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Abstract Breast cancer poses a critical global health challenge and continues to be one of the most 

prevalent causes of cancer-related deaths among women worldwide. Accurate and early classification of 

cancer severity is essential for improving treatment outcomes and guiding clinical decision-making, since 

timely intervention can significantly reduce mortality rates and enhance patient survival. This study 

evaluates the performance of Support Vector Machine (SVM) models using different kernel functions of 

Linear, Polynomial, Radial Basis Function (RBF), and Sigmoid for breast cancer severity prediction. The 

impact of feature selection was also examined, using the Random Forest algorithm to select the top 

features based on Mean Decrease Accuracy (MDA), which serves to reduce redundancy, improve 

interpretability, and enhance model efficiency. Experimental results show that the RBF kernel consistently 

outperformed other kernels, especially in terms of sensitivity, a critical metric in medical diagnostics that 

emphasizes the ability of the model to identify positive cases correctly. Without feature selection, the RBF 

kernel achieved an accuracy of 0.9744, a sensitivity of 0.9772, a precision of 0.9722, and an AUC of 0.9968, 

indicating strong performance across all evaluation metrics. After applying feature selection, the RBF 

kernel further improved the accuracy to 0.9754, the sensitivity to 0.9770, the precision to 0.9742, and the 

AUC to 0.9975, which demonstrated enhanced generalization and reduced overfitting, highlighting the 

benefits of targeted feature reduction. While the Polynomial kernel yielded the highest precision (up to 

0.9799), its lower sensitivity (as low as 0.9237) indicates a greater risk of false negatives, which is 

particularly concerning in cancer detection. These findings underscore the importance of optimizing both 

kernel function and feature selection. The RBF kernel, when combined with targeted feature selection, 

offers the most balanced and sensitive model, making it highly suitable for breast cancer classification 

tasks where diagnostic accuracy is vital. 

 
Keywords Breast cancer; Support Vector Machine; kernel comparison; MDA-based features selection; 
severity prediction. 
 
I. Introduction  

Breast cancer poses a critical global health challenge 
and continues to be one of the most prevalent causes 
of cancer-related deaths among women worldwide. 
According to the World Health Organization (WHO), in 
2020, there were approximately 10 million cancer-
related deaths. Among all cancer types, breast cancer 
remains the most commonly diagnosed, with an 
estimated 2.26 million new cases and 685,000 fatalities 
reported worldwide [1]. Accurate diagnosis and 
prognosis of breast cancer are crucial to ensuring 
effective treatment and improving patient outcomes. 

Early detection significantly increases survival rates; 
patients diagnosed at stage I or II have a five-year 
survival rate of up to 90%, whereas for stage IV, it drops 
to approximately 31% [1], [2]. However, early-stage 
breast cancer diagnosis remains a challenge due to the 
absence of noticeable symptoms, making it imperative 
to develop more efficient and cost-effective diagnostic 
methods. 

Recent advancements in data science have 
demonstrated promising results in breast cancer 
detection and classification [3]. Support Vector 
Machine (SVM) is among the most extensively applied 
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machine learning techniques for classifying breast 
cancer types [4], [5], [6]. Its ability to manage high-
dimensional datasets and model intricate nonlinear 
patterns has made SVM a popular choice in numerous 
bioinformatics applications, especially within cancer 
genomics research [4].  

Several studies have confirmed the effectiveness of 
SVM in breast cancer diagnosis, with classification 
accuracy ranging from 52.63% to 98.24% [5]. One of 
the key factors influencing its accuracy is the selection 
of the kernel function [4]. In previous research, various 
linear and nonlinear kernel functions have been 
evaluated to optimize the performance of SVM in 
predicting breast cancer outcome [4]. In addition, 
several studies have examined the use of Least 
Squares Support Vector Machines (LS-SVM) in breast 
cancer diagnosis, achieving classification accuracy as 
high as 98.53% on image data [6]. These results 
underscore the effectiveness of SVM-based methods 
in generating accurate diagnoses and prognoses for 
breast cancer. 

The accuracy of the SVM model is affected by 
various factors, and the choice of kernel is one of the 
most significant [7], [8], [9], [10]. In general, SVM 
kernels can be categorized into linear and nonlinear 
kernels [11]. The linear kernel offers a straightforward 
structure and is known for its computational efficiency, 
which is suitable for capturing linear relationships in 
data [12]. However, its performance may be limited 
when addressing intricate nonlinear patterns, which are 
often present in a high-dimensional dataset [13]. 
Nonlinear kernels enhance flexibility by mapping data 
into a higher-dimensional space, which enables SVM 
to capture intricate relationships that may be 
overlooked by linear kernels [11]. Similarly, the 
polynomial kernel allows modeling feature interactions 
at different levels, which can be beneficial in handling 
complex data structures [13]. However, in breast 
cancer studies, further investigation is needed to 
examine the influence of different kernel functions on 
the performance of SVM-based classification models 
and the interplay between feature selection. 

