjacent 
structures, such as the spleen, bones, and portions of 
the small intestine, were also included in the 
segmented area due to overlapping intensity values. 
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To address this, the resulting segment was defined 
as a mask by selecting it as a "modifiable area", which 
corresponds to the editable region of the image where 
further segmentation operations can be refined. This 
mask served as the base for subsequent segmentation 
steps, including the definition of additional segments, 
namely “liver” and “background”, to enable application 
of the region-growing tool. The thresholding method 
used in this step segments voxels based on their 
intensity values within a predefined range. It can be 
mathematically expressed using Eq. (8), as follows  
[49]: 

𝑆(𝑥) = {
1, 𝑠𝑖 𝑇𝑚𝑖𝑛 ≤ 𝐼(𝑥) ≤ 𝑇𝑚𝑎𝑥

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8) 

where 𝑆(𝑥) represents the segmentation mask, I(x) is 

the intensity of voxel x, and 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 These are the 

lower and upper intensity thresholds. This technique is 
implemented in the "Threshold" effect within the 
Segment Editor module of 3D Slicer. 

4. Contour interpolation segmentation (Semi-

Automatic) 

In this method, the segmentation was performed by 
manually tracing the liver contours every 10 axial slices 
of the CT dataset using the 3D Slicer software. We 
intentionally left at least one unsegmented slice 
between each annotated slice to enable interpolation. 

The "Fill Between Slices" tool, available in the 
segment Editor module, was then used to generate the 
missing contours through morphological contour 
interpolation automatically. This algorithm estimates 
the intermediate segmentations by analysing shape 
differences between two manually defined contours 
and gradually morphing one into the other. A manual 
review was conducted in cases where interpolation 
produced inaccurate contours at the liver boundaries, 
to ensure anatomical consistency before exporting the 
segmented model. Mathematically, the interpolation of 
the label S at slice z can be approximated as a linear 
combination between two annotated slices z1 and z2, 
as shown in Eq. (9) [50] : 

𝑆𝑧 = (1 − 𝛼) ∙ 𝑆𝑍1 + 𝛼 ∙ 𝑆𝑍2,     𝑤𝑖𝑡ℎ    𝛼 =
𝑍−𝑍1

𝑍2−𝑍1
 (9) 

where 𝑆𝑧 represents the interpolated segmentation at 

slice z, and 𝛼 ∈ [0,1] is the relative distance between 

the two manually segmented slices. This technique 
reduces manual effort while maintaining anatomical 
coherence across the segmented volume. 

5. Manuel Segmentation 

Manual segmentation of the liver was performed using 
the 3D Slicer software, which precisely traced the 
contours of the hepatic parenchyma on all CT slices. 
The work was carried out in the three orthogonal 
planes: axial (transverse), sagittal (longitudinal), and 
coronal (frontal), to ensure an accurate three-
dimensional representation of the organ. The intuitive 

interface of 3D Slicer allows for easy coloring of regions 
of interest, thus facilitating anatomical delineation even 
in images with low contrast or complex morphology. 
Although this method is time-consuming, it is 
considered a gold standard for evaluating the accuracy 
of semi-automatic or automatic approaches. 

The segmentations were performed by a biomedical 
engineer with seven years of experience in organ 
segmentation and surgical planning. All manual 
segmentations were independently reviewed and 
validated by a second operator with anatomical 
expertise to reduce subjectivity and potential bias. Any 
disagreements were resolved through consensus, 
ensuring the reliability and consistency of the reference 
segmentation used for evaluation. 

D. Creation of the 3D model 

After the segmentation of the liver using different 
approaches (manual, semi-automatic via 3D Slicer, 
and automatic via GE Healthcare's Hepatic VCAR), the 
segmented volumes were converted into three-
dimensional models. In 3D Slicer, the "Segmentations" 
module allowed for the generation of a surface mesh 
from the segmented structures, while in VCAR, the 
export of the 3D model was carried out directly through 
the software interface. All the models were then 
exported in STL (stereo-lithography) format, a standard 
format for visualization, surgical simulation, and 3D 
printing. No smoothing or geometric modification 
operations were applied to preserve the fidelity of the 
contours resulting from each segmentation method. 

