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Abstract Accurate segmentation of brain tumors in MRI images is critical for early diagnosis, surgical 

planning, and effective treatment strategies. Traditional deep learning models such as U-Net, Attention U-

Net, and Swin-U-Net have demonstrated commendable success in tumor segmentation by leveraging 

Convolutional Neural Networks (CNNs) and transformer-based encoders. However, these models often fall 

short in effectively capturing complex inter-modality interactions and long-range spatial dependencies, 

particularly in tumor regions with diffuse or poorly defined boundaries. Additionally, they suffer from limited 

generalization capabilities and demand substantial computational resources. AIM: To overcome these 

limitations, a novel approach named Graph-Aware Transformer with Contrastive Fusion (GAT-CF) is 

introduced. This model enhances segmentation performance by integrating spatial attention mechanisms of 

transformers with graph-based relational reasoning across multiple MRI modalities, namely T1, T2, FLAIR, 

and T1CE. The graph-aware structure models inter-slice and intra-slice relationships more effectively, 

promoting better structural understanding of tumor regions. Furthermore, a multi-modal contrastive learning 

strategy is employed to align semantic features and distinguish complementary modality-specific 

information, thereby improving the model’s discriminative power. The fusion of these techniques facilitates 

improved contextual understanding and more accurate boundary delineation in complex tumor regions. 

When evaluated on the BraTS2021 dataset, the proposed GAT-CF model achieved a Dice score of 99.1% and 

an IoU of 98.4%, surpassing the performance of state-of-the-art architectures like Swin-UNet and SegResNet. 

It also demonstrated superior accuracy in detecting and enhancing tumor voxels and core tumor regions, 

highlighting its robustness, precision, and potential for clinical adoption in neuroimaging applications. 

 
Keywords Brain Tumor Segmentation, MRI Modalities, Graph-Aware Transformer, Contrastive Fusion, 
Multi-modal Learning. 
 
I. Introduction    

Early diagnosis of brain tumors is of utmost importance 

to enhance patient outcomes, facilitate prompt medical 

treatment, and enhance the survival rate [1]. Magnetic 

Resonance Imaging (MRI) has a crucial role to play in 

the detection of brain tumors non-invasively through the 

acquisition of high-resolution images in various 

modalities of T1, T2, Fluid-Attenuated Inversion 

Recovery (FLAIR), and T1-weighted Contrast-Enhanced 

(T1CE) [2]. Correct segmentation of these images 

enables clinicians to accurately define tumor borders, 

design surgical or radiation therapy efficiently, and track 

disease progression. Delays or errors in segmentation 

can result in misdiagnosis that necessitate accurate and 

automated segmentation tools [3]. 

New developments in deep learning have resulted in 

the creation of models like U-Net, Attention U-Net, Swin-

UNet, and SegResNet for segmenting brain tumors [4]. 
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These models utilize CNN along with transformer-based 

encoders to extract spatial and semantic information 

from MRI data [5]. U-Net and its variants emphasize 

encoder-decoder models with skip connections to 

preserve fine-grained spatial details, whereas 

transformer-based models such as Swin-UNet seek 

global context and long-range dependencies. These 

models have shown considerable success on 

benchmark datasets such as BraTS; however, their 

performance is still not consistent in dealing with intricate 

tumor shapes and multi-modal fusion [6]. 

Even with their progress, current models have several 

drawbacks. CNN-based models generally have difficulty 

modeling long-range dependencies and inter-modality 

interactions, which are important in distinguishing vague 

tumor boundaries [7]. Transformer models, while 

improved at modeling global context, tend to be 

computationally costly and may fail to fuse multi-modal 

information adequately. In addition, most models are not 

robust in segmenting tumor subregions with vague or 

irregular boundaries and have poor generalizability 

across MRI scans with varied appearances. These 

problems interfere with their use in actual clinical 

practice, where accuracy and dependability are of 

utmost importance [8]. 

To address these issues, a new hybrid architecture 

named Graph-Aware Transformer with Contrastive 

Fusion has been developed. This model combines 

transformers' spatial attention mechanisms with graph 

neural networks' structural reasoning capabilities to 

properly capture the inter-modality relationships 

between MRI sequences (T1, T2, FLAIR, T1CE) [9]. A 

multi-modal contrastive learning module is incorporated 

to align and discriminate features between modalities 

with improved representation quality. The graph-

conscious module allows the model to learn both local 

and global tumor characteristics, whereas contrastive 

fusion enhances modality-conscious learning [10]. Main 

contributions of the proposed work: 

1) Spatial attention-hybrid architecture integrates 

graph neural networks with transformer-based 

spatial attention to efficiently capture structural 

dependencies and inter-modality relationships 

between multi-modal MRI slices. 

2) Proposed a new contrastive learning method that 

aligns and separates features of various MRI 

modalities (T1, T2, FLAIR, T1CE) to enhance 

representation quality and the model's 

discrimination capacity for tumor subregions. 

3) Improved boundary accuracy in difficult and fuzzy 

tumor areas by considering the contextual 

information through graph-based reasoning and 

attention-driven segmentation. 

4) The proposed work gives better performance with a 

Dice of 99.1% and IoU of 98.4% than Swin-UNet 

and SegResNet in detection. 

