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Abstract Sleep apnea is a sleep disorder that occurs when breathing is disturbed, characterized by 
repeated periods of stopping breathing during sleep. This condition can cause various serious health 
problems if not treated, such as: high blood pressure, poor quality sleep, and difficulty concentrating. 
Sufferers often don't realize sleep apnea because it occurs during sleep. Generally, sleep apnea diagnosis 
is made by interviewing the patient and family to find out common symptoms such as snoring, then 
confirmed through physical examination and polysomnography (PSG). Since sleep apnea is related to 
respiratory activity that correlates with changes in cardiac activity, ECG examination during sleep is an 
alternative for diagnosis. Therefore, this study presents a comparative analysis of deep learning models 
for detecting sleep apnea from spectrogram-based ECG representations. The raw ECG signal is 
transformed into a spectrogram and then saved as an image for classification, specifically for normal and 
abnormal classification. Deep Learning (DL) method is applied for classification of normal ECG and sleep 
apnea ECG. EfficientNet, MobileNet V2, DenseNet, AlexNet, and VGG16 were used to evaluate the 
performance of the proposed method and to identify the best-performing model. The evaluation results 
show that EfficientNet demonstrated the highest performance with an accuracy of 91.01%, precision of 
90.70%, recall of 95.76%, and an F1-score of 92.61%. EfficientNet outperformed the other evaluated models 
in this study. By utilizing a spectrogram-based approach combined with a scalable architecture, the method 
demonstrates competitive accuracy for sleep apnea detection. Investigating other methods to enhance 
accuracy remains an interesting topic for future study. 

Keywords Deep Learning; ECG; Sleep Apnea; Spectogram. 

I. Introduction  

Frequent breathing pauses during sleep are the 
hallmark of sleep apnea, a common sleep disease that 
can cause poor sleep quality as well as a number of 
health issues [1]. Obstructive sleep apnea (OSA) and 
central sleep apnea (CSA) are the two primary forms of 
sleep apnea. The most prevalent kind, OSA, is brought 
on by an obstruction in the airway during sleep, 
whereas CSA is brought on by a malfunction in the 
brain's signaling to the breathing muscles. Healthcare 
practitioners usually utilize a mix of sleep testing, 
physical examination, and self-reported symptoms to 
diagnose sleep apnea [2]. For the diagnosis of sleep 
apnea (SA), polysomnography which includes 
monitoring blood oxygen levels, breathing patterns, 
heart, lung, and brain activity throughout the night—is 
regarded as the gold standard. There are situations 

where home sleep tests, which monitor blood oxygen 
levels, breathing patterns, heart rate, and airflow may 
be a better option than polysomnography. One of 
information gathered in polysomnography is 
electrocardiogram signal (ECG). ECG signals can yield 
important data for the diagnosis of sleep apnea. The 
use of a single lead ECG as a signal to detect sleep 
apnea has become popular because it is simpler 
compared to the use of multiple signals on a 
polysomnography. The ECG signal is an indication of 
AS because of the electrocardiogram derived 
respiratory (EDR) where changes in the respiratory 
pattern affect the ECG signal pattern [3]. 

Sleep apnea is typically diagnosed using 
polysomnography (PSG), which, although considered 
the gold standard, is costly, time-consuming, and 
requires overnight monitoring in specialized facilities. 
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These limitations often result in long waiting times and 
reduced accessibility, particularly in resource-limited 
settings [4]. Consequently, there is a growing need for 
non-invasive, cost-effective, and widely deployable 
diagnostic alternatives. ECG-based detection offers a 
promising solution due to its portability, lower cost, and 
suitability for long-term monitoring [5]. However, 
existing ECG-based approaches often rely on manual 
feature extraction or simple time-domain analysis, 
which may overlook subtle patterns in both temporal 
and spectral domains that are indicative of apnea 
events [6], [7]. These limitations highlight the need for 
more advanced feature extraction techniques, such as 
spectrogram transformations, that can represent the 
full time frequency characteristics of ECG signals. 

Several methods used to detect SA via ECG include 
heart rate variability (HRV), which begins with detecting 
the R-R signal in the ECG signal [8]. Researchers use 
several HRV parameters (RMSSD, NN50, etc.) and 
machine learning to detect SA. Other methods used 
are wavelet [9], fractal [10], Hilbert-Huang transform 
[11], or morphological analysis of ECG signals [12]. 
The spectrogram is a signal transformation method 
often used for SA detection in ECG signals. 
Spectrogram converts 1D signals into 2D by displaying 
information in the time and frequency domains [13]. 
Various methods were explored to use spectrograms 
as a characteristic for SA detection in ECG signals. 
Ullah et al used magnified R-R signal, scalogram dan 
spectrogram for SA detection in single channel ECG 
[14]. Combined with dual convolutional dual attention 
network (DCDA-Net), accuracy and F1 score of 98% 
and 97.5% were reported in their research. Linh et al 
proposed different approach by analyse spectrogram of 
several subband of ECG signal [15]. The ECG signal 
was decomposed using discrete wavelet transform 
then the experiment report that the 8–50 Hz frequency 
band gave the best accuracy of 98.2%, and a F1-score 
of 0.93. Another variation of spectrogram was 
proposed by Gupta et al as feature extraction method 
for ECG based SA detection [16]. A smoothed Gabor 
spectrogram (SGS) was combined with Squeeze-Net, 
Res-Net50, and developed DLM called obstructive 
sleep apnea convolutional neural network (OSACN-
Net) as classifier resulted accuracy of 94.81% with 
SGS using a tenfold cross-validation strategy. 
According to the research mentioned previously, the 
spectrogram must be supported by a classifier. Since 
automatic diagnosis of apnea is far more desirable than 
human diagnosis, the use of classifiers in sleep apnea 
detection is crucial [17]. Classifiers analyze the data 
and generate predictions based on the features 
collected from the signals, which can aid in automating 
the process of diagnosing sleep apnea. Deep learning 
as a classifier in SA detection has been widely used, 

but none of them has provided a comprehensive 
performance comparison. 

