
Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1089-1111                                    e-ISSN: 2656-8632 

 
Manuscript received July 13, 2024; Revised September 5, 2025; Accepted September 24, 2025; date of publication September 26, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1030 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 1089               

RESEARCH ARTICLE  OPEN ACCESS 

Gallbladder Disease Classification from 
Ultrasound Images Using CNN Feature 
Extraction and Machine Learning Optimization 
 
Ryan Adhitama Putra1 , Gede Angga Pradipta2 , and Putu Desiana Wulaning Ayu2  
 

1 Magister Program, Department of Magister Information Systems, Institut Teknologi dan Bisnis STIKOM   
  Bali, Denpasar, Indonesia 
2 Department of Magister Information Systems, Institut Teknologi dan Bisnis STIKOM Bali, Denpasar, Indonesia 

Corresponding author: Ryan Adhitama Putra (e-mail: 232011014@stikom-bali.ac.id), Author(s) Email: Gede 
Angga Pradipta (e-mail: angga_pradipta@stikom-bali.ac.id), Putu Desiana Wulaning Ayu (e-mail: 
wulaning_ayu@stikom-bali.ac.id) 
 

Abstract Gallbladder diseases, including gallstones, carcinoma, and adenomyomatosis, may cause severe 

complications if not identified correctly and in a timely manner. However, ultrasound image interpretation 

relies heavily on operator experience and may suffer from subjectivity and inconsistency. This study aims 

to develop an automated and optimized classification model for gallbladder disease using ultrasound 

images, aiming to improve diagnostic reliability and efficiency. A key outcome of this research is a 

thorough assessment of how feature selection combined with hyperparameter tuning influences the 

accuracy of classical machine learning models that  use features extracted via CNN-based feature 

extraction. The proposed pipeline enhances diagnostic accuracy while remaining computationally efficient. 

The method involves extracting deep features from ultrasound images using a pre-trained VGG16 CNN 

model. The features are subsequently reduced using the SelectKBest method through Univariate Feature 

Selection. Multiple popular classification models, specifically SVM, Random Forest, KNN, and Logistic 

Regression were tested using both original settings and adjusted hyperparameters through grid search. A 

complete evaluation of model performance was conducted using the test set, employing key performance 

indicators including overall prediction correctness (accuracy), actual positive rate (recall), positive 

prediction accuracy (precision), F1-score, and the ROC curve’s corresponding area value. Evaluation 

results suggest that the SVM approach, combined with selected features and hyperparameter tuning, 

achieved the highest performance: 99.35% accuracy, 99.32% precision, 99.35% recall, and 99.33% F1-score, 

with a relatively short computation time of 18.4 seconds. In conclusion, feature selection and 

hyperparameter tuning significantly enhance classification performance, making the proposed method a 

promising candidate for clinical decision support in gallbladder disease diagnosis using ultrasound 

imaging. 

 

Keywords Gallbladder Disease Classification; Ultrasound Images; CNN Feature Extraction; Feature 
Selection; Hyperparameter Tuning.  
 
I. Introduction 

Positioned under the liver, the gallbladder is a compact 
organ with a pear-like shape, anatomically divided into 
the fundus, body, and neck, which joins the cystic duct 
[1]. This organ primarily stores and concentrates bile 
synthesized by the liver during interdigestive phases. 
Once food enters the digestive tract, the gallbladder 
contracts to deliver bile into the small intestine, where 
it plays a crucial role in breaking down fats and 
supporting their absorption [2]. However, despite its 
small size, the gallbladder is prone to various disorders 
that can significantly impact human health [3][4]. 

Gallbladder disease is primarily influenced by 
lifestyle factors, such as a high-fat diet, obesity, and 
age-related changes [5]. Recent investigations have 
indicated a global upward trend in the incidence of 
gallbladder-related disorders. For example, data from 
routine health screenings in Liaoning, China, reported 
that 2.30% of the population exhibited gallstones, while 
6.64% presented with gallbladder polyps. The 
prevalence of these conditions demonstrated a steady 
year-by-year increase, reaching its highest point in 
2020 [6]. In 2019, over 52 million new instances related 
to gallbladder and bile duct disorders were recorded 
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worldwide, reflecting a 97% increase since 1990, with 
women and populations in low-HDI countries 
disproportionately affected [7]. In 2022, the number of 
new cases reached 122,491, accompanied by 89,055 
deaths reported worldwide, with Northeastern India and 
Southern Chile showing the highest incidence rates. 
Incidence rates were notably higher in females than 
males, while the lowest rates were found in Uganda 
and South Africa [8]. Similar trends were observed in 
Germany, where gallstone prevalence rose from 3.8% 
to 10.8% over a decade, with higher rates in women 
and peak incidence occurring in adults aged 41–50 
years [9]. In Indonesia, a recent study at Dr. Moewardi 
Regional Hospital in Surakarta reported that out of 86 
patients reviewed between January and April 2023, 43 
(50%) were diagnosed with gallstones, highlighting a 
significant local disease burden and a strong 
association with excess body mass index (BMI) [10]. 

Considering the potential risks associated with 
gallbladder disease, early detection using non-invasive 
imaging techniques such as ultrasonography (USG) is 
essential [11]. Ultrasound has been widely recognized 
as a safe, accessible, and cost-effective diagnostic 
tool, capable of identifying both symptomatic and 
asymptomatic cases of gallbladder diseases [12]. 
However, interpreting ultrasound images visually is 
strongly influenced by the operator's expertise and 
image clarity, both of which can significantly impact 
diagnostic accuracy [13][14]. Therefore, machine 
learning technology is needed to help address these 
limitations by supporting more accurate and consistent 
interpretation of ultrasound images [15][16]. 

In the last few years, researchers have proposed 
multiple techniques or approaches to improve the 
accuracy of classification performance in gallbladder 
disease diagnosis. For instance, Obaid et al. evaluated 
deep neural network models on a large ultrasound 
dataset comprising 10,692 images from 1,782 patients. 
They found that MobileNet achieved the highest 
accuracy at 98.35% in classifying nine types of 
gallbladder diseases [17]. Building on the same 
dataset, Bozdağ et al. introduced a feature-engineered 
content-based image retrieval (CBIR) system that 
outperformed six benchmark models by integrating 
features from multiple pre-trained CNN architectures. 
Achieving an Average Precision (AP) score of 0.94, the 
developed system demonstrates strong potential as a 
reliable diagnostic aid, particularly in healthcare 
environments lacking specialist radiological expertise 
[18]. 

In a separate study, Shuvo and Chowdhury 
demonstrated that an ensemble of CNN architectures, 
specifically VGG16, VGG19, XceptionNet, and 
ResNet50, significantly improved the classification 
accuracy for gallbladder cancer using ultrasound 
images. Their findings indicated that VGG19 and 

XceptionNet outperformed the others, achieving the 
highest classification accuracy of 85.44% [19]. In 
another study, Dadjouy and Sajedi introduced a 
comprehensive hierarchical model that integrates 
feature fusion within a dual CNN architecture 
incorporating uncertainty estimation, which achieved a 
classification accuracy of up to 92.62% for gallbladder 
cancer detection [20].  

While deep learning approaches have yielded 
positive results, there are still notable limitations in 
existing diagnostic tools for gallbladder disease. 
Despite their success, end-to-end CNN architectures 
frequently need extensive annotated datasets and 
considerable processing capabilities, limiting their 
application in healthcare systems with constrained 
resources. For instance, Bozdağ et al. mentioned 
minimizing time-consuming processes, but did not 
specify the actual processing time [18], while Obaid et 
al. reported that their model required at least 540 
seconds for image processing [17]. Shuvo and 
Chowdhury achieved only 85.44% accuracy using a 
CNN ensemble, indicating room for improvement [19]. 
Dadjouy and Sajedi highlighted the need for larger 
datasets and, in another study, limited their focus to a 
single disease from a single dataset, which restricts 
model generalizability [20]. 