This study aims to investigate the effects of various 
kernel functions used in SVM on the accuracy of breast 
cancer severity prediction. By comparing multiple 
kernel implementations in SVM models, we seek to 
identify the most effective approach for improving 
classification performance. Additionally, we will 
evaluate the selection and significance of features to 
ensure that only the most relevant factors are used in 
the classification process. The outcomes of this study 
are anticipated to provide valuable insights for SVM-
based classification techniques in medical applications, 
particularly in facilitating the early diagnosis and 
prognosis of breast cancer. This study makes three key 
contributions. First, it provides a comprehensive 
evaluation of various SVM kernel functions, both linear 

and nonlinear, to determine their effectiveness in 
classifying breast cancer severity. Second, it integrates 
feature selection using the Random Forest algorithm to 
examine how optimized feature subsets interact with 
kernel choice, thereby improving classification 
accuracy, sensitivity, and generalization. Third, it 
contributes to the development of reliable and clinically 
relevant diagnostic models by emphasizing early 
detection and minimizing false negatives, offering 
practical insights for enhancing breast cancer 
diagnosis and prognosis. 

This study is structured as follows: Section II 
presents related works, Section III presents the 
dataset, the proposed methods, the feature selection, 
and kernel types. Section IV reports the SVM 
classification results on different schemes and the 
interpretation of the findings. Section V presents a 
comparison with related studies, a discussion of 
limitations, and concludes with the main findings. 

 

II. Related Works 

Machine learning has been widely adopted in medical 
research to enhance disease diagnosis, prognosis, and 
treatment planning [14], [15]. Breast cancer becomes 
the most prevalent and deadly cancer type worldwide 
and has received growing recognition in the artificial 
intelligence (AI) and machine learning communities 
[16], [17], [18], [19], [20]. Among various classification 
techniques, Support Vector Machine (SVM) has 
demonstrated promising results in predicting breast 
cancer severity due to its robustness in handling high-
dimensional and complex datasets [21]. 

A. Support Vector Machine (SVM) for Breast 
Cancer Classification 

As a supervised learning method, SVM is frequently 
employed for binary classification problems such as 
distinguishing between benign and malignant tumors 
[22]. Several studies have validated the effectiveness 
of SVM for breast cancer classification. Research [23] 
explored the application of SVM in cancer genomics, 
highlighting its robustness in analyzing high-
dimensional data and achieving promising 
classification accuracy.  

A study by [24] introduced a novel correlation-based 
kernel designed explicitly for cancer diagnosis, 
demonstrating superior performance over classical 
kernels across five real-world gene expression 
datasets. Subsequently, the researchers introduced 
the Hadamard kernel as a parsimonious alternative for 
predicting breast cancer outcomes, underscoring the 
increasing importance of tailored kernel functions in 
improving the performance of SVM-based cancer 
classification models [11]. Additionally, [25] employed 
the Least Squares Support Vector Machine for 
classifying breast cancer and obtained an impressive 
accuracy of 98.53% when applied to microscopic 
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images. More recently, [26] combined deep learning 
approaches with SVM to improve breast cancer 
detection, demonstrating the adaptability of SVM in 
hybrid machine learning frameworks. 
B. Kernel Function Selection in SVM 
Despite these SVM advances, one of the most critical 
challenges in applying SVM to medical classification 
problems is the selection of an appropriate kernel 
function, as different kernels yield varying levels of 
classification performance [5]. 
Kernel functions significantly influence SVM’s ability to 
generalize and classify data accurately. The choice of 
kernel determines how input features are transformed, 
impacting the capability of a model to identify complex 
patterns [27]. Kernel functions in SVM can be 
categorized into two general types: linear and 
nonlinear. Linear kernels are computationally efficient 
and suitable for datasets with well-separated classes, 
but they fail to detect intricate non-linear patterns 
commonly present in biomedical data [28]. In contrast, 
non-linear kernels enable SVM to map data into higher-
dimensional feature spaces, which results in improved 
classification performance [29]. Study of [30] provided 
an extensive analysis of kernel functions, concluding 
that RBF kernels tend to be superior in handling high-
dimensional biomedical data due to their flexibility in 
capturing complex patterns. Moreover, polynomial 
kernels have shown effectiveness in modeling feature 
interactions, making them suitable for datasets with 
quadratic or cubic relationships [31]. Hadamard 
kernels, which have been applied in genomic studies, 
have also demonstrated promising results in cancer 
classification tasks [11]. However, [32] emphasized the 
importance of tuning kernel parameters correctly, as 
improper configuration can lead to poor generalization 
and reduced classification accuracy. 
C. Feature Selection for SVM-Based Breast Cancer 

Prediction 
In addition to selecting the kernel function, feature 
selection plays a pivotal role in improving SVM 
performance in medical classification. High-
dimensional datasets, such as those used in cancer 
research, often contain redundant or irrelevant features 
that can negatively impact model accuracy [33]. 
Various feature selection techniques have been 
employed to optimize SVM models. Random Forest 
has been widely used for feature selection before 
applying SVM, demonstrating improved classification 
performance by eliminating irrelevant features [34]. 
Study of [27] integrated Particle Swarm Optimization 
(PSO) with SVM to optimize feature selection, 
achieving significant improvements in breast cancer 
prediction. Similarly, [35] developed a hybrid Cat-and-
Mouse optimization algorithm to refine feature selection 
in SVM-based models, further enhancing classification 
accuracy in biomedical applications. These findings 
suggest that effective feature selection, in conjunction 

with an appropriate kernel function, is crucial for 
optimizing the performance of SVM in breast cancer 
classification. 
D. Limitations in Existing Research and Research 