This study addresses these limitations by employing 
a spectrogram transformation of ECG signals, enabling 
the extraction of rich time-frequency features directly 
from single-lead recordings. While time-frequency 
analysis has been explored in some prior works, its 
application to spectrogram-transformed ECG data for 
apnea detection remains underrepresented in the 
literature. The proposed approach leverages these 
spectrograms as inputs to deep convolutional neural 
networks (CNNs), enabling automatic learning of 
discriminative patterns without manual feature 
engineering. This not only enhances sensitivity to 
apnea-related signal variations but also positions the 
method as a scalable, non-invasive alternative to 
conventional PSG based diagnosis. 

This study fill this gap by investigating the use of 
deep learning as a classifier combined with 
spectrogram as a feature extraction approach for sleep 
apnea identification. Deep learning is a kind of machine 
learning that makes use of artificial neural networks to 
model and resolve complicated issues. It has 
demonstrated significant promise in a number of fields, 
including prediction and diagnosis in medicine. We 
anticipate that our integration of deep learning and 
spectrogram will enhance the precision and 
dependability of sleep apnea identification, ultimately 
resulting in enhanced patient outcomes and quality of 
life. The analysis of ECG spectrogram-based images 
has the potential to become an innovative alternative 
approach and a benchmark in sleep apnea detection. 
Specifically, the primary objective of this study is to 
conduct a comprehensive performance comparison of 
various deep learning architectures for sleep apnea 
detection from ECG spectrograms, in order to identify 
the most effective model for this task.  The primary 
contributions of this work are summarized as follows: 

1. Development of ECG-based sleep apnea detection 
method. This research proposes a novel approach 
that utilizes ECG as the primary modality, which is 
more accessible and cost-effective compared to 
standard polysomnography (PSG). 

2. Introduction of a transformation from 1D ECG 
signals into a 2D spectrogram representation. This 
transformation enables the extraction of rich time-
frequency features, overcoming the limitations of 1D 
signal analysis and presenting the information in an 
optimal format for processing by deep learning 
architectures. 

3. Comprehensive comparative evaluation of various 

CNN architectures. This study does not merely 

propose a single model but conducts an in-depth 

comparative analysis to identify the most effective  
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and robust deep learning architecture for classifying 
apnea-related ECG spectrograms.The remainder of this 
paper is structured as follows: Section 2 describes the 
materials and methodologies employed in this research. 
Section 3 and section 4 presents the results and 
discussion. Finally, Section 4 provides conclusions, 
acknowledges limitations, and outlines directions for 
future work 

II. Material and Methods 

A. Proposed System 

Fig. 1. presents a diagram of the proposed system for 

sleep apnea detection based on ECG spectrogram 
analysis. The proposed system uses ECG signals 
(normal and sleep apnea cases) processed through 
Short-Time Fourier Transform (STFT) to create 
spectrograms, which are then transformed as 2D 
images. These images are fed into various CNN 
architectures (EfficientNet, MobileNet V2, DenseNet, 
AlexNet, VGG16) for feature extraction and 
classification, with performance evaluated based on 
accuracy in distinguishing normal vs. sleep apnea 
cases.  Different architectures are employed to identify 
the highest-performing model.  

B. Electrocardiogram 

ECG signals have gained significant attention in 
diagnosing SA as an alternative to Polysomnography 
(PSG) due to their non-invasive nature and ease of use. 
Unlike PSG, which can be stressful and requires 
technical equipment, ECG is more patient-friendly, with 
a lower technical barrier for usage [5]. The ECG signal 
strength of 1-2 mV provides the best signal-to-noise 
ratio among physiological signals, making it an ideal 
candidate for analyzing heart rate variability (HRV) and 
respiratory changes associated with SA. Additionally, 
ECG can be utilized to extract respiratory effort curves, 
known as ECG-induced respiration (EDR), which 
provides valuable information regarding the patient's 

respiratory patterns [18]. SA affects heart rate due to 
cyclical changes in oxygen levels during apnea or 
hypopnea episodes, which are reflected in the ECG. 
These episodes cause variations in heart rate as the 
body compensates for the reduction in oxygen levels by 
increasing the respiration rate, leading to changes in 
ECG waveforms [19]. 