Given these limitations, alternative strategies are 
essential for high diagnostic accuracy while reducing 
dependency on large datasets and heavy 
computational requirements. One promising direction 
is the development of combined methods leveraging 
CNNs for feature extraction alongside conventional 
machine learning classifiers. In addition, while most 
existing studies emphasize end-to-end deep learning 
frameworks, there has been relatively limited 
investigation into hybrid methods that integrate CNN-
based feature representation followed by machine 
learning classification models. Among various CNN 
architectures, VGG16 VGG16 architecture is widely 
utilized for feature extraction tasks due to its simplicity, 
transferability, and effectiveness in capturing 
hierarchical features [21]. VGG16’s architecture, 
consisting of thirteen convolutional operations followed 
by three dense layers, enables it to serve as a robust 
backbone for extracting rich image representations 
[22]. Previous studies have demonstrated that 
combining features derived from CNNs with classical 
machine learning classification models, including SVM, 
Random Forest, KNN, and Logistic Regression, can 
enhance classification performance and strengthen 
model generalizability. Waluyo et al. reported that a 
CNN-KNN hybrid approach outperformed a pure CNN 
model in detecting Mycobacterium tuberculosis in 
medical images [23]. Similarly, Biswas and Islam 
achieved high classification performance for brain 
tumors using a CNN-SVM hybrid model [24]. Saleh et 
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al. successfully implemented a CNN-Random Forest 
pipeline for lung nodule classification [25]. 
Furthermore, Kuntiyellannagari et al. introduced a 
hybrid CNN aimed at detecting brain tumors by 
applying various traditional classifiers, such as Logistic 
Regression, with promising results [26].To address this 
gap, the present study introduces a hybrid classification 
model that employs CNN for feature extraction with 
VGG16 from ultrasound images, followed by 
classification using four classification models, namely 
SVM, Random Forest, KNN, and Logistic Regression. 

An essential component in achieving optimal 
performance in hybrid classification frameworks is the 
application of effective feature selection combined with 
hyperparameter tuning [27]. Feature selection is 
essential in identifying the most relevant attributes in 
high-dimensional data, enhancing model accuracy, 
reducing complexity, and minimizing overfitting, 
especially in medical imaging, where subtle distinctions 
are diagnostically crucial [28]. Various techniques are 
available for selecting features, such as Recursive 
Feature Elimination (RFE), Principal Component 
Analysis (PCA), and regularization methods like 
LASSO, along with univariate feature selection 
approaches [29][30][31]. Feature selection methods 
like SelectKBest assist in detecting the key features 
within large-scale datasets by ranking them according 
to statistical criteria, making it a simple yet effective 
way to improve model performance while reducing 
overfitting [32]. The impact of this approach has been 
empirically demonstrated in several studies. For 
instance, Jain and Saha evaluated classifiers both with 
feature selection applied and without it, then reported 
performance gains of up to 26.5% in accuracy, 70.9% 

in F-measure, and 26.74% in AUC-ROC, together with 
a decrease in average training duration by 62 seconds 
[33]. Similarly, Julkaew et al. reported a classification 
accuracy of 92.05% after feature selection, which was 
higher than the 90.79% accuracy obtained using all 
available features [34].  

Meanwhile, adjusting hyperparameters refines the 
model configuration, often turning average 
performance into high accuracy [35]. Similarly, 
hyperparameter tuning can be performed using 
Random Search, Bayesian Optimization, or Grid 
Search. However, this study adopts Grid Search 
because it systematically explores multiple 
hyperparameter configurations to identify the optimal 
setup for optimizing model performance, thereby 
enhancing generalization and robustness, particularly 
in complex classification scenarios [36][37]. Taufiq et 
al. reported that Grid Search achieved superior 
accuracy, with average improvements of 0.5% in 
accuracy, 0.67% in precision, 0.83% in recall, and 
0.33% in F1-score. The benefits were highly algorithm-
dependent, with SVM showing a substantial accuracy 
gain of approximately 30%, KNN and Decision Tree 
improving by around 4–5%, and Random Forest and 
Logistic Regression exhibiting gains of less than 1.1% 
[38]. Similarly, Sukamto et al. demonstrated that 
applying Grid Search increased the accuracy of the 
Decision Tree by 1.52% and the KNN by 1.49% [39]. 

 To address the challenges in diagnosing 
gallbladder diseases from ultrasound images, this 
study focuses on developing an automated and 
optimized classification model that improves diagnostic 
reliability and efficiency by integrating CNN-based 
feature extraction with machine learning classification 

 
Fig. 1. The methodology flowchart of our proposed model consists of data pre-processing, CNN-based 
feature extraction followed by feature selection, classification using machine learning algorithms, and 
performance evaluation 
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models (Fig. 1). The proposed method leverages a pre-
trained VGG16 architecture, a type of Convolutional 
Neural Network (CNN), for deriving deep 
representations of ultrasound data, and subsequently 
applies Univariate Feature Selection via the 
SelectKBest technique to reduce feature space and 
preserve the most informative attributes. These 
selected features are then classified using four 
classification models: SVM, Random Forest, KNN, and 
Logistic Regression, each evaluated in both default and 
grid-tuned hyperparameter configurations. This study 
contributes by 1) introducing a hybrid framework that 
efficiently integrates features extracted by CNN with 
machine learning classification models, 2) the 
integration of feature selection to improve classifier 
accuracy and computational efficiency, 3) the 
application of systematic hyperparameter tuning to 
optimize model performance, and 4) the achievement 
of high classification accuracy with efficient 
computation time demonstrates the method’s potential 
as a supportive tool in clinical decision-making. The 
system is evaluated with multiple performance metrics, 
including overall prediction correctness (accuracy), 
true positive rate (recall), positive prediction accuracy 
(precision), F1-score, and the ROC curve’s 
corresponding area value. This study introduces a 
replicable methodology with broad applicability, aimed 
at enhancing diagnostic reliability and objectivity in the 
classification of gallbladder diseases using ultrasound 
imaging. 

An overview of this study is arranged in the following 
manner. Section II provides details about the utilized 
dataset and describes the preprocessing procedures, 
extraction of features using CNN, selection of relevant 
features, and the applied machine learning models, 
including their tuned parameters. Section III reports 
classification outcomes assessed through various 
evaluation metrics for both baseline and optimized 
models. Section IV elaborates on the experimental 
findings, particularly the influence of combining feature 
selection with hyperparameter tuning, and also 
addresses the study’s limitations. Lastly, the fifth 
section summarizes the study's goals, principal results, 
and potential avenues for future research.  

II. Methodology 

This study begins by utilizing a dataset of ultrasound 
images related to gallbladder disease (Fig. 2). The 
initial stage involves data preprocessing, which 
includes two key steps: image enhancement, to 
improve visual clarity and highlight essential features, 
and image resizing, to ensure uniform dimensions for 
consistent input into subsequent processes. Once the 
images are preprocessed, feature extraction is 
performed using a CNN model. This step automatically 
captures deep visual patterns from the ultrasound 
images, serving as high-level feature representations. 
Subsequently, a feature selection step is performed to 
minimize dimensional complexity by preserving only 
the most informative attributes for classification, which 

 
Fig. 2. Gallbladder ultrasound dataset comprising 9 diagnostic categories. The images on the left 
represent the original inputs, while those on the right reflect the outcomes after preprocessing 
procedures were applied 
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contributes to improved computational efficiency and 
may lead to better predictive accuracy. 

Following the preprocessing stage, data splitting is 
performed by allocating 80% for training and 20% for 
testing, enabling the model to be assessed using 
independent samples to evaluate its ability to 
generalize effectively. In the classification stage, four 
classical machine learning models are employed: SVM, 
Random Forest, KNN, and Logistic Regression. For 
performance refinement, hyperparameter tuning is 
carried out using Grid Search, which systematically 
explores multiple parameter combinations to identify 
the most effective configuration. Finally, the evaluation 
phase uses two main metrics: the confusion matrix and 
the ROC curve’s corresponding area value. For further 
illustration of the research workflow, see Fig. 1. 

A. Dataset 

This research uses an openly available dataset from 
Mendeley Data named the Gallbladder Diseases 
Dataset. The dataset is composed of 10,692 images 
with the following class distribution: 1,170 images of 
abdomen and retroperitoneum, 1,164 images of 
adenomyomatosis, 1,590 images of carcinoma, 1,146 
images of cholecystitis, 1,326 images of gallstones, 
1,224 images of membranous and gangrenous 
cholecystitis, 1,062 images of perforation, 1,020 
images of polyps and cholesterol crystals, and 990 
images of wall thickening. Over four years, imaging 
data were obtained from four medical institutions in 
Baghdad, Iraq, using ultrasound equipment including 
Philips Affiniti 70, Siemens Acuson X700, Canon 
Viamo c100, and Philips CX50. Training medical staff 
performed acquisition, with disease classification 
conducted by radiologists and quality verification by 
senior specialists [40].  