Gaps 
Despite the widespread use of SVM in breast cancer 
classification, several research gaps remain. Many 
studies apply SVM with pre-selected kernels without 
systematically evaluating their impact on classification 
performance. A comprehensive analysis comparing 
different kernel functions in breast cancer severity 
prediction is still lacking. Furthermore, while feature 
selection techniques are extensively studied, the 
interaction between feature selection methods and 
kernel selection in SVM models has not been 
sufficiently explored. The combined effect of optimal 
feature selection and kernel selection remains an open 
question. Additionally, hybrid machine learning 
approaches, such as integrating SVM with evolutionary 
optimization algorithms, have shown promise but 
remain underutilized in the field of medical 
classification. To address these gaps, the present 
study conducts a comprehensive comparative analysis 
of several commonly used SVM kernel functions to 
evaluate their effectiveness in predicting the severity of 
breast cancer. Additionally, it will adapt feature 
selection techniques to optimize SVM performance 
while reducing computational complexity. The study will 
also investigate the combined effect of kernel selection 
and feature selection on classification accuracy. By 
addressing these research gaps, this work will 
contribute to the advancement of SVM-based breast 
cancer classification models, ultimately aiding in the 
development of more accurate and interpretable 
machine learning solutions for medical applications. 

 

III. Methods 
A. Data Preparation and Collection 

This study utilizes a publicly available dataset from the 
UCI Machine Learning Repository 
(https://archive.ics.uci.edu/dataset/16/breast+cancer+
wisconsin+prognostic), which has been widely used in 
previous breast cancer classification research. The 
dataset consists of 198 samples, each representing a 
breast cancer case diagnosed. It contains 33 features 
related to tumor characteristics, including 
morphological attributes and histopathological 
measurements. The dataset includes both benign and 
malignant cases, making it suitable for severity 
classification tasks. Prior to model development, data 
preprocessing is conducted to handle missing values, 
normalize feature distributions, and ensure that the 
dataset is appropriately structured for analysis. 

B. Feature Selection 

To enhance model accuracy while minimizing 
computational complexity, a feature selection process 
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is conducted before applying the model. Therefore, the 
Random Forest (RF) algorithm can be used to identify 
the most relevant and informative features [36]. In RF, 
features are selected based on their impact on 
classification performance, enabling the removal of 
redundant or less significant variables [37]. By retaining 
only the most influential features, the subsequent 
Support Vector Machine (SVM) classifier achieves 
improved generalization capability and computational 
efficiency. 

RF commonly assesses feature importance using 
two key metrics: Mean Decrease Accuracy (MDA) and 
Mean Decrease Gini (MDG). MDA quantifies a 
feature’s impact by randomly permuting its value and 
evaluating the decrease in the model’s accuracy. If the 
permutation of a feature significantly decreases 
accuracy, the feature is considered important. 
Formally, the importance of feature 𝑥𝑗 using MDA is 

calculated using Eq. (1) as follows [38]: 

𝑀𝐷𝐴(𝑥𝑗) =
1

𝑇
∙ ∑

∑ 𝐼(𝑦𝑖=𝑓(𝑥𝑖))𝑖∈𝑂𝑂𝐵 −∑ 𝐼(𝑦𝑖=𝑓(𝑥𝑖
𝑗

))𝑖∈𝑂𝑂𝐵

|𝑂𝑂𝐵|
𝑇
𝑡=1  (1) 

where 𝑇 represents the number of trees within the 

forest, OOB is the set of out-of-bag samples, 𝑦𝑖 the true 
class label of instance 𝑖, 𝑓(𝑥𝑖) is the predicted class 

label of instance iii when using the original feature set, 

𝑓(𝑥𝑖
𝑗
) is the feature vector of instance iii where the 

values of feature 𝑥𝑗 have been randomly permuted. 

MDG, in contrast, evaluates a feature’s importance 
based on the cumulative reduction in Gini impurity 
attributed to that feature across all trees in the forest. 
Gini impurity indicates the likelihood of misclassification 
when an instance is randomly assigned a label based 
on the dataset’s label distribution. The importance of a 
feature 𝑓𝑗 using MDG is calculated using Eq. (2) as 

follows [38]: 

𝑀𝐷𝐺(𝑥𝑗) =
1

𝑇
[1 − ∑ 𝐺𝑖𝑛𝑖(𝑗)𝑡𝑇

𝑡=1 ]                    (2) 

where 𝐺𝑖𝑛𝑖(𝑗)𝑡 represents the decrease in the Gini 
impurity attributed to the feature 𝑥𝑗 in tree 𝑡. The Gini 

decrease is accumulated over all nodes where 𝑥𝑗 is 

used for splitting. 
In this study, feature importance was quantified 

using the Mean Decrease Accuracy (MDA) metric with 
a permutation-based approach. MDA was chosen as 
the basis for feature selection, as the focus of the 
classification task is to improve prediction accuracy. In 
this method, the trained RF model’s predictive 
accuracy is first computed on the original dataset. 
Then, for each feature individually, its values are 
randomly permuted across all samples while keeping 
the rest of the data unchanged. This process disrupts 
the relationship between that feature and the target 
variable. The model’s accuracy is recalculated, and the 
difference between the original accuracy and the 
accuracy after permutation represents the importance 

score for that feature. A larger accuracy drop indicates 
greater importance in classification. 

