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Abstract High Multispectral imaging has become a promising approach in liquid classification, particularly 

in distinguishing visually similar but subtly spectrally distinct solutions, such as pure water (H₂O) and 

water mixed with sodium hydroxide (H₂O with NaOH). This study proposed a classification system based 

on image segmentation and deep learning, utilizing three leading Convolutional Neural Network (CNN) 

architectures: ResNet 50, EfficientNetV2, and MobileNetV3. Before classification, each multispectral image 

was processed through color segmentation in HSV space to highlight the dominant spectral, especially in 

the hue range of 110 170. The model was trained using a data augmentation scheme and optimized with 

the Adam algorithm, a batch size of 32, and a sigmoid activation function. The dataset consists of 807 

images, including 295 H₂O images and 512 H₂O with NaOH images, which were divided into training (64%), 

validation (16%), and testing (20%) data. Experimental results show that ResNet50 achieves the highest 

performance, with an accuracy of 93.83% and an F1 score of 93.67%, particularly in identifying alkaline 

pollution. EfficientNetV2 achieved the lowest loss (0.2001) and exhibited balanced performance across 

classes, while MobileNetV3, despite being a lightweight model, remained competitive with a recall of 0.97 

in the H₂O with NaOH class. Further evaluation with Grad CAM reveals that all models focus on the most 

critical spectral areas of the segmentation results. These findings support the effectiveness of combining 

color-based segmentation and CNN in the spectral classification of liquids. This research is expected to 

serve as a stepping stone in the development of an efficient and accurate automatic liquid classification 

system for both laboratory and industrial applications. 

 

Keywords Multispectral Classification, CNN, ResNet50, EfficientNetV2, MobileNetV3, HSV Segmentation, 
Liquid Spectral Image. 
 

I. Introduction  

Progress in image-based material classification, 
especially for objects that are difficult to distinguish 
visually. One approach that is now receiving 
widespread attention is multispectral imaging, an 
image acquisition technique that captures the spectral 
information of an object as a whole by utilizing different 
wavelengths [13], [18], [31]. This technology has been 
widely applied in agriculture, medicine, geology, and 
the chemical industry, with the main advantage of 
detecting spectral variations that cannot be identified 

by the human eye [1], [3], [7]. One of the most 
significant challenges in this domain is the classification 
of aqueous fluids, such as pure water (H₂O) and H₂O 

with a NaOH solution, as they exhibit very subtle 
spectral differences and often overlap in visual 
representation. These spectral differences often 
manifest as subtle intensity shifts in the near-infrared 
region, which are difficult to capture using conventional 
RGB imaging alone. Multispectral imaging addresses 
this challenge by enabling the acquisition of 
wavelength-specific reflectance data, thereby 
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enhancing the detection of solute-induced spectral 
deviations that are otherwise invisible to the human 
eye. Electrical impedance and solution conductivity-
based approaches have been used to distinguish these 
chemical characteristics [19], [25]. However, these 
methods have limitations, as they are contact-based, 
time-consuming, and cannot be applied in real-time in 
image-based automated systems [6], [7]. Several 
previous studies have advocated the use of High 
Fluctuation (HF)-based spectral segmentation in HSV 
color space to extract dominant information from liquid 
images. This segmentation has been shown to improve 
the representation of spectral patterns between H₂O 

and H₂O with NaOH and has been used in several 

previous publications [21], [22].  

Furthermore, a radiation-based spectral subtraction 
method was also introduced to improve the signal-to-
noise ratio (SNR) and the accuracy of visual intensity 
readings from solution spectra [23]. For instance, both 
solutions reflect similarly across visible bands (400–
700 nm), while subtle spectral shifts can appear in the 
near-infrared region (700–900 nm), influenced by 
NaOH solubility effects [34]. Multispectral imaging 
enables the detection of such nuanced variations. In 
addition, several techniques such as spectroscopy-
based classifiers, Support Vector Machines (SVM), and 
traditional image thresholding have been explored. 
However, these methods often suffer from limited 
robustness when dealing with high spectral overlap, 
especially in fluid-based chemical mixtures where 
visual and spectral differences are minimal [32], [33]. 
For example, SVM classifiers rely heavily on 
handcrafted features, which may not capture subtle 

spectral shifts, while thresholding methods lack the 
adaptability needed for complex multispectral 
variations. This limitation highlights the necessity of 
deep learning-based approaches capable of learning 
abstract spectral representations from raw or minimally 
processed images. In the context of automatic 
classification, Convolutional Neural Networks (CNN) 
have become the de facto standard due to their ability 
to recognize complex visual patterns. Some common 
CNN architectures used include ResNet50, which 
excels in extracting deep features with training stability 
thanks to residual learning [11]; EfficientNetV2, 
designed for fast training and high parameter efficiency 
[3]; and MobileNetV3, which is aimed at resource-
constrained devices yet remains competitive in 
accuracy [16] . These architectures were chosen over 
alternatives like DenseNet or Inception due to their 
balance of depth, speed, and proven performance in 
similar multispectral and hyperspectral classification 
tasks [35] .     