E. Evaluation methods 

To quantify the geometric discrepancies between the 
segmented surfaces and the manual reference, the 
Euclidean distance was used as the fundamental 
measure between corresponding points. Per image 
analysis standards, we provide a set of ten 
mathematical equations supporting the segmentation  

and evaluation process, detailed below. 

It is defined by Eq. 10 and serves as the basis for 
calculating several geometric indicators, including the 
Root Mean Square error (RMS) and the Hausdorff 
Distance (HD) [51]. 

𝑑(𝑥𝑖 , 𝑥̂𝑖) = ‖𝑥𝑖 − 𝑥̂𝑖‖2   (10) 

where 𝑥𝑖 and 𝑥̂𝑖 are matched vertices on the 

segmented and reference surfaces, respectively. 

The RMS, defined in Eq. 11, measures the mean of the 
squared Euclidean distances between the segmented 
model's surface meshes and the reference, thereby 
providing a global measure of geometric accuracy [52]. 

𝑅𝑀𝑆 =  √
1

𝑁
∑ ‖𝑥𝑖 − 𝑥̂𝑖‖2𝑁

𝑖=1   (11) 

where 𝑥𝑖 and 𝑥̂𝑖 corresponding points on the reference 

and test surfaces, respectively, and 𝑁 is the total 

number of matched points. The Hausdorff Distance, 
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expressed by Eq. 12, captures the maximum deviation 
between two surfaces, highlighting the most localized 
errors [53]. 

𝐻𝐷(𝐴, 𝐵) = 𝑚𝑎𝑥 {sup
𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏𝜖𝐵

inf
𝑎𝜖𝐴

‖𝑏 − 𝑎‖} (12) 

where 𝐴 and 𝐵 are point sets on the respective 

surfaces. In parallel, the Standard Deviation (SD), 
given by Eq. 13, was used to assess the variability of 
segmented liver volumes across different cases, 
reflecting each method's internal consistency and 
precision [54]. 

𝑆𝐷 =  √
1

𝑁
∑ (𝑉𝑖 − 𝑉̅)2𝑛

𝑖=1    (13) 

where 𝑉𝑖 is the volume in case 𝑖, 𝑉̅and is the mean 

volume across all cases. 

Complementing these geometric measures, the 
Dice Similarity Coefficient (DSC), defined by Eq. 14, 
quantifies the volumetric overlap between the 
segmented result and the manual reference. Unlike 
other metrics, Dice is based solely on the intersection 
of voxel sets and does not involve spatial distances 
[55]. 

𝐷𝐼𝐶𝐸 =  
2|𝐴∩𝐵|

|𝐴|+|𝐵|
   (14) 

where 𝐴 and 𝐵 denote the sets of voxels from the 

method under evaluation and the reference 
segmentation, respectively. 

In addition to volumetric analysis, the external surface 
of the liver model was estimated from the triangular 
mesh (STL file) [52]. It was computed by summing the 
areas of each triangle in the mesh, as described in Eq. 
15. 

𝐴 = ∑
1

2
‖(𝑝𝑖,1 − 𝑝𝑖,0) × (𝑝𝑖,1 − 𝑝𝑖,0)‖𝑀

𝑖=1   (15) 

where 𝑀 is the total number of triangles and 𝑝𝑖,𝑗 are the 

vertices of the triangle. Furthermore, the internal volume 
of each liver segment was calculated directly from the 
voxel data. This was done by multiplying the number of 
voxels labelled within the segment by the volume of a 
single voxel, as shown in Eq. 16. This straightforward 
method ensures accurate volume estimation that is 
independent of surface reconstruction and is particularly 
useful for evaluating internal consistency across 
segmentation methods [56]. 

