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Abstract Sleep apnea is a sleep disorder that occurs when“breathing is disturbed, characterized by
repeated periods of stopping breathing during sleep. Thisfeondition canvwcause various serious health
problems if not treated, such as: high blood pressure, poor ‘qualityasieep, and difficulty concentrating.
Sufferers often don't realize sleep apnea because it occlrs during sleep. Generally, sleep apnea diagnosis
is made by interviewing the patient and family to find outhcommon’symptoms such as snoring, then
confirmed through physical examination and polysomnoegraphy)\(PSG). Since sleep apnea is related to
respiratory activity that correlates with changes in\cardiacjactivity, ECG examination during sleep is an
alternative for diagnosis. Therefore, this study presents a comparative analysis of deep learning models
for detecting sleep apnea from spectrogram=based ECG’ representations. The raw ECG signal is
transformed into a spectrogram and then saved as‘amjimage for classification, specifically for normal and
abnormal classification. Deep Learning (DL) method is applied for classification of normal ECG and sleep
apnea ECG. EfficientNet, MobileNéet,V2, DenseNet, AlexNet, and VGG16 were used to evaluate the
performance of the proposed method“and to identify the best-performing model. The evaluation results
show that EfficientNet demonstrated the highest performance with an accuracy of 91.01%, precision of
90.70%, recall of 95.76%, andfan F1-score 0f 92:61%. EfficientNet outperformed the other evaluated models
in this study. By utilizing a Spectrogram-based approach combined with a scalable architecture, the method
demonstrates competitive accuracy for sleep apnea detection. Investigating other methods to enhance
accuracy remains an interesting topic for future study.

Keywords Deep Learning; ECG; Sleep Apnea; Spectogram.

l. Introduction

Frequent breathing pauses,_during sleep are the
hallmark of sleep apnea,.a common sleep disease that
can causegpoor sleep quality as well as a number of
health issues J1]. Obstructive sleep apnea (OSA) and

where home sleep tests, which monitor blood oxygen
levels, breathing patterns, heart rate, and airflow may
be a better option than polysomnography. One of
information gathered in  polysomnography s
electrocardiogram signal (ECG). ECG signals can yield

central sleep apnea (CSA) are the two primary forms of
sleep'apnea. The most prevalent kind, OSA, is brought
on by amy obstruction in the airway during sleep,
whereas CSA is brought on by a malfunction in the
brain's signaling to the breathing muscles. Healthcare
practitioners usually utilize a mix of sleep testing,
physical examination, and self-reported symptoms to
diagnose sleep apnea [2]. For the diagnosis of sleep
apnea (SA), polysomnography which includes
monitoring blood oxygen levels, breathing patterns,
heart, lung, and brain activity throughout the night—is
regarded as the gold standard. There are situations

important data for the diagnosis of sleep apnea. The
use of a single lead ECG as a signal to detect sleep
apnea has become popular because it is simpler
compared to the use of multiple signals on a
polysomnography. The ECG signal is an indication of
AS Dbecause of the electrocardiogram derived
respiratory (EDR) where changes in the respiratory
pattern affect the ECG signal pattern [3].

Sleep apnea is typically diagnosed using
polysomnography (PSG), which, although considered
the gold standard, is costly, time-consuming, and
requires overnight monitoring in specialized facilities.
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These limitations often result in long waiting times and
reduced accessibility, particularly in resource-limited
settings [4]. Consequently, there is a growing need for
non-invasive, cost-effective, and widely deployable
diagnostic alternatives. ECG-based detection offers a
promising solution due to its portability, lower cost, and
suitability for long-term monitoring [5]. However,
existing ECG-based approaches often rely on manual
feature extraction or simple time-domain analysis,
which may overlook subtle patterns in both temporal
and spectral domains that are indicative of apnea
events [6], [7]. These limitations highlight the need for
more advanced feature extraction techniques, such as
spectrogram transformations, that can represent the
full time frequency characteristics of ECG signals.

Several methods used to detect SA via ECG include
heart rate variability (HRV), which begins with detecting
the R-R signal in the ECG signal [8]. Researchers use
several HRV parameters (RMSSD, NN50, etc.) and
machine learning to detect SA. Other methods used
are wavelet [9], fractal [10], Hilbert-Huang transform
[11], or morphological analysis of ECG signals [12].
The spectrogram is a signal transformation method
often used for SA detection in ECG signals.
Spectrogram converts 1D signals into 2D by displaying
information in the time and frequency domains [13}¢
Various methods were explored to use spectrograms
as a characteristic for SA detection in ECG signals.
Ullah et al used magnified R-R signal, scalogfam-dan
spectrogram for SA detection in single channel ECG
[14]. Combined with dual convolutional dual attention
network (DCDA-Net), accuracy and FA score of 98%
and 97.5% were reported in their résearch; Linh et al
proposed different approach by apnalyse spectregram of
several subband of ECG signal [15}, The ECGysignal
was decomposed using discrete wavelet transform
then the experiment report that the 8-50 Hz frequency
band gave the best accuracy of 98.2%y.and a F1-score
of 0.93. Another variationggof spectrogram was
proposed by Gupta et al as featurépextraction method
for ECG based®SAydetection [16].”A smoothed Gabor
spectrogramf{(SGS) was combined with Squeeze-Net,
Res-Net50, and, developed’ DLM called obstructive
sleep .apnea_convolutional neural network (OSACN-
Net)fas classifier resulted accuracy of 94.81% with
SGS), using '@\ tenfold cross-validation strategy.
According to the research mentioned previously, the
spectrogram must be supported by a classifier. Since
automatic diagnosis of apnea is far more desirable than
human diagnosis, the use of classifiers in sleep apnea
detection is crucial [17]. Classifiers analyze the data
and generate predictions based on the features
collected from the signals, which can aid in automating
the process of diagnosing sleep apnea. Deep learning
as a classifier in SA detection has been widely used,