Although each architecture has its advantages, a 
single approach is often less stable when applied to 
very similar spectral data. Therefore, this study 
proposes an ensemble system that combines the three 
architectures with HF segmentation-based 
preprocessing and a reliable method for classifying 
chemical solutions with minimal visual differences.  

The integration of three CNN architectures, 
ResNet50, EfficientNetV2, and MobileNetV3, into a 
single HF segmentation image-based ensemble 
system, aims to improve the stability, efficiency, and 
accuracy of H₂O and H₂O with NaOH solution image 

Fig. 1. Research flow in H2O and H2O with NaOH image 
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classification. This study also employed preprocessing 
techniques, including active spectral cropping, HSV 
color segmentation, and data augmentation, to 
enhance the diversity of visual features.     

The main contributions of this research are as follows:     

1. Proposing the integration of a CNN ensemble 

system (ResNet50, EfficientNetV2, and Mo 

bileNetV3) for the classification of H₂O and H₂O 

solutions with NaOH based on multispectral 

images, which has not been studied thoroughly in 

previous literature. 

2. Applying High Fluctuation (HF) based spectral 

segmentation in the HSV color space to extract the 

most informative dominant spectral areas, thereby 

improving the visual representation before 

classification.   

3. Converted .dat experimental data into two-

dimensional spectral images using MATLAB, with 

custom color mapping and logarithmic 

transformation to optimize the spectral 

representation.   

4. Evaluating the effectiveness of CNN 

preprocessing, augmentation, and ensemble 

strategies in improving the classification accuracy 

of chemical solutions with very subtle spectral 

differences.   

5. Providing an adaptable approach for multispectral 

camera-based real-time classification systems in 

the fluid chemical industry or other non-contact 

spectral detection systems.     

All stages of the research, from converting .dat data 
into spectral images and preprocessing to bluish-
purple-based segmentation, classification, and 
evaluation of the CNN model, are systematically 
explained in the research flow, as illustrated in Fig. 1. 

II. Materials and Methods 

This study utilized spectral signal data derived from 
high-frequency measurements of pure H₂O and H₂O 

mixed with NaOH. The data was collected using a 
MATLAB-based acquisition system and originated from 
the experimental work [21], which applied a High 
Fluctuation (HF) spectral visualization approach to 
emphasize dominant intensity variations in both 
electrolyte and nonelectrolyte solutions. As part of this 
enhancement, a baseline correction filter and high-
pass frequency threshold were implemented to reduce 
noise and baseline drift, ensuring signal clarity before 
conversion. The acquired signal matrices are 
transformed into two-dimensional spectral images, 
enabling their use in a Convolutional Neural Network 
(CNN)- based classification framework. The signal-to-
image transformation consists of two sequential 
stages: a logarithmic transformation to amplify 
perceptual contrast and a color mapping stage to 

project the signal values into RGB space using a 
predefined color map. This transformation was 
conducted using a consistent intensity scale across all 
data samples, avoiding dynamic range fluctuations that 
might bias learning. 

In the first stage, each element of the raw signal 
matrix D(i,j) was transformed logarithmically to 
suppress high-intensity bias and enhance mid-range 
details, following standard practices in spectral 
preprocessing [5], [6], [21], [22], [25]. This process is 
mathematically expressed as Eq. (1) [22]: 

  𝑆(𝑖, 𝑗) = log⁡(𝐷(𝑖, 𝑗) + 1)  (1)           

In the second stage, the resulting matrix S(i,j) was 
normalized and then mapped into the RGB domain 
using a continuous colormap ranging from blue to red, 
as implemented in the MATLAB rendering 
configuration. This transformation is defined as Eq. (2) 
[29], [35]: 

𝐼(𝑖, 𝑗) = ColormapRGB(
𝑆(𝑖,𝑗)⁡⁡⁡𝑚𝑖𝑛(𝑆)

𝑚𝑎𝑥(𝑆)⁡⁡⁡𝑚𝑖𝑛(𝑆)
)   (2) 

This visualization was performed before the image 
preprocessing and color segmentation stages, aiming 
to maintain the dominant visual representation of each 
solution spectrum [24] and reinforced by similar studies 
that adopted 2D spectral transformation and signal 
fluctuation-based visualization in the multispectral 
image domain [20], [28]. By using consistent color-
mapping parameters and fixed colormap limits, this 
step ensures homogeneous visual encoding across the 
dataset, improving generalization for CNN-based 
models. This converted image dataset was then utilized 
in the stages of image preprocessing, data 
augmentation, high fluctuation-based HSV 
segmentation, and two-class classification (H₂O and 

H₂O with NaOH) using CNN models (ResNet50, 

EfficientNetV2, and MobileNetV3). 