In the original dataset, all images (600x450 pixels, 
24-bit depth) were resized to 1200x900 pixels while 
preserving the aspect ratio, followed by noise reduction 
via median filtering, normalization to zero mean and 
unit variance, and data augmentation (rotations, flips, 
translations, brightness/contrast adjustments). 
Categorical labels were numerically encoded for model 

compatibility. The dataset offers a robust benchmark 
for multi-class classification tasks involving gallbladder 
ultrasound imaging through this standardized 
preprocessing and balanced representation across 
nine disease categories. Furthermore, the inclusion of 
clinically realistic variability in grayscale images 
enhances their relevance for evaluating the robustness 
of automated diagnostic systems. 

B. Pre-Processing Data 

In this study, the pre-processing stage involves of two 
main techniques: image enhancement and image 
resizing. This work uses the CLAHE method to boost 
contrast quality in grayscale ultrasound images of 
gallbladder diseases. Initially developed to enhance 
images with low contrast, this method is also utilized to 
address the issue of noise amplification that can occur 
when using the Histogram Equalization approach. It 
works by dividing the image into compact regions, 
typically 8-by-8 pixels, and performing histogram 
equalization independently within each region [41].  

The CLAHE method relies on two primary 
configuration settings: Clipping Limit (CL) and Block 
Size (BS), both of which significantly influence the 
quality of the enhanced image [42]. Raising the 
Clipping Limit (CL) typically causes the image to 
appear more luminous, especially in cases where the 
original image exhibits low brightness levels. An 
elevated CL setting leads to a more uniform histogram 
distribution, thereby extending the dynamic range and 
improving overall image contrast [43]. The 
mathematical formulation of CLAHE can be expressed 
as shown in Eq. (1) [44]. 

𝛽 =  
𝑝

𝑞
1 + (1 +  

𝛼

100
𝑆𝑚𝑎𝑥)       (1) 

In this equation, 𝛽 represents the CLAHE output value, 

𝑝 denotes the total number of pixels within a block, 𝑞 

corresponds to the block’s dynamic range,  𝑆𝑚𝑎𝑥  refers 

to the maximum allowable slope, and 𝛼 indicates the 

clipping factor [44]. In this study, a clipping limit 2.0 is 
applied, and the tile grid size is configured as (8, 8). 

 

Fig. 3. Convolutional architecture of VGG16 used in feature extraction process 
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Setting the limit at 2.0 ensures that the contrast 
enhancement is sufficiently strong to reveal underlying 
features, while simultaneously controlling the degree of 
histogram clipping to avoid excessive contrast in 
uniform regions. 

The image resizing procedure is implemented to 
standardize all samples in the dataset to a fixed size of 
224 × 224 pixels. This step is crucial because models 
built upon advanced neural computation techniques, 
especially CNN architectures commonly used in deep 
learning, generally require uniform input dimensions to 
facilitate efficient training [45]. Fig. 2 illustrates the 
result of the data preprocessing procedure, including 
applying the CLAHE technique for contrast 
enhancement and the subsequent image resizing step. 

C. Feature Extraction 

Extracting features serves as a fundamental 
component in image classification, especially within 
medical imaging, as it involves converting raw visual 
inputs into meaningful numerical representations that 
encapsulate the image's key patterns, textures, and 

structural characteristics [46]. This study employs the 
pre-trained VGG16 convolutional model for feature 
extraction, leveraging its proven effectiveness in 
numerous visual recognition tasks [47]. VGG16 was 
initially developed by researchers affiliated with the 
Visual Geometry Group from the University of Oxford 

and trained using the extensive ImageNet dataset, 
which comprises more than one million images 
spanning 1,000 distinct object classes. This 
architecture is recognized for its clean and uniform 
structure, composed of 13 layers for convolution 
followed by three layers that are fully connected, all 
utilizing compact 3×3 filters throughout the network 
[22]. The structural design of the VGG16 network used 
in this research is illustrated in Fig. 3, and the 
convolutional operation can be mathematically 
expressed as shown in Eq. (2) [48]. 

𝐶𝑗
𝑙 = 𝜑 (∑ 𝐶𝑖

𝑙−1  ×  𝑘𝑖𝑗
𝑙 +  𝑏𝑗

𝑙−1𝑀𝑙−1

𝑖=1 )       (2) 

In this equation, × represents the convolution operation 

that characterizes the relationship between the weights 
of the 𝑖th and  𝑗th   features across the (𝑙 − 1)th and 𝑙th 
layers, 𝑏𝑗 denotes the bias component, and  𝜑  refers 

to the activation function [48]. For the purposes of this 
research, VGG16 functions as a feature extractor and 
is configured to enhance its applicability to medical 

image interpretation. The model is initialized using 
weights previously learned from training on the 
ImageNet benchmark dataset (weights='imagenet'), 
enabling it to utilize generalized visual representations 
acquired from a large and diverse collection of images. 
To adapt the model for feature extraction, the final 

 

Fig. 4. Distribution of Feature Important Scores. The threshold line marks the cutoff separating the top 
2,500 most discriminative features from the remaining less relevant ones. 
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dense layers are removed (include_top=False), 
retaining only the convolutional part of the network. The 
input size is set to (224, 224, 3), which matches the 
resized image dimensions and the RGB color 
channels. The pooling parameter is set to none, 
meaning no additional global pooling layer is added 
after the final convolutional block, allowing direct 
access to the high-dimensional feature map from the 
last max pooling layer.  

The last convolutional layer is chosen specifically 
because it encodes the most abstract and semantically 
rich features, capturing complex patterns and 
morphological details that are highly relevant for 
gallbladder disease classification while discarding low-
level noise present in earlier layers. With this 
configuration, the number of features extracted from 
each image is approximately 25,088. These features 
are obtained by forwarding the input image through the 
VGG16 architecture up to the last convolutional and 
max-pooling layers, producing a 3D tensor of size 7 × 
7 × 512 flattened into a one-dimensional vector. The 
model functions as a fixed feature encoder by 
eliminating the final classification layers and keeping 
just the convolutional feature extraction components, 
producing compact yet informative descriptors that 
capture the textural and morphological characteristics 
relevant to the classification process. 

D. Feature Selection 

After feature extraction, a feature selection process is 
conducted to isolate features with the highest 
discriminatory value and reduce the overall 
dimensionality of the dataset. This stage plays a vital 
role in discarding irrelevant or redundant attributes, 
thereby enhancing the model’s efficiency while 
minimizing the potential for overfitting [49]. Univariate 
feature selection was selected due to its simplicity, 
computational efficiency, and proven ability to improve 
model performance, particularly in high-dimensional 
datasets. Several studies have shown that univariate 
approaches can yield classification results comparable 
to, or better than, more complex multivariate methods 
[50][51]. In this study, the SelectKBest method 
combined with the ANOVA F-test (f_classif) was 
employed to evaluate the degree of statistical 
association between individual features and the output 
classes. The ANOVA F-test effectively identifies 
features that display substantial variance across 
different class labels, making it particularly suitable for 
classification problems [50].  

From the initial 25,088 features extracted using the 
VGG16 architecture, the top 2,500 features with the 
highest F-scores were selected. This dimensionality 
reduction significantly lowers computational complexity 
while preserving the most informative characteristics of 
the images. As a result, the selected feature subset 
improves model efficiency and enhances 

generalization performance by reducing overfitting and 
focusing the learning process on the most relevant 
data. Feature selection is guided by the ANOVA F-test, 
which measures the ability of each feature to 
distinguish between classes by analyzing the ratio of 
inter-class variance (Mean Square Between, MSB) to 
intra-class variance (Mean Square Within, MSW). The 
F-score is calculated by the following Eq. (3) [52]. 