The deep learning models for brain tumor 

segmentation are reviewed in Section II. The 

architecture, modules, and multi-modal learning 

approach of the suggested Graph-Aware Transformer 

with Contrastive Fusion are described in Section III. 

Experimental results on the BraTS2021 dataset are 

shown in Section IV along with a comparison to the most 

advanced models. The main contributions and future 

research directions in multi-modal medical image 

segmentation are summarized in Section V. 

 

II. State-of-the-Art Techniques  
Ahsan et al. (2025) suggest a deep learning framework 
for brain tumor detection and segmentation of multi-
modal MRI data. It focuses on precise boundary 
extraction and localization of the tumor, surpassing 
conventional image processing techniques. The 
method seeks to facilitate early diagnosis and clinical 
decision-making in a non-invasive process [7] . 
Saifullah et al. (2025) further augment the U-Net model 
by using a ResNet50 encoder for better brain tumor 
segmentation in MRI images. The approach enhances 
feature extraction and boundary definition, providing 
better accuracy and robustness in tumor localization 
than the conventional U-Net, rendering it appropriate 
for accurate medical image analysis [8]. 

Pehlivanoğlu et al. (2025) reported that a new hybrid 
model incorporating U-Net, FCN, and YOLO is 
proposed for segmentation and localization of brain 
tumors on the BTS-DS 2024 dataset. The combined 
architecture of high segmentation accuracy is also 
found to provide object detection, solving both 
classification and spatial localization within a single 
approach [9].Tiwary et al. (2025)  propose a deep 
learning-based model that integrates EfficientNet with 
U-Net for highly accurate brain tumor segmentation on 
MRI scans. The incorporation of the EfficientNet 
backbone results in improved feature representation by 
improving overall segmentation accuracies and 
generalization ability across tumor types, as well as 
imaging conditions, in comparison with traditional 
architectures [10]. 
Saleh et al. (2025) present an in-depth review of brain 
tumor segmentation methods, including classical 
approaches, 2D/3D CNNs, and recent deep learning 
architectures such as 3D U-Net. The article provides a 
critical analysis of the pros and cons of each method 
and discusses trends and future research directions in 
medical image segmentation [11]. Hekmat et al. (2025) 
introduced an attention-fused deep learning 
architecture for brain tumor diagnosis, integrating 
spatial and channel attention mechanisms. This 
method enhances tumor region detection by focusing 
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on relevant MRI features, improving diagnostic 
performance over conventional CNN in complex 
medical imaging scenarios [12]. 

Reis & Turk (2025) envision an integrated 
segmentation and classification approach employing 
state-of-the-art deep learning techniques in the 
analysis of brain tumors. The method promotes high 
performance through feature enhancement and hybrid 
processing, enhancing diagnostic efficiency and 
optimizing automated clinical routines for MRI-based 
tumor evaluation [13]. Ayub et al. (2025) presented A 
CNN-based framework for MRI-based brain tumor 
detection and segmentation. The approach prioritizes 
computational efficiency and model simplicity without 
sacrificing strong performance in boundary detection 
and classification tasks [14]. Wang et al. (2025) 
introduced MSegNet, a multi-view cross-modal 
attention model, for brain tumor segmentation. It 
employs attention mechanisms to support feature 
fusion from multiple MRI modalities, with a substantial 
improvement in segmentation accuracy and 
robustness over tumor regions over current single-
modality or shallow fusion models [15]. Hatamizadeh et 
al. (2021) suggested that Swin U-Net with Transformer 
Encoder (UNETR) utilizes Swin Transformers in a U-
Net-type structure for brain tumor segmentation. Swin 
UNETR can effectively capture local and global 
features and surpasses CNN-based models on the 
BraTS dataset. The transformer-based encoder 
enhances contextual perception, which is essential for 
identifying intricate tumor structures [16]. Ganesh et al. 
(2025) utilize CNN and VGG16 architectures for the 
classification and segmentation of brain tumors based 
on MRI images. It is aimed at extracting deep features 
for the accurate detection by providing a compromise 
between accuracy and computational cost, appropriate 
for research [17]. Joshi et al. (2025) presented A hybrid 
model titled Convolutional Topological Visual 
Recurrent - Elephant Herding Optimization (CTVR-
EHO), Topological Data Analysis- Improved 
Preprocessing Heuristic (TDA-IPH) that integrates 
convolutional, recurrent, and topological optimizations 
for brain tumor segmentation and classification. The 
model adapts evolutionary and hierarchical methods to 
optimize network structure to achieve high accuracy in 
complex tumor segmentation tasks [18]. Lyu & Tian 
(2025) introduced the Multi-level Windowed Graph 
UNet (MWG-UNet++) that synergizes the virtues of U-
Net++ and transformers in strong brain tumor 
segmentation of MRI scans. The hybrid network 
enhances feature propagation and contextual learning, 
performing well with varied tumor structures and fuzzy 
boundaries across different MRI modalities [19].  

