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Abstract: The increasing prevalence of brain cancer has emerged as a significant global health issue, with
brain neoplasms, particularly gliomas, presenting considerable diagnostic and therapeutic obstacles. The
timely and precise identification of such tumors is crucial for improving patient outcomes. This
investigation explores the advancement of Convolutional Neural Networks (CNNs) for detecting brain
tumors using MRI data, incorporating the Whale Optimization Algorithm (WOA) for the automated tuning
of hyperparameters. Moreover, two callbacks, ReduceLROnPlateau and early stopping, were utilized to
augment training efficacy and model resilience. The proposed model exhibited exceptional performance
across all tumor categories. Specifically, the precision, recall, and F1-scores for Glioma were recorded as
0.997, 0.980, and 0.988, respectively; for meningioma, as 0.983, 0.986, and 0.984; for no tumors, as 0.998,
0.998, and 0.998; and for pituitary, as 0.997, 0.997, and 0.997. The mean performance metrics attained were
0.994 for precision, 0.990 for recall, and 0.992 for F1-score. The overall accuracy of the model was
determined to be 0.991. Notably, incorporating callbacks within the CNN architecture improved accuracy
to 0.994. Furthermore, when synergized with the WOA, the CNN-WOA model achieved a maximum accuracy
of 0.996. This advancement highlights the effectiveness of integrating adaptive learning methodologies
with metaheuristic optimization techniques. The findings suggest that the model sustains high
classification accuracy across diverse tumor types and exhibits stability and robustness throughout
training. The amalgamation of callbacks and the Whale Optimization Algorithm significantly bolster CNN
performance in classifying brain tumors. These advancements contribute to the development of more
reliable diagnostic instruments in medical imaging.
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. Introduction

The increasing incidence of brain cancer has become
a significant public health concern globally. Recent
findings highlight a growing trend in diagnosing

accurately, which is vital given the urgency associated
with cancer treatment [5]. For instance, integrating
deep learning with magnetic resonance imaging (MRI)
has been highlighted as an efficient approach for

cerebral neoplasms, which may result from various
factors, including innovations in imaging methods and
enhanced awareness among healthcare practitioners
and patients [1]. The World Health Organization has
emphasized that early detection is crucial for improving
patient outcomes, as it allows for timely interventions
that can significantly enhance the survival rate [2].
Brain tumors, particularly gliomas, present unique
challenges due to their complex nature and the critical
functions of the brain [3]. In early detection,
technological advancements, especially those related
to deep learning and artificial intelligence, have shown
significant promise in improving diagnostic accuracy.
Deep learning techniques, such as Convolutional
Neural Networks (CNNs), have been employed to
analyze medical imaging data, enabling the
identification of tumors at earlier stages [4]. These
methods can handle large volumes of data swiftly and

detecting brain tumors, offering improved precision [6].
Moreover, the development of applications that utilize
deep learning for early brain cancer detection is gaining
traction. These applications aim to provide healthcare
professionals with tools that enhance diagnostic
capabilities and facilitate better patient management
[7].

Convolutional Neural Networks (CNNs) have
become a cornerstone in medical imaging, particularly
for classifying brain tumors from Magnetic Resonance
Imaging (MRI) datasets. Recent advancements in deep
learning techniques have significantly improved
diagnostic accuracy and efficiency, making CNNs a
vital tool in neuro-oncology. This article synthesizes
findings from various studies published in the last three
years, highlighting the effectiveness of CNNs in brain
tumor classification, along with the reported accuracy
and F1 scores.
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Significant advancements in cancer research are
evident. Among these developments, various CNN
architectures have been employed in brain tumor
classification, demonstrating unique strengths. For
instance, Mahjoubi reported that their proposed CNN
networks achieved an accuracy of 95.44% and an F1
score of 95.36% in classifying brain tumors from MRI
images [8]. Similarly, Raza developed a hybrid deep
learning model that combined CNNs with traditional
machine learning techniques, achieving an accuracy of
94.5% [9]. Transfer learning has also been pivotal; for
example, [10] utilized a transfer learning model based
on AlexNet, achieving an impressive accuracy of
99.62%. Another study, Inception architecture by [11]
reports that their proposed CNN networks achieved an
accuracy of 0.993. Furthermore, the FL+VGG16 [12]
study has achieved an accuracy of 0.98. There is also
research using EfficientnetV2S that has achieved an
accuracy of 0.989 [13]. The last one is research using
a 2DCNN ensemble conducted by [14] and Xception
conducted by [15], which achieved accuracies of
0.9647 and 0.940, respectively. The above state-of-
the-art research still has room for improvement.