𝐹 =
𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑀𝑆𝐵)

𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑀𝑆𝑊)
                              (3) 

A higher F-score indicates that a feature has a 
significant difference in mean values across classes 
and small variation within each class, making it more 
useful for distinguishing between categories. 
Conversely, features with low F-scores exhibit similar 
distributions across all classes and are considered 
uninformative. Therefore, selecting features with the 
highest F-scores ensures that only the most class-
discriminative features are retained, contributing to 
better classification outcomes. The distribution of F-
score values used in the feature selection process is 
illustrated in Fig. 4, where the threshold line clearly 
marks the cutoff point separating the top 2,500 most 
informative features from the remaining less relevant 
ones. 

E. SVM 

SVM has been extensively used due to its strong 
capability in managing various classification challenges 
[53]. Through the use of kernel functions, SVM is 
capable of managing classification tasks within high-
dimensional feature spaces [53]. It can effectively 
handle data with both linear and non-linear distributions 
[54]. In linear scenarios, SVM aims to establish a 
decision boundary that maximizes the separation 
margin between classes. If the data distribution is non-
linear, kernel methods are employed to transform the 
input space, allowing the model to identify a suitable 
separating surface [55]. The kernel function is essential 
for determining the similarity between input samples 
[56]. In this study, three kernel types were utilized: 
linear, Radial Basis Function (RBF), and polynomial, 
with their respective formulations presented in Eq. (4), 
Eq. (5), and Eq. (6) [56] [57].   

Linear.              𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗                              (4) 

RBF                     𝐾(𝑥𝑖 , 𝑥𝑗) =  (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑                     (5) 

Polynomial      𝐾(𝑥𝑖 , 𝑥𝑗) = exp(−𝜎 ∥ 𝑥𝑖 − 𝑥𝑗 ∥2)     (6) 

F. Random Forest 

Random Forest is an ensemble-based machine 
learning method that builds multiple decision trees, 
where each tree is trained using a different bootstrap-
resampled subset of the original data. At every node 
split, rather than assessing all available features, the 
algorithm selects a random subset, reducing 
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correlation between trees and improving model 
diversity. This randomness contributes to greater 
resilience against overfitting and supports stronger 
generalization performance. Each individual tree 
produces a separate prediction, and the final outcome 
is determined by combining these predictions using 
majority voting in classification problems or averaging 
in the case of regression [58][59]. The  Random  Forest 
algorithm's formula is used in Eq. (7) [60]. 

𝐺𝑖𝑛𝑖 (𝑆) = 1 −  ∑ 𝑝𝑖2 𝑘 𝑖 = 1       (7) 

where 𝑝𝑖 denotes the probability that 𝑆 belongs to the 

class 𝑖, and 𝑘 refers to the total number of classes or 
categories in the dataset. Thus, 𝑝𝑖represents the 

proportion of data instances belonging to a particular 
class. The algorithm proceeds through the following 

phases [60].  

1) Randomly select samples from the dataset.   

2) Construct a decision tree for each sample and 

generate predictions from each tree.  

3) Tally the prediction frequencies for each class.   

4) Select the class with the highest frequency as the 

final output. 

G. KNN 

The k-Nearest Neighbors (KNN) algorithm is known for 
its flexibility, primarily because it does not depend on 
strict assumptions about the underlying distribution of 
the data. Its classification capability stems from 
measuring the distance between data points and 
assigning a class based on the most frequently 
occurring label among the nearest samples. As a non-
parametric, instance-based learner, KNN consistently 
performs well across diverse datasets due to its 

straightforward yet effective decision-making strategy 
[61].   

k-Nearest Neighbors (KNN) uses distance metrics 
to determine the closeness between data points. KNN 
identifies neighbors based on the chosen distance 
metric, significantly affecting similarity assessment and 
classification results [62]. The analysis incorporated 
Euclidean, Manhattan, and Minkowski distance 
functions, computed as shown in Eq. (8), Eq. (9), and 
Eq. (10), respectively [63]. 

Euclidean        √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1                                 (8) 

Manhattan       ∑ | 𝑥𝑖 − 𝑦𝑖 |𝑘
𝑖=1                                    (9) 

Minkowski        (∑ (𝑥𝑖 − 𝑦𝑖)𝑞𝑘
𝑖=1 )

1
𝑞⁄
                      (10) 

H. Logistic Regression 

Logistic Regression is a commonly utilized method in 
classification problems, designed to model the 
association between multiple independent variables 
and a categorical dependent variable, either nominal or 
ordinal in type [64]. It performs well in both binary and 
multiclass classification scenarios by estimating class 
probabilities based on the input attributes. This 

technique is often utilized in predictive analytics to 
assess the chance that a given sample falls into a 
particular category [65]. The underlying mechanism 
involves using a logistic (sigmoid) function that maps 
the prediction result to a probability score ranging from 
0 to 1, thus enabling clear and interpretable 
classification outcomes [66]. The  Logistic Regression 
algorithm's formula is used in Eq. (11). 

Table 1. Hyperparameter Tuning Configuration 

Model Parameter Value 

SVM kernel Linear, RBF, Polynomial 

Random Forest 

max_depth 1 - 10 

n_estimators 1 - 300 

max_features Sqrt, Log2 

min_sample_split  1 - 10 

min_sample_leaf 1 - 10 

KNN 
n_neighbors 1 - 5 

distance Minkowski, Euclidean, Manhattan 

Logistic Regression 

solver Liblinear, Lbfgs, Saga 

max_iter 1 - 200 

penalty None, L1, L2 
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𝑙𝑜𝑔 (
𝑃𝑏𝑗

1−𝑃𝑏𝑗
) +  𝛽1𝑋1𝑗  +  𝛽2𝑋2𝑗 + ⋯ +  𝛽𝑛𝑋𝑛𝑗     (11) 

In this equation, 𝛽 denotes the coefficient (slope) 

associated with the 𝑛 independent variable, while  𝑋𝑛𝑗 

refers to the value of the  𝑛 independent variable in the  

𝑗 record. The variable 𝑛 indicates the total number of 

independent variables, and  𝑗 represents the number of 

records in the dataset [67]. 

I. Grid Search Hyperparameter Tuning 

Grid Search is performed using a predefined set of 
parameter values to achieve optimal accuracy and 
AUC performance [68]. It systematically explores all 
specified hyperparameter combinations to determine 
the most suitable value for each parameter, Eq. (12) 
[69]. 

                     Parameter = arg 𝑚𝑎𝑥𝜃 𝜖 𝐺               (12) 
 

The expression 𝜃 𝜖 𝐺 indicates that every possible 

configuration of tuning parameters (𝜃) within the grid 

set (𝐺) is considered. The function f(𝜃) serves as a 

performance function used to measure how well the 
model performs under a specific parameter 
configuration. The Grid Search process involves 
several key steps [70], which include: 

1) Automatically constructs combinations of parameter 

values based on the range defined for each 

hyperparameter. For instance, if three parameters 

are each assigned three values, grid search 

examines all 3 × 3 × 3 = 27 possible setups. 

2) Assesses and compares all candidate 

configurations of hyperparameters.  

3) Selects the optimal set of parameters that yields the 

highest performance according to the chosen 

metric. 

 In the implementation phase, hyperparameter 

tuning for the classification models, including SVM, 

Random Forest, KNN, and Logistic Regression, was 

conducted using the Grid Search technique with cross-

validation. This method systematically evaluates all 

possible combinations of predefined hyperparameter 

values to determine the parameter setting that yields 

the best predictive outcome on the training dataset. 

The complete hyperparameter configurations used for 

each algorithm are detailed in Table 1. 

J. Confusion Matrix 

Within the field of machine learning, the effectiveness 
of a classification model is typically evaluated using a 
confusion matrix, which provides a structured summary 
of the model's prediction outcomes in comparison to 
the true class labels [71]. This matrix facilitates the 
examination of how well predicted categories align with 
their corresponding ground truth values  [72]. The 
confusion matrix consists of four key components that 

summarize classification outcomes: True Positives 
(TP), True Negatives (TN), False Positives (FP), and 
False Negatives (FN) [73].  

True Positives are cases where the model correctly 
predicts the presence of a disease, while True 
Negatives occur when it accurately identifies the 
absence of a specific disease. False Positives arise 
when a disease is incorrectly predicted, and False 
Negatives occur when the model fails to detect an 
existing disease. These outcomes form the basis for 
the performance metrics in this study. 