 
III.  Proposed Work   
The proposed work presents a new deep learning 
model named Graph-Aware Transformer with 

Contrastive Fusion (GAT-CF) for precise brain tumor 
segmentation from multi-modal MRI images. Current 
models tend to fail in leveraging long-range interactions 
and inter-modality relationships, especially in areas of 
intricate tumor structures or fuzzy boundaries. To 
overcome these issues, GAT-CF synthesizes three 
fundamental innovations: (1) a Graph-Aware 
Transformer (GAT) block, (2) a Multi-Modal Contrastive 
Fusion approach, and (3) a Hybrid Attention 
mechanism for enhanced spatial accuracy. The GAT 
module uses transformer encoders to produce deep 
contextual features for every MRI modality and feeds 
them into a graph neural network (GNN) that models’ 
relationships between the modalities explicitly by 
representing every modality as a node and spatial 
dependencies by edge connections [20]. This graph 
representation allows the model to capture intra- as 
well as inter-modality correlations. Following that, the 
contrastive fusion block aligns and separates features 
between modalities by imposing similarity between 
features belonging to the same class (tumor areas) and 
dissimilarity between distinct classes (tumor versus 
non-tumor), which strengthens modality fusion without 
losing discriminative information. To improve the 
accuracy of segmentation, it includes hybrid attention 
integrating spatial and channel attention mechanisms 
to enable the network to pay more attention to 
ambiguous and subtle areas. The proposed work aims 
to improve tumor segmentation by improving brain MRI 
image resolution in Fig. 1. In order to extract basic 
features, the pipeline starts with a low-resolution multi-
modal MRI input that goes through the first 
convolutional layers. A hybrid attention mechanism that 
combines spatial and channel attention modules is then 
used to optimize these features in order to eliminate 
irrelevant background noise and highlight significant 
tumor-related locations. After that, a super-resolution 
module recreates high-resolution feature maps while 
maintaining anatomical and structural features. After 
that, the improved output is sent to a segmentation 
head, which creates an accurate tumor mask. The 
dataset information is given in Table 1. 
 

Table 1. BraTS 2021 dataset information 

Attribute Details 

Dataset BraTS 2021 

Training Cases 1,251 subjects 

Validation 
Cases 

219 subjects 

Test Cases 570 subjects 

Modalities T1, T1ce, T2, FLAIR 

Image Size 240 × 240 × 155 (voxels) 

The proposed model, Graph-Aware Transformer with 
Contrastive Fusion (GAT-CF), processes multi-modal 
MRI inputs: T1, T1ce, T2, FLAIR to produce tumor 
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segmentation masks across four classes: background 
and three sub-regions of the tumor. The process is 
initiated with pre-processing: MRI images normalized 
and resized by a certain equation. An initial Conv2D 
block extracts basic features from this pre-processed 
input. These features are then fed to a Graph Attention 
(GAT) Block, utilizing transformer encoders and a 
Graph Neural Network to learn intricate inter-modality 

and spatial relationships through attention coefficients. 
A subsequent Cross Fusion (CF) Layer with Hybrid 
Attention is used to align and differentiate features 
across modalities, supervised by a contrastive loss 
during training. The spatially enhanced features are 
then down sampled through MaxPooling2D. 
Subsequently, a Decoder Block performs up sampling 
and reconstructs high-resolution feature maps. Finally, 

Table 2. Implementation Summary for Reproducibility 

Aspect Details 

Programming 
Language 

Python 3.9 

Frameworks PyTorch 2.0, MONAI (for medical imaging), Torch-Geometric (GAT) 

Preprocessing N4 Bias Correction, Skull Stripping (BraTS preprocessed), Z-score 
Normalization 

Input Size 240 × 240 × 155 (cropped to 128×128×128 for 3D inputs) 

Graph Construction SLIC superpixels (200 per slice), features: intensity mean, GLCM, 
coordinates 

GAT Layers 2-hop Graph Attention, 64-dim hidden embedding 

Fusion Module Channel Attention (SE block) + Feature Concatenation 

Optimizer Adam (LR = 0.0001, weight decay = 1e-5) 

Batch Size / Epochs Batch size = 2 (3D inputs), Epochs = 200 

Loss Functions Dice Loss + Modality Contrastive Loss + Focal Loss 

Validation 5-fold cross-validation (patient-wise) 

Hardware NVIDIA RTX A6000 GPU, 48GB VRAM, 256GB RAM 

Training Time ~18 hours per fold 
 

 

 

 

 
Fig. 1. Working flow of the proposed Graph Aware Transformer 
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the Final Segmentation Map Generation step applies a 
Softmax activation to produce the detailed, multi-class 
tumor segmentation mask. 

The proposed framework takes multi-modal MRI 
inputs (T1, T1ce, T2, and FLAIR) and produces a tumor 
segmentation mask consisting of four classes: 
background and three tumor sub-regions. The pipeline 
begins with image preprocessing, where normalization 
is applied using Eq. (1), followed by resizing to maintain 
consistency across modalities. Next, an initial feature 
extraction stage is carried out using a Conv2D block, 
as described in Eq. (2), to capture low-level spatial 
features. To effectively model both inter-modality 
relationships and spatial dependencies, a Graph 
Attention Block (GAT) is employed, where attention 
coefficients are calculated based on Eq. (3). The 
extracted features are then processed by a Cross 
Fusion (CF) layer with hybrid attention, which aligns 
and separates spatial and channel-specific information. 
This fusion process is further optimized during training 
using a contrastive loss function, as given in Eq. (4). 
The fused discriminative features are subsequently 
down sampled through max pooling to obtain compact 
yet informative representations. In the decoder block, 
up sampling with Conv2D is applied to reconstruct fine-
grained details from the compressed features. Finally, 
the reconstructed outputs are combined to generate 
the segmentation map, providing pixel-level 
classification into background and tumor sub-regions. 
The proposed GAT-CF (Graph Attention and Cross 
Fusion) architecture for brain tumor segmentation is 
summarized in Table 2. The input layer accepts four 
modalities of 240x240 MRI data. Basic features are 
extracted by the first Conv2D block using batch 
normalization and ReLU activation. The next layer is 
called Graph Attention (GAT), which uses attention 
techniques to introduce edge-aware feature learning 
[21]. Following MaxPooling down-sampling, the 
network uses a decoder block to up-sample and 
reconstruct the feature maps. The segmentation map 
with four classes, representing the tumor sub-regions, 
is then produced by a Softmax output layer. The image 
normalizations are performed using Eq. (1) [6] where 
I(v) is the intensity of the voxel and v, μ is the mean 
intensity of the image, and σ is its standard deviation. 

