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Abstract Breast cancer poses a critical global health challenge and continues to be one of the most
prevalent causes of cancer-related deaths among women worldwide. Accurate and early classification of
cancer severity is essential for improving treatment outcomes and guiding clinical decision-making, since
timely intervention can significantly reduce mortality rates and enhance patient survival. This study
evaluates the performance of Support Vector Machine (SVM) models using different kernel functions of
Linear, Polynomial, Radial Basis Function (RBF), and Sigmoid for breast cancer severity prediction. The
impact of feature selection was also examined, using the Random Forest algorithm to select the top
features based on Mean Decrease Accuracy (MDA), which serves to reduce redundancy, improve
interpretability, and enhance model efficiency. Experimental results show that the RBF kernel consistently
outperformed other kernels, especially in terms of sensitivity, a critical metric in medical diagnostics that
emphasizes the ability of the model to identify positive cases correctly. Without feature selection, the RBF
kernel achieved an accuracy of 0.9744, a sensitivity of 0.9772, a precision of 0.9722, and an AUC of 0.9968,
indicating strong performance across all evaluation metrics. After applying feature selection, the RBF
kernel further improved the accuracy to 0.9754, the sensitivity to 0.9770, the precision to 0.9742, and the
AUC to 0.9975, which demonstrated enhanced generalization and reduced overfitting, highlighting the
benefits of targeted feature reduction. While the Polynomial kernel yielded the highest precision (up to
0.9799), its lower sensitivity (as low as 0.9237) indicates a greater risk of false negatives, which is
particularly concerning in cancer detection. These findings underscore the importance of optimizing both
kernel function and feature selection. The RBF kernel, when combined with targeted feature selection,
offers the most balanced and sensitive model, making it highly suitable for breast cancer classification
tasks where diagnostic accuracy is vital.

Keywords Breast cancer; Support Vector Machine; kernel comparison; MDA-based features selection;
severity prediction.

I. Introduction Early detection significantly increases survival rates;

Breast cancer poses a critical global health challenge
and continues to be one of the most prevalent causes
of cancer-related deaths among women worldwide.
According to the World Health Organization (WHO), in
2020, there were approximately 10 million cancer-
related deaths. Among all cancer types, breast cancer
remains the most commonly diagnosed, with an
estimated 2.26 million new cases and 685,000 fatalities
reported worldwide [1]. Accurate diagnosis and
prognosis of breast cancer are crucial to ensuring
effective treatment and improving patient outcomes.

patients diagnosed at stage | or Il have a five-year
survival rate of up to 90%, whereas for stage IV, it drops
to approximately 31% [1], [2]. However, early-stage
breast cancer diagnosis remains a challenge due to the
absence of noticeable symptoms, making it imperative
to develop more efficient and cost-effective diagnostic
methods.

Recent advancements in data science have
demonstrated promising results in breast cancer
detection and classification [3]. Support Vector
Machine (SVM) is among the most extensively applied
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machine learning techniques for classifying breast
cancer types [4], [5], [6]. Its ability to manage high-
dimensional datasets and model intricate nonlinear
patterns has made SVM a popular choice in numerous
bioinformatics applications, especially within cancer
genomics research [4].

Several studies have confirmed the effectiveness of
SVM in breast cancer diagnosis, with classification
accuracy ranging from 52.63% to 98.24% [5]. One of
the key factors influencing its accuracy is the selection
of the kernel function [4]. In previous research, various
linear and nonlinear kernel functions have been
evaluated to optimize the performance of SVM in
predicting breast cancer outcome [4]. In addition,
several studies have examined the use of Least
Squares Support Vector Machines (LS-SVM) in breast
cancer diagnosis, achieving classification accuracy as
high as 98.53% on image data [6]. These results
underscore the effectiveness of SVM-based methods
in generating accurate diagnoses and prognoses for
breast cancer.

The accuracy of the SVM model is affected by
various factors, and the choice of kernel is one of the
most significant [7], [8], [9], [10]. In general, SVM
kernels can be categorized into linear and nonlinear
kernels [11]. The linear kernel offers a straightforward
structure and is known for its computational efficiency,
which is suitable for capturing linear relationships in
data [12]. However, its performance may be limited
when addressing intricate nonlinear patterns, which are
often present in a high-dimensional dataset [13].
Nonlinear kernels enhance flexibility by mapping data
into a higher-dimensional space, which enables SVM
to capture intricate relationships that may be
overlooked by linear kernels [11]. Similarly, the
polynomial kernel allows modeling feature interactions
at different levels, which can be beneficial in handling
complex data structures [13]. However, in breast
cancer studies, further investigation is needed to
examine the influence of different kernel functions on
the performance of SVM-based classification models
and the interplay between feature selection.