𝑉 = 𝑁𝑣 ∙ 𝑣𝑢𝑛𝑖𝑡   (16) 

 
 

 
(a) (b) 

  
 (c)       (d) 

Fig. 2. Segmentation planes axial, sagittal, and coronal. (a) Manual Segmentation; (b) Semi-automatic 
by regional growth segmentation; (c) Semi-automatic by Thresholding-based segmentation; (d) Semi-
automatic by Contour interpolation segmentation. 
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Where 𝑁𝑣 represents the number of voxels in the 

segmented region and 𝑣𝑢𝑛𝑖𝑡  corresponds to the volume 

of a single voxel. To evaluate whether the differences 
in segmentation accuracy between the four tested 
methods were statistically significant, a non-parametric 
Friedman test was applied to the RMS, SD, HD, and 
Dice values, as the data consisted of repeated 
measures on the same subjects. When the Friedman 
test revealed significant differences, post hoc pairwise 
comparisons were performed using the Wilcoxon 
signed-rank test with Bonferroni correction to control for 
multiple testing. A significance threshold of p < 0.05. 

III. Result 
The provided data set consists of images in all three 
planes: axial, sagittal, and coronal. Fig. 2 shows the 
direction of the three planes used in the data set, 
including manual and semi-automatic segmentation 
with 3D Slicer. Fig. 3 shows automatic segmentation 
with GE Healthcare's Hepatic VCAR. Upon generating 
each segment for each segmentation method, we 
transform these segments into three-dimensional 
forms in STL format for utilization in our simulation. STL 
files just depict the surface geometry of a three-
dimensional object, lacking any color representation. 
We aligned the liver segmentation models for each 
method (automatic, semi-automatic by region growing, 
semi-automatic by thresholding, and semi-automatic 
by contour interpolation) to compare the distance 
discrepancies with a manual reference model (ground 
truth). The alignment of the models allows for an 
accurate evaluation of the differences between each 
segmentation method and the ground truth. 

The colorimetric mapping of signed deviations 

between the models is used to visualize these 

differences. The colors on the models represent the 

signed deviations: The Red, orange, and yellow areas 

Indicates significant positive deviations, where the points 

of the compared model are further away than those of 

the reference model, The blue zones characterized by 

negative deviations, where the points of the compared 

model are closer than those of the reference model, and 

the green area indicates deviations close to zero within 

a tolerance of ± 0.2 mm, which means that the points of 

the two models coincide or are very close (Fig. 4). The 

bar diagram (Fig. 5) shows deviation (SD) and the Root 

Mean Square (RMS) for different liver segmentations  

methods. The precision is determined by applying the 

standard deviation (SD), which was utilized to measure 

the dispersion of individual deviations from the average, 

indicating the internal variability of each method. The 

Root Mean Square (RMS) quantifies the average of 

squared deviations, providing a comprehensive 

measure of accuracy. Together, these two metrics 

provide a comprehensive assessment of the variability 

and precision of segmentation methods. 

The alignment between the different segmentation 

methods reveals significant discrepancies in terms of 

precision and stability. The least reliable alignment is 

observed with the automatic method, which shows the 

most excellent dispersion (SD = 2.83 ± 0.20 mm) and 

the most significant deviations (RMS = 4.64 ± 0.39 mm), 

indicating a less consistent overall performance. In 

contrast, the alignment between the semi-automatic 

method by regional growth and the manual reference 

shows the lowest dispersion (SD = 0.40 ± 0.12 mm) and 

the smallest deviations (RMS = 1.48 ± 0.24 mm), making 

it the most reliable approach among those evaluated. 

The semi-automatic methods by contour interpolation 

(SD = 0.99 ± 0.20 mm; RMS = 1.79 ± 0.14 mm) and by 

 
Fig. 3. Segmentation planes, axial, sagittal, and coronal, automatic segmentation with GE Healthcare's 
Hepatic VCAR. 
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thresholding (SD = 1.41 ± 0.25 mm; RMS = 2.03 ± 0.25 

mm) show intermediate alignment, with better 

performance than the automatic method, but inferior to 

regional growth. These results highlight the importance 

of good spatial and geometric alignment to ensure 

precise and reproducible liver segmentation (Fig. 5). The 

analysis of Root Mean Square (RMS) error and standard 

deviation (SD) revealed significant differences between 

segmentation methods (RMS: p = 2.65 × 10⁻⁵; SD: p = 

1.38 × 10⁻⁶). Post hoc Wilcoxon tests (p < 0.01) showed 

that the automatic method was less accurate and more 

variable than the semi-automatic approaches.  