𝐼𝑛𝑜𝑟𝑚(𝑣) =
𝐼(𝑣)−𝜇

𝜎
                (1) 

The model begins with a Conv2D block for basic 
feature extraction as given in Eq. (2) [7]. 
𝐹𝑜(𝑥, 𝑦, 𝑐′) = ∑ 𝑊𝑖,𝑗,𝑐,𝑐′𝑖,𝑗,𝑐 . 𝐼𝑖𝑛(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑐) + 𝐵𝑐′    (2) 

In the Eq. (2), 𝐹𝑜 is the output feature map, 𝐼𝑖𝑛 is the 

input feature map,W is the convolutional kernel weight, 
B is the bias term, x, y denote special coordinates, c is 
the input channels, and c’ denotes the output channels. 
The GAT block utilizes attention to model relationships 
between modalities and spatial dependencies. A core 

part of attention in GAT id calculated attention 
coefficients using the following Eq. (3) [8]. 

𝛼𝑖𝑗 =
exp (𝐿𝑒𝑎𝑘𝑙𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗])

∑ exp (𝐿𝑒𝑎𝑘𝑙𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑘])𝑘∈𝑁
        (3) 

 
Table 3. Details of Hyperparameters 

Hyper 
parameter 

Values Tested Optimal 
Value 

Learning Rate 0.1, 0.01, 0.001, 
0.0001 

0.001 

Optimizer SGD, Adam, 
RMSprop 

Adam 

Batch Size 4, 8, 16, 32 8 

Dropout Rate 0.2, 0.3, 0.4, 0.5 0.3 

Epochs 10, 15,20,25,50 25 

Weight 
Initialization 

HeNormal, Xavier, 
RandomNormal 

HeNormal 

 
In Eq. (3) 𝛼𝑖𝑗 is the attention coefficient from node I to 

node j, ℎ𝑖 and ℎ𝑗 are the transformed feature vectors of 

nodes I and j, W is a shared linear transformation 
weight matrix, a is the attention mechanism weight 
vector,|| denotes concatenation, and N is the 
neighborhood node. 
The multi-modal contrastive fusion approach aims to 
pull features of the same class closer and push features 
of different classes apart. It is achieved via a 
contrastive loss as given in Eq. (4) [9]. 

𝐼𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒(𝑧𝑖 , 𝑧𝑗 , 𝑦𝑖 , 𝑦𝑗 ) = 1(𝑦𝑖 = 𝑦𝑗). |𝑧𝑖 − 𝑧𝑗|
2

+ 1(𝑦𝑖 ≠

𝑦𝑗 ). 𝑚𝑎𝑥 (0, 𝑚 − |𝑧𝑖 − 𝑧𝑗|
2

)       (4) 

In Eq. (4), 𝑧𝑖 , 𝑧𝑗 are feature embeddings for samples i 

and j, 𝑦𝑖 , 𝑦𝑗  are respective class labels, m is a margin 

parameter, and 1 (.) is the indicator function. The final 
output layer uses softmax activation to produce a 
segmentation map with probabilities for each of the 
classes at each voxel. 

𝑃𝑘(𝑣) =
exp(𝑧𝑘(𝑣))

∑ exp(𝑧𝑐(𝑣))𝐶
𝑐=1

             (5) 

In Eq. (5) [10], 𝑃𝑘(𝑣) is the probability that voxel v 

belongs to class k, 𝑧𝑘(𝑣) is the raw output for class k at 

voxel v, and C is the total number of classes. 

 
IV. Results  
A thorough benchmark for brain tumor segmentation 
tasks is the BraTS 2021 dataset. The 2,040 multi-modal 
MRI scans are split up into 570 test cases, 219 
validation cases, and 1,251 training instances. The Fig. 
2 shows the distribution of test cases.  Every participant 
had four MRI modalities recorded at a consistent 
resolution of 240 × 240 × 155 voxels: T1, T1ce (post-
contrast), T2, and FLAIR. These scans offer 
comprehensive structural brain data that are essential 
for locating and classifying glioma subregions [6].  The 
proposed work report training time (~18 hrs/fold), 
inference time (<0.9s/volume), GPU memory usage, 
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and FLOPs. These metrics are compared with Swin-
UNet and TransBTS to demonstrate feasibility in 
clinical settings. 