In multiclass classification, a one-vs-all confusion 
matrix is built for each class to obtain TP, TN, FP, and 
FN, with metrics computed per class and averaged 
using the macro-average to give all classes equal 
weight regardless of frequency. The evaluation metrics 
considered in this study are based on confusion matrix 
parameters used to assess each performance 
indicator. Each evaluation metric is defined by the 
formulas listed in Eq. (13), Eq. (14), Eq. (15), Eq. (16) 
[74].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦      =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑁)+(𝐹𝑃+𝑇𝑁)
      (13)          

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛      =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (14)                

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦   =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (15)  

𝐹1 𝑆𝑐𝑜𝑟𝑒        =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
       (16) 

K. Area Under The ROC Curve 

This value is obtained by computing the area beneath 
the ROC curve, where the AUC indicates the model’s 
capability to effectively distinguish between positive 
and negative class labels [75]. The classification 
strategy suggests that, on average, positive instances 
should receive higher scores than negative ones when 
sampled randomly. Consequently, a greater AUC value 
reflects a model’s stronger capability to separate 
positive and negative classes [76] accurately . 

In multiclass classification, ROC-AUC is computed 
using the one-vs-rest approach, generating an ROC 
curve and AUC for each class, then applying macro-
averaging to ensure equal class contribution. AUC 
ranges from 0 to 1, with higher values indicating 
stronger model discrimination. Its computational 
formula is shown in Eq. (17) [77].  

                   𝐴𝑈𝐶 =  
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)𝑥(

𝑇𝑁

𝑇𝑁+𝐹𝑃
)  

2
                   (17) 

AUC measures a model’s ability to distinguish between 
classes and serves as a key metric for comparing 
algorithms. Higher AUC indicates better prediction, with 
0.90 to 1.00 being deemed outstanding, 0.80 to 0.90 
indicating strong performance, 0.70 to 0.80 suggesting 
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moderate accuracy, 0.60 to 0.70 being considered 
weak, and 0.50 to 0.60 being ineffective [77]. 

III. Result 
A. Experimental Setup 

This study utilized a dataset comprising 10,692 
ultrasound images of the gallbladder, distributed across 
nine distinct diagnostic categories. To maintain 
evaluation integrity and minimize bias, the dataset was 
split using scikit-learn’s train_test_split function with 
stratification to preserve class proportions. A total of 
8,554 images (80%) were allocated for training and 
2,138 images (20%) for testing. A fixed random seed of 
42 was applied to ensure reproducibility across runs. 
Furthermore, 10-fold cross-validation was employed 
during the model tuning phase to enhance 
generalizability and prevent overfitting. 

All experiments were performed locally on a 
MacBook featuring an Apple M3 processor (8-core 
CPU, 10-core integrated GPU, 8 GB unified memory) 
running macOS Sequoia. The development setup 
utilized Python 3.12.7 within Spyder IDE version 5.5.5, 
incorporating major libraries such as Pandas 2.2.0, 
TensorFlow 2.12.0, scikit-learn 1.5.1,  Matplotlib 3.9.2, 
NumPy 1.23.5, and Seaborn 0.13.2. Computations 
were carried out exclusively in CPU mode without GPU 
acceleration. All scripts were executed within the 
Spyder interactive environment under stable runtime 
conditions, with no other processes running 
concurrently during training. 

B. Classification Model Without Feature Selection and 
Default Tuning 

This study evaluated four classification algorithms: 
SVM, Random Forest, KNN, and Logistic Regression, 

using their default hyperparameters without feature 
selection. To assess model robustness and 
generalizability, 10-fold cross-validation was performed 
on the training data. The results indicated that SVM 
achieved the highest average accuracy of 98.32%, 
closely followed by Logistic Regression at 98.50%, 
then Random Forest at 95.87%, and KNN at 77.10%. 
Comparable patterns were observed across precision, 
recall, and F1-score metrics, confirming the consistent 
superior performance of SVM and Logistic Regression. 

On the test set, SVM achieved the highest accuracy 
(98.60%), followed closely by LR (98.55%) and RF 
(95.98%), while KNN lagged at 77.61%. These results 
highlight the strong performance of SVM and LR even 
without tuning or feature selection. However, SVM 
required the longest testing time (824.21 s) compared 
to LR (80.11 s), RF (42.18 s), and KNN (11.61 s), as 
shown in Table 2. Although all models provided usable 
predictions, factors such as testing efficiency and 
interpretability should also be considered when 
selecting the most suitable deployment model. 

C. Classification Model with Feature Selection and 
Hyperparameter Tuning 

Hyperparameter optimization using Grid Search CV 
was performed to enhance predictive performance for 
each classifier. After 10-fold cross-validation, tuned 
models achieved accuracies of 99.15% (SVM), 98.35% 
(Logistic Regression), 98.10% (Random Forest), and 
93.10% (KNN), showing notable improvements over 
default settings. The optimal parameters for each 
model are as follows: 

1) Support Vector Machine (SVM) achieved its best 

performance using a linear kernel, which is well-

Table 2. Testing result for machine learning models without feature selection and default tuning 

Model Accuracy Precision Recall F1-Score Time (s) 

SVM 0.9860 0.9861 0.9860 0.9860 824.21 

Random Forest 0.9598 0.9621 0.9598 0.9599 42.18 

KNN 0.7761 0.7984 0.7761 0.7756 11.61 

Logistic Regression 0.9855 0.9857 0.9855 0.9855 80.11 

 

Table 3. Testing result for machine learning models with feature selection and hyperparameter tuning 

Model Accuracy Precision Recall F1-Score Time (s) 

SVM + UFS + GS 0.9935 0.9932 0.9935 0.9933 18.4 

Random Forest + UFS + GS 0.9818 0.9839 0.9809 0.9822 36.39 

KNN + UFS + GS 0.9360 0.9415 0.9348 0.9371 1.24 

Logistic Regression + UFS + GS 0.9864 0.9878 0.9856 0.9866 20.47 
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suited for linearly separable feature spaces 

produced by the CNN-based extraction process.  

2) k-Nearest Neighbors (KNN) achieved its best 

performance using three nearest neighbors 

(n_neighbors = 3) along with the Euclidean distance 

 
                        SVM                                                                         Random Forest 

 
                      KNN                                                                      Logistic Regression 

Fig. 5. Confusion Matrix for machine learning models without feature selection and default tuning 

 

 
                        SVM                                                                         Random Forest 

 
                      KNN                                                                      Logistic Regression 

Fig. 6. Confusion Matrix for machine learning models with feature selection and hyperparameter tuning 
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metric, striking an effective balance between model 

simplicity and localized accuracy. 

3) The optimal performance of the Random Forest 

(RF) classifier was achieved using the following 

configuration: 300 decision trees (n_estimators = 

300), a tree depth capped at 10 (max_depth = 10), 

feature subset selection based on the square root 

strategy (max_features = 'sqrt'), at least two 

instances per terminal node (min_samples_leaf = 

2), a split criterion requiring no fewer than four 

examples (min_samples_split = 4), and the use of 

'balanced' class weights to compensate for 

imbalanced class proportions in the dataset. 

4) For Logistic Regression (LR), the best result was 

obtained using the liblinear solver, no regularization 

(penalty = None), and a maximum iteration limit of 

200 (max_iter = 200), which helped the model 

converge efficiently without explicit regularization. 

In the subsequent evaluation, all four models were 
re-tested using Univariate Feature Selection (UFS) and 
Grid Search (GS) tuning, yielding notable 
improvements across accuracy, precision, recall, and 
F1-score. SVM + UFS + GS achieved the highest 
accuracy (99.35%), with a precision of 99.32%, a recall 
of 99.35%, and a reduced testing time of 18.4 s. 
Logistic Regression + UFS + GS followed with 98.64% 
accuracy (20.47 s), while Random Forest + UFS + GS 
attained 98.18% accuracy with balanced metrics and a 
36.39 s testing time. 

