Internet of Medical Things and the Evolution of Healthcare 4.0: Exploring Recent Trends

Keywords: Cybersecurity measures, dementia detection, Ethics, Healthcare 4.0, IoMT, patient privacy

Abstract

Enhanced patient care and remote health monitoring have always been important issues. Internet of Medical Things (IoMT) is a subsection of Healthcare 4.0 that uses recent technologies like mobile computing, medical sensors, and cloud computing to track patients' medical information in real-time. These data are stored in a cloud computing framework that may be accessed and analyzed by healthcare experts. IoMT and Healthcare 4.0 have immense potential for revolutionizing patient care and diagnostics, despite facing numerous complex challenges. This paper thoroughly analyzes technical, structural, and regulatory obstacles encountered by the healthcare sector. Challenges in IoMT implementation include cost considerations, network stress, interoperability issues, ethical limitations, policy intricacies, security concerns, and vulnerabilities jeopardizing patient privacy. However, amidst these challenges, the study highlights the prospective long-term benefits, including diminished medical costs and enhanced patient care. In this study, we have portrayed a comprehensive exploration of the field of IoMT and different related technologies from more than 100 papers to represent the transformation and growth in this decade. We have illustrated some of the significant findings of applications and innovations in the domain of IoMT. This paper delves into IoMT's application in dementia detection and care, improved data management, fortified cybersecurity measures, and modernizing existing healthcare systems. The study also offers valuable insights into potential mitigation strategies, offered by ongoing research and innovation to address emerging trends and challenges, propelling the trajectory of Healthcare 4.0 towards an optimized and transformative future for patient well-being. Hence future research needs to integrate more prudent technologies addressing challenges including security, privacy, interoperability, and implementation costs.

Downloads

Download data is not yet available.

References

S. C. Mukhopadhyay and N. K. Suryadevara, “Internet of Things: Challenges and Opportunities,” Internet of Things, vol. 9, pp. 1–17, 2014, doi: 10.1007/978-3-319-04223-7_1.

S. Al-Sarawi, M. Anbar, R. Abdullah, and A. B. Al Hawari, “Internet of things market analysis forecasts, 2020-2030,” Proceedings of the World Conference on Smart Trends in Systems, Security and Sustainability, WS4 2020, pp. 449–453, Jul. 2020, doi: 10.1109/WORLDS450073.2020.9210375.

R. Dwivedi, D. Mehrotra, and S. Chandra, “Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review,” J Oral Biol Craniofac Res, vol. 12, no. 2, pp. 302–318, 2022, doi: 10.1016/j.jobcr.2021.11.010.

A. M. Arif, A. M. Hamad, and M. M. Mansour, “Internet of (Healthcare) Things Based Monitoring for COVID-19+ Quarantine/ Isolation Subjects Using Biomedical Sensors, A Lesson from the Recent Pandemic, and an Approach to the Future.,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 5, no. 1, pp. 1–12, Jan. 2023, doi: 10.35882/JEEEMI.V5I1.267.

D. Rizk, R. Rizk, and S. Hsu, “Applied Layered-Security Model to IoMT,” in 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), IEEE, Jul. 2019, pp. 227–227. doi: 10.1109/ISI.2019.8823430.

L. Sun, X. Jiang, H. Ren, and Y. Guo, “Edge-Cloud Computing and Artificial Intelligence in Internet of Medical Things: Architecture, Technology and Application,” IEEE Access, vol. 8, pp. 101079–101092, 2020, doi: 10.1109/access.2020.2997831.

A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. K. Al-Ali, and R. Jain, “Recent Advances in the Internet of Medical Things (IoMT) Systems Security,” IEEE Internet Things J, vol. 8, no. 11, p. 1, 2020, doi: 10.1109/jiot.2020.3045653.

A. Gupta and A. Singh, “Healthcare 4.0: recent advancements and futuristic research directions,” Wirel Pers Commun, 2022, doi: 10.1007/s11277-022-10164-8.