Data augmentation methodologies have played an
essential role in enhancing the resilience of
Convolutional Neural Network (CNN) architectures.
Rasool [16] provided evidence that their integrative
deep learning framework, which synergistically
incorporated GoogleNet for feature extraction
alongside Support Vector Machine (SVM) classifiers,
attained a classification accuracy of 97.5%. This
methodology highlights the crucial need to augment
training datasets to mitigate the risk of overfitting and
improve the model's generalizability. Furthermore, the
investigation analyzed a range of convolutional neural
network (CNN) methodologies and concluded that
proficient data augmentation practices could lead to
substantial improvements in classification efficacy [17],
[18]. To enhance the efficacy of deep learning, a crucial
step involves appropriately utilizing hyperparameters.
Hyperparameters are variables that remain fixed during
the training of a machine learning model, and their
selection significantly influences the model's accuracy
and performance. As noted by Shi et al., the
effectiveness of deep learning methodologies heavily
relies on the correct hyperparameter configurations,
which the user establishes before the model training
process begins [19]. In numerous instances,
inadequate hyperparameter choices can result in
suboptimal model performance, underscoring the
significance of a strategic approach in this
customization [20].

Researchers can employ two strategies to
determine the best hyperparameters: manually
performing repeated experiments or automatically
using optimization algorithms. Some commonly utilized

algorithms are Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Genetic Algorithm (GA),
Grey Wolf Optimization (GWO), and Whale
Optimization Algorithm (WOA) [21] [22]. Among these
options, WOA was selected for its benefits in locating
optimal solutions through a method inspired by the
hunting techniques of whales. WOA has demonstrated
its effectiveness across various optimization tasks in
deep learning, as noted by Sanmorino et al [23]. It was
observed that this optimization technique can enhance
model performance with greater efficiency [23].

WOA operates by exploring a broad search
landscape to identify optimal hyperparameter values,
and this algorithm has the advantage of avoiding local
minima often encountered by traditional optimization
methods. The research conducted by llemobayo et al.
highlights how different techniques for hyperparameter
tuning, including WOA, can minimize the time and
resources necessary to attain high accuracy in a model
[24]. Furthermore, WOA offers scalability and
sustainability advantages when training becomes more
intricate. This is elaborated upon in the study by Rao
and Jaganathan [22].

Simple
Good Exploration and Exploitation .
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CNN
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GradCAM

Fig. 1. Research Gap Visualization

Thus, employing a suitable optimization algorithm,
such as WOA, enhances the efficiency of the
hyperparameter search process and plays a crucial
role in achieving superior performance in deep learning
models. This is particularly important, as effective
hyperparameter selection can significantly enhance the
accuracy of the developed model. Based on the
provided explanation, this research aims to construct a
deep learning model that integrates automatic
hyperparameter search using WOA on brain cancer
MRI datasets. This research is expected to yield a
model that outperforms previous studies conducted in
this area.

This article presents a scenario illustrating the
outcomes of a vanilla CNN-based deep learning model,
derived from parameters obtained using the default
hyperparameters. The second scenario employs
callbacks with predetermined hyperparameters,
whereas the third uses hyperparameters derived from
the outcomes of the WOA search. To implement WOA,
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an objective function will be established to achieve
optimal accuracy.