These observations conclude that semi-automatic 

methods, particularly the region growing approach, 

exhibit high trueness and precision, consistently 

producing results that closely match the manual 

segmentation. The values obtained show strong 

alignment with the standard reference model. In 

contrast, the automatic method shows greater variability, 

reflecting lower trueness and precision, leading to more 

pronounced discrepancies from the manual reference. 

The Dice coefficient (DICE), also known as the 

overlap index, is the most commonly used metric to 

validate medical volume segmentations. The semi-

automatic segmentation by the region-growing method 

stands out with the best Dice score (0.935 ± 0.013), 

reflecting excellent similarity with the reference model. 

The other semi-automatic methods, contour 

interpolation and thresholding segmentation, also 

achieve good scores (0.904 ± 0.016,0.886 ± 0.019), 

indicating adequate overlap with the reference model. 

Although the automatic method has the lowest Dice 

score, with a value of around 0.859 ± 0.025, it still shows 

good overlap. Overall, all segmentation methods provide 

 

Fig. 5. Boxplots of (a) the precision (SD), and (b) the trueness (RMS) of surface matching between 
different liver segmentation methods and manual segmentation. 

A B C D 

 
    

Fig. 4. Colorimetric mapping of significant discrepancies between different models of segmentation of 
the liver and a manual reference model (ground truth): (A) automatic segmentation; (B) semi-automatic 
segmentation by region growth; (C) semi-automatic segmentation by thresholding; (D) semi-automatic 
segmentation by contour interpolation. 
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satisfactory results regarding overlap with the reference 

model (Fig. 6). 

The Dice coefficient showed significant differences 

between methods (p = 3.53 × 10⁻⁵). The automatic 

method performed significantly worse than the semi-

automatic approaches, particularly the region growing 

method, which achieved the highest scores and greatest 

consistency (p < 0.01). 

Spatial distance-based metrics are widely used in image 

segmentation evaluation as dissimilarity measures. 

They are recommended when the overall accuracy of 

the segmentation. In our case, the Hausdorff distance 

represents the spatial distance between two sets of 

points. 

The semi-automatic method by region growing 

shows the lowest Hausdorff distance (4.32 ± 0.48), 

indicating excellent contour precision. The semi-

automatic methods by contour interpolation and 

thresholding have moderate Hausdorff distances (5.2 ± 

0.52,7.32 ± 0.30), respectively, reflecting an acceptable 

but lower precision than that of region growing. The 

automatic method displays the highest Hausdorff 

distance (17.01 ± 1.09), revealing significant 

inaccuracies in the segmented contours (Fig. 7). 

The Hausdorff Distance revealed significant 

differences between methods (p = 2.33 × 10⁻⁶). The 

automatic method showed the highest local errors, while 

the region growing approach achieved the lowest HD 

 

Fig. 6. Comparison of Dice coefficient across different liver segmentation methods. 

 
 

Fig. 7. Comparison of Hausdorff distance across different liver segmentation methods. 
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values, confirming its superior geometric accuracy (p < 

0.01). The time required for liver segmentation varies 

depending on the method used: region growing, 

thresholding, contour interpolation, or automatic 

segmentation. The results demonstrate the superior 

speed of the automatic method compared to manual or 

semi-automatic approaches, highlighting the 

advantages of automation in this type of procedure Fig. 

8. 

IV. Discussion 

This study aimed to evaluate and compare several 
volumetric liver segmentation methods from CT 
images, to produce 3D models suitable for surgical 
planning. The results obtained show that the semi-
automatic method using region growing, integrated into 
the open-source software 3D Slicer, provides the 
highest performance in terms of geometric fidelity, with 
a Dice coefficient of 0.935 ± 0.013 and a Hausdorff 
distance of 4.32 ± 0.48 mm. 