 

C. Dataset 

The dataset that is used in this study was obtained from 
PhysioNet [20] and consists of 17,010 segments, with 
10,496 labeled as “Normal” and 6,514 labeled as 
“Apnea”. The dataset utilized in this study is publicly 
available at https://www.physionet.org/content/apnea-
ecg/1.0.0/. Each recording ranges from 7 to 10 hours in 
length and includes a continuous ECG signal. 
Annotations for apnea and normal segments were 
provided by human experts based on simultaneously 
recorded respiratory and related signals. Recordings 
with fewer than 5 minutes of disordered breathing were 
labeled as normal, while those with 100 minutes or more 
were labeled as apnea. Recordings with 10–96 minutes 
of disordered breathing were categorized as borderline 
apnea but were not included in this study’s analysis. 

D. Converting ECG Signal using Short-Time 
Fourier Transform (STFT) 

 
Fig. 1. Propose system for sleep apnea detection based on ECG spectrogram. 

 
Fig. 2. Example of the spectrogram on ECG 
signal. 
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Short-Time Fourier Transform (STFT) is a signal 
processing technique used to obtain a time–frequency 
representation of non-stationary signals through 
windowed power spectral density analysis, such as in 
electrocardiogram (ECG) signals [21]. In this study, 
STFT was applied to ECG signal segments to visualize 
frequency information over time, enabling the 
identification of specific patterns in the ECG signal both 
visually and through image processing algorithms. The 
ECG data consisted of discrete signals  sampled at 
𝑓𝑠 = 100 𝐻𝑧, with each recording having a length of 6000 

samples. Each recording was divided into frames of 
length 𝐿 = 25 samples with an overlap 𝑂 = 20 samples, 

resulting in a hop size expressed by Eq. 1. 

𝑅 = 𝐿 − 𝑂 = 5 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (1) 

Each frame was multiplied by a Kaiser window function 

(𝑤[𝑛]) showed in Eq. 2, [22], with a parameter 5 =  to 

reduce spectral leakage, where the Kaiser function 
incorporates the zero-order modified Bessel function 𝐼𝑜.  

𝑤[𝑛] =

𝐼𝑜 (𝛽√1 − (
2𝑛

𝐿 − 1 − 1)
2

)

𝐼𝑜(𝛽)
 

(2) 

The Short-Time Fourier Transform (STFT) (𝑋(𝑚, 𝑘)) 
was then applied for each windowed frame using an FFT 
length 𝑁𝐹𝐹𝑇 = 512, producing the complex time–

frequency representation defined as Eq.3, [23], where 
𝑋𝑚 is the original signal that sampled or segmented into 

𝑚 overlapping frames. The Kaiser window function is 

represented with 𝑤[𝑛], where the sample index for a 
single frame is represented with 𝑛 and 𝑘 is the frequency 

bin index, ranging from 0 to 𝑁𝐹𝐹𝑇 − 1. The imaginary unit 

is represented with 𝑗. 

𝑋(𝑚, 𝑘) = ∑ 𝑋𝑚[𝑛]𝑤[𝑛]𝑒
−

𝑗2𝜋𝑘𝑛
𝑁𝐹𝐹𝑇

𝐿−1

𝑛=0

 (3) 

The magnitude (𝑆(𝑚, 𝑘)) spectrum at frame 𝑚 and 

frequency bin 𝑘 was obtained using Eq. 4, [24] and 

normalized to the range [0,1] using min-max scaling, as 

defined in Eq. 5, [24],  with 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥  specified in 

Eq. 6, [24]. 

𝑆(𝑚, 𝑘) = |𝑋(𝑚, 𝑘)| (4) 

𝑆̃(𝑚, 𝑘) =
𝑆(𝑚, 𝑘) − 𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛
 (5) 

𝑆𝑚𝑖𝑛 = min
𝑚,𝑘

𝑆(𝑚, 𝑘), 𝑆𝑚𝑎𝑥 = max
𝑚,𝑘

𝑆(𝑚, 𝑘) (6) 

The normalized spectovram values (𝑆̃(𝑚, 𝑘)) then 

converted into 8-bit grayscale (𝐼(𝑚, 𝑘)) format according 

to Eq. 7, [25] which served as the visual representation 
of the ECG signal. In the resulting image, the horizontal 
axis corresponds to time with a resolution that is 
calculated using Eq. 8, [26], while the vertical axis 

represents frequency, with each bin 𝑘 mapped using Eq. 

9. 
𝐼(𝑚, 𝑘) = [255 ∙ 𝑆̃(𝑚, 𝑘)] (7) 

Δ𝑡 =
𝑅

𝑓𝑠
= 0.05 𝑠/𝑓𝑟𝑎𝑚𝑒 (8) 

𝑓𝑘 = 𝑘 ∙
𝑓𝑠

𝑁𝐹𝐹𝑇
 (9) 

The Δ𝑡 represent the time resolution of the spectogram 

image, while 𝑅 show the hop size between frames as 

shown in Eq.1. The resulting spectrograms are then 
used as input representations for deep learning models 
in the classification of sleep apnea conditions. A 
visualization example of a spectrogram generated from 
ECG signal processing is shown in Fig. 2. 

E. Convolutional Neural Network Design 

CNN has become a popular choice for analyzing 
biomedical signals due to their ability to automatically 
extract meaningful patterns from complex data [27]. This 
deep learning method is composed of layers such as 
convolutional, pooling and fully connected layers, which 
work together to perform task such as classification with 
high accuracy. In convolutional layers, each filter 𝑊𝑘 

slides across the input 𝑋 to compute a feature map by 

performing a convolution operation as expressed in Eq. 
10, [28]. 