M. Osama et al., “Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions,” Sensors, vol. 23, no. 17, p. 7435, 2023, doi: 10.3390/s23177435.

S. Lalmuanawma, J. Hussain, and L. Chhakchhuak, “Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review,” Chaos Solitons Fractals, vol. 139, p. 110059, 2020, doi: 10.1016/j.chaos.2020.110059.

A. Sedik, M. Hammad, Fathi, B. B. Gupta, and A. A. Abd, “Efficient deep learning approach for augmented detection of Coronavirus disease,” Neural Comput Appl, vol. 34, no. 14, pp. 11423–11440, 2021, doi: 10.1007/s00521-020-05410-8.

H. Turabieh, Amer, and N. Abu-El-Rub, “Dynamic L-RNN recovery of missing data in IoMT applications,” Future Generation Computer Systems, vol. 89, pp. 575–583, 2018, doi: 10.1016/j.future.2018.07.006.

S. R. Khan, M. Sikandar, A. Almogren, I. U. Din, A. Guerrieri, and G. Fortino, “IoMT-based computational approach for detecting brain tumor,” Future Generation Computer Systems, vol. 109, pp. 360–367, 2020, doi: 10.1016/j.future.2020.03.054.

A. Kilic, “Artificial Intelligence and Machine Learning in Cardiovascular Health Care,” Ann Thorac Surg, vol. 109, no. 5, pp. 1323–1329, 2020, doi: 10.1016/j.athoracsur.2019.09.042.

H. Song, J. Bai, Y. Yi, J. Wu, and L. Liu, “Artificial Intelligence Enabled Internet of Things: Network Architecture and Spectrum Access,” IEEE Comput Intell Mag, vol. 15, no. 1, pp. 44–51, 2020, doi: 10.1109/mci.2019.2954643.

J. Wu, S. Guo, J. Li, and D. Zeng, “Big Data Meet Green Challenges: Greening Big Data,” IEEE Syst J, vol. 10, no. 3, pp. 873–887, 2016, doi: 10.1109/jsyst.2016.2550538.

J. Wu, S. Guo, J. Li, and D. Zeng, “Big Data Meet Green Challenges: Big Data Toward Green Applications,” IEEE Syst J, vol. 10, no. 3, pp. 888–900, 2016, doi: 10.1109/jsyst.2016.2550530.

N. Gautam et al., “Artificial Intelligence, Wearables and Remote Monitoring for Heart Failure: Current and Future Applications,” Diagnostics, vol. 12, no. 12, p. 2964, 2022, doi: 10.3390/diagnostics12122964.

L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, “SaYoPillow: Blockchain-Integrated Privacy-Assured IoMT Framework for Stress Management Considering Sleeping Habits,” IEEE Transactions on Consumer Electronics, vol. 67, no. 1, pp. 20–29, 2021, doi: 10.1109/tce.2020.3043683.

F. Fotopoulos, V. Malamas, T. K. Dasaklis, P. Kotzanikolaou, and C. Douligeris, “A Blockchain-enabled Architecture for IoMT Device Authentication,” 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), 2020, doi: 10.1109/ecice50847.2020.9301913.

C. Esposito, A. De Santis, G. Tortora, H. Chang, and K.-K. R. Choo, “Blockchain: A Panacea for Healthcare Cloud-Based Data Security and Privacy?,” IEEE Cloud Computing, vol. 5, no. 1, pp. 31–37, 2018, doi: 10.1109/mcc.2018.011791712.

F. Girardi, G. De Gennaro, L. Colizzi, and N. Convertini, “Improving the Healthcare Effectiveness: The Possible Role of EHR, IoMT and Blockchain,” Electronics (Basel), vol. 9, no. 6, p. 884, 2020, doi: 10.3390/electronics9060884.

M. Noura, “Efficient and secure cryptographic solutions for medical data,” Hal.science, 2019, doi: https://theses.hal.science/tel-02945773.