For this study, the RF model was implemented with 
500 trees (n_estimators = 500), a maximum depth 
selected via cross-validation, and a fixed random seed 
(random_state = 42) to ensure reproducibility. The 
permutation importance computation was repeated 30 
times per feature, and the results were averaged to 
obtain stable MDA scores. Once MDA values were 
calculated for all 30 features, they were ranked in 
descending order. The top 20 features with the highest 
MDA scores were retained for subsequent SVM 
classification experiments. This threshold was chosen 
to balance model complexity and predictive 
performance, as preliminary trials indicated that 
including more than 20 features provided negligible 
accuracy gains while increasing training time. The RF 
feature importance scores were computed exclusively 
on the training portion of the data within each cross-
validation fold. Specifically, for each training fold, an RF 
model was fit, permutation-based MDA scores were 
calculated, and the top 20 features were selected. 
These selected features were then used to train the 
SVM model on that fold. The corresponding validation 
fold remained completely unseen during both feature 
ranking and SVM training. This fold-by-fold approach 
ensured that no information from the validation or test 
data influenced the feature selection process, thereby 
avoiding overly optimistic performance estimates. 

C. Kernel of SVM 

Kernel functions are a fundamental component of the 
SVM, as they define how the input data is transformed 
and separated into a higher-dimensional space. The 
choice of kernel significantly influences the model's 
ability to detect linear or nonlinear patterns in data, 
especially in high-dimensional biomedical datasets 
such as those used in breast cancer classification. This 
study evaluates four widely used kernel functions: 
linear, polynomial, radial basis function (RBF), and 
sigmoid. 

1. Linear Kernel 

The linear kernel is the most basic form of kernel 
function, defined as the inner product between two 
vectors and formulated in Eq. (3) as follows [39]: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
⊺𝑥𝑗                                  (3) 

where 𝑥𝑖 and 𝑥𝑗  represent two input feature vectors in 

the dataset, each corresponding to a sample. It is 
suitable for linearly separable data and is 
computationally efficient. In medical datasets with well-
separated classes, the linear kernel often performs 
well. However, it may not be sufficient for capturing the 
complex, nonlinear relationships typical of cancer data. 

2. Polynomial Kernel 
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The polynomial kernel allows SVM to fit curved 
boundaries and model interactions between features. It 
is calculated using Eq. (4) as follows [39]: 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
⊺𝑥𝑗 + 𝑟)

𝒅
                      (4) 

where 𝛾 is a scale parameter, 𝑟 is a coefficient (often 

called bias), and 𝑑 is the polynomial degree. Higher-

degree polynomials enable the model to learn more 
complex relationships but may risk overfitting if not 
carefully tuned. 

3. Radial Basis Function (RBF) Kernel 

The RBF, also referred to as the Gaussian kernel, 
maps input data into an infinite-dimensional space and 
is calculated using Eq. (5) as [39]: 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾(𝑥𝑖 − 𝑥𝑗)
⊺
(𝑥𝑖 − 𝑥𝑗))      (5) 

where 𝛾 controls the width of the kernel. The RBF 

kernel is highly effective for capturing nonlinear 
patterns and is particularly suitable when the decision 
boundary is not clearly linear. It is widely used in 
bioinformatics and medical diagnostics. 

4. Sigmoid Kernel 

Inspired by neural networks, this kernel is calculated 
using Eq. (6) as follows [40]: 

𝐾(𝑥𝑖 , 𝑥𝑗) = tanh(𝛾𝑥𝑖
⊺𝑥𝑗 + 𝑟)        (6) 

where tanh denotes the hyperbolic tangent function. 

This kernel resembles the structure of a two-layer 
neural network and is capable of modeling nonlinear 
patterns.  

D. Hyperparameter Tuning 

To ensure fair comparison and optimal performance, 
the Support Vector Machine classifiers were tuned 
using kernel-specific grids and repeated cross-
validation. For the linear kernel, the penalty parameter 

𝐶 was explored over {2−5, 2−3, … , 215}. For the radial 

basis function (RBF) kernel, 𝐶 was varied over the 

same range, while 𝛾 was varied over {2−15, 2−3, … , 23}. 
For the polynomial kernel, C and 𝛾 used the same 

search ranges, with polynomial degree 𝑑 ∈ {2,3,4} and 

𝑐𝑜𝑒𝑓0 ∈ {0,1}. The sigmoid kernel was tuned over the 

same C and coef0 as the polynomial kernel. All 

parameter combinations were evaluated using 10-fold 
cross-validation repeated three times, with the mean 
area under the ROC curve (AUC) as the selection 
criterion. Preprocessing (min-max scaling), class 
balancing (SMOTE), and feature selection were 
applied within each training fold only to prevent 
information leakage. The final models were retrained 
on the whole training set using the best 
hyperparameters and then evaluated on the held-out 
test set. 