A. Image Preprocessing 

After obtaining spectral image from signal conversion, 
the next step is image preprocessing to ensure that all 
inputs are consistent, noise-free, and suitable for deep-
learning processing. This step is crucial for enhancing 
model performance, training stability, and 
computational efficiency. In this study, preprocessing 
involves three main stages: cropping, resizing, and 
normalization. The first step removed irrelevant areas 
of the image, such as axis labels, scale bars, and 
background margins. This was done through cropping 
using fixed coordinates derived from MATLAB-based 
visualization, specifically along x = 40 to 58 and y = 438 
to 470. Mathematically, cropping can be expressed as 
Eq. (3): 

𝐼𝑐𝑟𝑜𝑝 = {
𝐼(𝑖, 𝑗), 𝑥𝑚𝑖𝑛 ≤ ⁡𝑖 ≤ 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 ≤ ⁡𝑗 ≤ 𝑦𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟
 (3) 

where I(I,j) is the original image pixel at coordinate (I,j), 
and (xmin,xmax,ymin,ymax) define the cropping 
boundaries. By focusing only on the active spectral 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1016
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1045-1059                                    e ISSN: 2656 8632 

 
Manuscript received June 8, 2025; Revised August 20, 2025; Accepted September 5, 2025; date of publication September 10, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1016 
Copyright © 2025 by the authors. This work is an open access article and licensed under a Creative Commons Attribution ShareAlike 4.0 
International License (CC BY SA 4.0).  
 1048               

region, non-informative pixels are excluded, allowing 
the model to concentrate on meaningful patterns. The 
cropped image was then resized to 224 × 224 pixels. 
This is a standard input size for convolutional neural 
network architectures, such as ResNet50, 
EfficientNetV2, and MobileNetV3 [11], [29]. The 
resizing operation was performed through bilinear 
interpolation, defined as Eq. (4): 

𝐼(𝑥, 𝑦) =∑ ⁡

⁡

𝑚⁡

∑𝐼𝑐𝑟𝑜𝑝(𝑚, 𝑛). (1 − 

⁡

𝑛⁡

𝑥 − 𝑚). (1 − 𝑦 − 𝑛 

(4) 

where (x,y) are the target coordinates in the resized 
image, and (m,n) are the nearest pixel coordinates in 
the cropped image. This interpolation ensures smooth 
scaling while preserving spectral information. Resizing 
ensures consistent dimensions across training 
batches, simplifying the network architecture by 
eliminating the need for dynamic input reshaping. The 
final step in preprocessing is pixel normalization. Each 
RGB channel is scaled to a range of [0,1], reducing the 
influence of large pixel values and enhancing gradient 
flow during training. This normalization accelerates 
convergence and minimizes the risk of vanishing or 
exploding gradients [3], [33]. Mathematically, the 
operation is defined as Eq. (5): 

Inorm(i, j, c) =
𝐼𝑟𝑒𝑠𝑖𝑧𝑒(𝑖,𝑗,𝑐)

255
⁡⁡⁡  (5) 

where (i,j) represent pixel coordinates and c ∈ {R,G,B} 

indicates the respective color channel. This 
preprocessing strategy aligns with best practices in 
spectral image processing, as demonstrated in water 
leakage detection using TinyML [26], HSV-based 
thermal spectrum classification [20], [21], and fluid 
segmentation preprocessing [3], [22]. These 
references collectively support the importance of 
structured preprocessing in enhancing classification 
robustness across diverse spectral datasets. 

B. Augmentation 

In deep learning-based spectral image classification, 
data augmentation is a crucial technique for increasing 
variability within the training dataset and mitigating 
overfitting, particularly when the number of training 
samples is limited. Given the high visual similarity 
between the two classes (H₂O and H₂O + NaOH), 

augmentation serves to introduce controlled distortions 
that mimic possible environmental variations. This 
becomes essential when dealing with visually similar 
spectral patterns, such as distinguishing between pure 
H₂O and H₂O mixed with NaOH, where both exhibit 

subtle differences in color and intensity. By artificially 
enriching the dataset, augmentation enables the CNN 
model to generalize more effectively across unseen 
variations, thereby improving its robustness during 
inference [3], [16]. One of the fundamental 
augmentation strategies applied is random rotation. 