Notably, KNN + UFS + GS showed the most 
substantial relative improvement, increasing its 
accuracy from 77.61% to 93.60%, with a rapid testing 
time of just 1.24 seconds. These findings demonstrate 
that combining feature selection and hyperparameter 

 
                                           SVM                                                                         Random Forest 

 
                                        KNN                                                                      Logistic Regression 

Fig. 7. AUC-ROC for machine learning modesls without feature selection and default tuning 
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tuning not only boosts model accuracy but also 
significantly reduces testing time, making the models 
more efficient and viable for real-time or resource-
constrained deployment scenarios, as summarized in 
Table 3. 

D. Confusion Matrix – without Feature Selection and 
Default Tuning 

The confusion matrix evaluation was performed on a 
test set of 2,139 ultrasound images using four machine 
learning models: SVM, Random Forest, KNN, and 
Logistic Regression. The SVM model demonstrated 
strong classification performance, correctly predicting 
233 images of abdomen and retroperitoneum (2 
misclassifications), 223 of adenomyomatosis (0 
errors), 306 of carcinoma (9 errors), 213 of cholecystitis 
(3 errors), 286 of gallstones (6 errors), 232 of 
membranous and gangrenous cholecystitis (0 errors), 
213 of perforation (2 errors), 210 of polyps and 
cholesterol crystals (5 errors), and 193 of wall 
thickening (3 errors).  

The Random Forest model achieved high accuracy 
across most classes, with only 3 errors in abdomen and 
retroperitoneum, 2 in adenomyomatosis, 1 in 
carcinoma, 16 in cholecystitis, 25 in gallstones, 2 in 
membranous and gangrenous cholecystitis, 19 in 
perforation, 5 in polyps and cholesterol crystals, and 13 
in wall thickening. However, its performance declined 
slightly in more complex cases such as gallstones and 
perforation.  

In contrast, KNN recorded a higher number of errors 
across nearly all classes, including 22 in abdomen and 
retroperitoneum, 51 in adenomyomatosis, 58 in 
carcinoma, 73 in cholecystitis, 102 in gallstones, 8 in 
membranous and gangrenous cholecystitis, 64 in 
perforation, 27 in polyps and cholesterol crystals, and 
74 in wall thickening. This indicates that KNN struggled 
to generalize in the multiclass setting, especially for 
classes with overlapping features or limited samples, 
due to its sensitivity to noise, outliers, and the 
complexity of the high-dimensional feature space 
extracted by VGG16.  

The Logistic Regression model showed excellent 
classification accuracy across nearly all categories:  
222 images of abdomen and retroperitoneum were 
correctly classified, with no misclassifications.  237 
images of adenomyomatosis were correctly classified, 
with 4 misclassifications.  343 images of carcinoma 
were correctly classified, with 3 misclassifications.  233 
images of cholecystitis were correctly classified, with 
no misclassifications.  242 images of gallstones were 
correctly classified, with 11 misclassifications.  238 
images of membranous and gangrenous cholecystitis 
were correctly classified, with no misclassifications.  
209 images of perforation were correctly classified, with 
8 misclassifications.  197 images of polyps and 
cholesterol crystals were correctly classified, with no 

misclassifications.  187 images of wall thickening were 
correctly classified, with 5 misclassifications. A detailed 
visual representation of the confusion matrices for all 
models can be seen in Fig. 5. 

E. Confusion Matrix – with Feature Selection and 
Hyperparameter Tuning 

After applying feature selection combined with 
hyperparameter tuning, the classification performance 
of all models improved noticeably, as reflected in their 
respective confusion matrices. The SVM model 
achieved excellent results, correctly predicting 224 
images of abdomen and retroperitoneum (6 
misclassifications), 246 of adenomyomatosis (0 
errors), 309 of carcinoma (3 errors), 233 of cholecystitis 
(1 error), 252 of gallstones (1 error), 251 of 
membranous and gangrenous cholecystitis (0 errors), 
212 of perforation (2 errors), 193 of polyps and 
cholesterol crystals (0 errors), and 205 of wall 
thickening (1 error). 

The Random Forest (RF) model also showed strong 
results, with 224 correct predictions for abdomen and 
retroperitoneum (6 errors), 243 of adenomyomatosis (3 
errors), 310 of carcinoma (2 errors), 233 of cholecystitis 
(1 error), 246 of gallstones (7 errors), 251 of 
membranous and gangrenous cholecystitis (0 errors), 
203 of perforation (11 errors), 192 of polyps and 
cholesterol crystals (1 error), and 198 of wall thickening 
(8 errors). While improved, the k-Nearest Neighbors 
(KNN) model still exhibited relatively higher error rates 
compared to SVM and RF. It correctly predicted 222 
images of abdomen and retroperitoneum (8 errors), 
232 of adenomyomatosis (14 errors), 295 of carcinoma 
(17 errors), 197 of cholecystitis (37 errors), 239 of 
gallstones (14 errors), 250 of membranous and 
gangrenous cholecystitis (1 error), 197 of perforation 
(17 errors), 185 of polyps and cholesterol crystals (8 
errors), and 185 of wall thickening (21 errors). 

Lastly, the Logistic Regression (LR) model 
demonstrated robust performance, with 248 correct 
predictions for abdomen and retroperitoneum (0 
errors), 237 of adenomyomatosis (5 errors), 319 of 
carcinoma (4 errors), 224 of cholecystitis (0 errors), 248 
of gallstones (4 errors), 251 of membranous and 
gangrenous cholecystitis (0 errors), 197 of perforation 
(9 errors), 207 of polyps and cholesterol crystals (2 
errors), and 179 of wall thickening (5 errors).  These 
results show that SVM and LR maintained consistently 
high accuracy, while RF followed closely behind. 
Although KNN improved, it still produced more 
misclassifications in several classes. A detailed visual 
representation of the confusion matrices for all models 
can be seen in Fig. 6. 

F. AUC - ROC without Feature Selection and Default 
Tuning 

The ROC (Receiver Operating Characteristic) analysis 
was conducted to evaluate each model's classification 
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performance in distinguishing between the nine 
diagnostic categories of gallbladder disease. 
 

All four models demonstrated strong discriminatory 
capabilities, as reflected in their respective AUC 
scores. The Support Vector Machine (SVM) model 
achieved high AUC values, including 0.9990 for 
abdomen and retroperitoneum, 0.9998 for 
adenomyomatosis, 0.9904 for carcinoma, 0.9966 for 
cholecystitis, 0.9890 for gallstones, 1.0000 for 
membranous and gangrenous cholecystitis, 0.9984 for 
perforation, 0.9994 for polyps and cholesterol crystals, 
and 0.9976 for wall thickening, resulting in a mean AUC 
of 0.9967.  The Random Forest (RF) model also 
delivered excellent results, with AUC scores of 0.9999 
for abdomen and retroperitoneum, 0.9987 for 
adenomyomatosis, 0.9984 for carcinoma, 0.9947 for 
cholecystitis, 0.9968 for gallstones, 0.9999 for 
membranous and gangrenous cholecystitis, 0.9975 for 

perforation, 0.9946 for polyps and cholesterol crystals, 
and 0.9950 for wall thickening resulting in a mean AUC 
of 0.9973.   

The k-Nearest Neighbors (KNN) model, while 
slightly behind in performance, still demonstrated 
satisfactory class separability, with AUC scores of 
0.9847, 0.9827, 0.9642, 0.9685, 0.9567, 0.9933, 
0.9765, 0.9900, and 0.9750 across the respective 
classes, yielding a mean AUC of 0.9768.  Lastly, the 
Logistic Regression (LR) model achieved the most 
consistent and superior AUC values, including perfect 
scores (1.0000) for cholecystitis, abdomen and 
retroperitoneum, polyps and cholesterol crystals, and 
membranous and gangrenous cholecystitis, while 
maintaining scores above 0.9980 for all other classes, 
resulting in the highest mean AUC of 0.9989.  These 
findings affirm that all models effectively distinguish 
between the diagnostic classes, with LR and RF 
exhibiting the most robust and consistent performance. 

 
                                           SVM                                                                         Random Forest 

 
                                        KNN                                                                      Logistic Regression 

Fig. 8. AUC-ROC for machine learning models with feature selection and hyperparameter tuning 
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A detailed visual representation of the ROC curves for 
all models is provided in Fig. 7. 