V. P. Yanambaka, A. Abdelgawad, and K. Yelamarthi, “PIM: A PUF-Based Host Tracking Protocol for Privacy Aware Contact Tracing in Crowded Areas,” IEEE Consumer Electronics Magazine, vol. 10, no. 4, pp. 90–98, 2021, doi: 10.1109/mce.2021.3065215.

H. Ma, Y. Gao, O. Kavehei, and D. C. Ranasinghe, “A PUF sensor: Securing physical measurements,” 2017, doi: 10.1109/percomw.2017.7917639.

M. Masud et al., “A Lightweight and Robust Secure Key Establishment Protocol for Internet of Medical Things in COVID-19 Patients Care,” IEEE Internet Things J, vol. 8, no. 21, pp. 15694–15703, 2021, doi: 10.1109/jiot.2020.3047662.

S. Liaqat, A. Akhunzada, F. S. Shaikh, A. Giannetsos, and M. A. Jan, “SDN orchestration to combat evolving cyber threats in Internet of Medical Things (IoMT),” Comput Commun, vol. 160, pp. 697–705, 2020, doi: 10.1016/j.comcom.2020.07.006.

J. Cecil, A. Gupta, M. Pirela-Cruz, and P. Ramanathan, “An IoMT based cyber training framework for orthopedic surgery using Next Generation Internet technologies,” Inform Med Unlocked, vol. 12, pp. 128–137, 2018, doi: 10.1016/j.imu.2018.05.002.

Z. Askari, J. Abouei, M. Jaseemuddin, and A. Anpalagan, “Energy-Efficient and Real-Time NOMA Scheduling in IoMT-Based Three-Tier WBANs,” IEEE Internet Things J, vol. 8, no. 18, pp. 13975–13990, 2021, doi: 10.1109/jiot.2021.3069659.

S. Badotra, D. Nagpal, S. N. Panda, S. Tanwar, and S. Bajaj, “IoT-Enabled Healthcare Network With SDN,” 2020, doi: 10.1109/icrito48877.2020.9197807.

H. Mohd, W. H. Hassan, S. Sameen, Z. S. Attarbashi, M. Alizadeh, and L. A. Latiff, “IoMT amid COVID-19 pandemic: Application, architecture, technology, and security,” Journal of Network and Computer Applications, vol. 174, p. 102886, 2021, doi: 10.1016/j.jnca.2020.102886.

R. Atat, L. Liu, J. Wu, G. Li, C. Ye, and Y. Yang, “Big Data Meet Cyber-Physical Systems: A Panoramic Survey,” IEEE Access, vol. 6, pp. 73603–73636, 2018, doi: 10.1109/access.2018.2878681.

P. Magaña-Espinoza et al., “WiSPH: A Wireless Sensor Network-Based Home Care Monitoring System,” Sensors, vol. 14, no. 4, pp. 7096–7119, 2014, doi: 10.3390/s140407096.

A. Ahila, F. Dahan, R. Alroobaea, W. Y. Alghamdi, F. Hajjej, and K. Raahemifar, “A smart IoMT based architecture for E-healthcare patient monitoring system using artificial intelligence algorithms,” Front Physiol, vol. 14, 2023, doi: 10.3389/fphys.2023.1125952.

A. Poniszewska-Maranda, D. Kaczmarek, N. Kryvinska, and F. X. Xhafa, “Studying usability of AI in the IoT systems/paradigm through embedding NN techniques into mobile smart service system,” Computing, vol. 101, no. 11, pp. 1661–1685, 2018, doi: 10.1007/s00607-018-0680-z.

G. Muhammad, M. Rahman, A. Alelaiwi, and A. Alamri, “Smart Health Solution Integrating IoT and Cloud: A Case Study of Voice Pathology Monitoring,” IEEE Communications Magazine, vol. 55, no. 1, pp. 69–73, 2017, doi: 10.1109/mcom.2017.1600425cm.