Despite achieving optimal outcomes, deep learning
models often remain enigmatic regarding their
functionality and comprehensibility, primarily due to
their reliance on black-box mechanisms for feature
extraction [25], [26], [27]. This leads to another
problem, namely the difficulty of revealing these
mysterious parts. To explain this, explainable Al can be
employed so that consumers are not perplexed about
how the deep learning model generates results, and
the tumor's location in the brain can be correctly
identified. To address this, Grad-CAM can help deep
learning models explain where the brain cancer is in an
image [28]. The capability above is of paramount
importance within the realm of medical applications, as
healthcare professionals require the ability to validate
and comprehend the underlying reasoning associated
with model predictions, thereby fostering trust and
promoting the integration of artificial intelligence tools

Based on the explanation provided, Fig. 1 illustrates
the research gap identified in this study. Research
contributes by constructing a deep learning model
automatically  built to determine the best
hyperparameters using the whale optimization
technique. This model defines the hyperparameter
value based on the dataset used. Additionally, the best
results can be achieved by segmenting the model
findings using Grad-CAM. This research is structured
as follows: introduction, explanation of the methods

used, including dataset preparation, data
preprocessing, models employed, ablation
experiments conducted on prepared scenarios,

evaluation, and conclusion.
Il. Method

The approach utilized in this research can be outlined
in the sequence shown in Fig. 2. This investigation
commences with the acquisition of datasets. The
datasets were procured from the reference pages of
prior research studies. Subsequently, the downloaded

Preprocessing

Cleaning

Augmentation

~

Dataset

Train model with

| CNN

| CNN-+Callback ‘

| CNN+Callback+WOA

. Y, 9 { Trained Model H

Fig. 2. Research Methodology

Training Dataset

Class prediction ’

Meningioma Pituitary No Tumor Glioma

into clinical practice [25], [29].

As previously explained, this study aims to answer
the following research question: RQ1: How can a deep
learning model be developed with improved accuracy
compared to current research? RQ2: How can brain
tumor area segmentation be visualized from a deep
learning model?

dataset undergoes a rigorous data preprocessing
phase, which encompasses validating the dataset size,
augmenting the dataset, and organizing appropriate
folders for each class within the dataset. Following the
data preprocessing stage, the next step involves
constructing the Convolutional Neural Network (CNN)
architecture and developing a basic model.
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In addition to the foundational model, a
supplementary model is devised by incorporating
callbacks into the CNN framework. Upon completing
the foundational model development, the code is
further refined by integrating automated
hyperparameter optimization utilizing the Whale
Optimization Algorithm (WOA). After implementing this
optimization, the process progresses to the training
phase, which continues until the optimal model is
derived from the results of the WOA search. The final
step involves extensive evaluation of the constructed
model utilizing testing data. This sequence of
processes is illustrated in Fig. 2.

A. Dataset

This study focuses on preprocessing three pivotal
datasets: Figshare [30], SARTAJ, and BR35H. These
establish a comprehensive framework for training,
validating, and testing models to identify brain tumors
within MRI imaging. This dataset can be accessed on
the Kaggle platform [31]. This dataset has been
processed, and some files contain incomplete or
inaccurate data. The total number of datasets is 6438,
divided into two parts, namely, 5127 training
datasets and 1311 testing datasets. This dataset is
then used for the modeling process. Some examples of
brain tumor images are shown in Fig. 3.

Fig. 3. The Brain Tumor Dataset a) Meningioma b)
Pituitary ¢c) No Tumor d) Glioma

B. Data Preprocessing

The pre-processing of datasets for detecting brain
tumors constitutes a vital phase in guaranteeing the

efficacy of machine learning models, especially those
that leverage advanced deep learning methodologies.
This dataset is then augmented with parameters such
as those in Table 1. This technique allows the model to
learn to recognize objects from both orientations, which
is especially useful in situations where the orientation
of an object is variable. Research has indicated that
such transformations can substantially enhance the
model's capacity for generalization; random rotation
can yield considerable advancements in model
accuracy as it exposes the network to a broader
spectrum of object orientations and spatial
configurations [32], [33] [34], [35].

Moreover, varying contrast throughout the training
process can significantly aid in refining the model's
ability to extract relevant features, thereby mitigating
the risk of overfitting [33], [34], [36]. Random zoom
techniques can also effectively reduce model overfitting
and improve performance on previously unseen data
[37], [38]. In contrast, random translation instructs the
model to maintain robustness against variations in
object placement, which frequently occur in real-world
scenarios [38], [39].