The Hausdorff Distance (HD) measures the 
maximum local deviation between a segmentation and 
the reference anatomy. Clinically, it indicates worst-
case errors, especially near critical structures. An HD 
below 5 mm is generally required to ensure the 
reliability of 3D models for surgical planning, as 
confirmed by Meixner et al. [57] and Konuthula et 
al.[58], who demonstrated that this threshold 
guarantees the clinical relevance of anatomical 
models. These results reflect an excellent match 
between the segmented contours and the ground truth, 
with significant inter-case stability as demonstrated by 
the low dispersion of deviations (SD = 0.40 ± 0.12 mm). 

However, despite its overall accuracy, the region 
growing method may still present limitations in certain 
challenging cases, such as diffuse steatosis, irregular 
liver contours, or low-contrast CT scans. These 
conditions can lead to under- or over-segmentation, 

especially at the periphery. Such cases highlight the 
method’s sensitivity to anatomical variability and image 
quality, underscoring the need for visual validation and 
manual correction to ensure clinical reliability of the 3D 
models. Regional growth offers significantly superior 
accuracy compared to other semi-automatic 
approaches available on the same platform, such as 
simple thresholding or contour interpolation. Moreover, 
it substantially surpasses the automatic segmentation 
provided by the proprietary software Hepatic VCAR, 
which, although effective in terms of speed, presents 
less reliable results, notably a lower Dice coefficient 
(0.859 ± 0.025) and a much higher Hausdorff distance 
(17.01 ± 1.09 mm), indicating significant discrepancies 
with the manual reference. 

The high standard deviation observed with VCAR 
indicates significant inter-patient variability, highlighting 
a lack of robustness that limits its clinical reliability. In 
contrast, the region growing method shows better 
adaptability to anatomical variability, especially in 
complex cases or low-quality CT scans, making it more 
suitable for clinical use. The region-growing approach, 
integrated into a free platform such as 3D Slicer, 
constitutes an immediately applicable solution in 
resource-constrained clinical environments, consistent 
with the findings of Cai et al. [31] and Yamaguchi et al. 
[32], who emphasized the value of semi-automatic 
methods as a viable alternative to proprietary solutions. 

Beyond geometric accuracy, inter-operator 
reproducibility is crucial for clinical adoption. A 
preliminary analysis involving two operators on five 
cases each showed a mean RMS difference of only 
0.23 mm with region growing, confirming high 
consistency when a standard protocol is followed. 
While the method requires manual input (seed 
placement and thresholding), its learning curve 
remains moderate, and reproducible results can be 
achieved even by non-expert users. This balance 

 

Fig. 8. Comparison of Segmentation Time across Different Methods. 
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between precision and usability supports its 
deployment in resource-limited settings. The creation 
of realistic and personalized 3D models represents a 
significant asset for surgical preparation and training, 
as demonstrated by Rossi et al. [7] and Valls-Esteve et 
al. [10], who have shown that printed models enhance 
anatomical understanding and reduce the risk of 
intraoperative errors. 

Unlike VCAR, which lacks manual correction 
options and shows reduced performance in atypical 
anatomies, region growing maintains high 
segmentation quality with a Dice coefficient of 0.935 ± 
0.013, RMS of 1.48 mm, and HD of 4.32 mm values 
well within clinically acceptable thresholds (Dice ≥ 0.90, 
RMS ≤ 2 mm, HD ≤ 5 mm) [57][59][60][61]. These 
findings confirm that segmentation quality directly 
influences the fidelity and clinical relevance of printed 
models, as reported in studies on the accuracy of 
medical 3D printing in reconstructive surgery 
(Juergensen et al. [60]; Chae et al. [61]). Colorimetric 
deviation maps confirmed that most surface errors in 
region growing remained under 2 mm, whereas other 
methods, such as thresholding, contour interpolation, 
or VCAR, showed more frequent and larger deviations. 