This study aims to investigate the effects of various
kernel functions used in SVM on the accuracy of breast
cancer severity prediction. By comparing multiple
kernel implementations in SVM models, we seek to
identify the most effective approach for improving
classification performance. Additionally, we will
evaluate the selection and significance of features to
ensure that only the most relevant factors are used in
the classification process. The outcomes of this study
are anticipated to provide valuable insights for SVM-
based classification techniques in medical applications,
particularly in facilitating the early diagnosis and
prognosis of breast cancer. This study makes three key
contributions. First, it provides a comprehensive
evaluation of various SVM kernel functions, both linear

and nonlinear, to determine their effectiveness in
classifying breast cancer severity. Second, it integrates
feature selection using the Random Forest algorithm to
examine how optimized feature subsets interact with
kernel choice, thereby improving classification
accuracy, sensitivity, and generalization. Third, it
contributes to the development of reliable and clinically
relevant diagnostic models by emphasizing early
detection and minimizing false negatives, offering
practical insights for enhancing breast cancer
diagnosis and prognosis.

This study is structured as follows: Section Il
presents related works, Section Il presents the
dataset, the proposed methods, the feature selection,
and kernel types. Section IV reports the SVM
classification results on different schemes and the
interpretation of the findings. Section V presents a
comparison with related studies, a discussion of
limitations, and concludes with the main findings.

II. Related Works

Machine learning has been widely adopted in medical
research to enhance disease diagnosis, prognosis, and
treatment planning [14], [15]. Breast cancer becomes
the most prevalent and deadly cancer type worldwide
and has received growing recognition in the artificial
intelligence (Al) and machine learning communities
[16], [17], [18], [19], [20]. Among various classification
techniques, Support Vector Machine (SVM) has
demonstrated promising results in predicting breast
cancer severity due to its robustness in handling high-
dimensional and complex datasets [21].

A. Support Vector Machine (SVM) for Breast

Cancer Classification
As a supervised learning method, SVM is frequently
employed for binary classification problems such as
distinguishing between benign and malignant tumors
[22]. Several studies have validated the effectiveness
of SVM for breast cancer classification. Research [23]
explored the application of SVM in cancer genomics,
highlighting its robustness in analyzing high-
dimensional data and achieving promising
classification accuracy.

A study by [24] introduced a novel correlation-based
kernel designed explicitly for cancer diagnosis,
demonstrating superior performance over classical
kernels across five real-world gene expression
datasets. Subsequently, the researchers introduced
the Hadamard kernel as a parsimonious alternative for
predicting breast cancer outcomes, underscoring the
increasing importance of tailored kernel functions in
improving the performance of SVM-based cancer
classification models [11]. Additionally, [25] employed
the Least Squares Support Vector Machine for
classifying breast cancer and obtained an impressive
accuracy of 98.53% when applied to microscopic
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images. More recently, [26] combined deep learning
approaches with SVM to improve breast cancer
detection, demonstrating the adaptability of SVM in
hybrid machine learning frameworks.
B. Kernel Function Selection in SVM
Despite these SVM advances, one of the most critical
challenges in applying SVM to medical classification
problems is the selection of an appropriate kernel
function, as different kernels yield varying levels of
classification performance [5].
Kernel functions significantly influence SVM’s ability to
generalize and classify data accurately. The choice of
kernel determines how input features are transformed,
impacting the capability of a model to identify complex
patterns [27]. Kernel functions in SVM can be
categorized into two general types: linear and
nonlinear. Linear kernels are computationally efficient
and suitable for datasets with well-separated classes,
but they fail to detect intricate non-linear patterns
commonly present in biomedical data [28]. In contrast,
non-linear kernels enable SVM to map data into higher-
dimensional feature spaces, which results in improved
classification performance [29]. Study of [30] provided
an extensive analysis of kernel functions, concluding
that RBF kernels tend to be superior in handling high-
dimensional biomedical data due to their flexibility in
capturing complex patterns. Moreover, polynomial
kernels have shown effectiveness in modeling feature
interactions, making them suitable for datasets with
quadratic or cubic relationships [31]. Hadamard
kernels, which have been applied in genomic studies,
have also demonstrated promising results in cancer
classification tasks [11]. However, [32] emphasized the
importance of tuning kernel parameters correctly, as
improper configuration can lead to poor generalization
and reduced classification accuracy.
C. Feature Selection for SVM-Based Breast Cancer
Prediction
In addition to selecting the kernel function, feature
selection plays a pivotal role in improving SVM
performance in medical classification. High-
dimensional datasets, such as those used in cancer
research, often contain redundant or irrelevant features
that can negatively impact model accuracy [33].
Various feature selection techniques have been
employed to optimize SVM models. Random Forest
has been widely used for feature selection before
applying SVM, demonstrating improved classification
performance by eliminating irrelevant features [34].
Study of [27] integrated Particle Swarm Optimization
(PSO) with SVM to optimize feature selection,
achieving significant improvements in breast cancer
prediction. Similarly, [35] developed a hybrid Cat-and-
Mouse optimization algorithm to refine feature selection
in SVM-based models, further enhancing classification
accuracy in biomedical applications. These findings
suggest that effective feature selection, in conjunction

with an appropriate kernel function, is crucial for
optimizing the performance of SVM in breast cancer
classification.