Table 1. Dataset Augmentation Parameter

Action Value

random flip horizontal

random rotation 0.02; fill mode=constant

random contrast 0.1

random zoom height factor=0.01, width
factor=0.05

random translation  height factor=0.0015, width
factor=0.0015, fill

mode=constant

C. Modelling

Convolutional Neural Networks (CNNs) have emerged
as a formidable tool within deep learning, particularly in
image processing applications. The structural design of
these networks is intended to autonomously and
adaptively acquire spatial hierarchies of characteristics
from input images, rendering them especially effective
for applications such as medical image analysis and
object recognition [40]. The input to a Convolutional
Neural Network (CNN) is conventionally represented
as a multi-dimensional array that encapsulates an
image, with each pixel value signifying a particular
intensity level. This input undergoes processing
through a succession of convolutional layers, wherein
the fundamental operation is the convolution itself.
Convolution entails the systematic traversal of a filter
(or kernel) across the input image, generating feature
maps that accentuate distinct patterns or features
present in the image [41]. The selection of kernel
dimensions is paramount; small kernels can capture
intricate details, whereas larger kernels can delineate
more extensive features [42]. For instance, a typical
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kernel size is 3x3, which strikes a balance between
detail and computational efficiency.

Strides denote the number of pixels traversed by the
filter across the image throughout the convolution
process. A stride of one indicates that the filter
progresses one pixel at a time. In contrast, a stride of
two omits every other pixel, thereby diminishing the
dimensions of the resultant feature map [41]. Padding
represents a crucial concept in image processing,
involving the addition of extra pixels surrounding the
input image to control the spatial dimensions of the
resulting output. Widely utilized padding methodologies
encompass 'valid' padding (which entails no extra
padding) and 'same' padding (where the dimensions of
the production are congruent with those of the input).
Lecun[43] defines that the core of CNN lies in the
convolution operation, which can be expressed as Eq.
(1) [44]

k k
Yi(,j) = %:1 Zg=1 Xitm,j+n Wr(n1)1 +b®), (1)

where x; ; denotes the input pixel intensity at location

iJ, w,(,i‘zl represents the convolution kernel weights of

the k-th filter, b®is the corresponding bias term, and

yi(‘f) is the resulting feature map. This formulation

allows the network to learn spatially localized patterns
critical for identifying tumor regions.

Activation functions are of paramount significance in
the structural design of neural networks, as they
facilitate the introduction of non-linearity, thereby
empowering the models to discern intricate patterns
within datasets. The Rectified Linear Unit (ReLU) is
highly regarded among the various activation functions.
It has established itself as a fundamental component
that is beneficial for Convolutional Neural Networks
(CNNs) due to their efficacy in alleviating challenges
such as the vanishing gradient problem [45]. The
mathematical formulation of ReLU permits it to yield a
value of zero for negative inputs while enabling positive
inputs to traverse linearly, thus maintaining the inherent
characteristics of the data.

The widespread adoption of the Rectified Linear
Unit (ReLU) activation function can be ascribed to its
inherent simplicity and efficacy in training deep neural
networks. Empirical studies show that the application
of ReLU accelerates convergence during the training
process compared to conventional activation functions
such as sigmoid or hyperbolic tangent (tanh), mainly
due to its ability to overcome the saturation dilemma,
where gradients approach insignificant values for
extreme input values [46], [47]. For instance, a
research investigation highlighted that convolutional
neural networks utilizing the Rectified Linear Unit
(ReLU) activation function demonstrate superior
efficacy and  proficiently  capture  nonlinear
characteristics, which is critical for applications such as
image classification [48], [49]. Recent progressions in

activation functions, encompassing variations of ReLU
such as Leaky RelLU. Parametric ReLU (PReLU) has
been scrutinized to mitigate its shortcomings, including
the 'dying ReLU' phenomenon, wherein neurons may
become dormant and thus fail to partake in the learning
[50], [51]. Notwithstanding these apprehensions, ReLU
remains a dominant feature in contemporary deep
learning architectures, highlighting its integral position
in the evolution of neural network functionalities [47].
Consequently, grasping the advantages and limitations
of various activation functions is essential for
formulating effective deep learning architectures,
particularly as novel variants continue to emerge with
prospective enhancements in performance attributes
[52], [53].