𝑍𝑖,𝑗,𝑘 = (𝑋 ∗ 𝑊𝑘)𝑖,𝑗 + 𝑏𝑘. (10) 

The 𝑍𝑖,𝑗,𝑘 represent the activation output at (𝑖, 𝑗) at the 

𝑘𝑡ℎ filter and the bias term 𝑏𝑘. The output of this process 

is then passed through a non-linear activation function 
called Rectified Linear Unit (RelU) that introduced the 
non-linearity feature and helps the network to learn 
complex representation. The RelU is defined as in Eq. 
11, [28]. 

𝐴𝑖,𝑗,𝑘 = max(0, 𝑍𝑖,𝑗,𝑘). (11) 

Furthermore, to reduce the dimentionality while 
preserving the most salient features, then CNN applied 
max pooling shown in Eq. 12, [28]. 

𝑃𝑖,𝑗,𝑘 = max
𝑚,𝑛∈𝑅

𝐴𝑚,𝑛,𝑘 , (12) 

here the 𝑅 represent the receptive region over the 

maximum activation. For the feature extraction process, 
the produced feature maps are flattened and passed 
into a fully conencted layers that produce the final output 
represented by Eq. 13, [28]. 

𝑦 = 𝜎(𝑊𝑇𝑥 + 𝑏). (13) 

where the 𝑥 is the input vector, while the 𝑊, 𝑏 and 𝜎 

represent the weight matrix, bias, and the activation 
function, respectively.  

CNN has demonstrated significant potential in 
identifying and classifying patterns [29], highlighting 
their suitability for the classification of spectrograms 
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derived from ECG signals in the detection of sleep 
apnea. In this study, several CNN architectures, 
including EfficientNet, MobileNet V2, DenseNet, 
AlexNet, and ResNet, are employed to effectively 
perform sleep apnea classification.  

The selection of five architectures was motivated by 
their characteristics and relevance to spectrogram-
based classification. EfficientNet represents a state-of-
the-art scalable architecture that balances accuracy and 
computational cost, making it suitable for large 
spectrogram datasets [30]. MobileNet V2 is a lightweight 
model optimized for efficiency, providing a benchmark 
for low-resource scenarios [31]. DenseNet facilitates 
feature reuse through dense connections, which can be 
beneficial in extracting multi-scale patterns from 
spectrograms [32]. AlexNet, as one of the pioneering 
deep CNNs, serves as a baseline for evaluating 
advances in architecture design. VGG16, known for its 
depth and uniform convolutional structure, provides a 
comparison point for deeper but less parameter-efficient 
networks [33]. Including models with diverse design 
philosophies allows for a more comprehensive 
evaluation of performance, efficiency, and 
generalization in the context of ECG spectrogram 
classification. In this study, the data split is set as 70% 
for training, 20% for validation, and 10% for testing. This 
division is intended to adjust hyperparameters and 
prevent overfitting [34]. Performance evaluation did not 
employ cross-validation because, in this study, 
validation was not conducted as a separate step [35]. 

The partitioning process was performed using a 
random shuffle that maintained class balance between 
the “Normal” and “Apnea” categories to preserve label 
distribution. No data augmentation techniques were 
applied in this study due to the risk of distorting the 
physiological patterns present in ECG-derived 
spectrogram images. Since the spectrogram captures 
subtle time-frequency characteristics of cardiac signals, 
applying common augmentation methods such as 
rotation, scaling, or flipping could potentially alter 
meaningful clinical features and compromise signal 
integrity. Maintaining the authenticity of the spectrogram 
was prioritized to ensure that the model learned from 
accurate and undistorted representations of sleep 
apnea-related patterns. All training and evaluation 
processes were conducted using Google Colab, which 
provides access to cloud-based GPU resources. 

The optimizer used is Adam with a learning rate of 
0.001, and the model is trained with a batch size of 128, 
ensuring consistency across all architectures for the 
classification task. The model was tested at epochs 5, 
10, 15, and 20. The choice of Adam optimizer was 
motivated by its effectiveness and frequent application 
in CNN architectures [36], [37], [38]. A learning rate of 
0.001 was chosen due to its optimal performance, 
consistent with findings reported in [39], [40]. No explicit 

regularization techniques such as L2 weight decay or 
dropout beyond those built into the architecture were 
used. This decision was primarily influenced by 
computational limitations, which constrained the 
exploration of more advanced optimization strategies. 
These settings were selected based on preliminary 
testing and were kept constant to allow for a fair 
comparison of architectural performance. 

1. EfficientNet 

EfficientNet introduced in 2019 and designed to optimize 
the scaling of network depth, width, and resolution in a 
balanced manner [30]. This architecture employs a 
technique known as “Compound Model Scaling,” which 
carefully increases these components to maintain a 
balance between depth and width, allowing for improved 
accuracy without unnecessary computational overhead 
[31]. This study uses the base model of EfficientNet B0 
with additional layer modifications as shown in Table 1. 