D. Limitations in Existing Research and Research

Gaps

Despite the widespread use of SVM in breast cancer
classification, several research gaps remain. Many
studies apply SVM with pre-selected kernels without
systematically evaluating their impact on classification
performance. A comprehensive analysis comparing
different kernel functions in breast cancer severity
prediction is still lacking. Furthermore, while feature
selection techniques are extensively studied, the
interaction between feature selection methods and
kernel selection in SVM models has not been
sufficiently explored. The combined effect of optimal
feature selection and kernel selection remains an open
question. Additionally, hybrid machine learning
approaches, such as integrating SVM with evolutionary
optimization algorithms, have shown promise but
remain underutilized in the field of medical
classification. To address these gaps, the present
study conducts a comprehensive comparative analysis
of several commonly used SVM kernel functions to
evaluate their effectiveness in predicting the severity of
breast cancer. Additionally, it will adapt feature
selection techniques to optimize SVM performance
while reducing computational complexity. The study will
also investigate the combined effect of kernel selection
and feature selection on classification accuracy. By
addressing these research gaps, this work will
contribute to the advancement of SVM-based breast
cancer classification models, ultimately aiding in the
development of more accurate and interpretable
machine learning solutions for medical applications.

lll. Methods
A. Data Preparation and Collection

This study utilizes a publicly available dataset from the
ucCl Machine Learning Repository
(https://archive.ics.uci.edu/dataset/16/breast+cancer+
wisconsin+prognostic), which has been widely used in
previous breast cancer classification research. The
dataset consists of 198 samples, each representing a
breast cancer case diagnosed. It contains 33 features
related to tumor  characteristics, including
morphological  attributes and histopathological
measurements. The dataset includes both benign and
malignant cases, making it suitable for severity
classification tasks. Prior to model development, data
preprocessing is conducted to handle missing values,
normalize feature distributions, and ensure that the
dataset is appropriately structured for analysis.

B. Feature Selection

To enhance model accuracy while minimizing
computational complexity, a feature selection process
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is conducted before applying the model. Therefore, the
Random Forest (RF) algorithm can be used to identify
the most relevant and informative features [36]. In RF,
features are selected based on their impact on
classification performance, enabling the removal of
redundant or less significant variables [37]. By retaining
only the most influential features, the subsequent
Support Vector Machine (SVM) classifier achieves
improved generalization capability and computational
efficiency.

RF commonly assesses feature importance using
two key metrics: Mean Decrease Accuracy (MDA) and
Mean Decrease Gini (MDG). MDA quantifies a
feature’s impact by randomly permuting its value and
evaluating the decrease in the model’s accuracy. If the
permutation of a feature significantly decreases
accuracy, the feature is considered important.
Formally, the importance of feature x; using MDA is
calculated using Eq. (1) as follows [38]:

. 1 =Ff(x:))=-Y; 1 = x!
MDA(x]) _ % Zzl YicooB (YL f( 17)002;6003 (yl f( L)) (1)
where T represents the number of trees within the
forest, OOB is the set of out-of-bag samples, y; the true
class label of instance i, f(x;) is the predicted class
label of instance iii when using the original feature set,
f(x]) is the feature vector of instance iii where the
values of feature x; have been randomly permuted.
MDG, in contrast, evaluates a feature’s importance
based on the cumulative reduction in Gini impurity
attributed to that feature across all trees in the forest.
Gini impurity indicates the likelihood of misclassification
when an instance is randomly assigned a label based
on the dataset’s label distribution. The importance of a
feature f; using MDG is calculated using Eq. (2) as
follows [38]:

MDG(x) = =[1 - X1, Gini (j)'] )
where Gini(j)* represents the decrease in the Gini
impurity attributed to the feature x; in tree t. The Gini
decrease is accumulated over all nodes where x; is
used for splitting.

In this study, feature importance was quantified
using the Mean Decrease Accuracy (MDA) metric with
a permutation-based approach. MDA was chosen as
the basis for feature selection, as the focus of the
classification task is to improve prediction accuracy. In
this method, the trained RF model's predictive
accuracy is first computed on the original dataset.
Then, for each feature individually, its values are
randomly permuted across all samples while keeping
the rest of the data unchanged. This process disrupts
the relationship between that feature and the target
variable. The model’s accuracy is recalculated, and the
difference between the original accuracy and the
accuracy after permutation represents the importance

score for that feature. A larger accuracy drop indicates
greater importance in classification.