The Rectified Linear Unit (ReLU) is recognized as
one of the most prevalent activation functions utilized
in Convolutional Neural Networks (CNNs), as
delineated in Eq. (2) [54]

Relu(x) = max(0, x), (2)
where Xx is the input to the activation layer. This
research uses Adam as an optimizer. The Adam
optimizer is widely regarded as an advantageous
algorithm for training convolutional neural networks
(CNNs), primarily due to its inherent adaptive learning
capabilities. This optimizer integrates the beneficial
features of two prominent variants of stochastic
gradient descent, specifically AdaGrad and RMSProp.
This thereby facilitates practical training even in high-
dimensional parameter spaces [12], [40]. Adam's
Algorithm is shown as Algorithm 1.

Algorithm 1. Adam:Stochastic

Optimization Algoritm

Input: Objective function $J(\theta);

initial parameters 60y; learning rate

n; exponential decay rates By, PB2;

numerical stability constant & maximum

iterations T.

Output: Optimized parameters Or

Initialize parameters:

Bo (initial parameters),

mg = 0 (first moment),

Vo 0 (second moment),

timestep t = 0.

The hyperparameters are:

rate n, exponential decay rates

B1, Pz (typically p4=0.9,

32=0.999), and ¢ for numerical

stability.

5 for t =1 to T do

6 Compute gradient:
J(et-1)

7 Update biased first moment: mt
—~ Blmt-1 + (1 - Bl)gt

DSw N -

learning

gt « Vo
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8 Update biased second moment: vt
— B2vt-1 + (1 - RB2)g2

9 Compute bias-corrected first
moment: “mt < mt/ (1-B:%)

10 Compute bias-corrected second
moment: “vt < vt/ (1-p2%)

11 Update parameters: 6t « 6t1 —
(n - "mt/(V("vt+e)))

12 end for
13 return 67

To reduce dimensionality while preserving essential
information, CNNs typically apply pooling layers. In the
case of max pooling, the operation selects the

maximum value within a local neighborhood Q,
formulated as Eq. (3) [55]
B; = max Xiim jin (3)

(m,n)eq
where x; ; denotes the input pixel intensity at location
i,j . Following several convolution and pooling stages,
the network transitions into fully connected layers
where linear combinations of previous activations are
computed, written as Eq. (1). For multiclass prediction
tasks, the final layer commonly employs the softmax
function, which normalizes the logits into a probability
distribution over K classes as formulated in Eq. (4) [56]
eZi
o(z) = m, (4)
where the index j € {1,2,...,K} iterates over all class
logits to ensure probabilistic normalization. K € N is the
total number of classes, and the variable z; denotes the
logit corresponding to class i. The resulting output
satisfies o(z;) € [0,1]. To facilitate the learning process,
Convolutional Neural Networks (CNNs) are trained
using appropriate loss functions, with the cross-entropy
loss function being the most commonly chosen option.
This loss function is denoted £, measuring the
difference between the predicted distribution § and the
actual target distribution y as shown in Eq. (5) [57]
L=-%5, y;log(®). (5)
variable K € N denotes the total number of classes in
the classification problem. The vector y € RX
represents the ground-truth label encoded in one-hot
format, where y; = 1 if the sample belongs to the class
i and y; = 0 otherwise. The predicted probability vector
is given by 9 €[0,1]%, obtained from the softmax
function applied to the final logit outputs of the network.
Each scalar 3, denotes the model's estimated
probability that the input sample belongs to class i. The
preliminary modeling conducted in this investigation
employed hyperparameters, as delineated in Table
2. This model shall be designated the vanilla model,
representing the baseline model for this research
endeavor. The performance and convergence behavior
of a CNN are significantly influenced by the choice of
hyperparameters that govern the optimization process.

In this study, the network is trained using a
configuration comprising 50 epochs, a batch size of 32,
an initial learning rate of 0.001, and the Adam
optimization algorithm  with a momentum
coefficient g; = 0.85, and B, = 0.9925. Each of these
settings makes a distinct contribution to the learning
dynamics of the model.