T. Muhammed, R. Mehmood, A. Albeshri, and I. Katib, “UbeHealth: A Personalized Ubiquitous Cloud and Edge-Enabled Networked Healthcare System for Smart Cities,” IEEE Access, vol. 6, pp. 32258–32285, 2018, doi: 10.1109/access.2018.2846609.

G. Muhammad, M. F. Alhamid, M. Alsulaiman, and B. Gupta, “Edge Computing with Cloud for Voice Disorder Assessment and Treatment,” IEEE Communications Magazine, vol. 56, no. 4, pp. 60–65, 2018, doi: 10.1109/mcom.2018.1700790.

T. Jabeen, I. Jabeen, H. Ashraf, N. Z. Jhanjhi, A. Yassine, and M. S. Hossain, “An Intelligent Healthcare System Using IoT in Wireless Sensor Network,” Sensors 2023, Vol. 23, Page 5055, vol. 23, no. 11, p. 5055, May 2023, doi: 10.3390/S23115055.

J. L. Ausín, J. Ramos, A. Lorido, P. Molina, and J. F. Duque-Carrillo, “Wearable and Noninvasive Device for Integral Congestive Heart Failure Management in the IoMT Paradigm,” Sensors, vol. 23, no. 16, p. 7055, 2023, doi: 10.3390/s23167055.

J. Basulo-Ribeiro and L. Teixeira, “The Future of Healthcare with Industry 5.0: Preliminary Interview-Based Qualitative Analysis,” Future Internet, vol. 16, no. 3, p. 68, 2024, doi: 10.3390/fi16030068.

C. Li, J. Wang, S. Wang‎, and Y. Zhang, “A review of IoT applications in healthcare,” Neurocomputing, vol. 565, p. 127017, Jan. 2024, doi: 10.1016/J.NEUCOM.2023.127017.

F. Khan, M. A. Jan, R. Alturki, M. D. Alshehri, S. T. Shah, and A. U. Rehman, “A Secure Ensemble Learning-Based Fog-Cloud Approach for Cyberattack Detection in IoMT,” IEEE Trans Industr Inform, vol. 19, no. 10, pp. 10125–10132, Oct. 2023, doi: 10.1109/TII.2022.3231424.

F. Kamalov, B. Pourghebleh, M. Gheisari, Y. Liu, and S. Moussa, “Internet of Medical Things Privacy and Security: Challenges, Solutions, and Future Trends from a New Perspective,” Sustainability 2023, Vol. 15, Page 3317, vol. 15, no. 4, p. 3317, Feb. 2023, doi: 10.3390/SU15043317.

M. C. Kaya, M. S. Nikoo, M. L. Schwartz, and H. Oguztuzun, “Internet of Measurement Things Architecture: Proof of Concept with Scope of Accreditation,” Sensors, vol. 20, no. 2, p. 503, 2020, doi: 10.3390/s20020503.

R. Hireche, H. Mansouri, and A.-S. K. Pathan, “Security and Privacy Management in Internet of Medical Things (IoMT): A Synthesis,” Journal of cybersecurity and privacy, vol. 2, no. 3, pp. 640–661, 2022, doi: 10.3390/jcp2030033.

K. Thiyagarajan, G. K. Rajini, and D. Maji, “Cost-Effective, Disposable, Flexible, and Printable MWCNT-Based Wearable Sensor for Human Body Temperature Monitoring,” IEEE Sens J, vol. 22, no. 17, pp. 16756–16763, 2022, doi: 10.1109/jsen.2021.3088466.

F. Wu, T. Wu, and M. R. Yuce, “Design and Implementation of a Wearable Sensor Network System for IoT-Connected Safety and Health Applications,” 2019, doi: 10.1109/wf-iot.2019.8767280.

H. Saeed et al., “Blockchain technology in healthcare: A systematic review,” PLoS One, vol. 17, no. 4, pp. e0266462–e0266462, 2022, doi: 10.1371/journal.pone.0266462.