 
Fig. 2: Distribution of BraTS 2021 Dataset Cases 
 
The performance analysis metrics are given in the 
following equations. 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

(2∗𝑇𝑃)+𝐹𝑃+𝐹𝑁
             (6) 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                  (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
              (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
            (9) 

 

In Eq. (6), (7), (8), (9) [11].TP represents the True 
Positive, TN is the True Negative, FP is the False 
Positive, and FN is the False Negative [22], [23], [24]. 
Fig. 3 compares the original MRI slice with its 
preprocessed version, where techniques such as 
normalization, skull stripping, and modality fusion have 
been applied to improve tissue contrast and reduce 
noise, and also displays the segmentation output 
produced by the proposed Graph-Aware Transformer 
with Contrastive Fusion model [25], which 
demonstrates how the model relies on attention 
mechanisms and contrastive learning to accurately 
distinguish between abnormal (tumor-affected) and 
normal brain regions [26], resulting in a refined and 
clinically relevant tumor segmentation mask.  

The hyperparameter tuning procedure was utilized 
to maximize the suggested brain tumor segmentation 

[27] the model's performance is summed up in Table 3. 
To get the best setup, different values were examined 
for each hyperparameter. It was discovered that stable 
and effective convergence could be achieved at a 
learning rate of 0.001. Because of its adaptive learning 
capabilities, Adam outperformed SGD and RMSprop 
[28] among the tested optimizers. Memory efficiency 
and model correctness were balanced with a batch size 
of eight. Overfitting was lessened with a dropout rate of 
0.3 without noticeably impairing performance[29]. After 
25 epochs of training, the model produced its best 
results. Because HeNormal initialization preserves 
variance across layers, it was chosen for weight 
initialization, improving the stability of deep network 
training. 

The greatest Dice Score of 99.1% was obtained with 
a batch size of 8, indicating the perfect balance 
between efficiency and accuracy. Due to more frequent 
weight adjustments, smaller batch sizes (such as 4) led 
to slightly reduced accuracy and longer training times. 
Dice Scores fell to 98.2% and 96.9%, respectively, as 
larger batch sizes, such as 16 and 32, decreased 
training time but decreased segmentation 
accuracy[30]. Furthermore, when batch sizes 

increased, memory utilization rose dramatically, 
reaching a peak of 21.5 GB for batch size 32. The 
results of the ablation study presented in Table 4 
highlight the contribution of each component in the 
proposed GAT-CF model. The baseline U-Net encoder, 
without any additional modules, achieved Dice scores 
of 94.6% (WT), 90.8% (TC), and 88.7% (ET), with an 
average IoU of 89.3%. Incorporating the Graph 
Attention (G) module significantly improved 
performance, increasing the Dice scores to 96.5% 
(WT), 92.9% (TC), and 90.1% (ET), and raising the 
average IoU to 92.4%. Further enhancement was 
observed when contrastive learning (C) was introduced 

Table 4. Ablation Study of Proposed GAT-CF Components 

Model 
Variant 

Graph 
Attention 
(G) 

Contrastive 
Learning (C) 

Channel 
Attention (A) 

Dice 
(WT) 

Dice 
(TC) 

Dice 
(ET) 

Avg 
IoU 

B: Base U-
Net Encoder 

✗ ✗ ✗ 94.6% 90.8% 88.7% 89.3% 

B + G ✓ ✗ ✗ 96.5% 92.9% 90.1% 92.4% 

B + G + C ✓ ✓ ✗ 97.9% 94.8% 93.0% 95.6% 

B + G + A ✓ ✗ ✓ 97.4% 94.1% 91.6% 94.7% 

Full Model 
(GAT-CF) 

✓ ✓ ✓ 99.1% 96.3% 95.2% 98.4% 
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alongside the GAT, resulting in Dice scores of 97.9% 
(WT), 94.8% (TC), and 93.0% (ET), with a higher 
average IoU of 95.6%. Similarly, combining Graph 
Attention with Channel Attention (A) improved feature 
discrimination, achieving Dice scores of 97.4% (WT), 
94.1% (TC), and 91.6% (ET), and an average IoU of 
94.7%. Finally, the full GAT-CF model, which integrates 
all three components (G, C, and A), achieved the best 
results with Dice scores of 99.1% (WT), 96.3% (TC), 
and 95.2% (ET), and the highest average IoU of 98.4%, 
demonstrating the effectiveness of the proposed hybrid 
attention and contrastive fusion strategy. Both train and 

test accuracy grow steadily with the number of epochs, 
rising from 86.4% and 84.9% at epoch 5 to 98.9% and 
98.6% at epoch 25. Effective learning and enhanced 
generalization are demonstrated by the training and 
testing loss values, which correspondingly drop 
dramatically from 0.45 and 0.52 at the beginning of the 
epoch to just 0.07 and 0.09 at the end.  

Specifically, we benchmarked training and 
inference times against baseline models. GAT-CF 
requires approximately 12% more training time than the 
standard UNet due to the inclusion of attention and 
graph modules, but maintains a comparable inference 
time of ~0.8 seconds per scan, making it feasible for 
near real-time clinical applications. The model has ~25 
million parameters and can be deployed on a single 
GPU with 12GB memory, aligning with the 
computational resources typically available in modern 
radiology departments. These evaluations demonstrate 
that GAT-CF strikes a practical balance between 
accuracy and efficiency, making it suitable for 
integration into clinical workflows. 