For this study, the RF model was implemented with
500 trees (n_estimators = 500), a maximum depth
selected via cross-validation, and a fixed random seed
(random_state = 42) to ensure reproducibility. The
permutation importance computation was repeated 30
times per feature, and the results were averaged to
obtain stable MDA scores. Once MDA values were
calculated for all 30 features, they were ranked in
descending order. The top 20 features with the highest
MDA scores were retained for subsequent SVM
classification experiments. This threshold was chosen
to balance model complexity and predictive
performance, as preliminary trials indicated that
including more than 20 features provided negligible
accuracy gains while increasing training time. The RF
feature importance scores were computed exclusively
on the training portion of the data within each cross-
validation fold. Specifically, for each training fold, an RF
model was fit, permutation-based MDA scores were
calculated, and the top 20 features were selected.
These selected features were then used to train the
SVM model on that fold. The corresponding validation
fold remained completely unseen during both feature
ranking and SVM training. This fold-by-fold approach
ensured that no information from the validation or test
data influenced the feature selection process, thereby
avoiding overly optimistic performance estimates.

C. Kernel of SVM

Kernel functions are a fundamental component of the
SVM, as they define how the input data is transformed
and separated into a higher-dimensional space. The
choice of kernel significantly influences the model's
ability to detect linear or nonlinear patterns in data,
especially in high-dimensional biomedical datasets
such as those used in breast cancer classification. This
study evaluates four widely used kernel functions:
linear, polynomial, radial basis function (RBF), and
sigmoid.

1. Linear Kernel

The linear kernel is the most basic form of kernel
function, defined as the inner product between two
vectors and formulated in Eq. (3) as follows [39]:

K(x;,x;) = x{x; (3)
where x; and x; represent two input feature vectors in
the dataset, each corresponding to a sample. It is
suitable for linearly separable data and is
computationally efficient. In medical datasets with well-
separated classes, the linear kernel often performs
well. However, it may not be sufficient for capturing the
complex, nonlinear relationships typical of cancer data.
2. Polynomial Kernel
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The polynomial kernel allows SVM to fit curved
boundaries and model interactions between features. It
is calculated using Eq. (4) as follows [39]:

K(x;,x;) = (yxix; + r)d (4)
where y is a scale parameter, r is a coefficient (often
called bias), and d is the polynomial degree. Higher-
degree polynomials enable the model to learn more

complex relationships but may risk overfitting if not
carefully tuned.

3. Radial Basis Function (RBF) Kernel

The RBF, also referred to as the Gaussian kernel,
maps input data into an infinite-dimensional space and
is calculated using Eq. (5) as [39]:

K(x;,x;) = exp (—y(xi - xj)T(xi - xj)) (5)

where y controls the width of the kernel. The RBF
kernel is highly effective for capturing nonlinear
patterns and is particularly suitable when the decision
boundary is not clearly linear. It is widely used in
bioinformatics and medical diagnostics.

4. Sigmoid Kernel

Inspired by neural networks, this kernel is calculated
using Eq. (6) as follows [40]:

K (x;,x;) = tanh(yx{x; + 1) (6)

where tanh denotes the hyperbolic tangent function.
This kernel resembles the structure of a two-layer
neural network and is capable of modeling nonlinear
patterns.

D. Hyperparameter Tuning

To ensure fair comparison and optimal performance,
the Support Vector Machine classifiers were tuned
using kernel-specific grids and repeated cross-
validation. For the linear kernel, the penalty parameter
C was explored over {275,273, ..., 215}, For the radial
basis function (RBF) kernel, C was varied over the
same range, while y was varied over {2715,273, ..., 2%}.
For the polynomial kernel, C and y used the same
search ranges, with polynomial degree d € {2,3,4} and
coef0 € {0,1}. The sigmoid kernel was tuned over the
same C and coef0 as the polynomial kernel. All
parameter combinations were evaluated using 10-fold
cross-validation repeated three times, with the mean
area under the ROC curve (AUC) as the selection
criterion. Preprocessing (min-max scaling), class
balancing (SMOTE), and feature selection were
applied within each training fold only to prevent
information leakage. The final models were retrained
on the whole training set wusing the best
hyperparameters and then evaluated on the held-out
test set.