X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare Data Gateways: Found Healthcare Intelligence on Blockchain with Novel Privacy Risk Control,” J Med Syst, vol. 40, no. 10, 2016, doi: 10.1007/s10916-016-0574-6.

S. L. T. Vangipuram, S. P. Mohanty, and E. Kougianos, “CoviChain: A Blockchain Based Framework for Nonrepudiable Contact Tracing in Healthcare Cyber-Physical Systems During Pandemic Outbreaks,” SN Comput Sci, vol. 2, no. 5, 2021, doi: 10.1007/s42979-021-00746-x.

S. H. Alsamhi, B. Lee, and Y. Qiao, “Blockchain for Multi-Robot Collaboration to Combat COVID-19 and Future Pandemics,” IEEE Access, p. 1, 2020, doi: 10.1109/access.2020.3032450.

A. Al-Meer and S. Al-Kuwari, “Physical Unclonable Functions (PUF) for IoT Devices,” ACM Comput Surv, 2023, doi: 10.1145/3591464.

M. Codari, S. Schiaffino, F. Sardanelli, and R. M. Trimboli, “Artificial Intelligence for Breast MRI in 2008–2018: A Systematic Mapping Review,” American Journal of Roentgenology, vol. 212, no. 2, pp. 280–292, 2019, doi: 10.2214/ajr.18.20389.

K. Haseeb, I. Ahmad, I. I. Awan, J. Lloret, and I. Bosch, “A Machine Learning SDN-Enabled Big Data Model for IoMT Systems,” Electronics (Basel), vol. 10, no. 18, p. 2228, 2021, doi: 10.3390/electronics10182228.

A. Rahman et al., “Internet of medical things and blockchain-enabled patient-centric agent through SDN for remote patient monitoring in 5G network,” Scientific Reports 2024 14:1, vol. 14, no. 1, pp. 1–19, Mar. 2024, doi: 10.1038/s41598-024-55662-w.

A. A. Mutlag, Mohd, N. Arunkumar, M. A. Mohammed, and O. Mohd, “Enabling technologies for fog computing in healthcare IoT systems,” Future Generation Computer Systems, vol. 90, pp. 62–78, 2019, doi: 10.1016/j.future.2018.07.049.

A. Rahman, E. Hassanain, and M. S. Hossain, “Towards a Secure Mobile Edge Computing Framework for Hajj,” IEEE Access, vol. 5, pp. 11768–11781, 2017, doi: 10.1109/access.2017.2716782.

M. Abdel-Basset, V. Chang, and N. A. Nabeeh, “An intelligent framework using disruptive technologies for COVID-19 analysis,” Technol Forecast Soc Change, vol. 163, p. 120431, 2021, doi: 10.1016/j.techfore.2020.120431.

Y. Tai, B. Gao, Q. Li, Z. Yu, C. Zhu, and V. Chang, “Trustworthy and Intelligent COVID-19 Diagnostic IoMT Through XR and Deep-Learning-Based Clinic Data Access,” IEEE Internet Things J, vol. 8, no. 21, pp. 15965–15976, 2021, doi: 10.1109/jiot.2021.3055804.

S. Cheikh Youssef et al., “Evolution of the digital operating room: the place of video technology in surgery,” Langenbecks Arch Surg, vol. 408, no. 1, Dec. 2023, doi: 10.1007/S00423-023-02830-7.

M. P. Rogers, A. J. DeSantis, H. Janjua, T. M. Barry, and P. C. Kuo, “The future surgical training paradigm: Virtual reality and machine learning in surgical education,” Surgery, vol. 169, no. 5, pp. 1250–1252, May 2021, doi: 10.1016/J.SURG.2020.09.040.

Y. Khourdifi, A. Elalami, M. Bahaj, M. Zaydi, and O. Er-Remyly, “Framework for integrating healthcare big data using IoMT technology,” Elsevier eBooks, pp. 191–210, 2023, doi: 10.1016/b978-0-323-99421-7.00012-x.