E. Model Evaluation and Performance Metrics 

To evaluate the SVM model’s performance with 
different kernels, four standard classification metrics 

are used. Accuracy evaluated the overall model 
performance, which represents the proportion of 
correct predictions. Sensitivity measures the model’s 
ability to accurately detect malignant cases, 
simultaneously minimizing both false positives and 
false negatives. Additionally, the Area Under the Curve 
(AUC) is calculated to assess the model’s ability to 
classify cases based on the severity levels. As 
formulated in Eq. (7), accuracy indicates the ratio of 
correct predictions to the total number of prediction 
outcomes. It serves as a key metric for evaluating the 
model’s capability in differentiating samples from 
various sources. Achieving high accuracy is crucial for 
the detection of breast cancer and determining its level 
of severity.  

Sensitivity, as formulated in Eq. (8), indicates the 
model’s capacity to accurately classify true positives, 
which indicate the existence of breast cancer, but are 
misclassified as absent. Precision, as formulated in 
Eq.9, reflects the model’s ability to accurately classify 
the positive instances, i.e., cases where breast cancer 
is misclassified as existing despite its absence. This 
metric is particularly important in clinical settings where 
unnecessary alarms can lead to additional anxiety, 
costly follow-up procedures, or overtreatment. High 
sensitivity is important to reduce the risk of 
inappropriate treatment of breast cancer. The three 
metrics discussed above are summarized in Table 1 
and calculated using the following formulas. 

Table 1. Confusion matrix 

 
Predicted as 

Positive 
Predicted as 

Negative 

Actual 
Positive 

True Positive (TP) 
False Negative 

(FN) 

Actual 
Negative 

False Positive 
(FP) 

True Negative 
(TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (8) 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                           (9) 

AUC, as formulated in Eq. (9), measures how well the 

model differentiates between classes, which offers a 
comprehensive view of performance across various 
threshold performances. A higher AUC value reflects 
stronger discriminatory power in identifying the 
existence versus absence of breast cancer  

F. Experimental Workflow 

The study follows a structured workflow to ensure a 
systematic analysis of breast cancer severity 
classification using SVM with kernel comparison, as 

shown in Fig. 1, as follows. The first step involves data 

preprocessing, where missing values are handled and 
features are standardized. Following this, feature 
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selection is conducted using the Random Forest 
algorithm. The importance of features is measured 
based on the Mean Decreased Accuracy (MDA) score. 
Once the most significant features are identified, the 
SVM model is trained and tested using different kernel 
functions. A comparative analysis of kernel functions is 
performed to determine which approach provides the 
best classification performance. Finally, model 
evaluation metrics are analyzed to validate the 
effectiveness of the proposed approach. This 
methodology provides a comprehensive approach to 
optimizing SVM-based breast cancer severity 
classification by integrating feature selection and kernel 
function evaluation.  

 

IV. Result and Analysis 
A. Preprocessing data 

The dataset contained no missing values, as confirmed 
during the initial inspection. To ensure uniform feature 
scaling and prevent variables with larger numeric 
ranges from dominating the SVM optimization process, 
all 30 numerical features were normalized using min-
max scaling to the range of [0,1]. The normalization 
was applied independently to each feature according to 
Eq. 10 as follows. 

𝑥′ =
𝑥−min 𝐴

max 𝐴−min 𝐴
   (10) 

where A is a variable (feature/column) in the dataset, 
𝑥 ∈ 𝐴 is the original feature value, and 𝑥′ is the 

normalized value in the range [0,1].  
To address class imbalance between malignant and 
benign cases, the Synthetic Minority Over-sampling 
Technique (SMOTE) was applied with a 𝐾 = 5 nearest 

neighbors and a duplication size of 100%. This 
generated synthetic samples for the minority class, 
which were combined with the original dataset and 
shuffled to randomize observation order. All 
preprocessing steps were performed before feature 
selection and model training, ensuring that the training 
and testing splits (0.8 and 0.2) were drawn from the 
same standardized feature space. Random seeds were 
fixed (set.seed(123)) for reproducibility. 