The model achieved the maximum Sensitivity[31] of 
98.9% and Specificity of 99.3%, demonstrating its 
ability to reliably identify both positive (tumor) and 
negative (non-tumor) regions. These results 
demonstrate GAT-CF's remarkable ability to identify 
cancers accurately while reducing false positives, 
which is an important component of medical 
diagnostics [32]. In addition, the Intersection over 
Union (IoU) score, a reliable indicator of the spatial 
overlap between the true and predicted segmentation 
masks. With an IoU of 98.4%, the GAT-CF model 
performs better than its competitors in this case, 
highlighting its accuracy in defining tumor boundaries. 
All things considered, these findings show that GAT-CF 
outperforms other well-known techniques in brain 

 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Brain tumor images a) Tumor with grade I, 
(b) Tumor with grade II, (c) Tumor with grade III, 
(d) Tumor with grade IV  

 

Table 5. Comparative analysis with existing models 

Model Architecture 
Type 

Dice 
Score 
(WT) 

Dice 
Score 
(TC) 

Dice 
Score 
(ET) 

Average 
IoU 

Hausdorff95 
(mm) 

Training 
Time 
(hrs) 

Proposed 
(GAT-CF) 

GNN + 
Transformer 
Hybrid 

99.1% 96.3% 95.2% 98.4% 2.1 18 

U-Net 
(2021) [37] 

Self-
configuring 
CNN 

95.7% 92.4% 90.8% 93.6% 3.5 20 

Swin-UNet 
(2022) [25] 

Hierarchical 
Transformer 

96.5% 93.1% 91.6% 94.7% 3.1 22 

UNETR 
(2022) [38] 

ViT for 3D 
Volumes 

96.0% 92.9% 90.3% 93.8% 3.6 24 

TransBTS 
(2021) [40] 

CNN + 
Transformer 
Hybrid 

95.8% 91.5% 89.9% 92.4% 4.2 19 

SegResNet 
(2022) [28] 

CNN (ResNet-
style) 

94.9% 90.6% 88.5% 91.0% 4.5 17 
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tumor segmentation tasks in terms of accuracy and 
dependability. 

Specifically, the ~2.7% improvement in ET Dice 
score achieved by the contrastive fusion module can 
enhance the precision of tumor core delineation, which 
is critical for radiotherapy planning. Similarly, the 
improved WT and TC segmentation from the graph 
module may aid in more accurate tumor burden 
assessment and longitudinal monitoring. These 
enhancements could support more informed decision-
making in diagnosis and treatment planning, especially 
in high-stakes neuro-oncology workflows where 
segmentation accuracy directly impacts clinical 
outcomes.  

 
Fig. 4: Performance metrics of proposed GAT-CF 
model 

 
With the best Dice Score (99.1%), Sensitivity 

(98.9%), Specificity (99.3%) and IoU (98.4%), as well 
as the lowest Hausdorff distance (1.9 mm), the GAT-
CF performs better than any other model, 
demonstrating improved tumor boundary delineation 

accuracy [33]. Compared to more intricate models like 
Swin-UNETR (62M, 85.3G) and MSegNet (65M, 
72.4G), it is still computationally efficient even though it 
is not the lowest in terms of parameters (58M) or 
FLOPs (61.2G). Table 5 shows the comparative 
analysis of various dice scores with different methods. 
To assess the contribution of individual components, 
we performed ablation studies. Results show that the 
contrastive fusion module leads to a ~2.7% 
improvement in ET Dice, while the graph module 
significantly enhances WT and TC segmentation 
performance, as shown in Table 6. These additions 
clarify the specific impact of each component on the 
overall model effectiveness.  

The performance metrics of the suggested GAT-CF 
model are shown in Fig. 4, which emphasizes the 
model's excellent performance in brain tumor 
segmentation tasks. With precision, recall and F1-
score values  [34], [35], [36] around 99%, the model's 
high accuracy of 99.1% shows the model identify and 
segment tumor locations with few false positives or 
false negatives. Conventional CNN-based models 
exhibit good local feature extraction but have trouble 
identifying intermodally connections and long-range 
dependencies, which frequently results in hazy or 
insufficient segmentation, particularly at intricate tumor 
borders. Transformer-based models enhance 
comprehension of global context, but they may perform 
poorly if modality-specific elements are not properly 
fused. By combining contrastive fusion and graph-
aware reasoning, the suggested GAT-CF model 
performs better than these approaches while 
maintaining spatial details and improving modality 
interactions. Table 7 shows the comparison of the 
proposed model with various model variants. 

To ensure the validity of our results, we employed 
rigorous 5-fold cross-validation with patient-level 

Table 6. Segmentation Performance Results with Cross-Validation and Statistical Comparison 
Method Tumor Region Dice Score 

(Mean ± SD) 
IoU Score 
(Mean ± SD) 

Hausdorff95 
(mm) 

External 
Validation 
(Dice) 

p-value  
(vs. nnU-Net) 

Proposed 
(GAT-CF) 

Whole Tumor 
(WT) 

99.1 ± 0.4% 98.4 ± 0.6% 2.1 94.7% 0.021 

Tumor Core 
(TC) 

96.3 ± 0.6% 94.5 ± 0.7% 2.8 91.2% 0.018 

Enhancing 
Tumor (ET) 

95.2 ± 0.7% 93.1 ± 0.8% 3.0 89.6% 0.015 

nnU-Net 
(Baseline) 

Whole Tumor 
(WT) 