2. MobileNet V2 

The MobileNet model is built on depthwise separable 
convolution, which decomposes the standard 
convolution into two parts, a depthwise convolution and 
a pointwise 1×1 convolution [32]. This method reduces 
the number of parameters and computational cost while 
maintaining performance. The depthwise structure of 
MobileNet enables efficient processing, balancing 
accuracy and latency through controllable parameters 
[33]. In this study, the MobileNet V2 architecture is 
modified by adding several additional layers as 
described in Table 2. to enhance its performance for the 
classification task. 

3. DenseNet 

DenseNet is a deep learning architecture that introduces 
the concept of dense concatenation to improve the 
training of deep networks. Unlike traditional 
architectures that rely on summing the outputs of 
previous layers, DenseNet connects each layer to every 
subsequent layer in a direct way. This dense 
concatenation allows the network to retain features from 
earlier layers, making it more efficient at learning 
complex representations [34]. Table 3 represents the 
layers of the DenseNet model that is used in this study. 

4. AlexNet 

Alexnet that is used in this study, consists of five 
convolutional layers and three fully connected layers. It 
is designed to process large image datasets, with the 
initial layer accepting an image of dimensions 
227×227×3 (height, width, and depth for the RGB 
channels) [35]. AlexNet is particularly well known for its 
ability to extract complex features from images while 
balancing between speed and accuracy, making it an 
ideal choice for image classification tasks [36]. 

5. VGG16 

VGG-16 is a CNN architecture developed by the Visual 
Geometry Group (VGG) at the University of Oxford. It is 
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an extension of AlexNet and is known for its deep 
structure, consisting of 16 layers. The key 
characteristics of VGG-16 include the use of 3×3 
convolutional kernels stacked multiple times and 2×2 
pooling layers for feature extraction. This design allows 
the model to capture more complex patterns in image 
data [37]. In this study, the base model used with 
additional modifications made to the architecture by 
adding extra layers, as outlined in Table 4. 

F. Performance Evaluation 

The classification performance of each CNN architecture 
was comprehensively assessed using accuracy, 
precision, recall (sensitivity), specificity, F1-score, and the 
area under the receiver operating characteristic curve 
(AUC). These metrics were computed at the segment 
level, where each input corresponds to a single ECG 
spectrogram segment rather than an aggregated patient-
level decision. Each segment was labeled as “A” for 
apnea or “N” for normal based on the ground-truth 
annotations. Model predictions were obtained as 
probability scores from the final sigmoid activation layer, 
and a fixed decision threshold of 0.5 was applied to 
assign class labels. Segments with predicted probabilities 
≥ 0.5 were assigned to the apnea class (“A”), while those 
below the threshold were assigned to the normal class 
(“N”). 

The definitions of each performance metric follow 
standard binary classification formulations [49]. Accuracy 
measures the overall proportion of correctly classified 
segments and is defined as Eq. 14 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14) 

 [49]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14) 

 
Table 1. The additional layer for EfficientNet. 

No Layer Size Activation 

1. Global Max Pooling 2D - - 

2. Dropout 0.3 - 

3. Dense 1024 RelU 

4. Dense 1 Softmax 

 

Table 2. The additional layer for MobileNet V2. 

No Layer Size Activation 

1. 
Global Average Pooling 

2D 
- - 

2. Dense 64 RelU 

3. Dropout 0.5 - 

4. Dense 1 Softmax 

 
Table 3. The DenseNet architecture. 

No Layer Size Activation 

1. Conv2D 64 RelU 

2. Max Pooling 2D 3×3 - 

3. Dense 32 RelU 

4. Transition Layer - - 

5. Dense 32 RelU 

6. Transition Layer - - 

7. Dense 32 RelU 

8. Average Pooling 2D 7×7 - 

9. Flatten - - 

10. Dense 1 Softmax 

 
Table 4 The additional layer for VGG16. 

No Layer Size Activation 

1. Flatten - - 

2. Dense 64 RelU 

3. Dropout 0.5 - 

4. Dense 1 Softmax 

Precision reflects the proportion of correctly identified 
apnea segments among all predicted apnea cases (Eq. 
15): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

Recall (or sensitivity) measures the proportion of actual 
apnea segments correctly identified (Eq. 16): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (16) 

Finally, the F1-score represents the harmonic mean of 
precision and recall (Eq. 17): 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 

 

where TP is True Positive, TN is True Negative, FP is 

False Positive, and FN is False Negative. True Positives 

(TP) and True Negatives (TN) represent correct 

predictions made by the model. False Positives (FP) and 

False Negatives (FN) represent errors in the model's 

predictions. 

In addition to these threshold-dependent metrics, the 
AUC was calculated to provide a threshold-independent 
measure of the model’s discriminative ability. The ROC 
curve was generated by varying the classification 
threshold from 0 to 1, plotting the true positive rate (TPR) 
against the false positive rate (FPR) at each threshold. 
The AUC value was then obtained by integrating the ROC 
curve, providing a single scalar value that summarizes 
performance across all possible thresholds [50]. AUC is 
particularly informative for imbalanced datasets, as it 
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considers the trade-off between sensitivity and specificity 
without being dependent on a single cutoff point. [50], [51] 
To assess the stability and statistical reliability of the 
reported performance, 95% confidence intervals (CIs) 
were computed for all evaluation metrics. For accuracy, 
precision, recall, and specificity, the Clopper-Pearson 
exact method was applied, as it provides robust interval 
estimates for proportions, even with moderate sample 
sizes [52]. The inclusion of these CIs enables a more 
rigorous comparison between models by quantifying the 
variability of performance metrics.  