but none of them has provided a comprehensive
performance comparison.

This study addresses these limitations by employing
a spectrogram transformation of ECG signals, enabling
the extraction of rich time-frequency features directly
from single-lead recordings. While time-frequency
analysis has been explored in some prior works, its
application to spectrogram-transformed ECG data for
apnea detection remains underrepresented in the
literature. The proposed approach leverages these
spectrograms as inputs to deep/€onviolutional\neural
networks (CNNs), enabling automatic learning of
discriminative patterns  withoutiy manual feature
engineering. This not only enhances sepsitivity to
apnea-related signal variations but also positions the
method as a scalable, non:invasive alternative to
conventional PSGybased diagnosis:

This study fill this gap byinvestigating the use of
deep learningy, asggap, classifier combined with
spectrogram as a feature extraction approach for sleep
apnea dentification. Deep/learning is a kind of machine
learningythat makes use of artificial neural networks to
model and  resolve” complicated issues. It has
demapstrated,significant promise in a number of fields,
including predi€tion and diagnosis in medicine. We
antiCipate that our integration of deep learning and
spectrogram  will enhance the precision and
dependability of sleep apnea identification, ultimately
resulting in enhanced patient outcomes and quality of
life. The analysis of ECG spectrogram-based images
has the potential to become an innovative alternative
approach and a benchmark in sleep apnea detection.
Specifically, the primary objective of this study is to
conduct a comprehensive performance comparison of
various deep learning architectures for sleep apnea
detection from ECG spectrograms, in order to identify
the most effective model for this task. The primary
contributions of this work are summarized as follows:

1. Development of ECG-based sleep apnea detection
method. This research proposes a novel approach
that utilizes ECG as the primary modality, which is
more accessible and cost-effective compared to
standard polysomnography (PSG).

2. Introduction of a transformation from 1D ECG
signals into a 2D spectrogram representation. This
transformation enables the extraction of rich time-
frequency features, overcoming the limitations of 1D
signal analysis and presenting the information in an
optimal format for processing by deep learning
architectures.

3. Comprehensive comparative evaluation of various
CNN architectures. This study does not merely
propose a single model but conducts an in-depth
comparative analysis to identify the most effective
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Fig. 1. Propose system for sleep apnea detection based on ECG spectrogram.

and robust deep learning architecture for classifying
apnea-related ECG spectrograms.The remainder of this
paper is structured as follows: Section 2 describes the
materials and methodologies employed in this research.
Section 3 and section 4 presents the results and
discussion. Finally, Section 4 provides conclusions,
acknowledges limitations, and outlines directions for
future work

ll. Material and Methods

A. Proposed System

Fig. 1. presents a diagram of the proposed system for
sleep apnea detection based on ECG spectrogram
analysis. The proposed system usesdECG signals
(normal and sleep apnea cases) processed through
Short-Time Fourier Transform JSITFT) 1oy create
spectrograms, which are then#transformed “as_,2D
images. These images are “fed, intox various), CNN
architectures (EfficientNet, MobileNét V2, DenseNet,
AlexNet, VGG16) fon, feature “extraction and
classification, with performanee, evaluatéd based on
accuracy in distinguishingy normalpvs. sleep apnea
cases. Different arehitectures”are employed to identify
the highest-performing model.

B. Electrocardiogram

ECG signalsy have) gained significant attention in
diagnesing SAtas analternative to Polysomnography
(PSG)due to theirnonsinvasive nature and ease of use.
Unlike RPSG, which can be stressful and requires
technical equipment, ECG is more patient-friendly, with
a lower technijeal barrier for usage [5]. The ECG signal
strength of 1-2 mV provides the best signal-to-noise
ratio among physiological signals, making it an ideal
candidate for analyzing heart rate variability (HRV) and
respiratory changes associated with SA. Additionally,
ECG can be utilized to extract respiratory effort curves,
known as ECG-induced respiration (EDR), which
provides valuable information regarding the patient's

respiratory patterns [18]. SA%affects heart rate due to
cyclical changesiin® oxygen Jevels during apnea or
hypopneas@pisodes, which are reflected in the ECG.
Thesegepisodes cause variations in heart rate as the
body compensates for the reduction in oxygen levels by
in€reasing the respiration rate, leading to changes in
ECG waveforms, [19].