Images are rotated within a specified angular range, 
such as –30° to 30°, which helps simulate the 
occurrence of spectral shifts or variations due to 
different acquisition angles [3]. This is particularly 
relevant for practical implementations where image 
acquisition may not always be axis-aligned. This 
augmentation enhances the model’s ability to 
recognize key spectral structures across varying 
orientations, supporting rotation-invariant learning. 
This approach is practical in several visual 
classification domains, including spectral and medical 
imaging [14]. In addition to rotation, horizontal and 
vertical flipping was employed to generate symmetrical 
variations of the original image. Flipping preserves the 
core spectral features, while expanding the diversity of 
directional patterns observed by the model [21]. This 
approach maintains the structural integrity of spectral 
information while enhancing generalization across 
mirror-transformed variants, a method that has proven 
beneficial in fluid pattern analysis and spectral object 
detection [9]. 

Another commonly used technique is zooming, or 
random scaling, aiming to simulate differences in 
observation distance or field of view during spectral 
signal acquisition and image transformation. By 
performing moderate zooming, this transformation 
ensures that the central spectral region remains visible 
while training the network to handle size variance and 
spatial scaling [16]. Such augmentations enhance 
model flexibility in learning size-invariant features 
across spectral datasets [19]. Finally, contrast and 
brightness adjustments were applied to simulate 
illumination inconsistencies that may arise from signal-
to-image conversion, especially under varying 
experimental conditions. Modifying these visual 
attributes ensures that the model does not overfit to 
specific lighting environments and can instead capture 
meaningful features under diverse image conditions 
[14] . This step has been validated in studies involving 
both biomedical imaging and spectral classification, 
showing increased performance stability when faced 
with varying illumination patterns [19].  

All augmentation techniques were implemented 
using the `ImageDataGenerator` module from the 
Keras library, which performs real-time image 
transformation during training. This implementation not 
only expands the dataset virtually but also stabilizes 
training convergence and enhances model 
generalization. The combination of these techniques 
has been proven to significantly enhance the 
classification performance of CNNs, especially in 
domains with constrained data availability, such as 
spectral imaging, remote sensing, and microscopic 
analysis [20], [26], [27], [30] . 

C. Segmentation Method and Approach 
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Image segmentation plays a crucial role in the 
multispectral image classification pipeline, particularly 
in highlighting regions with significant spectral 
variance. In this study, segmentation was conducted 
through a color space-based approach using HSV 
(Hue, Saturation, Value), with a focus on isolating the 
violet-blue spectral zone, which prior studies have 
identified as the most responsive to chemical mixing 
between H₂O and NaOH. The segmentation procedure 

consists of three sequential stages: (1) hue range 
masking in HSV space, (2) suppression of edge noise 
using Gaussian smoothing, and (3) bitwise masking to 
extract active spectral zones from the RGB image. 

1. HSV-Based Spectral Segmentation 

The original RGB image was first transformed into HSV 
color space to enable range-based masking of the hue 
component. The hue values in the interval [110, 170] 
were selected to capture spectral shifts toward violet-
blue colors [2], which have been shown to correlate 
with changes in temperature and solute density 
following the addition of NaOH [9], [19]. The mask was 
formed by thresholding the HSV values as follows (Eq. 
(6)): 

𝑀(𝑖, 𝑗) = {
1, 𝑖𝑓⁡110 ≤ ⁡𝐻(𝑖, 𝑗) ≤ 170, 𝑆(𝑖, 𝑖) ≥ 30, 𝑉(𝑖, 𝑗) ≥ 50

0, 𝑜𝑡ℎ𝑒𝑟
 

(6) 

where H(i,j), S(i,j), and V(i,j) represent the hue, 
saturation, and value at pixel (i,j), and M(i,j) denotes the 
binary mask. 

2. High Fluctuation (HF) Region Emphasis 

To enhance mask precision, the binary mask was 
refined through Gaussian blurring, which suppresses 
local noise and highlights smoother boundaries 
between active and inactive regions. This step 

corresponds to the High Fluctuation (HF) emphasis, as 
it helps preserve only the most visually dynamic areas, 
consistent with prior spectral fluctuation models 
proposed. [2], [21], [24]. The Gaussian smoothing is 
expressed as Eq. (7): 

𝑀𝑏𝑙𝑢𝑟 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟(𝑀, 𝐾 = (5,5), 𝜎 = 0)  (7) 

where M denotes the binary mask generated from the 
segmentation stage, K represents the convolution 
kernel size (5×5 in this study), and σ is the Gaussian 
standard deviation controlling the level of smoothing, 
set to zero to allow the function to compute it based on 
kernel size. This technique was inspired. [2], [21], [24] 
who utilized frequency domain transformation and 
variance statistics to reveal hidden spectral information 
that was often masked by background noise. 