G. AUC - ROC with Feature Selection and 
Hyperparameter Tuning 

The ROC (Receiver Operating Characteristic) analysis 
was conducted to evaluate the classification 
performance of all models after applying feature 
selection and hyperparameter tuning. The Support 
Vector Machine (SVM) model achieved excellent 
results across all diagnostic categories, with AUC 
values of 0.9991 for abdomen and retroperitoneum, 
0.9997 for adenomyomatosis, 0.9993 for carcinoma, 
0.9987 for cholecystitis, 0.9994 for gallstones, 1.0000 
for membranous and gangrenous cholecystitis, 0.9997 
for perforation, 1.0000 for polyps and cholesterol 
crystals, and 0.9999 for wall thickening. These results 
yielded a mean AUC of 0.9995, indicating outstanding 
class separability.  The Random Forest model also 
delivered robust performance with near-perfect scores: 
1.0000 for abdomen and retroperitoneum, 0.9992 for 
adenomyomatosis, 0.9984 for carcinoma, 1.0000 for 
cholecystitis, 0.9995 for gallstones, 1.0000 for 
membranous and gangrenous cholecystitis, 0.9981 for 
perforation, 0.9998 for polyps and cholesterol crystals, 
and 0.9996 for wall thickening, resulting in a mean AUC 
of 0.9994.   

Despite slightly lower values, the k-Nearest 
Neighbors (KNN) model still maintained high 
discriminative ability, with AUC scores of 0.9975, 
0.9927, 0.9932, 0.9904, 0.9974, 0.9999, 0.9949, 
0.9996, and 0.9945 across the nine categories, 
respectively. This corresponds to a mean AUC of 
0.9956, reflecting reliable performance after 
optimization.  The Logistic Regression (LR) model 
yielded the most consistent near-perfect results among 
all methods, with AUC values of 0.9999, 0.9998, 
0.9976, 0.9999, 1.0000, 1.0000, 0.9982, 0.9999, and 
0.9998 for the respective classes. These values 
translate to the highest overall mean AUC of 0.9994.  In 
summary, the AUC-ROC analysis clearly 
demonstrated the significant boost in classification 
capability for all models following the application of 
feature selection and hyperparameter tuning. All 
classifiers achieved near-optimal class separability, 
with Logistic Regression and SVM emerging as the top-
performing models, supported by consistent AUC 
values across all diagnostic categories. A detailed 
graphical representation of the ROC curves is shown in 
Fig. 8.  

IV. Discussion  

This study demonstrates the substantial impact of 
feature selection combined with hyperparameter tuning 
on the performance of machine learning models for 
gallbladder disease classification using ultrasound 

images. Four classification algorithms, SVM, Random 
Forest, KNN, and Logistic Regression, were evaluated 
under two scenarios: without optimization, and with 
Univariate Feature Selection (UFS) and Grid Search 
(GS) tuning. 

Without optimization, SVM and LR already achieved 
high classification accuracies of 98.60% and 98.55%, 
respectively, though SVM incurred a notably longer 
testing time (824.21 seconds). KNN showed the 
weakest performance with 77.61% accuracy, 
highlighting its limited suitability under default 
conditions. However, after applying UFS and GS, all 
models exhibited substantial improvements. SVM + 
UFS + GS emerged as the best-performing model with 
a 99.35% accuracy, AUC of 0.9995, and significantly 
reduced testing time (18.4 seconds). KNN displayed 
the greatest relative improvement, increasing its 
accuracy by 16% and achieving the fastest execution 
time (1.24 seconds). This notable reduction in testing 
time suggests potential for improved clinical workflow 
efficiency, particularly in settings requiring rapid 
diagnostic decisions. However, it is essential to 
critically assess whether this efficiency gain affects 
diagnostic accuracy or reliability. While the optimized 
models maintain high accuracy, careful consideration 
of any trade-offs between speed and precision is 
necessary to ensure patient safety and diagnostic 
effectiveness in real-world clinical practice. 

Feature selection played a crucial role in these 
performance gains by reducing the dimensionality of 
the feature space, which removed irrelevant or noisy 
features that could otherwise degrade classification 
accuracy and increase computational burden. This 
process allowed the models, especially SVM and 
Logistic Regression, to focus on the most informative 
features extracted from ultrasound images, improving 
both accuracy and speed. Nevertheless, there remains 
an inherent risk that the feature selection process might 
exclude some informative features, potentially leading 
to less comprehensive models that could miss subtle 
but clinically important patterns. This limitation 
highlights the need for future research to explore 
advanced or hybrid feature selection methods that 
balance dimensionality reduction with retention of 
critical diagnostic information, thereby further 
optimizing model robustness and clinical applicability. 

The superior performance of SVM and LR can be 
attributed to their inherent ability to handle high-
dimensional feature spaces and maintain strong 
generalization under limited noise interference, 
characteristics well-suited for ultrasound image data 
that often contains fine-grained texture patterns. SVM, 
in particular, excels at maximizing the decision margin, 
effectively separating subtle grayscale variations 
between gallbladder disease categories. Logistic 
Regression, while simpler, benefits from its linear 
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decision boundaries and probabilistic output, which 
align well with the dataset’s relatively linearly separable 
feature space after CNN-based extraction. In contrast, 
KNN is more sensitive to irrelevant features and noise, 
leading to degraded performance in high-dimensional 
spaces, while Random Forest may underperform when 
critical discriminatory information is distributed across 
many correlated features. These algorithmic 
characteristics explain why SVM and LR maintained 
superior accuracy and AUC compared to KNN and RF 
in this study.  

Analysis of the confusion matrix revealed that 
misclassifications predominantly occurred in complex 
or overlapping diagnostic categories, such as 
gallstones, perforation, and adenomyomatosis. These 
classes present subtle textural and morphological 
similarities in ultrasound images, increasing the 
difficulty of accurate discrimination. Notably, models 
like KNN showed higher error rates in these categories, 
likely due to sensitivity to noise and reliance on local 
distance measures in a high-dimensional feature 
space. Conversely, SVM and Logistic Regression 
consistently minimized misclassifications across all 
classes, reflecting their robustness in capturing 
nuanced differences between closely related 
categories. Random Forest also performed strongly but 
was slightly less effective in complex cases such as 
gallstones and perforation.  

Further, AUC-ROC analysis confirmed the superior 
discriminatory capability of SVM and Logistic 
Regression, with both achieving near-perfect class 
separation across nine diagnostic categories, 
demonstrating excellent suitability for multi-class 
gallbladder disease classification. However, this 
systematic pattern of errors also highlights inherent 
model limitations when faced with visually ambiguous 
cases, suggesting potential areas for improvement, 
such as incorporating advanced feature selection, 
ensemble methods, or domain-specific data 
augmentation to enhance model reliability and 
generalizability in clinical applications.  

Although AUC values close to 1 indicate excellent 
class separability and robust discrimination 
capabilities, it is crucial to interpret these results in real-
world clinical practice. High AUC suggests effective 
differentiation between disease categories across 
various decision thresholds, potentially reducing 
misdiagnosis. Nonetheless, clinical application 
requires careful management of false positives and 
false negatives to prevent unnecessary interventions, 
patient anxiety, increased healthcare costs, or delayed 
treatment, impacting patient outcomes. Therefore, in 
addition to AUC, metrics such as precision, recall, and 
confusion matrix analyses are vital to comprehensively 
understand model performance on specific disease 
categories. The consistently high precision and recall 

for SVM and Logistic Regression indicate these 
classifiers maintain a low rate of clinically significant 
errors while separating classes effectively. 
Furthermore, successful clinical integration of these 
models demands rigorous validation on diverse 
external datasets and consideration of ultrasound 
image variability, operator expertise, and patient 
heterogeneity. Real-world deployment also requires 
interpretability and confidence estimation to support 
clinicians in making informed decisions based on 
model outputs. Future research should focus on 
prospective clinical trials and developing decision-
support systems that combine these performance 
metrics with clinical risk factors to optimize patient 
safety and diagnostic accuracy. 

Despite these promising metrics, it is essential to 
contextualize how such high accuracy and 
discrimination translate into clinical decision-making. 
The practical benefits of accurate classification must be 
weighed against the risks of misclassification errors, 
including false positives and false negatives, which can 
respectively lead to unnecessary interventions or 
delayed treatment. Such errors may impact patient 
outcomes, healthcare costs, and clinician confidence in 
AI-assisted diagnosis. Therefore, integrating these 
models into clinical workflows requires not only robust 
performance metrics but also a thorough 
understanding of their decision boundaries, error 
patterns, and interpretability to support informed clinical 
judgments. Future work should prioritize prospective 
clinical studies that evaluate these models in real-world 
settings and develop decision-support systems that 
combine algorithmic outputs with clinical risk factors to 
optimize patient safety and diagnostic efficacy. 