B. Kernel Selection  

Before evaluating model performance, the dataset was 
visualized using Support Vector Machine (SVM) 
decision boundaries generated by four kernel 
functions: Linear, Polynomial, RBF, and Sigmoid. 
These visualizations, shown in Fig. 2, provide an initial 
understanding of how each kernel transforms the 
space of features and segregates the two classes.  
The Linear kernel produces a straight boundary, 
indicating its suitability for linearly separable data. 
While it creates a clear margin between some regions, 
its rigid structure may struggle in areas with 
overlapping or complex distributions. The Polynomial 
kernel introduces curved decision boundaries that can 
capture more intricate relationships between features. 
However, depending on the polynomial degree, this 
flexibility may lead to either over-simplification or 
overfitting. The RBF kernel demonstrates highly 

 
 

Fig. 1. Flowchart of data analysis 

 

 
 

Fig 2. SVM decision boundaries based on kernel 
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adaptive boundaries that curve around data clusters, 
suggesting a strong capability to model non-linear 
patterns. Visually, it appears most effective in 
separating densely packed or irregularly shaped 
regions. The Sigmoid kernel generates boundaries with 
a soft, S-shaped curve. Though it introduces 
nonlinearity, the separation is less distinct compared to 
other kernels, potentially limiting its ability to divide the 
classes clearly. These plots provide valuable insights 
into how each kernel function shapes the classification 
space, helping to motivate the need for a more detailed 
performance comparison in the following sections. 

C. Features Selection Using Random Forest 

The MDA metric from RF is employed as a criterion for 
selecting important features to enhance classification 
performance while minimizing computational 
complexity. This method assesses the effect of each 
feature on the accuracy of the model by randomly 
permuting its samples and measuring the subsequent 
drop in prediction performance [41]. A larger drop in 
accuracy indicates a more important feature. The 
ranking shown in Fig. 3 reveals that among the 30 
original features, several exhibit significantly higher 
contributions to classification accuracy. Notably, 
features F22, F21, F24, F23, and F28 exhibited the 
highest MDA values, indicating their strong influence 
on the model's predictive performance, whose score is 
presented in Table 2 below. 

To optimize the balance between accuracy and 
computational efficiency, the top 20 features were 
selected based on their MDA rankings. These features 
demonstrated substantial predictive importance, with 

MDA values ranging from approximately 0.075 to 
0.004. By excluding the lower-ranked features, which 
contributed minimal or negligible improvement, the 
dataset's dimensionality was reduced without 
compromising classification integrity. 

 

Table 2. Features importance based on MDA scores 

  MDA   MDA   MDA 

F21 0.0753 F3 0.0206 F5 0.0043 

F23 0.0703 F22 0.0139 F18 0.0024 

F24 0.0644 F11 0.0117 F16 0.0022 

F8 0.0528 F13 0.0107 F30 0.0020 

F28 0.0527 F2 0.0101 F20 0.0016 

F27 0.0393 F25 0.0076 F9 0.0015 

F14 0.0302 F26 0.0067 F15 0.0015 

F4 0.0290 F17 0.0047 F10 0.0015 

F7 0.0256 F29 0.0046 F19 0.0011 

F1 0.0214 F6 0.0045 F12 0.0010 

 
This selection approach not only enhances the 
generalization capability of the subsequent SVM model 
but also minimizes the risk of overfitting and reduces 
training time. The retained features were then used as 
input for the kernel comparison in the SVM 
classification stage 

D. Performance by Utilizing Kernel Optimization 
without Performing Feature Selection  

To establish a baseline and evaluate the impact of 
feature selection, the Support Vector Machine (SVM) 
model was initially tested using all available features 
without prior dimensionality reduction. The kernel 
functions that form the focus of this research are 
Linear, Polynomial, Radial Basis Function (RBF), and 
Sigmoid. The classification performance was assessed 
using four standard metrics: Accuracy, Sensitivity, 
Precision, and AUC (Area Under the ROC Curve), as 
summarized in Table 3. 
 
Table 3. SVM Performances based on Feature 
Selection and Kernel Optimization 

Kernel Acc. Sensitivity Precision AUC 

Linear 0.9746 0.9772 0.9725 0.9967 

Polynom 0.9516 0.9237 0.9786 0.9945 

Radial 0.9744 0.9772 0.9722 0.9968 

Sigmoid 0.9524 0.9758 0.9327 0.9922 

 
The Linear kernel yielded the highest accuracy 
(97.46%) and sensitivity (97.72%), demonstrating 
excellent ability to identify malignant cases correctly. 
The RBF kernel performed comparably, with slightly 

 

Fig 3. MDA and MDG ranking of random forest 
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lower accuracy (97.44%) but the highest AUC 
(99.68%), indicating superior performance in 
distinguishing between classes across all thresholds. 
The Polynomial kernel achieved the highest precision 
(97.86%), reflecting its strength in minimizing false 
positives, but showed a noticeable drop in sensitivity 
(0.9237), raising concerns about its reliability in 
detecting all malignant cases. The Sigmoid kernel 
exhibited moderate and balanced results, with strong 
sensitivity (97.58%), although its overall accuracy and 
AUC were slightly lower than those of the linear and 
RBF alternatives. These initial results suggest that, 
without feature selection, Linear and RBF kernels offer 
the most consistent and reliable performance for breast 
cancer severity classification. In the next phase, the 
influence of feature selection on these kernel 
performances is examined to evaluate potential 
improvements in both accuracy and model efficiency. 

E. Performance by Utilizing Feature Selection 
and Kernel Optimization 

Table 4 presents the performance of four kernel 
functions: linear, Radial Basis Function (RBF), and 
polynomial, with a combination of feature selection for 
breast cancer classification. 
 