3. Final Masking and Spectral Output 

The blurred mask was then applied to the original RGB 
image through pixel-wise masking to extract only the 
active spectral components. The output segmented 
image is defined as Eq. (8): 

𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑖, 𝑗) = ⁡𝐼(𝑖, 𝑗)⁡𝑥⁡
𝑀𝑏𝑙𝑢𝑟(𝑖,𝑗)

255
  (8) 

where I(i,j) denotes the original RGB pixel value and 
Isegment(i,j) is the resulting segmented pixel. This 
segmentation approach enhances classification by 
discarding noninformative pixels and has proven 
effective in diverse CNN-based applications involving 
tissue imaging, fluid thermodynamics, and aerial 
spectral analysis [3], [5], [8], [24].  
D. Classification Method 

This study employed an ensemble learning approach 
based on Convolutional Neural Networks (CNN) to 
classify images derived from spectrum segmentation 
results into two main classes: H₂O and H₂O with NaOH. 

Fig. 2. Illustration architecture of Resnet50 
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The three selected CNN architectures, ResNet50, 
EfficientNetV2, and MobileNetV3, were selected based 
on their complementary strengths in terms of feature 
extraction, efficiency, and generalization. Each model 
was trained independently using identical 
configurations and then combined using the soft voting 
ensemble method. 

1. CNN Architecture Used 

ResNet50. ResNet50 is a deep Convolutional Neural 
Network (CNN) architecture that utilizes a residual 
learning mechanism to prevent accuracy degradation 
as the network deepens. The residual block enables 
better gradient propagation and accelerates 
convergence. As illustrated in Fig. 2, the ResNet50 
architecture employs stacked residual blocks that 
facilitate efficient feature extraction. This model has 
been widely used in medical and satellite image 
classification [2] [4] to capture subtle spectral patterns 
that arise due to changes in the chemical composition 
of the environment [25]. In this study, ResNet50 was 
used with pre-trained weights from ImageNet, modified 
at the end for two class classifications. The input image 
used is the result of HSV segmentation measuring 
224×224 pixels. The training process reaches optimal 
convergence in 12 epochs. Previous studies have 
demonstrated that ResNet50 achieves an accuracy of 
over 96% in cancer classification [6] and was also 

utilized for spectral imaging-based chemical feature 
detection in the agricultural and medical fields [8]. 

EfficientNetV2. EfficientNetV2 is the next generation of 
EfficientNet, designed with a combined scaling 
approach that expands the network equally in depth, 
width, and resolution. Its main feature is the 
combination of MBConv and Fused MBConv blocks [9], 
which shortens training time while maintaining the 
efficiency parameters [3]. Fig. 3 illustrates the 
EfficientNetV2 architecture, which balances depth and 
width scaling, making it highly effective for medium-
sized spectral datasets such as those in this study. This 
model is particularly suitable for medium-sized spectral 
data, such as those used in this study, as it requires 
low computing power while still producing high 
accuracy. In this implementation, the EfficientNetV2 
variant was used with pre-trained weights from 
ImageNet. The model stops automatically at the 40th 
epoch through the Early Stopping mechanism. Recent 
studies have shown that EfficientNetV2 can handle 
nonlinear datasets such as fluid images, where 
dominant features are not necessarily spatial but 
emerge in hidden spectral transitions.  

MobileNetV3. MobileNetV3 is designed for 

embedded systems and real-time applications, 

combining depth-wise separable convolutions, Squeeze 

and Excitation (SE) blocks, and Swish activations that 

are more efficient than ReLU [10]. As depicted in Fig. 4, 

MobileNetV3 integrates lightweight convolutional layers 

with SE blocks, enabling efficient learning with minimal 

resource usage. Despite its lightweight, this model can 

maintain competitive accuracy on complex data with 

minimal resource consumption [5], [16]. In this study, 

MobileNetV3 was used as a baseline lightweight 

classifier to verify that the segmentation and 

preprocessing systems used can support the 

performance of small models. The model shows stable 

convergence up to the 22nd epoch, with very 

competitive evaluation results. The advantages of 

MobileNetV3 in spectral image classification primarily lie 

in its inference speed and memory efficiency, making it 

ideal for portable multispectral camera-based real-time 

or edge computing implementations.  

2. Strategy Ensemble 

Each model was trained independently for 150 epochs 
with early stopping, and then the prediction results 
were combined using a soft voting method to obtain the 
final output of the ensemble. The architectures were 
chosen based on an evaluation of recent CNN libraries, 
which showed that these three models complement 
each other in terms of efficiency, feature extraction 
depth, and inference speed. The choice of 
hyperparameters, such as batch size (32), learning rate 
(0.001), and the use of the Adam optimizer, was based 
on preliminary experiments aimed at maximizing 

Fig. 3. Illustration architecture of EfficientNetV2 
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convergence speed while avoiding overfitting. Early 
stopping was applied to terminate training when 
validation loss stagnated, ensuring model 
generalization. No extensive grid search was 
performed due to computational constraints, but default 
configurations yielded stable results across all models. 