N | J

Fig. 2. Example of the spectrogram on ECG
signal.

C. Dataset

The dataset that is used in this study was obtained from
PhysioNet [20] and consists of 17,010 segments, with
10,496 labeled as “Normal” and 6,514 labeled as
“Apnea”. The dataset utilized in this study is publicly
available at https://www.physionet.org/content/apnea-
ecg/1.0.0/. Each recording ranges from 7 to 10 hours in
length and includes a continuous ECG signal.
Annotations for apnea and normal segments were
provided by human experts based on simultaneously
recorded respiratory and related signals. Recordings
with fewer than 5 minutes of disordered breathing were
labeled as normal, while those with 100 minutes or more
were labeled as apnea. Recordings with 10—96 minutes
of disordered breathing were categorized as borderline
apnea but were not included in this study’s analysis.

D. Converting ECG Signal using Short-Time

Fourier Transform (STFT)
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Short-Time Fourier Transform (STFT) is a signal
processing technique used to obtain a time—frequency
representation of non-stationary signals through
windowed power spectral density analysis, such as in
electrocardiogram (ECG) signals [21]. In this study,
STFT was applied to ECG signal segments to visualize
frequency information over time, enabling the
identification of specific patterns in the ECG signal both
visually and through image processing algorithms. The
ECG data consisted of discrete signals x[n] sampled at
fs = 100 Hz, with each recording having a length of 6000
samples. Each recording was divided into frames of
length L = 25 samples with an overlap 0 = 20 samples,
resulting in a hop size expressed by Eq. 1.

R=L—-0 =5samples (1)
Each frame was multiplied by a Kaiser window function
(w[n]) showed in Eq. 2, [22], with a parameter S =5 to

reduce spectral leakage, where the Kaiser function
incorporates the zero-order modified Bessel function I,,.

2n 2
I°<5\/1 (=5 1)) @)
I,(B)

The Short-Time Fourier Transform (STFT) (X(m,k))
was then applied for each windowed frame using an FFT
length  Nppr = 512, producing the complex time—
frequency representation defined as Eq.3, [23]4where
X, is the original signal that sampled or segmented intg
m overlapping frames. The Kaiser windows, function is
represented with w[n], where the sample index for a
single frame is represented with n andg isithe frequency
bin index, ranging from 0 to Nz — A, The imaginary unit
is represented with j.

wln] =

g j2mkn

L-1
X(m, k) = Z X, [nlwn]é Ve (3)
n=0

The magnitude (S(m, k))\spectrum at” frame m and
frequency bin k_was obtained using Eq. 4, [24] and
normalized to the range [0,1]\using min-max scaling, as
defined in EQ.8, [24], with Sy, and S,,., specified in
Eq. 6, [24].

SQm, k)= |X(m, k)| 4)
~ . S(m, k) - Smin
S(m' k) B Smax - Smin ©

Smin = W S(M, k), Sppay = maxS(m, k)  (6)
m,k mk

The normalized spectovram values (S(m,k)) then
converted into 8-bit grayscale (1(m, k)) format according
to Eq. 7, [25] which served as the visual representation
of the ECG signal. In the resulting image, the horizontal
axis corresponds to time with a resolution that is
calculated using Eq. 8, [26], while the vertical axis

represents frequency, with each bin k mapped using Eq.
9.

I(m, k) = [255- S(m, k)] 7)

At = ? = 0.05s/frame (8)
.

=k- 9

Jre Norr 9)

The At represent the time resolution of the'spectogram
image, while R show the hop sizegbetween frames as
shown in Eq.1. The resulting spectrograms-are, then
used as input representations=fergdeep learning models
in the classification of gleep apnea Cenditions. A
visualization example of a 'spectrogram, generated from
ECG signal processing.is shown in Fig} 2.

E. Convolutional Neural Network Design

CNN has begome™a popular choice for analyzing
biomedical signals_duesto their ability to automatically
extract meaningful'patterns, from complex data [27]. This
deep learning method is £omposed of layers such as
convélutional, pooling“@nd fully connected layers, which
work togethertolperform task such as classification with
high accuragy. In convolutional layers, each filter W,
slides across the input X to compute a feature map by
performing ja convolution operation as expressed in Eq.
10, 128].
Ziji = X *Wi)yj + by (10)

The Z;;, represent the activation output at (i,)) at the
k*" filter and the bias term b,,. The output of this process
is then passed through a non-linear activation function
called Rectified Linear Unit (RelU) that introduced the
non-linearity feature and helps the network to learn

complex representation. The RelU is defined as in Eq.
11, [28].

Ai,j,k = maX(O, Zi,j,k)' (11)
Furthermore, to reduce the dimentionality while

preserving the most salient features, then CNN applied
max pooling shown in Eq. 12, [28].