Table 4. Performance analysis of SVM with feature 
selection and kernel selection 

Kernel Acc. Sensitivity Precision AUC 

Linear 0.9734 0.9749 0.9722 0.9962 

Polynom 0.9525 0.9242 0.9799 0.9952 

Radial 0.9754 0.9770 0.9742 0.9975 

Sigmoid 0.9489 0.9646 0.9357 0.9885 

 

The linear kernel achieves an accuracy of 97.34%, 
indicating strong overall performance in classifying the 
majority of breast cancer cases correctly. Its sensitivity 
of 97.49% represents a slight decrease from the 
previous result of 97.72%, suggesting that feature 
selection maintained high classification capability while 
potentially enhancing model efficiency and 
interpretability. With an AUC of 99.62%, the linear 
kernel demonstrates excellent discriminative power in 
distinguishing between malignant and benign cases, 
minimizing both false positives and false negatives. 
The RBF kernel with feature selection yields the 
highest accuracy among all kernels at 97.54%, 
outperforming both the RBF kernel without feature 
selection (97.44%) and the linear kernel. Its sensitivity 
of 97.70% is also the highest, indicating slightly better 
performance in detecting malignant cases. The AUC of 
99.75% is marginally superior to that of the linear 
kernel, confirming the RBF kernel’s effectiveness in 
distinguishing between classes. 

The polynomial kernel achieves the lowest 
sensitivity at 92.42%, suggesting reduced 
effectiveness in identifying malignant cases compared 

to other kernels. Its accuracy of 95.25% is also lower 
than both the linear and RBF kernels. Although its 
precision is the highest at 97.99%, this may reflect a 
trade-off with sensitivity. The AUC of 99.52%, while still 
high, is below that of the linear and RBF kernels. The 
sigmoid kernel achieves the lowest overall 
performance, with an accuracy of 94.89% and a 
precision of 93.57%. Although its sensitivity is relatively 
high at 96.46%, the AUC of 98.85% is the lowest 
among all kernels, indicating reduced discriminative 
capability. When applying feature selection and kernel 
optimization, all four kernels demonstrate strong 
classification performance. The RBF kernel offers the 
best overall balance with the highest accuracy, 
sensitivity, and AUC. The linear kernel also performs 
consistently well, particularly in terms of accuracy and 
AUC. While the polynomial kernel excels in precision, 
it is less effective in sensitivity. The specific 
performance priorities of the classification task should 
therefore guide the choice of kernel. 

 

V. Discussion 

This study evaluated the performance of Support 
Vector Machine (SVM) classifiers using four kernel 
functions: linear, Polynomial, Radial Basis Function 
(RBF), and Sigmoid for predicting breast cancer 
severity. The evaluation was conducted under two 
scenarios: first, using the complete set of features, and 
second, after applying feature selection based on Mean 
Decrease Accuracy (MDA) scores from a Random 
Forest model, where the top 20 most important features 
were retained to enhance model efficiency and focus. 

The findings indicate that the choice of kernel 
function has a significant influence on model 
performance, particularly in medical classification tasks 
where sensitivity is crucial. Sensitivity measures the 
model's ability to correctly identify malignant cases, 
which is particularly important in breast cancer 
diagnosis, where false negatives can result in delayed 
or missed treatments. Among the tested kernels, the 
RBF consistently yielded the highest sensitivity: 
97.72% without feature selection and 97.70% with 
feature selection. These results highlight the RBF 
kernel's strong ability to detect malignant cases 
accurately while maintaining other performance 
metrics. This aligns with prior studies such as [42], 

which reported sensitivity up to 98.7% in optimized 
SVM models for medical classification. 

After applying feature selection, the RBF kernel 
achieved the highest accuracy of 97.54% and the 
highest AUC of 99.75%, indicating superior overall 
performance and excellent discrimination between 
malignant and benign cases. These outcomes suggest 
that the RBF kernel offers a balanced combination of 
high sensitivity, strong precision, and overall 
classification reliability. In contrast, the Linear kernel 
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also performed competitively, achieving 97.49% 
sensitivity and 99.62% AUC after feature selection. 
While its performance was slightly lower than that of 
RBF, the linear kernel remains a strong candidate due 
to its computational simplicity and consistent results. 
This is consistent with findings in similar classification 
contexts, such as diabetes detection [43]. 

The Polynomial kernel recorded the highest 
precision in both scenarios (97.86% without feature 
selection and 97.99% with), reflecting its effectiveness 
in minimizing false positives. However, its sensitivity 
was the lowest among the four kernels at 92.37% 
without and 92.42% with feature selection. This makes 
this kernel less suitable in clinical settings where 
missing malignant cases is highly undesirable. The 
Sigmoid kernel yielded moderate results across metrics 
and did not outperform other kernels in any category, 
limiting its suitability for high-stakes diagnostic 
applications. 