A. Evaluation 

A comprehensive performance evaluation of 
classification was conducted on the ResNet50, 
EfficientNetV2, and MobileNetV3 models using a pre-
separated test dataset. To ensure the clarity of the 
prediction model in distinguishing between H₂O and 

H₂O with NaOH solutions, several key evaluation 

metrics were used, namely: 
Accuracy   the proportion of correct predictions 
compared to total predictions (Eq. (9)). 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
× 100  (9) 

Precision   the model's ability to avoid false positives in 
each class (Eq. (10)). 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100   (10) 

Recall (Sensitivity) the extent to which the model 
successfully captures all data from each class (Eq. 
(11)). 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100   (11) 

F1 Score   harmonization between precision and recall, 
which is useful when classes are unbalanced (Eq. 
(12)). 

F1 Score= 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (12) 

The evaluation was conducted in three stages: data 
training, data validation, and final data testing. The 
dataset was randomly split into 70% training, 15% 
validation, and 15% testing sets. Stratified sampling 
was applied to maintain balanced class distributions 
across all subsets, and data leakage was prevented by 
ensuring no overlapping images appeared in more than 
one set. The test results were analyzed not only in 
terms of numerical performance but also in terms of 
generalization tendencies between models. Graphical 
evaluation was also performed by visualizing the 
accuracy and loss curves against epochs, as well as 
the confusion matrix, which illustrates the model's 
ability to distinguish between very similar fluid spectra 
visually. This method is supported by an evaluation 
approach that has been widely used in the CNN and 
spectral classification literature [27], which emphasizes 
the importance of quantitative and qualitative analysis 
for the validation of spectral visualization-based models 
[17], [31].  
 

III. Result 

Classification experiments were conducted on 
multispectral image datasets from two environmental 
classes: H₂O (295 images) and H₂O with NaOH (512 

images), totaling 807 images. All photos have 
undergone HF-based segmentation, normalization, 
and augmentation stages, as described in Chapter 2. 

 
 

 
Fig. 4. llustration architecture of MobileNetV3 
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Fig. 5. Epoch results using Resnet50 architecture: (a) Accuracy vs. epoch; (b) Loss vs. epoch 

Fig. 6. Epoch results using EfficientNetV2 architecture: (a) Accuracy vs. epoch; (b) Loss vs. epoch 
 

Fig. 7. Epoch results using MobileNetV3 architecture: (a) Accuracy vs. epoch; (b) Loss vs. epoch 
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The data were divided into three main subsets: 64% for 
training, 16% validation, and 20% testing. Three CNN 
models, ResNet50, EfficientNetV2, and MobileNetV3, 
were trained independently using the same 
parameters: a maximum of 150 epochs, a batch size of 
32, and optimization with Adam (learning rate of 
0.0001). Evaluation was performed using accuracy, 
precision, recall, f1 score, and loss metrics. Additional 
visualizations, including accuracy and loss curves, as 
well as confusion matrices, were used to assess the 
training process and final classification performance. 

A. Image Classification Performance 

The HF segmentation images show significant spectral 
patterns in distinguishing H₂O and its mixture with 

NaOH, although the differences are not visible to the 
naked eye. A CNN model was drilled to automatically 
recognize these patterns based on color and spectral 
intensity information. The training data distribution 
included 515 images (188 H₂O and 327 H₂O with 

NaOH), while the validation included 128 images (47 
H₂O and 81 H₂O with NaOH). All models showed stable 

convergence. 

B. Training Results and Dataset Validation 

The training and validation processes in this study were 
conducted separately for three CNN architectures: 
ResNet50, EfficientNetV2, and MobileNetV3, using 
multispectral segmentation images from two classes: 
H₂O and H₂O with NaOH. The evaluation of training 

performance is illustrated through the accuracy and 
loss curves against the number of epochs, as shown in  
Fig. 5, Fig. 6, and Fig. 7. Each graph consists of two 
curves that indicate how well the model performs 
during the learning process. The blue curve represents 
the evaluation results on the training dataset, 
illustrating how the model adapts to the patterns 
observed during supervised learning. Meanwhile, the 
red curve depicts the model’s performance on the 
validation dataset, which is critical in assessing 
generalization capability to unseen data.  

The behavior of these two curves, whether they 

converge, diverge, or remain stable, offers insight into 

how effectively the model learns without overfitting or 

underfitting. The accuracy curve represents the extent 

to which the model accurately recognizes patterns in 

the data, while the loss curve indicates the level of 

model prediction error. The patterns of both curves 

were evaluated to understand the extent to which the 

model experiences convergence and to detect potential 

overfitting or learning synchronization. This practice is 

a common approach used to stabilize the training 

process and generalize the model to data not seen 

during training [12]. In Fig. 5, the ResNet50 architecture 

achieves rapid convergence within 12 epochs. The 

training accuracy curve increases dramatically from 

around 68% to over 95%, and the validation accuracy 

reaches over 90% since the 4th epoch and remains 

stable. The loss curve exhibits a sharp decrease from 

1.7 to below 0.2 during training, and the validation loss 

remains low at approximately 0.3. This stability 

indicates that the model successfully recognizes 

essential patterns in the data without overfitting. 