Y. Khourdifi, A. Elalami, M. Bahaj, M. Zaydi, and O. Er-Remyly, “Framework for integrating healthcare big data using IoMT technology,” Computational Intelligence for Medical Internet of Things (MIoT) Applications, pp. 191–210, Jan. 2023, doi: 10.1016/B978-0-323-99421-7.00012-X.

S. ; Hamid et al., “A Systematic Review and IoMT Based Big Data Framework for COVID-19 Prevention and Detection,” Electronics 2022, Vol. 11, Page 2777, vol. 11, no. 17, p. 2777, Sep. 2022, doi: 10.3390/ELECTRONICS11172777.

Y. Wang, L. A. Kung, and T. A. Byrd, “Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations,” Technol Forecast Soc Change, vol. 126, pp. 3–13, 2018, doi: 10.1016/j.techfore.2015.12.019.

L. Sedov, A. Krasnochub, and V. Polishchuk, “Modeling quarantine during epidemics and mass-testing using drones,” PLoS One, vol. 15, no. 6, pp. e0235307–e0235307, 2020, doi: 10.1371/journal.pone.0235307.

Syed, Ain, M. A. Khan, M. H. Alsharif, I. A. Elhaty, and A. Jahid, “Role of Drone Technology Helping in Alleviating the COVID-19 Pandemic,” Micromachines (Basel), vol. 13, no. 10, p. 1593, 2022, doi: 10.3390/mi13101593.

Z. Zeng, P.-J. Chen, and A. A. Lew, “From high-touch to high-tech: COVID-19 drives robotics adoption,” Tourism Geographies, vol. 22, no. 3, pp. 724–734, May 2020, doi: 10.1080/14616688.2020.1762118.

Z. H. Khan, A. Siddique, and C. W. Lee, “Robotics Utilization for Healthcare Digitization in Global COVID-19 Management,” Int J Environ Res Public Health, vol. 17, no. 11, p. 3819, 2020, doi: 10.3390/ijerph17113819.

M. Podpora, A. Gardecki, R. Beniak, B. Klin, J. L. Vicario, and A. Kawala-Sterniuk, “Human Interaction Smart Subsystem—Extending Speech-Based Human-Robot Interaction Systems with an Implementation of External Smart Sensors,” Sensors, vol. 20, no. 8, p. 2376, 2020, doi: 10.3390/s20082376.

M. Ghalan and N. Rajesh, “Advancing Human Activity Recognition: A Novel WAECN-BO Approach for Distinguishing Highly Correlated Actions,” Evergreen, vol. 10, no. 4, pp. 2398–2411, 2023, doi: 10.5109/7160930.

R. Alizadehsani et al., “Swarm Intelligence in Internet of Medical Things: A Review,” Sensors, vol. 23, no. 3, p. 1466, 2023, doi: 10.3390/s23031466.

L. Falaschetti, M. Alessandrini, G. Biagetti, P. Crippa, and C. Turchetti, “ECG-Based Arrhythmia Classification using Recurrent Neural Networks in Embedded Systems,” Procedia Comput Sci, vol. 207, pp. 3479–3487, 2022, doi: 10.1016/j.procs.2022.09.406.

Q. Qu, H. Sun, and Y. Chen, “Smart Healthcare at Home in the Era of IoMT,” IntechOpen eBooks, 2023, doi: 10.5772/intechopen.113208.

M. F. Khan et al., “An IoMT-Enabled Smart Healthcare Model to Monitor Elderly People Using Machine Learning Technique,” Comput Intell Neurosci, vol. 2021, pp. 1–10, 2021, doi: 10.1155/2021/2487759.

B. R. Barricelli, E. Casiraghi, and D. Fogli, “A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications,” IEEE Access, vol. 7, pp. 167653–167671, 2019, doi: 10.1109/access.2019.2953499.

Y. Liu et al., “A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin,” IEEE Access, vol. 7, pp. 49088–49101, 2019, doi: 10.1109/access.2019.2909828.