The performance comparison between models with 
and without feature selection showed only marginal 
improvements, particularly in AUC and sensitivity for 
the RBF kernel. However, the use of RF-based feature 
selection still provided practical benefits by reducing 
the dimensionality of the input space, improving 
computational efficiency, and enhancing the 
interpretability of the results. In real-world applications, 
especially where model transparency and speed are 
valued, the ability to focus on a smaller set of the most 
predictive features may justify the additional 
preprocessing step, even if absolute performance 
gains are modest. This trade-off highlights the role of 
feature selection not only in maximizing accuracy but 
also in promoting generalization and practical 
deployment. 

This high AUC of the RBF kernel also indicates that 
it maintains superior discriminative ability across a 
range of classification thresholds, which means it can 
effectively separate malignant from benign cases under 
varying decision criteria. In a real-world diagnostic 
context, this translates to greater flexibility in tuning the 
classification threshold to prioritize clinical objectives. 
For example, in breast cancer screening, sensitivity is 
typically prioritized to minimize false negatives, thereby 
reducing the risk of missed diagnoses. Our results 
show that the RBF kernel not only achieves the highest 
AUC but also delivers the highest sensitivity among the 
evaluated kernels, which reinforces its suitability for 
early detection tasks, where failing to identify a 
malignant case can have serious consequences. While 
the polynomial kernel demonstrated the highest 
precision, this came at the cost of reduced sensitivity, 
that is potential to more missed positive cases. Thus, 
the trade-off between kernels involves balancing the 
clinical imperative for high sensitivity against the need 
to reduce false positives. Given the potential for patient 

anxiety, unnecessary follow-up tests, and associated 
costs arising from false positives, the choice of kernel 
should be informed by the specific diagnostic setting, 
with the RBF kernel offering the most adaptable 
performance profile for sensitivity-driven screening 
programs. Additionally, reducing the number of 
features improved model interpretability and likely 
reduced the risk of overfitting, which is important when 
handling complex biomedical data. 

The superior performance of the RBF kernel 
compared to the linear, polynomial, and sigmoid 
alternatives can be attributed to its ability to model 
complex, non-linear relationships between features 
and class labels [44], [45]. Breast cancer morphological 
and textural features often exhibit non-linear 
interactions, which the RBF kernel effectively captures 
by projecting data into a high-dimensional feature 
space, where classes become more separable. Unlike 
the linear kernel, which assumes a purely linear 
boundary, or the polynomial kernel, which may overfit 
when degree is high, the RBF kernel adapts its 
flexibility through the 𝛾 parameter in enabling a balance 

between bias and variance. Prior studies in medical 
imaging and cancer diagnosis have also reported that 
the RBF kernel consistently outperforms other kernels 
in handling heterogeneous biomedical data [42] which 
is owed to its robustness to irrelevant features and 
capacity to handle overlapping class distributions. This 
property, combined with our targeted feature selection 
strategy, likely explains the observed balance between 
sensitivity, precision, and AUC, making the RBF kernel 
the most reliable choice for our classification task.  

 

VI. Conclusion 

This study aimed to evaluate the impact of different 
kernel functions (linear, Polynomial, RBF, and Sigmoid) 
on the performance of SVM models for predicting 
breast cancer severity, both with and without feature 
selection using Random Forest-based MDA. The 
results indicate that the choice of kernel function has a 
significant impact on classification outcomes. Among 
the tested kernels, the RBF kernel consistently 
achieved the best overall performance, with an 
accuracy of 97.44%, a sensitivity of 97.72%, a 
precision of 97.22%, and an AUC of 99.68% without 
feature selection. After applying feature selection, its 
performance further improved to an accuracy of 
97.54%, sensitivity of 97.70%, precision of 97.42%, 
and AUC of 99.75%, which shows its strong ability to 
balance diagnostic sensitivity and overall reliability. The 
Linear kernel also performed competitively, with an 
accuracy of 97.34% and AUC of 99.62% after feature 
selection, which makes it a practical alternative due to 
its computational simplicity. The Polynomial kernel 
achieved the highest precision (97.99%) but suffered 
from low sensitivity (92.42%), while the Sigmoid kernel 
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produced moderate results across all metrics, therefore 
limiting its clinical applicability. Future research should 
build on these results by validating the approach on 
larger and more diverse datasets to strengthen 
generalizability across populations. Another promising 
direction is the development of hybrid models that 
integrate SVM with ensemble or deep learning 
methods to capture more complex nonlinear 
relationships while preserving interpretability. Adaptive 
feature selection strategies tailored to specific patient 
cohorts could also improve robustness and reduce 
overfitting risks. Beyond algorithmic improvements, 
future efforts should explore the hyperparameter 
optimization of kernel parameters, longitudinal studies 
that incorporate temporal patterns in patient data, and 
the multimodal integration of genomic, imaging, and 
clinical data. Importantly, translating these models into 
clinical decision-support systems and conducting 
prospective clinical trials would provide evidence of 
real-world applicability and clinical utility. Overall, these 
directions will guide future research toward the 
development of reliable, scalable, and clinically 
applicable AI-based diagnostic tools that can support 
early detection and personalized treatment planning in 
breast cancer care. 
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