E. Model Evaluation and Performance Metrics

To evaluate the SVM model's performance with
different kernels, four standard classification metrics

are used. Accuracy evaluated the overall model
performance, which represents the proportion of
correct predictions. Sensitivity measures the model’s
ability to accurately detect malignant cases,
simultaneously minimizing both false positives and
false negatives. Additionally, the Area Under the Curve
(AUC) is calculated to assess the model’s ability to
classify cases based on the severity levels. As
formulated in Eq. (7), accuracy indicates the ratio of
correct predictions to the total number of prediction
outcomes. It serves as a key metric for evaluating the
model’s capability in differentiating samples from
various sources. Achieving high accuracy is crucial for
the detection of breast cancer and determining its level
of severity.

Sensitivity, as formulated in Eq. (8), indicates the
model’s capacity to accurately classify true positives,
which indicate the existence of breast cancer, but are
misclassified as absent. Precision, as formulated in
Eq.9, reflects the model’'s ability to accurately classify
the positive instances, i.e., cases where breast cancer
is misclassified as existing despite its absence. This
metric is particularly important in clinical settings where
unnecessary alarms can lead to additional anxiety,
costly follow-up procedures, or overtreatment. High
sensitivity is important to reduce the risk of
inappropriate treatment of breast cancer. The three
metrics discussed above are summarized in Table 1
and calculated using the following formulas.

Table 1. Confusion matrix

Predicted as Predicted as

Positive Negative
Actual . False Negative
Positive True Positive (TP) (FN)
Actual False Positive  True Negative
Negative (FP) (TN)
TP+TN
Accuracy = m (7)
Sensitivity = TPZPFN (8)
Precision = — (9)
TP+FP

AUC, as formulated in Eq. (9), measures how well the
model differentiates between classes, which offers a
comprehensive view of performance across various
threshold performances. A higher AUC value reflects
stronger discriminatory power in identifying the
existence versus absence of breast cancer

F. Experimental Workflow

The study follows a structured workflow to ensure a
systematic analysis of breast cancer severity
classification using SVM with kernel comparison, as
shown in Fig. 1, as follows. The first step involves data
preprocessing, where missing values are handled and
features are standardized. Following this, feature
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Breast cancer dataset (UCI
machine learning repository)

T

Pre-processing data

Feature selection using
random forest

v

Classification [SVM)

Data
validation Kernel

Model evaluation

Fig. 1. Flowchart of data analysis

selection is conducted using the Random Forest
algorithm. The importance of features is measured
based on the Mean Decreased Accuracy (MDA) score.
Once the most significant features are identified, the
SVM model is trained and tested using different kernel
functions. A comparative analysis of kernel functions is
performed to determine which approach provides the
best classification performance. Finally, model
evaluation metrics are analyzed to validate the
effectiveness of the proposed approach. This
methodology provides a comprehensive approach to
optimizing SVM-based breast cancer severity
classification by integrating feature selection and kernel
function evaluation.

V. Result and Analysis
A. Preprocessing data

The dataset contained no missing values, as confirmed
during the initial inspection. To ensure uniform feature
scaling and prevent variables with larger numeric
ranges from dominating the SVM optimization process,
all 30 numerical features were normalized using min-
max scaling to the range of [0,1]. The normalization
was applied independently to each feature according to
Eqg. 10 as follows.

X' = x—min A (10)

max A—min A

where A is a variable (feature/column) in the dataset,
x €A is the original feature value, and x' is the
normalized value in the range [0,1].

To address class imbalance between malignant and
benign cases, the Synthetic Minority Over-sampling
Technique (SMOTE) was applied with a K = 5 nearest
neighbors and a duplication size of 100%. This
generated synthetic samples for the minority class,
which were combined with the original dataset and
shuffled to randomize observation order. All
preprocessing steps were performed before feature
selection and model training, ensuring that the training
and testing splits (0.8 and 0.2) were drawn from the
same standardized feature space. Random seeds were
fixed (set.seed(123)) for reproducibility.

SVM with radial Kernel

SVM with linear Kernel
.

Principal Compaonent 2
Principal Component 2

Principal Compenent 1 Principal Component 1

SVM with sigmoid Kernel

SVM with polynomial Kernel
.

Principal Component 2
Principal Component 2

Principal Compaonent 1 Principal Component 1

Fig 2. SVM decision boundaries based on kernel

B. Kernel Selection

Before evaluating model performance, the dataset was
visualized using Support Vector Machine (SVM)
decision boundaries generated by four kernel
functions: Linear, Polynomial, RBF, and Sigmoid.
These visualizations, shown in Fig. 2, provide an initial
understanding of how each kernel transforms the
space of features and segregates the two classes.