P jx = max A
i)k mneR mnK» (12)

here the R represent the receptive region over the
maximum activation. For the feature extraction process,
the produced feature maps are flattened and passed
into a fully conencted layers that produce the final output
represented by Eq. 13, [28].

y=a(WTx+b). (13)

where the x is the input vector, while the W,b and ¢
represent the weight matrix, bias, and the activation
function, respectively.

CNN has demonstrated significant potential in
identifying and classifying patterns [29], highlighting
their suitability for the classification of spectrograms
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derived from ECG signals in the detection of sleep
apnea. In this study, several CNN architectures,
including EfficientNet, MobileNet V2, DenseNet,
AlexNet, and ResNet, are employed to effectively
perform sleep apnea classification.

The selection of five architectures was motivated by
their characteristics and relevance to spectrogram-
based classification. EfficientNet represents a state-of-
the-art scalable architecture that balances accuracy and
computational cost, making it suitable for large
spectrogram datasets [30]. MobileNet V2 is a lightweight
model optimized for efficiency, providing a benchmark
for low-resource scenarios [31]. DenseNet facilitates
feature reuse through dense connections, which can be
beneficial in extracting multi-scale patterns from
spectrograms [32]. AlexNet, as one of the pioneering
deep CNNs, serves as a baseline for evaluating
advances in architecture design. VGG16, known for its
depth and uniform convolutional structure, provides a
comparison point for deeper but less parameter-efficient
networks [33]. Including models with diverse design
philosophies allows for a more comprehensive
evaluation of  performance, efficiency, and
generalization in the context of ECG spectrogram
classification. In this study, the data split is set as 70%
for training, 20% for validation, and 10% for testing. This
division is intended to adjust hyperparameters and
prevent overfitting [34]. Performance evaluation did not
employ cross-validation because, in this” study,
validation was not conducted as a separate step [35].

The partitioning process was performed using a
random shuffle that maintained class balance between
the “Normal” and “Apnea” categoriesito preserve label
distribution. No data augmentation* techniques were
applied in this study due to the riskyof distorting the
physiological patterns present, 4in™ ECG-derived
spectrogram images. Since the speetrogram captures
subtle time-frequency characteristics oficardiac signals,
applying common augmentation, methods such as
rotation, scaling, or flipping” could™ potentially alter
meaningful clipical Meatures, and compromise signal
integrity. Maintaining the authenticity of the spectrogram
was prioritized to,ensure,that the model learned from
accurate®™and, undistorted representations of sleep
apnea-related patterns” All training and evaluation
processes were\conducted using Google Colab, which
provides access o cloud-based GPU resources.

The optimizer used is Adam with a learning rate of
0.001, and the model is trained with a batch size of 128,
ensuring consistency across all architectures for the
classification task. The model was tested at epochs 5,
10, 15, and 20. The choice of Adam optimizer was
motivated by its effectiveness and frequent application
in CNN architectures [36], [37], [38]. A learning rate of
0.001 was chosen due to its optimal performance,
consistent with findings reported in [39], [40]. No explicit

regularization techniques such as L2 weight decay or
dropout beyond those built into the architecture were
used. This decision was primarily influenced by
computational limitations, which constrained the
exploration of more advanced optimization strategies.
These settings were selected based on preliminary
testing and were kept constant to allow for a fair
comparison of architectural performance.

1. EfficientNet

EfficientNet introduced in 2019 and designed te optimize
the scaling of network depth, width,"andfeselution in a
balanced manner [30]. This_architecture employs a
technique known as “Compéund Madel Sgaling,” which
carefully increases these|[components tojmaintain a
balance between depth’and width, allowing for improved
accuracy without unnecessaryacomputational overhead
[31]. This study uses the'base madel of EfficientNet BO
with additional dayer modifications as shown in Table 1.

2. MobileNet'V2

The MobileNet model is built on depthwise separable
convolution, | whichy,decomposes the standard
copvolutien inte,two parts, a depthwise convolution and
a@’pointwise 1 x1 convolution [32]. This method reduces
the number ofiparameters and computational cost while
maiptaining performance. The depthwise structure of
MobileNet /enables efficient processing, balancing
accuraeysand latency through controllable parameters
[33]. I this study, the MobileNet V2 architecture is
modified by adding several additional layers as
described in Table 2. to enhance its performance for the
classification task.

3. DenseNet

DenseNet is a deep learning architecture that introduces
the concept of dense concatenation to improve the
training of deep networks. Unlike traditional
architectures that rely on summing the outputs of
previous layers, DenseNet connects each layer to every
subsequent layer in a direct way. This dense
concatenation allows the network to retain features from
earlier layers, making it more efficient at learning
complex representations [34]. Table 3 represents the
layers of the DenseNet model that is used in this study.