Such geometric inaccuracies, if uncorrected, can 
impact surgical planning by misrepresenting resection 
margins or vascular landmarks and reduce model 
usefulness in education. Region growing provides the 
best trade-off between accuracy, consistency, and 
flexibility for producing reliable 3D models in line with 
other studies that demonstrated the robustness and 
reproducibility of semi-automatic open-source tools 
such as 3D Slicer in different clinical contexts (Egger et 
al. [28]; Wijnen et al. [59]). 

The performances observed in this study are 
comparable, if not superior, to those reported in other 
works using semi-automatic or automatic methods. 
Yamaguchi et al. [32] developed a semi-automatic 
method based on a probabilistic atlas and local 
histograms, achieving a Dice coefficient of 0.912 and a 
Hausdorff distance of approximately 5.2 mm, slightly 
lower than our method in terms of accuracy. It is not 
implemented in a standard open-source platform such 
as 3D Slicer, which limits its reproducibility and 
adoption in clinical practice. In contrast, the regional 
growth method used in our study relies on already 
available tools, freely accessible, and can be activated 
without programming or algorithm development, 
making it an immediately exploitable solution in a real 
hospital environment. For their part, Cai et al. [31] 
compared several tools, including a commercial semi-
automatic method, and reported a Dice of 0.875 and an 
RMS of 2.4 mm, which is significantly less precise than 
the regional growth used in our protocol. More recently, 
AI-based extensions such as FastSAM-3DSlicer [38] or 
TomoSAM have been proposed, achieving Dice scores 

close to 90%. Still, these approaches require specific 
training, heavy technical infrastructure (GPU), and 
suffer from algorithmic opacity, which limits their 
integration into a controlled clinical workflow. 

Other studies, such as that of Rundo et al. [62] on 
using U-Net convolutional neural networks for prostate 
segmentation, have highlighted similar limitations: 
although effective in experimental contexts, these 
models show a strong sensitivity to acquisition 
variations and artifacts. These limitations, combined 
with the inability to correct the results manually, restrict 
their use in surgical practice, especially in resource-
limited hospitals. In contrast, our semi-automatic 
method allows for operator intervention, promoting 
personalized clinical adaptation without algorithmic 
retraining. 

This study's results align with the work conducted 
by Egger et al. [28], who validated the robustness and 
reproducibility of the semi-automatic tools integrated 
into 3D Slicer in the field of glioblastomas. Although 
their study subject differs (intracranial structures), their 
methodology supports using reliable and open semi-
automatic solutions in demanding anatomical contexts. 
Similar approaches have also been validated for liver 
segmentation within the RVX Liver Segmentation 
plugin [36], which relies on assisted segmentation but 
is guided by human expertise. 

This combination of precision, accessibility, and 
flexibility makes our protocol a practical, cost-effective, 
and immediately applicable solution for surgical teams 
seeking to integrate 3D modelling into their clinical 
practice.  

A detailed comparison with commercial solutions is 
needed to fully evaluate the proposed method's clinical 
applicability, especially in resource-limited settings. 
Proprietary platforms like Hepatic VCAR or AI-based 
systems typically require costly licenses, high-
performance hardware (e.g., GPUs), and specialized 
staff, which limits their accessibility in public or under-
resourced hospitals. 

In contrast, the region-growing method is 
implemented in 3D Slicer, a free, open-source platform 
that runs on standard computers and functions offline 
without requiring cloud access or license fees. Its semi-
automatic nature offers transparency and control, 
enabling clinicians to verify each step. While it requires 
basic training, even non-experts achieved reproducible 
results in our study, with a moderate learning curve. 

This approach supports efficiently prototyping 
patient-specific models suitable for preoperative 
planning and education. Some limitations remain, such 
as the need for manual adjustments in complex or low-
contrast cases and potential onboarding challenges in 
settings with limited digital expertise. However, the 
method’s balance of affordability, accessibility, 
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adaptability, and precision makes it a strong alternative 
to commercial systems for sustainable clinical 
integration. 