 

III. Results 
Table 5 presents the classification results of five CNN 
architectures used for detecting sleep apnea from ECG 
spectrogram images. Among all models, EfficientNet 
demonstrated the highest performance with an accuracy 
of 91.01%, precision of 90.70%, recall of 95.76%, and 
an F1-score of 92.61%. The narrow Confidence 
Intervals (Cis) indicate stable and reliable performance, 
while the very high recall highlights its ability to detect 
apnea cases with minimal false negatives. The 
consistent balance across all metrics indicates its 
robustness in both detecting apnea and correctly 
identifying normal cases. 

EfficientNet’s superiority is further evidenced by its 
confusion matrix and ROC curve, as shown in Fig. 3a 
and Fig. 4a. The confusion matrix reveals that the model 
makes very few classification errors, with a high number 
of true positives and true negatives. Its ROC curve 
exhibits a near-perfect shape, resulting in a high AUC 
score, which signifies excellent discriminative ability 
between the two classes. The compound scaling 
strategy used in EfficientNet likely contributes to its 
effective balance of depth, width, and resolution, 
enabling it to extract relevant features more efficiently 
than the other architectures. 

In contrast, MobileNet V2 yielded the lowest 
performance among the evaluated models, with an 
accuracy of 84.48% and an F1-score of 87.21%. The 

confusion matrix in Fig. 3b reveals an increase in false 
positives and false negatives, indicating that the model 
struggles to generalize well on unseen data. Fig. 4b also 
shows a lower AUC on the ROC curve, reflecting a 
decline in sensitivity and specificity. This could be 
attributed to the lightweight nature of MobileNet V2, 
which trades off representational power for 
computational efficiency, making it less suitable for 
complex biomedical signal classification tasks. 
DenseNet performed relatively well, achieving an 
accuracy of 88.36% andFeffi an F1-score of 90.47%. Its 
confusion matrix in Fig. 3c shows a strong ability to 
correctly classify both normal and apnea events, though 
some misclassifications still occur. Fig. 4c illustrates a 
stable ROC curve with an AUC close to EfficientNet, 
which reinforces DenseNet's strong feature extraction 
capabilities. The dense connectivity mechanism in 
DenseNet, which facilitates feature reuse across layers, 
likely enhances its performance in learning subtle 
variations present in the spectrograms. 

AlexNet, while being one of the older architectures, 
achieved an accuracy of 89.04% and an F1-score of 
91.01%, which is competitive with more modern models. 
The confusion matrix in Fig. 3d reveals a well-balanced 
prediction with relatively low false positives and false 
negatives. Its ROC curve in Fig. 4d also suggests high 
classification confidence, with an AUC nearing that of 
DenseNet. This performance highlights that, with 
appropriate modifications, classical CNN models like 
AlexNet can still be effective for biomedical classification 
tasks, particularly when the input images are rich in 
spatial patterns. VGG16 showed moderate performance 
with an accuracy of 85.98% and an F1-score of 88.41%. 
As depicted in Fig. 3e, the confusion matrix reflects 
more frequent misclassifications. Fig. 4e displays a 
flatter ROC curve with a lower AUC, indicating limited 
discriminative power between apnea and normal 
conditions. Despite its deeper architecture, the lack of 
advanced optimization strategies such as regularization 
or fine-tuning may have hindered VGG16’s ability to 
generalize, especially when applied to spectrogram data 

Table 5 Classification results for each architectures. 

No CNN Architecture 
Accuracy (%) 

[95% CI] 
Precision (%) 

[95% CI] 
Recall (%) 
[95% CI]l 

F1-Score(%) 
[95% CI] 

1. EfficientNet 
91.01 

[89.53–91.53] 

90.70  
[88.32–
90.88] 

95.76  
[94.81–96.58] 

92.61 
[91.81–93.36] 

2. MobileNet V2 
84.48 

[83.22–85.68] 
88.71  

[87.26–90.06] 
85.76  

[84.19–87.22] 
87.21  

[86.06–88.28] 

3. DenseNet 
88.36 

[86.99–89.19] 
89.62 

[88.25–90.88] 
91.33  

[90.04–92.50] 
90.47  

[89.54–91.45] 

4. AlexNet 
89.04 [87.94–

90.07] 
92.14  

[90.89–93.27] 
89.90  

[88.53–91.16] 
91.01  

[90.09–91.91] 

5. VGG16 
85.98  

[84.77–87.13] 
90.23  

[88.85–91.49] 
86.66  

[85.13–88.09] 
88.41  

[87.36–89.47] 
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derived from physiological signals. The inclusion of 95% 
confidence intervals offers a statistical perspective on 
model performance stability and comparability. 

EfficientNet exhibits consistently narrow CIs across all 

metrics, indicating low variability and high reliability in 

classification results. For accuracy, EfficientNet’s CI does 

not overlap with that of MobileNet V2 or VGG16, 

suggesting a statistically meaningful advantage over 

these models. However, its CI overlaps with those of 

DenseNet and AlexNet, indicating that the observed 

differences in accuracy with these two models may not be 

statistically significant at the 95% confidence level. 