M. M. Madine et al., “Blockchain for Giving Patients Control Over Their Medical Records,” IEEE Access, vol. 8, pp. 193102–193115, 2020, doi: 10.1109/access.2020.3032553.

Y. J. Fan, Y. H. Yin, L. Da Xu, Y. Zeng, and F. Wu, “IoT-Based Smart Rehabilitation System,” IEEE Trans Industr Inform, vol. 10, no. 2, pp. 1568–1577, 2014, doi: 10.1109/tii.2014.2302583.

N. Shoaip, A. Rezk, S. El-Sappagh, L. Alarabi, S. Barakat, and M. M. Elmogy, “A Comprehensive Fuzzy Ontology-Based Decision Support System for Alzheimer’s Disease Diagnosis,” IEEE Access, vol. 9, pp. 31350–31372, 2021, doi: 10.1109/access.2020.3048435.

P. Ramesh, J. M. Sahayaraj, N. Subash, S. R. Mugunthan, and S. J. Pratha, “IoT based Waste Management System,” 2022 International Conference on Electronics and Renewable Systems (ICEARS), 2022, doi: 10.1109/icears53579.2022.9752091.

S. Tripathi et al., “IoMT-Enabled Smart Healthcare: State-of-the-Art, Security and Future Directions,” 2023, doi: 10.1109/ikt62039.2023.10433013.

Z. Ashfaq et al., “A review of enabling technologies for Internet of Medical Things (IoMT) Ecosystem,” Ain Shams Engineering Journal, vol. 13, no. 4, p. 101660, 2022, doi: 10.1016/j.asej.2021.101660.

L. P. Malasinghe, N. Ramzan, and K. P. Dahal, “Remote patient monitoring: a comprehensive study,” J Ambient Intell Humaniz Comput, vol. 10, no. 1, pp. 57–76, 2017, doi: 10.1007/s12652-017-0598-x.

T. Battelino et al., “Continuous glucose monitoring and metrics for clinical trials: an international consensus statement,” Lancet Diabetes Endocrinol, vol. 11, no. 1, pp. 42–57, 2023, doi: 10.1016/s2213-8587(22)00319-9.

S. Bhatta, “Empowering Rural Healthcare: MobileNet-Driven Deep Learning for Early Diabetic Retinopathy Detection in Nepal,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 5, no. 4, pp. 290–302, Oct. 2023, doi: 10.35882/JEEEMI.V5I4.326.

M. Matthews, S. Abdullah, G. Gay, and T. Choudhury, “Tracking Mental Well-Being: Balancing Rich Sensing and Patient Needs,” IEEE Computer, vol. 47, no. 4, pp. 36–43, 2014, doi: 10.1109/mc.2014.107.

A. Mamun, M. A. Alhussein, K. Sailunaz, and M. S. Islam, “Cloud-based framework for Parkinson’s disease diagnosis and monitoring system for remote healthcare applications,” Future Generation Computer Systems, vol. 66, pp. 36–47, 2017, doi: 10.1016/j.future.2015.11.010.

L. Catarinucci et al., “An IoT-Aware Architecture for Smart Healthcare Systems,” IEEE Internet Things J, vol. 2, no. 6, pp. 515–526, 2015, doi: 10.1109/jiot.2015.2417684.

R. Islam, D. Kwak, Md. H. Kabir, M. Hossain, and K.-S. Kwak, “The Internet of Things for Health Care: A Comprehensive Survey,” IEEE Access, vol. 3, pp. 678–708, 2015, doi: 10.1109/access.2015.2437951.

S. B. Baker, W. Xiang, and I. Atkinson, “Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities,” IEEE Access, vol. 5, pp. 26521–26544, 2017, doi: 10.1109/access.2017.2775180.

D. Dziak, B. Jachimczyk, and W. Kulesza, “IoT-Based Information System for Healthcare Application: Design Methodology Approach,” Applied Sciences, vol. 7, no. 6, p. 596, 2017, doi: 10.3390/app7060596.