4. AlexNet

Alexnet that is used in this study, consists of five
convolutional layers and three fully connected layers. It
is designed to process large image datasets, with the
initial layer accepting an image of dimensions
227x227x3 (height, width, and depth for the RGB
channels) [35]. AlexNet is particularly well known for its
ability to extract complex features from images while
balancing between speed and accuracy, making it an
ideal choice for image classification tasks [36].

5. VGG16

VGG-16 is a CNN architecture developed by the Visual
Geometry Group (VGG) at the University of Oxford. It is
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an extension of AlexNet and is known for its deep
structure, consisting of 16 layers. The key
characteristics of VGG-16 include the use of 3x3
convolutional kernels stacked multiple times and 2x2
pooling layers for feature extraction. This design allows
the model to capture more complex patterns in image
data [37]. In this study, the base model used with
additional modifications made to the architecture by
adding extra layers, as outlined in Table 4.

F. Performance Evaluation

The classification performance of each CNN architecture
was comprehensively assessed using accuracy,
precision, recall (sensitivity), specificity, F1-score, and the
area under the receiver operating characteristic curve
(AUC). These metrics were computed at the segment
level, where each input corresponds to a single ECG
spectrogram segment rather than an aggregated patient-
level decision. Each segment was labeled as “A” for
apnea or “N” for normal based on the ground-truth
annotations. Model predictions were obtained as
probability scores from the final sigmoid activation layer,
and a fixed decision threshold of 0.5 was applied to
assign class labels. Segments with predicted probabilities
= 0.5 were assigned to the apnea class (“A”), while those
below the threshold were assigned to the normal class
(“N™).

The definitions of each performance metric follow
standard binary classification formulations [49]. Accuracy
measures the overall proportion of correctly classified
segments and is defined as Eq. 14

| ~ TP+ TN (14)
COUracY = TP ¥ TN + FP FN
[49]:

| ~ TP TN Gy
CCUracy = T ¥ TN + EP.4FN

Table 1. The additional‘layer for EfficientNet.

No Layer Size)” Activation
1.  Global Max Pooling'2D - -

2 Dropout 0.3 -

3. Dense 1024 RelU

4 Dense 1 Softmax

Table 2:Fhe additional layer for MobileNet V2.

No Layer Size Activation
1 Global Average Pooling ) )
' 2D
2. Dense 64 RelU
3. Dropout 0.5 -
4, Dense 1 Softmax

Table 3. The DenseNet architecture.

No Layer Size  Activation
1. Conv2D 64 RelU
2. Max Pooling 2D 3x3 -

3. Dense 32 RelU
4. Transition Layer - -

5. Dense 32 RelU
6. Transition Layer - -

7. Dense 32 RelU

8. Average Pooling 2D 7T -

9. Flatten - -

10. Dense 1 Softmax

Table 4 The additional layer forVGG16.

No Layer Size Activation
1. Flatten - -

2. Dense 64 RelU

3. Dropout 0.5 -

4. Dense 1 Softmax

Precision reflects the proportion of correctly identified
apnea segments among all predicted apnea cases (Eq.
15):
TP
ision = ———— 15

Precision TP + FP (15)
Recall (or sensitivity) measures the proportion of actual
apnea segments correctly identified (Eq. 16):

TP
= 16
Recall TPTFN (16)

Finally, the F1-score represents the harmonic mean of
precision and recall (Eq. 17):

Fis _ 2 X Precision X Recall (17)
core = Precision + Recall

where TP is True Positive, TN is True Negative, FP is
False Positive, and FN is False Negative. True Positives
(TP) and True Negatives (TN) represent correct
predictions made by the model. False Positives (FP) and
False Negatives (FN) represent errors in the model's
predictions.

In addition to these threshold-dependent metrics, the
AUC was calculated to provide a threshold-independent
measure of the model’s discriminative ability. The ROC
curve was generated by varying the classification
threshold from 0 to 1, plotting the true positive rate (TPR)
against the false positive rate (FPR) at each threshold.
The AUC value was then obtained by integrating the ROC
curve, providing a single scalar value that summarizes
performance across all possible thresholds [50]. AUC is
particularly informative for imbalanced datasets, as it
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Table 5 Classification results for each architectures.
. Accuracy (%) Precision (%) Recall (%) F1-Score(%)
No CNN Architecture [95% Cl] [95% Cl] [95% ClI]I [95% CI]
90.70

» 91.01 95.76 92.61
1 EfficientNet [8953-91.53] 30T [94.81-96.58] [91.81-93.36]

. 84.48 88.71 85.76 87.21
2. MobileNet V2 [83.22-85.68] [87.26-90.06] [84.19-87.22] [86.06—88.28]

5 DersaNot 88.36 89.62 91.33 90,47
: [86.09-89.19]  [88.25-90.88] [90.04-92.50] [89.54-91.45]

. oot 89.04 [87.94— 92.14 89.90 91.01
: 90.07] [90.89-93.27] [88.53-91.16] [90.09-91.91]