Table 2. Default Hyperparameter

Hyperparameter Values

epoch 50

batch size 32

learning rate 0.001

optimizer Adam
By 0.85
By 0.9925

Iniul: 168x168x3
[ Conv2D, 3x3

164x164x64

54x54x64

[ Conv2D, 3x3 J
50x50x64

16x16x64

{ Conv2D, 3x3 J
13x13x128

6x6x128

[ Conv2D, 3x3 ]
3x3x128

1x1x128

Fig. 4. Brain Cancer CNN Architecture
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Training 50 epochs provides the optimizer with
multiple opportunities to refine the parameter space,
allowing the network to assimilate the discriminative
patterns embedded within the data gradually. The
batch size of 32 dictates how many samples are
processed before a parameter update is performed.
The learning rate of 0.001 represents the initial step
size used in navigating the loss landscape. The Adam
optimizer is employed due to its ability to adapt step
sizes for individual parameters by maintaining moment
estimates of both gradients and squared gradients.

The constructed Convolutional Neural Network
(CNN) model features an architectural design similar to
that depicted in Fig. 4. An early stopping mechanism
and an adaptive learning rate strategy have been
implemented within this architectural framework,
specifically using the ReduceLROnPlateau function.
D. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) was first
proposed by Mirjalili and Lewis in 2016. This algorithm
emulates the bubble-net foraging strategy of humpback
whales, whereby the cetaceans encircle a
congregation of fish and generate bubbles to trap them.
The methodology employed in this algorithm is
population-based, wherein each whale represents a
prospective solution, and it methodically adjusts its
position to move closer to the optimal solution
identified. The principal phases of the algorithm
encompass encircling the prey, executing bubble-net
attacks, and conducting exploratory activities [58].

The Whale Optimization Algorithm (WOA)
represents a sophisticated metaheuristic optimization
technique that draws inspiration from the foraging
behaviors exhibited by humpback whales, particularly
their distinctive "bubble-net" hunting strategy. The
underlying principle of WOA is to replicate the hunting
dynamics of whales through three fundamental phases:
the circling of prey, the spiral bubble-net approach, and
a stochastic search to facilitate further exploration.

In this study, the Whale Optimization Algorithm
(WOA) is employed to identify the optimal set of
hyperparameters for a Convolutional Neural Network
(CNN) trained on brain tumor classification tasks. The
primary objective is to minimize the Cross-Entropy
validation loss, thereby improving the network's
generalization capability. Each whale in the population
represents a four-dimensional hyperparameter vector,
as shown in Eq. (7) [59]

Xt =[lr factor min_lr batch]fT € R* 7)
where Ir is the learning rate, factor denotes the
learning rate reduction factor on the plateau, min_lr is
the minimum allowed learning rate, and batch
represents the minibatch size. WOA iteratively refines
these parameters by exploring and exploiting the
search space. For a multiclass brain tumor
classification problem consisting of C tumor classes,

each input image n yields a predicted probability vector
y™ € R¢ and a one-hot encoded ground truth vector
y™ € R¢. WOA performs optimization to minimize the
loss function. The loss function used in this study is
cross-entropy. The Cross-Entropy (CE) loss is defined
as Eq. (8) [59]

Leg = —=Yh 1 251y log ¥, (8)
where B is the batch size. The fitness value of each
whale i at iteration t is obtained by training the CNN
using the hyperparameter vector X! and computing Eq.
(9) [60]

fit = LC’S,va{’(Xit)' 9)

The objective function can be shown by Eq. (10) [61]
X*=arg)r(n£ar}}f(X). (10)
€

A population of N whales are initialized randomly within
the predefined hyperparameter bounds. WOA uses a
linearly decreasing parameter a(t) to balance
exploration and exploitation, where a(t) is shown as Eq.
(11) [62]

a(t)=2—2Tt ' (11)
where T, hotes the maximum number of iterations.
For each whale, random vectors are generated as Eq.
(12) [62]
r=[r,r,.... 1], (12)
where component r; denotes the j-th element of the
random vector, corresponding to the j-th dimension of
the hyperparameter search space. Each component of
the random vector is sampled from a continuous
uniform distribution on the interval [0,1], expressed
concisely as shown in Eq. (13) [62]
r; ~ U(0,1), (13)
where the notation ~ indicates that the random variable
r; is drawn according to a specified uniform probability
distribution. The uniform distribution U(0,1) assigns
equal probability density to all values within
the interval [0,1], and its probability density function is

defined as Eq. (14) [63]
<x<

fran@ g " =oters (14)
Sampling each component 7; independently U(0,1)
ensures unbiased stochastic perturbations across all
hyperparameter dimensions. These random values are
subsequently used to compute the WOA coefficient
vectors, Eq. 15 and Eq. 16 [64]