The Linear kernel produces a straight boundary,
indicating its suitability for linearly separable data.
While it creates a clear margin between some regions,
its rigid structure may struggle in areas with
overlapping or complex distributions. The Polynomial
kernel introduces curved decision boundaries that can
capture more intricate relationships between features.
However, depending on the polynomial degree, this
flexibility may lead to either over-simplification or
overfitting. The RBF kernel demonstrates highly
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adaptive boundaries that curve around data clusters,
suggesting a strong capability to model non-linear
patterns. Visually, it appears most effective in
separating densely packed or irregularly shaped
regions. The Sigmoid kernel generates boundaries with
a soft, S-shaped curve. Though it introduces
nonlinearity, the separation is less distinct compared to
other kernels, potentially limiting its ability to divide the
classes clearly. These plots provide valuable insights
into how each kernel function shapes the classification
space, helping to motivate the need for a more detailed
performance comparison in the following sections.

C. Features Selection Using Random Forest

The MDA metric from RF is employed as a criterion for
selecting important features to enhance classification
performance  while minimizing computational
complexity. This method assesses the effect of each
feature on the accuracy of the model by randomly
permuting its samples and measuring the subsequent
drop in prediction performance [41]. A larger drop in
accuracy indicates a more important feature. The
ranking shown in Fig. 3 reveals that among the 30
original features, several exhibit significantly higher
contributions to classification accuracy. Notably,
features F22, F21, F24, F23, and F28 exhibited the
highest MDA values, indicating their strong influence
on the model's predictive performance, whose score is
presented in Table 2 below.

Features
Al
o

T T T T
5 10 15 20
Mean Decrease Accuracy

Fig 3. MDA and MDG ranking of random forest

To optimize the balance between accuracy and
computational efficiency, the top 20 features were
selected based on their MDA rankings. These features
demonstrated substantial predictive importance, with

MDA values ranging from approximately 0.075 to
0.004. By excluding the lower-ranked features, which
contributed minimal or negligible improvement, the
dataset's dimensionality was reduced without
compromising classification integrity.

Table 2. Features importance based on MDA scores

MDA MDA MDA
F21 0.0753 F3 0.0206 F5 0.0043
F23 0.0703 F22 0.0139 F18 0.0024
F24 0.0644 F11 0.0117 F16 0.0022
F8 0.0528 F13 0.0107 F30 0.0020
F28 0.0527 F2 0.0101 F20 0.0016
F27 0.0393 F25 0.0076 F9 0.0015
F14 0.0302 F26 0.0067 F15 0.0015
F4 0.0290 F17 0.0047 F10 0.0015
F7 0.0256 F29 0.0046 F19 0.0011
F1 0.0214 F6 0.0045 F12 0.0010

This selection approach not only enhances the
generalization capability of the subsequent SVM model
but also minimizes the risk of overfitting and reduces
training time. The retained features were then used as
input for the kernel comparison in the SVM
classification stage

D. Performance by Utilizing Kernel Optimization
without Performing Feature Selection

To establish a baseline and evaluate the impact of
feature selection, the Support Vector Machine (SVM)
model was initially tested using all available features
without prior dimensionality reduction. The kernel
functions that form the focus of this research are
Linear, Polynomial, Radial Basis Function (RBF), and
Sigmoid. The classification performance was assessed
using four standard metrics: Accuracy, Sensitivity,
Precision, and AUC (Area Under the ROC Curve), as
summarized in Table 3.

Table 3. SVM Performances based on Feature
Selection and Kernel Optimization

Kernel Acc. Sensitivity Precision AUC

Linear 0.9746  0.9772 0.9725 0.9967
Polynom 0.9516 0.9237 0.9786 0.9945
Radial 0.9744 0.9772 0.9722 0.9968
Sigmoid  0.9524 0.9758 0.9327 0.9922

The Linear kernel vyielded the highest accuracy
(97.46%) and sensitivity (97.72%), demonstrating
excellent ability to identify malignant cases correctly.
The RBF kernel performed comparably, with slightly
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lower accuracy (97.44%) but the highest AUC
(99.68%), indicating superior performance in
distinguishing between classes across all thresholds.

The Polynomial kernel achieved the highest precision
(97.86%), reflecting its strength in minimizing false
positives, but showed a noticeable drop in sensitivity
(0.9237), raising concerns about its reliability in
detecting all malignant cases. The Sigmoid kernel
exhibited moderate and balanced results, with strong
sensitivity (97.58%), although its overall accuracy and
AUC were slightly lower than those of the linear and
RBF alternatives. These initial results suggest that,
without feature selection, Linear and RBF kernels offer
the most consistent and reliable performance for breast
cancer severity classification. In the next phase, the
influence of feature selection on these kernel
performances is examined to evaluate potential
improvements in both accuracy and model efficiency.

E. Performance by Utilizing Feature Selection
and Kernel Optimization

Table 4 presents the performance of four kernel
functions: linear, Radial Basis Function (RBF), and
polynomial, with a combination of feature selection for
breast cancer classification.