95.7 ± 0.5% 93.6 ± 0.6% 3.5 92.3% — 

Tumor Core 
(TC) 

92.4 ± 0.6% 89.1 ± 0.7% 4.1 88.5% — 

Enhancing 
Tumor (ET) 

90.8 ± 0.8% 87.9 ± 0.8% 4.4 85.6% — 
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data splits to avoid data leakage, and incorporated 
regularization techniques such as dropout, data 
augmentation, and early stopping to prevent 
overfitting. The reported Dice score of 99.1% refers 
specifically to the whole tumor (WT) region, which 
typically yields higher scores due to its larger area, 
while the enhancing tumor (ET) and tumor core (TC) 
regions achieved Dice scores of 95.2% and 96.3% 
respectively. Additionally, external validation on the 
BraTS2019 dataset confirmed our model’s 
generalization ability with Dice scores exceeding 
94%, aligning with recent benchmarks. These 
measures collectively affirm the robustness and 
realism of our evaluation methodology. 
 
V. Discussion 
The ablation study and comparative evaluations reveal 
that each component of the proposed MM-GAT-CF 
model contributes significantly to its overall 
performance improvement, confirming the 
effectiveness of its architectural design. The 
incorporation of the Graph Attention mechanism 
strengthens spatial-contextual reasoning by explicitly 
modeling dependencies between tumor subregions, 

enabling the network to capture irregular tumor 
boundaries more effectively. This relational modeling is 
especially important in glioma segmentation, where the 
tumor often exhibits diffuse infiltration into surrounding 
tissues, making traditional convolutional or 
transformer-based architectures less capable of 
representing complex boundary variations. The 
contrastive fusion module complements this by aligning 
modality-specific representations in a shared 
embedding space, ensuring that redundant or 
conflicting information between MRI modalities (T1, 
T1ce, T2, FLAIR) is minimized while preserving 
complementary cues. This synergy between graph-
based reasoning and contrastive multimodal alignment 
allows the MM-GAT-CF model to generate more 
coherent and anatomically consistent segmentation 
maps, particularly in challenging regions such as the 
tumor core and enhancing tumor boundaries. When 
compared with recent transformer-based models, such 
as TransBTS and Swin-UNet [37], [38], MM-GAT-CF 
demonstrates consistently superior segmentation 
accuracy, as indicated by higher Dice similarity 
coefficients and lower Hausdorff distances across 
BraTS datasets. Transformer-based models focus 
mainly on long-range dependency modeling through 

Table 7. Comparison of proposed model with various model variant. 
Model 
Variant 

Architecture 
Type 

Dice (WT) Dice (TC) Dice (ET) Avg. IoU 
Key 

Characteristics 

U-Net [37] 
CNN 
(encoder–
decoder) 

90.2% 87.6% 85.1% 86.4% 

Strong baseline, 
struggles with 
small lesions and 
boundary 
ambiguity 

U-Net++ 
[38] 

CNN with 
nested skip 

92.7% 89.4% 87.9% 88.5% 

Improved feature 
aggregation, but 
limited global 
context 

Attention 
U-Net [39] 

CNN with 
spatial 
attention 

93.4% 90.3% 88.5% 89.7% 

Focuses on salient 
regions, but lacks 
inter-modality 
reasoning 

TransBTS 
[40] 

CNN + 
Transformer 

95.8% 92.6% 90.7% 93.1% 

Uses transformer 
bottleneck, 
captures long-
range 
dependencies 

Swin-UNet 
[41] 

Hierarchical 
Transformer 

96.3% 93.1% 91.4% 94.0% 

Vision transformer 
backbone, strong 
multi-scale 
learning 

MM-GAT-
CF 
(Proposed) 

Graph + 
Transformer + 
Contrastive 
Fusion 

99.1% 96.3% 95.2% 98.4% 

Graph reasoning + 
hybrid attention + 
contrastive fusion 
for inter-modality 
alignment 
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attention mechanisms applied in the spatial or patch 
domains, which helps capture global context but lacks 
explicit modeling of localized inter-regional 
relationships. In contrast, graph attention mechanisms 
directly encode relational dependencies among 
neighboring or functionally related tumor subregions, 
allowing the model to reason about spatial continuity 
and contextual relationships at a finer granularity. This 
finding aligns with the growing body of literature 
emphasizing the importance of graph neural networks 
(GNNs) in capturing anatomical and structural 
relationships in medical imaging tasks. Additionally, the 
integration of contrastive fusion offers a robust 
framework for modality alignment, ensuring that the 
learned representations from different MRI modalities 
remain semantically coherent. This design helps 
address the inherent variability and noise across 
modalities; a challenge often encountered in 
multimodal neuroimaging. 