Therefore, to determine the best-performing model, 

further statistical analysis should be conducted using the 

AUC values. EfficientNet achieved the highest AUC 

(0.97), with no confidence interval overlap with other 

models. This indicates stronger evidence of its superior 

discriminative ability. The ROC curves further support 

this, showing a sharper rise and larger enclosed area for 

EfficientNet. 

 

IV. Discussion 

EfficientNet achieved the highest overall performance 
with 91.01% accuracy, 90.70% precision, 95.76% recall, 
and an F1-score of 92.61%. These results demonstrate 
its ability to balance sensitivity and specificity more 
effectively than the other CNNs. Importantly, its recall of 

95.76% indicates that almost all apnea events were 
correctly detected, minimizing the risk of missed 
diagnoses, while maintaining high precision ensures 
that false positives are kept low. 

Compared to MobileNet V2 (84.48% accuracy, 
85.76% recall) and VGG16 (85.98% accuracy, 86.66% 
recall), EfficientNet shows a clear advantage in 
identifying subtle time–frequency variations. DenseNet 
(88.36% accuracy, 91.33% recall) and AlexNet (89.04% 
accuracy, 89.90% recall) performed reasonably well, but 
EfficientNet’s superior balance across all metrics 
resulted in the best F1-score, highlighting its reliability 
as a decision-support tool. Although AlexNet achieved 
slightly higher precision (92.14%), its recall was lower 
than EfficientNet’s, meaning it missed more true apnea 
cases. In clinical contexts, EfficientNet’s higher recall is 
more valuable, since under-diagnosis is riskier than 
occasional false alarms. 

From a clinical perspective, the reported 
performance metrics also carry significant implications. 
The high recall (95.76%) achieved by EfficientNet 
suggests a strong ability to correctly identify apnea 
events, which is critical in medical diagnostics where 
missing true positive cases could lead to untreated sleep 
disorders and subsequent health risks. Conversely, 
maintaining a high precision (90.70%) ensures that false 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 3. Confusion matrix results (a) EfficientNet, 

(b) MobineNet V2, (c) DenseNet, (d) Alexnet, (e) 

VGG16. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 4. Receiver Operating Curve (ROC): (a) 
EfficientNet, (b) MobineNet V2, (c) DenseNet, (d) 
Alexnet, (e) VGG16. 
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alarms are minimized, preventing unnecessary stress or 
further diagnostic procedures for patients wrongly 
identified as having sleep apnea. In real-world 
scenarios, balancing sensitivity and specificity is 
essential to ensure reliable screening tools. A model 
with high sensitivity ensures that most apnea cases are 
detected, which aligns with clinical priorities of 
minimizing missed diagnoses [44], [53], [54]. 
Meanwhile, adequate specificity reduces the chance of 
overdiagnosis of false-positive results. The performance 
demonstrated by EfficientNet across all four metrics, 
reflects not only strong technical performance but also 
potential clinical viability as a decision-support tool in 
sleep apnea detection.  

EfficientNet demonstrates significant advantages in 
its ability to outperform certain models compared to the 
previous studies listed in Table 6. Compared to the 
studies in [13] and [55], EfficientNet achieves higher test 
accuracy by leveraging its scalable architecture and 
improved feature extraction capabilities. While [13] 
mployed AlexNet, GoogleNet, and ResNet18 for OSA 
prediction from ECG spectrograms and scalograms, 
their best spectrogram-based result was 80.13% 
accuracy, notably lower than our 91.01%. Similarly, [55] 
proposed the lightweight FASSNet model for wearable-
based SA detection, which achieved 87.09% accuracy, 
still below the performance of EfficientNet in this study. 
These differences may be attributed to EfficientNet’s 
compound scaling strategy, which balances network 
depth, width, and resolution to capture discriminative 
time–frequency patterns more effectively without 
excessive computational cost.  

However, despite these advantages, EfficientNet 

does not surpass some recent state-of-the-art 

approaches such as OSACN-Net [16], the hybrid 

scalogram–spectrogram method in [56], and the fused 

time–frequency image model in [57], which were 

optimized for higher accuracy. which reported segment-

level accuracies exceeding 92%. These higher 

performances can be linked to specialized optimizations 

such as combining complementary time-frequency 

representations, integrating noise-robust preprocessing, 

or employing hybrid deep learning modules that were not 

implemented in our approach. In contrast, our method 

focuses solely on spectrogram images from single-lead 

ECG data without data fusion or multi-modal integration, 

which may limit absolute accuracy in comparison to such 

enhanced methods. 

The primary limitation of this study lies in 

computational constraints, as the large number of 

spectrogram images processed during training resulted in 

only 20 epochs being used. This explains why the 

performance plateaued at an accuracy of 91.01% and F1-

score of 92.61%, rather than approaching the >94% 

accuracy reported by some state-of-the-art models in 

Table 6. The relatively short training duration likely limited 

EfficientNet’s ability to progressively refine deeper feature 

hierarchies, especially when dealing with spectrograms 

that encode intricate time-frequency patterns of ECG 

signals, where learning subtle temporal variations and 

frequency shifts is essential for accurate apnea detection. 