Table 4. Performance analysis of SVM with feature
selection and kernel selection

Kernel Acc. Sensitivity Precision AUC

Linear 0.9734 0.9749 0.9722 0.9962
Polynom 0.9525 0.9242 0.9799 0.9952
Radial 0.9754 0.9770 0.9742 0.9975
Sigmoid  0.9489  0.9646 0.9357 0.9885

The linear kernel achieves an accuracy of 97.34%,
indicating strong overall performance in classifying the
majority of breast cancer cases correctly. Its sensitivity
of 97.49% represents a slight decrease from the
previous result of 97.72%, suggesting that feature
selection maintained high classification capability while
potentially enhancing model efficiency and
interpretability. With an AUC of 99.62%, the linear
kernel demonstrates excellent discriminative power in
distinguishing between malignant and benign cases,
minimizing both false positives and false negatives.
The RBF kernel with feature selection yields the
highest accuracy among all kernels at 97.54%,
outperforming both the RBF kernel without feature
selection (97.44%) and the linear kernel. Its sensitivity
of 97.70% is also the highest, indicating slightly better
performance in detecting malignant cases. The AUC of
99.75% is marginally superior to that of the linear
kernel, confirming the RBF kernel’s effectiveness in
distinguishing between classes.

The polynomial kernel achieves the lowest
sensitivity at  92.42%, suggesting reduced
effectiveness in identifying malignant cases compared

to other kernels. Its accuracy of 95.25% is also lower
than both the linear and RBF kernels. Although its
precision is the highest at 97.99%, this may reflect a
trade-off with sensitivity. The AUC of 99.52%, while still
high, is below that of the linear and RBF kernels. The
sigmoid kernel achieves the Ilowest overall
performance, with an accuracy of 94.89% and a
precision of 93.57%. Although its sensitivity is relatively
high at 96.46%, the AUC of 98.85% is the lowest
among all kernels, indicating reduced discriminative
capability. When applying feature selection and kernel
optimization, all four kernels demonstrate strong
classification performance. The RBF kernel offers the
best overall balance with the highest accuracy,
sensitivity, and AUC. The linear kernel also performs
consistently well, particularly in terms of accuracy and
AUC. While the polynomial kernel excels in precision,
it is less effective in sensitivity. The specific
performance priorities of the classification task should
therefore guide the choice of kernel.

V. Discussion

This study evaluated the performance of Support
Vector Machine (SVM) classifiers using four kernel
functions: linear, Polynomial, Radial Basis Function
(RBF), and Sigmoid for predicting breast cancer
severity. The evaluation was conducted under two
scenarios: first, using the complete set of features, and
second, after applying feature selection based on Mean
Decrease Accuracy (MDA) scores from a Random
Forest model, where the top 20 mostimportant features
were retained to enhance model efficiency and focus.

The findings indicate that the choice of kernel
function has a significant influence on model
performance, particularly in medical classification tasks
where sensitivity is crucial. Sensitivity measures the
model's ability to correctly identify malignant cases,
which is particularly important in breast cancer
diagnosis, where false negatives can result in delayed
or missed treatments. Among the tested kernels, the
RBF consistently yielded the highest sensitivity:
97.72% without feature selection and 97.70% with
feature selection. These results highlight the RBF
kernel's strong ability to detect malignant cases
accurately while maintaining other performance
metrics. This aligns with prior studies such as [42],
which reported sensitivity up to 98.7% in optimized
SVM models for medical classification.

After applying feature selection, the RBF kernel
achieved the highest accuracy of 97.54% and the
highest AUC of 99.75%, indicating superior overall
performance and excellent discrimination between
malignant and benign cases. These outcomes suggest
that the RBF kernel offers a balanced combination of
high sensitivity, strong precision, and overall
classification reliability. In contrast, the Linear kernel
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also performed competitively, achieving 97.49%
sensitivity and 99.62% AUC after feature selection.
While its performance was slightly lower than that of
RBF, the linear kernel remains a strong candidate due
to its computational simplicity and consistent results.
This is consistent with findings in similar classification
contexts, such as diabetes detection [43].

The Polynomial kernel recorded the highest
precision in both scenarios (97.86% without feature
selection and 97.99% with), reflecting its effectiveness
in minimizing false positives. However, its sensitivity
was the lowest among the four kernels at 92.37%
without and 92.42% with feature selection. This makes
this kernel less suitable in clinical settings where
missing malignant cases is highly undesirable. The
Sigmoid kernel yielded moderate results across metrics
and did not outperform other kernels in any category,
limiting its suitability for high-stakes diagnostic
applications.