Although the results obtained are very encouraging, 
some areas for improvement remain. One of the main 
upcoming steps concerns the practical validation of the 
segmented 3D models. Indeed, while the geometric 
performances have been rigorously quantified using 
objective metrics (Dice, RMS, HD), these models have 
not yet been printed or qualitatively evaluated by 
healthcare professionals in a real surgical setting. 
Furthermore, one of the main limitations of this study 
lies in the exclusive reliance on image-derived 
geometric metrics such as Dice coefficient, Hausdorff 
Distance, and RMS error for the validation of 
segmentation accuracy. While these quantitative 
indicators are essential for assessing spatial 
agreement with manual references, they do not fully 
reflect the clinical reality encountered during hepatic 
resections. The absence of cross-validation against 
intraoperative findings, resected specimens, or 
pathological reports limits the direct translatability of the 
results into clinical decision-making. Indeed, even a 
segmentation with high geometric scores may fail to 
capture subtle anatomical variations or tumor margins 
critical in real-world surgical scenarios. To address this 
limitation and strengthen clinical relevance, future work 
should include a validation phase involving comparison 
with surgical observations and pathology data. For 
example, correlating segmented volumes with resected 
tissue measurements, histopathological margins, or 
navigation data from intraoperative imaging would 
provide more substantial evidence of the method’s 
applicability in operative contexts. Such validation 
steps would not only confirm the geometric accuracy 
but also the anatomical and functional fidelity of the 
generated 3D models, which is essential for their 
integration into clinical workflows. Thus, the logical next 
step in this work will be to materialize the 
reconstructions in the form of 3D printed physical 
models, and then submit them to a clinical evaluation 
by surgeons, radiologists, or anatomists, in order to 
confirm their anatomical fidelity, pedagogical utility, and 
added value for surgical planning. Despite the fact that 
this step is still to be taken, our approach already 
presents several major advantages. It relies on open-
source tools, making it easily deployable in low-
resource hospital environments. It does not require 
advanced IT infrastructure or specific algorithmic 
expertise, while allowing human intervention at every 
stage, ensuring clinical control of the outcome. 
Moreover, it provides high reproducibility, great 
methodological transparency, and adaptability to 
complex clinical cases, often poorly handled by 
automated tools. The printing and future validation of 
liver models will constitute an additional advancement 

to strengthen the impact of this method in real-world 
surgical planning and training contexts. The main 
objective of this study is to comparatively evaluate 
several volumetric liver segmentation methods 
available in open-source software, particularly 3D 
Slicer, to identify the one offering the best compromise 
between accuracy, reproducibility, and accessibility, in 
the context of preoperative 3D modelling. This 
approach is part of a desire to provide a concrete 
decision-making tool to practitioners working in 
resource-limited settings. Continuing this work, a future 
perspective will involve physically printing the 3D liver 
models generated from the different segmentation 
methods, to allow for qualitative evaluation by 
healthcare professionals (surgeons, radiologists, 
pathologists). This step will aim to validate the models' 
anatomical fidelity and clinical relevance in a real 
surgical planning workflow, thereby enhancing the 
applied value of the proposed protocol. 

V. Conclusion  

This study evaluated and compared several liver 

segmentation methods for 3D surgical planning using 

open-source tools, particularly 3D Slicer, and found that 

the semi-automatic method based on region growing 

demonstrated the best performance, with a Dice 

similarity coefficient of 0.935 ± 0.013 and a Hausdorff 

distance of 4.32 ± 0.48 mm, indicating excellent 

geometric fidelity and strong agreement with manual 

segmentation. It offered the most favorable balance 

between precision, reproducibility, and ease of use, 

particularly in clinical settings with limited resources. An 

additional finding was that semi-automatic tools allow 

operator control and correction, leading to more reliable 

results than fully automatic methods, which are 

resource-intensive and sensitive to image quality. The 

use of open-source software further supports 

accessibility and adaptability in constrained healthcare 

environments. This study proposes a reproducible and 

cost-effective workflow for liver segmentation validated 

using standardized metrics and publicly available CT 

data, though it lacks physical validation of the 3D 

models. Future work will involve 3D printing the liver 

models and assessing them by clinicians to evaluate 

anatomical fidelity and clinical relevance, thereby 

enhancing their integration into real-world surgical 

planning. 
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