5 VGGTe 85.98 90.23 86.66 8841
: [84.77-87.13]  [88.85-91.49] [85.13-88.09] [87.36-89.47]

considers the trade-off between sensitivity and specificity
without being dependent on a single cutoff point. [50], [51]
To assess the stability and statistical reliability of the
reported performance, 95% confidence intervals (Cls)
were computed for all evaluation metrics. For accuracy,
precision, recall, and specificity, the Clopper-Pearson
exact method was applied, as it provides robust interval
estimates for proportions, even with moderate sample
sizes [52]. The inclusion of these Cls enables a more
rigorous comparison between models by quantifying the
variability of performance metrics.

lll. Results

Table 5 presents the classification results of five CNN
architectures used for detecting sleep appéasfrom ECG
spectrogram images. Among all modéls, EfficientNet
demonstrated the highest performanceé withian accuracy
of 91.01%, precision of 90.70%, s€call of 95:76%, and
an F1-score of 92.61%. The narrow Confidénce
Intervals (Cis) indicate stable‘andieliable performance,
while the very high recall highlights its ability to detect
apnea cases with mihimal false“ mnegatives. The
consistent balance across“all, metrigs indicates its
robustness in both detegting aph€a and correctly
identifying normal‘€ases.

EfficientNet's superiority is, further evidenced by its
confusion matrixyandgROC curve, as shown in Fig. 3a
and Fig.4amlhe confusion matrix reveals that the model
makes very fewiclassification errors, with a high number
of Arue, positives\and true negatives. Its ROC curve
exhibitsia near-perfect shape, resulting in a high AUC
score, whieh signifies excellent discriminative ability
between the’two classes. The compound scaling
strategy uséd in EfficientNet likely contributes to its
effective balance of depth, width, and resolution,
enabling it to extract relevant features more efficiently
than the other architectures.

In contrast, MobileNet V2 yielded the lowest
performance among the evaluated models, with an
accuracy of 84.48% and an F1-score of 87.21%. The

confusion matrix in Figi8b reveals an/increase in false
positives and false¥negatives, indicating that the model
struggles to generalize well omunseen data. Fig. 4b also
shows a lowerJAWC oniathe JROC curve, reflecting a
decline _ingsensitivity and) specificity. This could be
attributed to\the lightweight nature of MobileNet V2,
which “trades,_ off “ representational power for
computational efficiency, making it less suitable for
complex Dbiomedical signal classification tasks.
DenseNet \performed relatively well, achieving an
accuracy of 88.36% andFeffi an F1-score of 90.47%. Its
confusion’ matrix in Fig. 3c shows a strong ability to
correctly classify both normal and apnea events, though
some misclassifications still occur. Fig. 4c illustrates a
stable ROC curve with an AUC close to EfficientNet,
which reinforces DenseNet's strong feature extraction
capabilities. The dense connectivity mechanism in
DenseNet, which facilitates feature reuse across layers,
likely enhances its performance in learning subtle
variations present in the spectrograms.

AlexNet, while being one of the older architectures,
achieved an accuracy of 89.04% and an F1-score of
91.01%, which is competitive with more modern models.
The confusion matrix in Fig. 3d reveals a well-balanced
prediction with relatively low false positives and false
negatives. Its ROC curve in Fig. 4d also suggests high
classification confidence, with an AUC nearing that of
DenseNet. This performance highlights that, with
appropriate modifications, classical CNN models like
AlexNet can still be effective for biomedical classification
tasks, particularly when the input images are rich in
spatial patterns. VGG16 showed moderate performance
with an accuracy of 85.98% and an F1-score of 88.41%.
As depicted in Fig. 3e, the confusion matrix reflects
more frequent misclassifications. Fig. 4e displays a
flatter ROC curve with a lower AUC, indicating limited
discriminative power between apnea and normal
conditions. Despite its deeper architecture, the lack of
advanced optimization strategies such as regularization
or fine-tuning may have hindered VGG16’s ability to
generalize, especially when applied to spectrogram data
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Fig. 3. Confusion matrix results (a) EfficientNet,
(b) MobineNet V2, (c) DenseNet, (d) Alexnet, (e)
VGG16.

derived from physiological signals. The inclusion of95%
confidence intervals offers a statistical perspective on
model performance stability and comparabpility.

EfficientNet exhibits consistently narrow,Cls across all
metrics, indicating low variability and| high reliability in
classification results. For accuracy#EfficientNet's,Cl does
not overlap with that of MabileNet, V2 or VGG16,
suggesting a statistically meaningful advantage over
these models. However, its Cl overlaps with those of
DenseNet and AlexNet,\indicating that,the observed
differences in accuracy withitheseitwo models may not be
statistically significant at the” 95% confidence level.
Therefore, togdetermine the best-performing model,
further statistical, analysis should be conducted using the
AUC values. EfficientNetmachieved the highest AUC
(0.97)gwith“no, confidence interval overlap with other
models. This indicates stronger evidence of its superior
discriminative ability. The ROC curves further support
this, showing a sharper rise and larger enclosed area for
EfficientNet.