The performance comparison between models with
and without feature selection showed only marginal
improvements, particularly in AUC and sensitivity for
the RBF kernel. However, the use of RF-based feature
selection still provided practical benefits by reducing
the dimensionality of the input space, improving
computational efficiency, and enhancing the
interpretability of the results. In real-world applications,
especially where model transparency and speed are
valued, the ability to focus on a smaller set of the most
predictive features may justify the additional
preprocessing step, even if absolute performance
gains are modest. This trade-off highlights the role of
feature selection not only in maximizing accuracy but
also in promoting generalization and practical
deployment.

This high AUC of the RBF kernel also indicates that
it maintains superior discriminative ability across a
range of classification thresholds, which means it can
effectively separate malignant from benign cases under
varying decision criteria. In a real-world diagnostic
context, this translates to greater flexibility in tuning the
classification threshold to prioritize clinical objectives.
For example, in breast cancer screening, sensitivity is
typically prioritized to minimize false negatives, thereby
reducing the risk of missed diagnoses. Our results
show that the RBF kernel not only achieves the highest
AUC but also delivers the highest sensitivity among the
evaluated kernels, which reinforces its suitability for
early detection tasks, where failing to identify a
malignant case can have serious consequences. While
the polynomial kernel demonstrated the highest
precision, this came at the cost of reduced sensitivity,
that is potential to more missed positive cases. Thus,
the trade-off between kernels involves balancing the
clinical imperative for high sensitivity against the need
to reduce false positives. Given the potential for patient

anxiety, unnecessary follow-up tests, and associated
costs arising from false positives, the choice of kernel
should be informed by the specific diagnostic setting,
with the RBF kernel offering the most adaptable
performance profile for sensitivity-driven screening
programs. Additionally, reducing the number of
features improved model interpretability and likely
reduced the risk of overfitting, which is important when
handling complex biomedical data.

The superior performance of the RBF kernel
compared to the linear, polynomial, and sigmoid
alternatives can be attributed to its ability to model
complex, non-linear relationships between features
and class labels [44], [45]. Breast cancer morphological
and textural features often exhibit non-linear
interactions, which the RBF kernel effectively captures
by projecting data into a high-dimensional feature
space, where classes become more separable. Unlike
the linear kernel, which assumes a purely linear
boundary, or the polynomial kernel, which may overfit
when degree is high, the RBF kernel adapts its
flexibility through the y parameter in enabling a balance
between bias and variance. Prior studies in medical
imaging and cancer diagnosis have also reported that
the RBF kernel consistently outperforms other kernels
in handling heterogeneous biomedical data [42] which
is owed to its robustness to irrelevant features and
capacity to handle overlapping class distributions. This
property, combined with our targeted feature selection
strategy, likely explains the observed balance between
sensitivity, precision, and AUC, making the RBF kernel
the most reliable choice for our classification task.

VI. Conclusion

This study aimed to evaluate the impact of different
kernel functions (linear, Polynomial, RBF, and Sigmoid)
on the performance of SVM models for predicting
breast cancer severity, both with and without feature
selection using Random Forest-based MDA. The
results indicate that the choice of kernel function has a
significant impact on classification outcomes. Among
the tested kernels, the RBF kernel consistently
achieved the best overall performance, with an
accuracy of 97.44%, a sensitivity of 97.72%, a
precision of 97.22%, and an AUC of 99.68% without
feature selection. After applying feature selection, its
performance further improved to an accuracy of
97.54%, sensitivity of 97.70%, precision of 97.42%,
and AUC of 99.75%, which shows its strong ability to
balance diagnostic sensitivity and overall reliability. The
Linear kernel also performed competitively, with an
accuracy of 97.34% and AUC of 99.62% after feature
selection, which makes it a practical alternative due to
its computational simplicity. The Polynomial kernel
achieved the highest precision (97.99%) but suffered
from low sensitivity (92.42%), while the Sigmoid kernel
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produced moderate results across all metrics, therefore
limiting its clinical applicability. Future research should
build on these results by validating the approach on
larger and more diverse datasets to strengthen
generalizability across populations. Another promising
direction is the development of hybrid models that
integrate  SVM with ensemble or deep learning
methods to capture more complex nonlinear
relationships while preserving interpretability. Adaptive
feature selection strategies tailored to specific patient
cohorts could also improve robustness and reduce
overfitting risks. Beyond algorithmic improvements,
future efforts should explore the hyperparameter
optimization of kernel parameters, longitudinal studies
that incorporate temporal patterns in patient data, and
the multimodal integration of genomic, imaging, and
clinical data. Importantly, translating these models into
clinical decision-support systems and conducting
prospective clinical trials would provide evidence of
real-world applicability and clinical utility. Overall, these
directions will guide future research toward the
development of reliable, scalable, and clinically
applicable Al-based diagnostic tools that can support
early detection and personalized treatment planning in
breast cancer care.
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