F. Jiang, Y. Jiang, and H. Zhi, “Artificial intelligence in healthcare: past, present and future,” Stroke Vasc Neurol, vol. 2, no. 4, pp. 230–243, 2017, doi: 10.1136/svn-2017-000101.

L. Pantanowitz et al., “An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study,” Lancet Digit Health, vol. 2, no. 8, pp. e407–e416, 2020, doi: 10.1016/s2589-7500(20)30159-x.

S. P. Somashekhar, R. Kumar, A. Rauthan, K. R. Arun, P. Patil, and Y. E. Ramya, “Abstract S6-07: Double-blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with Manipal multidisciplinary tumor board – First study of 638 breast cancer cases,” General Session Abstracts, 2017, doi: 10.1158/1538-7445.sabcs16-s6-07.

A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017, doi: 10.1038/nature21056.

C. E. Bouton et al., “Restoring cortical control of functional movement in a human with quadriplegia,” Nature, vol. 533, no. 7602, pp. 247–250, 2016, doi: 10.1038/nature17435.

S. Jha and E. J. Topol, “Adapting to Artificial Intelligence,” JAMA, vol. 316, no. 22, p. 2353, 2016, doi: 10.1001/jama.2016.17438.

D. Koutras, G. Stergiopoulos, T. Dasaklis, P. Kotzanikolaou, D. Glynos, and C. Douligeris, “Security in IoMT Communications: A Survey,” Sensors (Basel), vol. 20, no. 17, pp. 1–49, Sep. 2020, doi: 10.3390/S20174828.

A. Lazaro, R. Villarino, M. Lazaro, N. Canellas, B. Prieto-Simon, and D. Girbau, “Recent Advances in Batteryless NFC Sensors for Chemical Sensing and Biosensing,” Biosensors (Basel), vol. 13, no. 8, Aug. 2023, doi: 10.3390/BIOS13080775.

C. S. Chang, T. H. Wu, Y. C. Wu, and C. C. Han, “Bluetooth-Based Healthcare Information and Medical Resource Management System,” Sensors (Basel), vol. 23, no. 12, Jun. 2023, doi: 10.3390/S23125389.

R. Sastry, B. Ch, and R. R. Budaraju, “Implementing Dual Base Stations within an IoT Network for Sustaining the Fault Tolerance of an IoT Network through an Efficient Path Finding Algorithm,” Sensors, vol. 23, no. 8, p. 4032, 2023, doi: 10.3390/s23084032.

H. Ge, L. Li, D. Zhang, and F. Ma, “Applications of digital Medicine in oncology: Prospects and challenges,” Cancer Innovation, vol. 1, no. 4, pp. 285–292, 2022, doi: 10.1002/cai2.37.

S. A. Ajagbe, J. B. Awotunde, A. O. Adesina, P. Achimugu, and T. A. Kumar, “Internet of Medical Things (IoMT): Applications, Challenges, and Prospects in a Data-Driven Technology,” pp. 299–319, 2022, doi: 10.1007/978-981-16-8150-9_14.

D. Jain, “Regulation of Digital Healthcare in India: Ethical and Legal Challenges,” Healthcare, vol. 11, no. 6, Mar. 2023, doi: 10.3390/HEALTHCARE11060911.

B. Varkey, “Principles of Clinical Ethics and Their Application to Practice,” Medical Principles and Practice, vol. 30, no. 1, pp. 17–28, 2020, doi: 10.1159/000509119.

Published
2024-04-14
How to Cite
[1]
M. Mukhopadhyay, S. Banerjee, and C. Das Mukhopadhyay, “Internet of Medical Things and the Evolution of Healthcare 4.0: Exploring Recent Trends”, j.electron.electromedical.eng.med.inform, vol. 6, no. 2, pp. 182-195, Apr. 2024.
Section
Review Papers