A = 2a(t)r —a(t), (15)
C =2r. (16)
In the exploitation phase, when |4| <1 the whale
updates its position by moving toward the best-known
hyperparameter vector, X*(t) as shown in Eq. (17) [64]

D=|cOX®)-x" (17)
XY = x*(6) - AO D, (18)
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where © denotes the Hadamard product, i € {1, ..., N}
is the whale index and k is the index of a candidate

spiral trajectory. Xi(t) € R4 is the position of the whale i
at iteration t. Furthermore X*(t) € R% is the best-known
solution at iteration t. D, D' € R% is the distance vectors.
WOA incorporates an additional exploitation
mechanism modeled as whale spiral hunting behavior.
With probability p = 0.5, the whale updates its position
following a logarithmic spiral, which is modeled by Eq.
(19) and Eq. (20) [64]
w®(t +1)=D" O ePcos(2ml) + wi(t), (19)
where
D' =|w(®)-wh()| (20)
with b > 0 is a spiral constant, and [ € [-1,1] is a
random number and w®(t) € R is the spiral
candidate position.

E. Gradient-weighted Class Activation Mapping
(Grad-CAM)

Gradient-weighted Class Activation Mapping (Grad-
CAM) is a sophisticated visualization methodology that
enhances the interpretability of convolutional neural
networks (CNNs) by highlighting the regions within
input images that have the most significant impact on
the model's predictions. This technique produces a
rudimentary localization map that accentuates
substantial areas within the image, thereby facilitating
researchers and clinicians in comprehending the
cognitive processes underlying the decision-making of
deep learning models [65]. Grad-CAM functions by
employing the gradients associated with the target
class that propagate into the terminal convolutional
layer, thereby facilitating the identification of the
prominent features that influence the model's output
[66]. Grad-CAM involves computing the gradient of the
class score with respect to the feature maps of the final
convolutional layer. The key mathematical outputs can
be expressed as Eq. (21) [67]
= o 21
a= aAij ’ ( )
where yk is the score for the class k, and Ajj
represents the activations of the feature map [29], [30].
The gradients are subsequently processed through
global average pooling. This technique transforms
these gradients into a weight vector [70]. The
mathematical equation for this step is presented in Eq.
(22) [67]
k _ 1o . ayk
o= ZZ X dAij
where Z is the number of pixels in the feature map 4;;,

giving a normalization of the accumulated gradients for
output stability. This vector delineates the significance
of each feature map. This methodology accentuates
areas that play a significant role in attaining the
anticipated class score. The mathematical

(22)

representation employed in Grad-CAM can be

articulated as Eq. (23) [67]

Léraa—cam = RELU (T aff A¥) (23)
where the RELU function is represented as shown in
Eq. (2) and L%, ,q_cam €E R LX, .a_can Tepresents the
class localization map, derived from the feature maps
of the last convolutional layer [71], [72].

The primary role of Grad-CAM is to furnish visual
explanations for the predictions generated by
convolutional neural networks (CNNs). This aspect is
especially vital in medical imaging, where
comprehending the underlying rationale of a model's
determinations can profoundly influence clinical
outcomes. For example, in brain tumor identification,
Grad-CAM can facilitate the localization of specific
areas within MRI scans that the model deems
indicative of tumor existence, thereby aiding
radiologists in diagnostic evaluation. The F1-score
integrates these two metrics, offering a harmonized
measure that can be especially enlightening in
scenarios characterized by class imbalance [73].

The aggregated insights from these metrics
facilitate a more comprehensive understanding of
model efficacy and empower more informed decision-
making in advancing and implementing deep learning
frameworks. For example, a research investigation
demonstrated that disparate machine learning models
exhibited varying degrees of performance in
forecasting health outcomes, while using these metrics
to benchmark performance proficiently [74]. Accuracy
serves as a broad indicator of a model's efficacy;
however, it may present a distorted representation
when the dataset exhibits animbalance [63]. To
ascertain the value of accuracy, one may employ Eq.
(24) [63] as delineated below