Iv. Discussion

EfficientNet achieved the highest overall performance
with 91.01% accuracy, 90.70% precision, 95.76% recall,
and an F1-score of 92.61%. These results demonstrate
its ability to balance sensitivity and specificity more
effectively than the other CNNs. Importantly, its recall of

(e)
Fig. 4. Receiver Operating Curve (ROC): (a)
EfficientNet, (b) MobineNet V2, (c) DenseNet, (d)
Alexnet, (e) VGG16.

95.76% indicates that almost all apnea events were
correctly detected, minimizing the risk of missed
diagnoses, while maintaining high precision ensures
that false positives are kept low.

Compared to MobileNet V2 (84.48% accuracy,
85.76% recall) and VGG16 (85.98% accuracy, 86.66%
recall), EfficientNet shows a clear advantage in
identifying subtle time—frequency variations. DenseNet
(88.36% accuracy, 91.33% recall) and AlexNet (89.04%
accuracy, 89.90% recall) performed reasonably well, but
EfficientNet’'s superior balance across all metrics
resulted in the best F1-score, highlighting its reliability
as a decision-support tool. Although AlexNet achieved
slightly higher precision (92.14%), its recall was lower
than EfficientNet’s, meaning it missed more true apnea
cases. In clinical contexts, EfficientNet’s higher recall is
more valuable, since under-diagnosis is riskier than
occasional false alarms.

From a clinical perspective, the reported
performance metrics also carry significant implications.
The high recall (95.76%) achieved by EfficientNet
suggests a strong ability to correctly identify apnea
events, which is critical in medical diagnostics where
missing true positive cases could lead to untreated sleep
disorders and subsequent health risks. Conversely,
maintaining a high precision (90.70%) ensures that false
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Table 6 Comparison of previous studies
Ref Dataset Classifier Result
[13] Physionet AlexNet, GoogleNet and Scalograms
ResNet18 models Accuracy:82.30%
Sensitivity: 83.22%
Specificity: 82.27%
Spectrograms
Accuracy: 80.13%
Sensitivity: 81.99%
[16] - Squeeze-Net, Res-Net50, and  Accuracy: 94.81%
OSACN-Net
[55] - FASSNet Accuracy: 87.09% Sensitivity: 77.96%
Specificity: 91.74%, F1 score: 81.61%
[56] Physionet Lightweight CNN Accuracy: 94.30% Sensitivity: 94.30%
Specificity 94.51%
[57] Physionet 2D-CNN Accuracy: 92.4%, Recall: 92.3%
Specificity: 92.6%,
Proposed Physionet EfficientNet Accuracy: 91.01%
Method Precision: 90.70%
Recall: 90.18%
F1-score: 90.48%

alarms are minimized, preventing unnecessary stress or
further diagnostic procedures for patients wrongly
identified as having sleep apnea. In real-world
scenarios, balancing sensitivity and specificity is
essential to ensure reliable screening tools. A gamodel
with high sensitivity ensures that most apnea cases‘are
detected, which aligns with clinical priorities of
minimizing missed diagnoses [44],¢ [53], [54].
Meanwhile, adequate specificity reduces the chance of
overdiagnosis of false-positive results. The performance
demonstrated by EfficientNet across all fourymetrics,
reflects not only strong technigal performance but’also
potential clinical viability as a degision~support”tool in
sleep apnea detection.

EfficientNet demonstrates, significantyadvantages in
its ability to outperform certain‘models compared to the
previous studies listed in [able 6."Compared to the
studies in [13] and [988], EfficientNet achieves higher test
accuracy by“leveraging its Sealable architecture and
improved feature,/extraction” capabilities. While [13]
mployed”AlexNet, “GoogleNet, and ResNet18 for OSA
prediCtion from\ECG Jspectrograms and scalograms,
théir “best spectrogfam-based result was 80.13%
accuracypnotably/lower than our 91.01%. Similarly, [55]
proposed the lightweight FASSNet model for wearable-
based SA detection, which achieved 87.09% accuracy,
still below the performance of EfficientNet in this study.
These differences may be attributed to EfficientNet's
compound scaling strategy, which balances network
depth, width, and resolution to capture discriminative
time—frequency patterns more effectively without
excessive computational cost.

Howevery), despite these advantages, EfficientNet
does/™pot, surpass some recent state-of-the-art
approaches) such as OSACN-Net [16], the hybrid
scalogram#~spectrogram method in [56], and the fused
time—frequency image model in [57], which were
optimized for higher accuracy. which reported segment-
level accuracies exceeding 92%. These higher
performances can be linked to specialized optimizations
such as combining complementary time-frequency
representations, integrating noise-robust preprocessing,
or employing hybrid deep learning modules that were not
implemented in our approach. In contrast, our method
focuses solely on spectrogram images from single-lead
ECG data without data fusion or multi-modal integration,
which may limit absolute accuracy in comparison to such
enhanced methods.