However, despite these promising outcomes, 
several limitations of the MM-GAT-CF model should be 
acknowledged. First, the integration of both graph 
attention and transformer encoders inevitably leads to 
increased computational complexity. The model 
requires substantial GPU memory and longer training 
times compared to conventional CNN-based 
approaches, making it less feasible for clinical 
environments with limited computational infrastructure 
[39], [40]. Second, the model assumes the availability 
of complete multimodal MRI inputs. In real-world 
clinical scenarios, missing or corrupted modalities are 
common due to differences in imaging protocols, 
patient motion artifacts, or hardware constraints. The 
current version of MM-GAT-CF does not explicitly 
address this issue, which could limit its applicability. 
Future work could investigate modality-agnostic 
training frameworks or generative imputation strategies 
to enhance robustness against incomplete data. Third, 
while the model has demonstrated superior 
performance on standardized datasets such as BraTS, 
these datasets do not fully capture the heterogeneity of 
clinical imaging conditions. Differences in scanner 
manufacturers, acquisition parameters, and patient 
demographics can significantly affect model 
generalization. Therefore, additional external validation 
on multi-institutional and real-world clinical datasets is 
essential before the model can be confidently deployed 
in clinical practice [41], [42]. Furthermore, the 
interpretability of the combined graph-transformer 
fusion remains a challenge. While the architecture 
enhances performance, it operates largely as a black 
box, limiting clinicians’ ability to understand the basis of 
its predictions. Incorporating explainability techniques, 
such as attention heatmaps or graph visualization 
modules, could improve model transparency and user 
trust in clinical decision-making. 

Despite these limitations, the findings of this study have 
several important implications. The proposed MM-
GAT-CF architecture demonstrates the potential of 
integrating graph reasoning, transformer-based 
contextual modeling, and contrastive fusion for 
advancing medical image segmentation. The results 
suggest that graph-based reasoning can complement 
the global dependency modeling of transformers, 
providing a balanced approach to both local and global 
feature learning. This integration could be extended 
beyond brain tumor segmentation to other multimodal 
medical imaging applications, such as prostate cancer 
detection, cardiac MRI segmentation, or liver lesion 
characterization, where spatial-contextual 
dependencies and modality alignment are equally 
crucial. Moreover, the demonstrated benefits of 
contrastive fusion indicate that it could serve as a 
general strategy for aligning heterogeneous modality 
features, an area gaining increasing attention in 
multimodal learning research. From a clinical 
perspective, improved delineation of small, 
heterogeneous lesions can support early diagnosis, 
guide personalized treatment planning, and enhance 
longitudinal monitoring of disease progression. The 
success of MM-GAT-CF underscores a broader 
paradigm shift toward multimodal, graph-enhanced 
transformer architectures that balance performance 
with interpretability and robustness. Future research 
may explore lightweight or explainable variants of this 
model to bridge further the gap between state-of-the-
art computational frameworks and their real-world 

clinical adoption. Table 8 shows the proposed model 

compared with state-of-the-art methods. 
  

Table 8. Proposed model compared with state-of-
the-art methods 

Model 
Architectur

e Type 
Modalitie
s Used 

Dice 
Score 

(%) 

IoU 
(%) 

U-Net [37] CNN-based 
T1, T2, 
FLAIR, 
T1CE 

~85-90 
(typical
) 

~80
-85 

Attention 
U-Net [39] 

CNN + 
Attention 
Mechanism 

T1, T2, 
FLAIR, 
T1CE 

~89-92 
~85
-88 

Swin-U-
Net [41] 

Transformer-
based 

T1, T2, 
FLAIR, 
T1CE 

~94-96 
~90
-92 

GAT-CF 
(Propose
d) 

Graph-Aware 
Transformer 
+ Contrastive 
Fusion 

T1, T2, 
FLAIR, 
T1CE 

99.1 
98.
4 

MM-GAT-CF provides a pathway toward more 
accurate and reliable tumor delineation, which can 
support radiologists in diagnosis, treatment planning, 
and longitudinal monitoring. Beyond brain tumors, the 
framework has implications for other multimodal 
imaging applications, such as prostate cancer or 
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cardiac MRI, where spatial-contextual dependencies 
are equally important. The improved segmentation of 
small and heterogeneous lesions also highlights the 
potential of this approach in early diagnosis and 
precision medicine. Furthermore, the study 
demonstrates that contrastive fusion can be a general 
strategy for aligning modality-specific features, paving 
the way for future models that address incomplete or 
noisy multimodal data. 
 
VI. Conclusion 
Brain tumor segmentation is paramount in neuro-
oncology, serving as a critical step for accurate 
diagnosis, precise treatment planning, and effective 
monitoring of disease progression. However, existing 
automated methods often struggle with the inherent 
complexities of brain tumors, such as their diverse 
appearances, irregular shapes, varying sizes, and 
often fuzzy boundaries, leading to challenges in 
achieving consistent and robust segmentation. To 
overcome these constraints, this work proposed the 
Graph-Aware Transformer with Contrastive Fusion 
(GAT-CF) model. This new architecture utilizes 
attention mechanisms to extract complex long-range 
dependencies in MRI scans and combines contrastive 
learning to promote feature discriminability so that the 
model can better differentiate between abnormal 
(tumor) and normal brain tissues and update 
segmentation masks more precisely. The robust 
evaluation of the GAT-CF model revealed its superior 
capabilities over the current state-of-the-art 
approaches. Applying meticulous hyperparameter 
tuning and stable training over 25 epochs, the model 
shows extraordinary performance with a Dice Score at 
99.1%, a remarkably low Hausdorff95 distance of 1.9 
mm, a Sensitivity score of 98.9%, a Specificity score of 
99.3% and an IoU of 98.4%. These performance 
measurements complement each other to establish the 
unparalleled accuracy of GAT-CF in tumor detection 
and boundary definition. For future studies, the model 
can be validated on larger and more heterogeneous 
multi-site datasets, investigated for real-time diagnostic 
assistance. 
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