This study uses a dataset of 10,692 ultrasound 
images, enabling a valid and direct comparison with 
prior works that employed the same dataset. As 
summarized in Table 4, Obaid et al. employed a 
MobileNet-based approach, achieved an accuracy of 
98.35%, with recall and F1-score values of 98.30% and 
98.34%, respectively. However, their AUC was limited 
to 0.9340, and the model required 540 seconds of 
testing time, an efficiency bottleneck for real-time 
deployment. Bozdağ et al. utilized a content-based 
image retrieval (CBIR) system that reported a precision 
of 0.9440, but did not provide accuracy, recall, time 
processing, or AUC metrics, which limits 
comprehensive performance evaluation and 
comparison. Shuvo and Chowdhury, using a different 
gallbladder cancer dataset, implemented VGG19 and 
XceptionNet architectures and achieved an accuracy of 
85.44%, precision of 85.82%, recall of 85.19%, and F1-
score of 85.25%. However, they did not report AUC or 
inference time. Similarly, Dadjouy and Sajedi, also 
using a different gallbladder cancer dataset, proposed 
the GBCRet method, attaining an accuracy of 92.62% 
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and a recall of 85.71%, without reporting precision, F1-
score, AUC, or execution time. In contrast, the 
proposed method in this study combines Support 
Vector Machine (SVM) classification with Univariate 
Feature Selection (UFS) and Grid Search (GS) 
hyperparameter tuning, delivering superior 
performance across all evaluation metrics. 

Specifically, it achieved an accuracy of 99.35%, 
precision of 99.32%, recall of 99.35%, F1-score of 
99.33%, and an AUC near perfect at 0.9995. Moreover, 
the testing time was drastically reduced to 18.4 
seconds, significantly improving inference efficiency. 
The critical differences in methodology namely, the use 
of CNN-based feature extraction followed by rigorous 
feature selection and hyperparameter optimization, 
likely contribute to these performance gains. 
Additionally, the disparity in evaluation metrics reported 
by previous studies highlights the necessity for 
standardized benchmarks to facilitate clearer, more 
meaningful comparisons.  Therefore, while the 
quantitative results underscore the superior accuracy 
and efficiency of the current approach, this critical 
analysis reveals genuine contributions in terms of 
methodological robustness and practical applicability, 
advancing the state-of-the-art in gallbladder disease 

classification from ultrasound images.  

While the outcomes appear promising, this research 
is not without its limitations. First, it uses a single 
dataset, which may not capture the diversity and 
variability in real-world clinical settings. This dataset's 
image quality and labeling are relatively consistent, 
unlike real-world ultrasound data that often suffers from 
noise, motion artifacts, and inconsistent annotations. 
Additionally, while feature selection helped improve 
performance, there is a risk that some valuable 
information may have been excluded during 
dimensionality reduction. This limitation highlights the 
necessity for future research to explore advanced or 
hybrid feature selection methods that balance 
dimensionality reduction with retention of critical 
diagnostic information, thereby further optimizing 

model robustness and clinical applicability. Moreover, 
no external validation dataset was used, limiting the 
results' generalizability. Furthermore, the reliance on a 
single dataset restricts the generalizability of the 
findings, as it may not fully represent the variability 
encountered in diverse clinical environments, including 
differences in ultrasound equipment, patient 
populations, and operator techniques. This limitation 
underscores the need for future studies to validate the 
proposed models on multiple, heterogeneous external 
datasets to ensure robustness and broad applicability 
in real-world settings. 

Additionally, future research should consider 
validating the models on multi-center datasets to 
capture clinical heterogeneity better and improve 
external validity. Integrating multimodal data sources, 
such as combining ultrasound imaging with clinical 
records, laboratory tests, or patient history, could 
enhance diagnostic accuracy and provide a more 
holistic approach to gallbladder disease classification. 
These strategies would help advance the translation of 
current findings into practical, reliable clinical tools. 

This research offers a validated and efficient 
pipeline for ultrasound-based diagnosis of gallbladder 

diseases, combining CNN-based feature extraction 
with optimized machine learning models. Its high 
performance and low testing latency demonstrate 
strong potential for integration into real-time diagnostic 
tools, especially in resource-constrained or 
underserved healthcare environments. These findings 
contribute meaningfully to AI-driven medical imaging, 
where model performance, efficiency, and 
reproducibility are critical for clinical adoption.  
Exploration of ensemble learning, hybrid architectures, 
attention-based models, transfer learning techniques, 
and lightweight deep learning frameworks may also 
yield further improvements in diagnostic performance, 
scalability, and real-world applicability.  

V. Conclusion  

Table 4. Comparison with previous research 

Research Method Accuracy Precision Recall F1 Score AUC Time (s) 

Obaid et al  [17] MobileNet 0.9835 - 0.9830 0.9834 0.9340 540 

Bozdag et al [18] 
CBIR-based 

system 
- 0.9440 - - - - 

Shuvo and 
Chowdhury [19] 

VGG19 and 
XceptionNet 

0.8544 0.8582 0.8519 0.8525 - - 

Dadjouy and 
Sajedi [20] 

GBCRet 0.9262 - 0.8571 - - - 

This Study SVM, UFS, GS 0.9935 0.9932 0.9935 0.9933 0.9995 18.4 
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This study is centered on developing an automated and 
optimized classification model for gallbladder disease 
using ultrasound images by integrating CNN-based 
feature extraction with Univariate Feature Selection 
(UFS) and Grid Search (GS) hyperparameter tuning. 
Four models, SVM, Random Forest, KNN, and Logistic 
Regression were evaluated under two scenarios: 
default configuration and optimized setting. The goal 
was to build a fast, accurate, and efficient classification 
pipeline suitable for potential clinical deployment. 

The key result indicated that the SVM model, 
combined with feature selection and optimized 
hyperparameters, yielded superior overall results, 
achieving 99.35% accuracy, an AUC score of 0.9995, 
and a markedly shorter testing duration of 18.4 
seconds. Even without optimization, both SVM and LR 
showed high accuracy (98.60% and 98.55% 
respectively), though SVM’s high computation time 
(824.21s) was a limitation. KNN initially performed 
poorly with 77.61% accuracy but saw the greatest 
relative improvement after optimization, reaching 
93.60% with the fastest testing time (1.24s). Confusion 
matrix and AUC-ROC evaluations further confirmed 
that SVM and LR consistently outperformed other 
models across all nine disease categories. 

A comparative analysis with prior research 
demonstrated that this study outperformed existing 
approaches in both accuracy and computational 
efficiency. For example, while Obaid et al. achieved 
98.35% accuracy with an AUC of 0.9340 and a 540-
second testing time, our approach achieved higher 
scores in all metrics. The findings indicate combining 
feature selection and tuning techniques with CNN-
extracted features can lead to more accurate, 
consistent, and faster diagnostic systems. These 
results emphasize the strength of this pipeline for 
multiclass disease classification tasks in medical 
imaging. 

Nonetheless, some limitations must be 
acknowledged. This study relied on a single, labeled 
dataset, which may limit its generalizability to real-world 
clinical environments where image quality and 
variability are less controlled. The feature selection 
process, while beneficial, could potentially exclude 
valuable diagnostic information due to dimensionality 
reduction. Additionally, the lack of external validation 
datasets remains a significant constraint, limiting the 
robustness of the findings across diverse clinical 
settings. Future work should prioritize validation on 
larger, more heterogeneous, multi-center datasets to 
better capture clinical variability and improve external 
validity. Furthermore, integrating multimodal data 
sources, conducting prospective clinical trials, and 
exploring advanced approaches such as ensemble 
learning, hybrid CNN-machine learning models, 
attention-based mechanisms, transfer learning, and 

lightweight deep learning frameworks could further 
enhance diagnostic robustness, scalability, and real-
world clinical deployment, particularly in resource-
constrained environments. 
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