Fig. 6 shows the results of training EfficientNetV2 
for 40 epochs. Validation accuracy increases very 
rapidly in the first five epochs, even surpassing training 
accuracy. Over time, accuracy catches up with training 
and reaches around 89%. Training loss drops from 2.5 
to below 0.4, while validation loss remains stable below 
0.3. Such behavior generally indicates a high degree of 
regularization and good generalization ability, where 
the model not only adapts to the training data but also 
maintains high accuracy on new data [12]. Meanwhile, 
Fig. 7 shows the performance of MobileNetV3 up to the 
22nd epoch. Despite being a lightweight architecture, 
the model achieves validation accuracy above 90% 
quickly and stably. The training accuracy increases 
from 53% to approximately 88%, indicating a notable 
progressive improvement. The training loss drops 
drastically from over 5 to around 0.4, and the validation 
loss remains low without significant attrition, suggesting 
that even lightweight models can be drilled effectively if 
supported by proper preprocessing and segmentation. 

 
Fig. 8. Testing Result Using Resnet50 

 

Overall, all three CNN architectures exhibit clear 

signs of training stability and convergence across both 

training and validation datasets. ResNet50 achieves 

rapid convergence and low validation loss, with no 

significant divergence, suggesting minimal risk of 

overfitting. EfficientNetV2 displays regularized 

behavior, as seen by the initial higher validation 

accuracy than training, indicating strong generalization 

capability. MobileNetV3, despite being a lightweight 

model, also demonstrates stable improvement without 

overfitting signs, although with a slower initial learning 
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rate. The behavior of the accuracy and loss curves in 

Fig. 5, Fig. 6, and Fig. 7 confirms that each model 

successfully learns the spectral distinctions between 

H₂O and H₂O with NaOH, with no evident instability, 

noise sensitivity, or training collapse, fulfilling the 

requirements for robust classification. 

 
Fig. 9. Testing results using EfficientNetV2 

 

C. Validation Of Testing Results on The Dataset 

The evaluation model in this study was conducted 
using a multispectral image dataset from the 
experimental results consisting of a total of 807 images, 
divided into 295 images for the H₂O class and 512 

images for the H₂O with NaOH class. All of these 

images have gone through a color segmentation and 
augmentation process before being used in training, 
validation, and testing. The dataset is divided into three 
main parts, namely training data, validation data, and 
testing data. A total of 64% of the data was used for 
training, 16% for validation, and 20% was used as the 
final test data. In these proportions, the test data 
consists of 162 images, namely 58 images from the 
H₂O class and 104 images from the H₂O with NaOH 

class. The test results are displayed through a 
confusion matrix for each model, aiming to visually and 
numerically describe the classification performance of 
the two main classes.  In ResNet50, as shown in Fig. 
8, the model successfully classified all 104 H₂O with 

NaOH images correctly but misclassified 10 out of 58 
H₂2O images, which were mistaken for mixed 

solutions. This indicates that ResNet50 exhibits 
excellent detection capability for alkaline environments; 
however, it still tends to over-detect spectra resembling 
H₂O with NaOH in some pure H₂O images.  

Meanwhile, EfficientNetV2, as shown in Fig. 9, 
successfully classifies 47 out of 58 H₂O images 

correctly and 103 out of 104 H₂O with NaOH images 

correctly. This model shows a good classification 
balance between classes, with errors that are almost 
uniform but still small. The efficiency of this architecture 
is reflected in its ability to maintain generalization to 

very similar spectral distributions between the two 
classes.  

 
Fig. 10. The testing results using MobileNetV3 

 
On MobileNetV3, as shown in Fig. 10, the test 

results indicate that this lightweight model can provide 
competitive results. A total of 49 H₂O images were 

correctly classified, and 101 out of 104 H₂O with NaOH 

images were successfully recognized. The 
classification error is slightly higher than that of the 
other two models but remains within acceptable limits, 
considering the computational efficiency offered by this 
architecture.  

Table 1. The comparison of the accuracy of 
achievements of the three architectures 

CNN's 
Architecture Accuracy Precision Recall 

F1 
Score 

Resnet50 93.83% 94.36% 93.82% 93.67% 

EfficientNetv2 92.52% 93.05% 92.59% 92.41% 

MobileNetV3 92.59% 92.68% 92.59% 92.49% 

This section discusses the performance 
comparison and practical implications of the 
classification models based on the results presented 
earlier. Overall, all architectures demonstrate strong 
test performance on complex multispectral image 
datasets. ResNet50 demonstrates strength in high 
precision for base solutions; EfficientNetV2 provides 
the most balanced classification, while MobileNetV3 
shows that architectural efficiency does not necessarily 
mean a compromise on accuracy, making it an ideal 
candidate for real-time applications on lightweight 
devices. 