Extending the training duration could have facilitated 

better convergence and potentially improved the model’s 

ability to generalize to unseen data. Under-optimized 

Table 6 Comparison of previous studies 

Ref Dataset Classifier Result 

[13] Physionet  AlexNet, GoogleNet and 
ResNet18 models 

Scalograms 
Accuracy:82.30%  
Sensitivity: 83.22%  
Specificity: 82.27% 
 
Spectrograms 
Accuracy: 80.13% 
Sensitivity: 81.99% 

[16] - Squeeze-Net, Res-Net50, and 
OSACN-Net 

Accuracy: 94.81% 

[55] - FASSNet Accuracy: 87.09% Sensitivity: 77.96% 
Specificity: 91.74%, F1 score: 81.61% 

[56] Physionet Lightweight CNN Accuracy: 94.30% Sensitivity: 94.30% 
Specificity 94.51% 

[57] Physionet 2D-CNN Accuracy: 92.4%, Recall: 92.3% 
Specificity: 92.6%, 

Proposed 
Method 

Physionet EfficientNet Accuracy: 91.01% 
Precision: 90.70% 
Recall: 90.18% 
F1-score: 90.48% 
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models risk overlooking critical features that distinguish 

pathological from normal patterns, especially in 

biomedical contexts where minor signal deviations may 

carry diagnostic importance. The constrained training 

may therefore have impacted the depth and richness of 

the learned representations, possibly capping the model's 

full potential. More prolonged training or staged fine-

tuning could allow the network to reach a more stable 

convergence and extract more discriminative features, 

ultimately improving diagnostic reliability. In addition, 

applying fine-tuning techniques or incorporating early 

stopping based on validation loss could help determine 

whether the model had reached performance saturation 

or still had room for improvement [13]. Exploring these 

strategies in future work would enhance the robustness 

and scalability of the proposed method. However, given 

the computational limitations in this study, such 

extensions were not feasible. Nonetheless, certain 

optimization techniques such as early stopping could be 

explored to partially address training limitations without 

incurring significant additional computational cost. By 

monitoring validation loss or accuracy during training, 

early stopping can help identify the optimal point where 

further training would not yield meaningful improvement, 

thereby improving model generalization without requiring 

more epochs. This approach may serve as a practical 

compromise in resource-constrained settings. 

While the results obtained from the PhysioNet dataset 

are promising [56], assessing the model's performance 

across diverse datasets and real-world scenarios 

remains an important consideration. In clinical practice, 

ECG signals may vary substantially due to differences in 

patient demographics, recording environments, or device 

specifications. Such heterogeneity can affect 

classification performance, particularly if the model has 

become too specialized to the training distribution. 

Broader evaluation across heterogeneous data sources 

would provide deeper insight into the model’s robustness 

and its readiness for clinical deployment. 

Another methodological limitation concerns the 

potential influence of class imbalance in the dataset, with 

a higher number of normal segments compared to apnea 

segments. This imbalance may have contributed to the 

observed gap between recall (95.76%) and precision 

(90.70%), indicating that while the model was highly 

sensitive to apnea events, it also produced more false 

positives than ideal. Although stratified splitting [56] was 

used to maintain proportional distribution during training, 

imbalance may still affect classification performance, 

particularly metrics such as precision and recall. In such 

scenarios, models may become biased toward the 

majority class. Techniques such as class-weighted loss 

functions, oversampling of the minority class, or synthetic 

data generation could be explored to improve sensitivity 

to underrepresented classes without altering the overall 

dataset composition. 

Transfer learning using pre-trained models on related 

domains could significantly reduce training time while 

maintaining high accuracy. Transfer learning allows a 

model to leverage pre-trained weights from large-scale 

datasets, enabling more efficient feature extraction even 

when domain-specific data is limited [58]. Fine-tuning 

selected layers of these pre-trained models can adapt 

them to the unique characteristics of ECG spectrograms, 

thereby improving sensitivity to subtle apnea-related 

patterns without requiring excessively large training 

datasets [13], [58]. Exploring these methods will not only 

improve performance but also ensure scalability when 

applied to larger or more heterogeneous datasets. 

 

IV. Conclusion  

Study about computer based sleep apnea diagnosis 
system based on deep learning method has been widely 
used. Most of the methods have limitation in the quality 
of the features that leads to the shallow analysis of the 
obtained results. Time-frequency analysis has been 
explored in some prior works and it can present an 
optimal the information for deep learning architectures. 
This study reinforces the potential of deep learning 
applied to spectrogram transformed ECG signals as a 
viable solution for automated sleep apnea detection. By 
utilizing time-frequency representations of ECG signals, 
the proposed method enables meaningful feature 
extraction that supports accurate classification of sleep 
apnea conditions.  EfficientNet demonstrated notable 
advantages due to its compound scaling strategy by 
obtaining accuracy, precision, recall and F1-score of 
91.01%, 90.70%, 90.18%, and 90.48%, respectively. 
This method is able to balance the depth, width, and 
resolution to enhance learning efficiency. Its ability to 
process spectrogram features effectively underlines the 
importance of model scalability and architectural 
optimization in biomedical signal classification tasks. 
Despite these strengths, the study was limited by 
computational constraints, particularly the short training 
duration, which may have hindered the model’s full 
optimization. Future studies should consider extending 
training duration and applying fine-tuning techniques to 
enhance feature learning and generalization capability. 
To address computational limitations and improve 
model efficiency in future studies, several strategies can 
be explored.  
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