The primary limitation of this study lies in
computational constraints, as the large number of
spectrogram images processed during training resulted in
only 20 epochs being used. This explains why the
performance plateaued at an accuracy of 91.01% and F1-
score of 92.61%, rather than approaching the >94%
accuracy reported by some state-of-the-art models in
Table 6. The relatively short training duration likely limited
EfficientNet’s ability to progressively refine deeper feature
hierarchies, especially when dealing with spectrograms
that encode intricate time-frequency patterns of ECG
signals, where learning subtle temporal variations and
frequency shifts is essential for accurate apnea detection.

Extending the training duration could have facilitated
better convergence and potentially improved the model’s
ability to generalize to unseen data. Under-optimized
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models risk overlooking critical features that distinguish
pathological from normal patterns, especially in
biomedical contexts where minor signal deviations may
carry diagnostic importance. The constrained training
may therefore have impacted the depth and richness of
the learned representations, possibly capping the model's
full potential. More prolonged training or staged fine-
tuning could allow the network to reach a more stable
convergence and extract more discriminative features,
ultimately improving diagnostic reliability. In addition,
applying fine-tuning techniques or incorporating early
stopping based on validation loss could help determine
whether the model had reached performance saturation
or still had room for improvement [13]. Exploring these
strategies in future work would enhance the robustness
and scalability of the proposed method. However, given
the computational limitations in this study, such
extensions were not feasible. Nonetheless, certain
optimization techniques such as early stopping could be
explored to partially address training limitations without
incurring significant additional computational cost. By
monitoring validation loss or accuracy during training,
early stopping can help identify the optimal point where
further training would not yield meaningful improvement,
thereby improving model generalization without requiring
more epochs. This approach may serve as a practical
compromise in resource-constrained settings.

While the results obtained from the PhysioNet dataset
are promising [56], assessing the model's performance
across diverse datasets and real-wefld “scenarios
remains an important consideration. Ip*clinical practice,
ECG signals may vary substantiallydue to differences in
patient demographics, recording gnvironments,‘or. device
specifications.  Such  hetefogeneity =~ can ) affect
classification performance, particulady if the model has
become too specialized to the ftraining distribution.
Broader evaluation across heterogeneous” data sources
would provide deeper insight infothe,model’s robustness
and its readinessgfor. clinical déployment.

Another gmethodological \\limitation concerns the
potential influence of elass imbalance in the dataset, with
a higheraumber of normal segments compared to apnea
segmeénts. Thisiimbalanee may have contributed to the
observed gap between recall (95.76%) and precision
(90.70%)y, indicating that while the model was highly
sensitive tohappea events, it also produced more false
positives thap'ideal. Although stratified splitting [56] was
used to maintain proportional distribution during training,
imbalance may still affect classification performance,
particularly metrics such as precision and recall. In such
scenarios, models may become biased toward the
majority class. Techniques such as class-weighted loss
functions, oversampling of the minority class, or synthetic
data generation could be explored to improve sensitivity

to underrepresented classes without altering the overall
dataset composition.

Transfer learning using pre-trained models on related
domains could significantly reduce training time while
maintaining high accuracy. Transfer learning allows a
model to leverage pre-trained weights from large-scale
datasets, enabling more efficient feature extraction even
when domain-specific data is limited [58]. Fine-tuning
selected layers of these pre-trained models can adapt
them to the unique characteristics of ECG speetrograms,
thereby improving sensitivity to” subtle“apheasrelated
patterns without requiring exeessively, large training
datasets [13], [58]. Exploring these ‘methods will not only
improve performance but @lso ensure\scalability when
applied to larger or mate heterogeneous/datasets.

IV. Conclusiofi

Study about computeribased sleep apnea diagnosis
system based on deep learning method has been widely
used. Most ofithe methods have limitation in the quality
of theé features that leads to the shallow analysis of the
obtained “results™Time-frequency analysis has been
explored in“some prior works and it can present an
optimalithe, information for deep learning architectures.
This, study reinforces the potential of deep learning
applied tofspectrogram transformed ECG signals as a
viable ‘solution for automated sleep apnea detection. By
utilizing time-frequency representations of ECG signals,
the proposed method enables meaningful feature
extraction that supports accurate classification of sleep
apnea conditions. EfficientNet demonstrated notable
advantages due to its compound scaling strategy by
obtaining accuracy, precision, recall and F1-score of
91.01%, 90.70%, 90.18%, and 90.48%, respectively.
This method is able to balance the depth, width, and
resolution to enhance learning efficiency. Its ability to
process spectrogram features effectively underlines the
importance of model scalability and architectural
optimization in biomedical signal classification tasks.
Despite these strengths, the study was limited by
computational constraints, particularly the short training
duration, which may have hindered the model’s full
optimization. Future studies should consider extending
training duration and applying fine-tuning techniques to
enhance feature learning and generalization capability.
To address computational limitations and improve
model efficiency in future studies, several strategies can
be explored.
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