IV. Discussion 

The classification results demonstrate that ResNet50, 
EfficientNetV2, and MobileNetV3 are capable of 
distinguishing subtle spectral variations between H₂O 

and H₂O with NaOH after preprocessing with HF 

segmentation. As summarized in Table 1, ResNet50 
achieved the highest accuracy of 93.83% and F1-score 
of 93.67%, followed closely by EfficientNetV2 and 
MobileNetV3, both of which maintained accuracy 
above 92%. The high accuracy obtained, particularly by 
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ResNet50, indicates that residual learning plays a vital 
role in extracting deep spectral features. 
EfficientNetV2, on the other hand, shows that 
compound scaling of depth and width can provide 
robust regularization, while MobileNetV3 proves that 
lightweight models remain competitive when supported 
by proper preprocessing. These results collectively 
suggest that preprocessing through HF segmentation 
is the decisive factor that allows CNN architectures to 
effectively capture discriminative spectral features that 
are not readily perceivable by human vision. 

Our findings are consistent with recent research on 
hyperspectral and multispectral classification tasks. 
For example, Zhang et al. [25] reported that ResNet-
based models outperformed traditional CNNs in 
hyperspectral vegetation classification, particularly in 
terms of recall, aligning with our observation of 
ResNet50’s sensitivity. Similarly, Liang et al. [16] 
demonstrated that lightweight architectures such as 
MobileNetV3 could achieve competitive accuracy for 
image classification in resource-limited devices, 
supporting our findings on MobileNetV3’s efficiency. In 
addition, LONG Jianing et al.[8] emphasized the role of 
preprocessing and augmentation in boosting 
EfficientNet performance, which parallels the strong 
generalization of EfficientNetV2 in our study. These 
comparisons indicate that our research fits within the 
broader trend of leveraging both advanced CNNs and 
preprocessing strategies to improve spectral 
classification. 

Despite promising results, some limitations must be 
acknowledged. First, the dataset used in this study is 
limited to binary classification (H₂O and H₂O with 

NaOH), which constrains the generalizability of the 
findings to more complex chemical mixtures. Second, 
the spectral images were generated from laboratory-
controlled experiments, and the robustness of the 
models under real-world imaging conditions (e.g., 
noise, lighting variability, impurities) remains untested. 
Third, hyperparameter tuning was relatively limited, 
and further exploration of alternative optimizers or 
regularization strategies could potentially enhance 
performance. These limitations open avenues for 
additional research to extend and validate the 
applicability of the proposed approach. 

The implications of this work are twofold. From a 
scientific standpoint, the integration of HF 
segmentation with CNN ensembles provides a 
reproducible framework for distinguishing subtle 
spectral differences in chemical solutions. This can 
inform future studies in analytical chemistry and 
spectral imaging by highlighting the importance of 
preprocessing in feature enhancement. From a 
practical perspective, the demonstration that 
lightweight models such as MobileNetV3 can achieve 
high accuracy suggests strong potential for real-time 

deployment in portable devices and industrial 
monitoring systems. Moreover, by aligning with the No-
Free-Lunch Theorem [15], our study underlines the 
importance of selecting models based on application-
specific needs rather than seeking a universally 
superior architecture. 

V. Conclusion 

This study aimed to develop a multispectral image 

classification system based on High Fluctuation (HF) 

segmentation and an ensemble of three CNN 

architectures, ResNet50, EfficientNetV2, and 

MobileNetV3, to distinguish between pure water (H₂O) 

and H₂O mixed with NaOH, which exhibit very subtle 

spectral differences visually. The main findings show 

that the proposed approach achieves high 

classification performance. ResNet50 recorded the 

highest accuracy of 93.83%, with a precision 

of 94.36%, a recall of 93.82%, and an F1-score 

of 93.67%. EfficientNetV2 achieved an accuracy 

of 92.52% with strong convergence and lower 

validation loss, while MobileNetV3 maintained a 

competitive accuracy of 92.59% with superior 

computational efficiency suitable for lightweight 

applications. An additional finding is that HF-based 

spectral segmentation in the HSV color space 

significantly enhances model stability and 

convergence, confirming its importance as a 

preprocessing step for distinguishing chemical 

solutions with overlapping spectral features. Future 

work can be directed at expanding the classification to 

include more chemical solution classes, investigating 

advanced architectures such as attention-based 

networks and Vision Transformers, and deploying the 

system in portable or edge-computing devices for real-

time industrial applications. 
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