TP+TN
Accuracy =

TP+TN+FN+FP’ (24)
This TP is for true positive, TN for true negative, TP

for false positive, and FN FN for false negative. This
metric measures the proportion of correct predictions
from the total predictions made. To ascertain the
ratio, where the accuracy of optimistic predictions is
relative to the total number of optimistic predictions
executed. The equation is shown as Eq. 25 [75]

Precision =

TP+FP’ (25)

Precision holds significant importance in scenarios
where the repercussions of false positives are
substantial, particularly in medical diagnostics [64]. The
next metric is recall. The concept of recall is crucial, and
identifying all positive examples, such as disease
identification, is critical [75]. This metric assesses the
proportion of accurate optimistic predictions about the
overall count of actual positive occurrences. The

formula is shown as Eq. 26 [75]:
TP

TP+FN’

Recall = (26)
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The next metric is the F1 score. The F1-score
represents the harmonic mean of precision and recall,
striking a balance between the two metrics. The
formula is shown as Eq. 27 [75]:

F1 — Score = 2xprecissionsrecall

(27)

precission+recall

lll. Result

The results of this research commence with the
preprocessing phase, which is precisely the
augmentation technique. Overall, the combination of
augmentations successfully increased data
diversification without causing artifacts that damaged
the image structure. Visual observation of the
augmentation samples revealed that the main pattern
characteristics were maintained, while the model
acquired additional variation that facilitated the
generalization process during training. The training
process is carried out using three scenarios, and each
scenario will be evaluated. The first scenario is using
default parameters without adding callbacks. The
second scenario is achieved by adding callbacks,
specifically ReducelLRONPlateau and
ModelCheckpoint. The last one uses callbacks and
hyperparameter search results from WOA. The three
results will be presented below.

Default parameters without adding callbacks: In
this scenario, the accuracy of the training and
validation results is obtained, as shown in Fig. 5. The
loss function for this scenario is illustrated in Fig. 5b.

Madel Accuracy Model Loss

(a) (b)
Fig. 5. Performance Vanilla Model (a) Accuracy
Vanilla Model b) Loss Vanilla Model

Based on the calculations in Table 4, it can be inferred
that the employed classification model exhibited
commendable performance across all categories. The
model achieved an accuracy rate of 99.14%, signifying
that most predictions were accurate. Additionally, the
Precision and Recall metrics for each category
demonstrated remarkably high values, with the
Notumor and Pituitary classes achieving nearly
flawless precision and recall metrics. The F1-score,
which indicates the equilibrium between precision and
recall, also reflected outstanding values across the
categories, with the Notumor class recording the
highest  F1-score  of  0.998. Despite = some

misclassifications within the Glioma and Meningioma
categories, these figures remained comparatively high,
indicating that the model was proficient in
distinguishing between the various tumor classes. In
summary, the model exhibited an exceptional capability
in tumor classification, characterized by exceedingly

low error rates.

Table 4. Model Evaluation Result

Class Precision Recall F1-Score
Glioma 0.997 0.98 0.988
Meningioma 0.983 0.986 0.984
Notumor 0.998 0.998 0.998
Pituitary 0.997 0.997 0.997
Accuracy 0.9914
Avg 0.994 0.99 0.992

Furthermore, the callback results are obtained by
adding them, as shown in Fig. 6. Accuracy is illustrated
in Fig. 6(a), and the loss function for this scenario is
presented in Fig. 6(b).

Model Accuracy

100
egratppereetesaztstaseasssestetess ’
| oal | Validation
095+ / !
090 Lowest
0.9938 61

Madel Loss

R
o |

validation 0o/

[ Epoch

(a) (b)

Model Accuracy

[ ————————
i |

0 2 ) 60 a0 100 0 20 40 60 80 100

(c) (d)
Fig. 6. Performance Proposed Model (a) Accuracy
Vanilla Model with Callback (b) Loss Vanilla Model
with Callback (c) Accuracy Vanilla Model with
Callback and WOA (d) Loss Vanilla Model with
Callback and WOA

This second scenario resulted in an increase in
accuracy to 0.9936. This provides an improvement to
the resulting model. As depicted in Fig. 6a, the model
demonstrates convergence, improving accuracy
compared to the preceding scenario. Next, a model
with WOA is constructed to optimize performance. The
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training results are shown in Fig. 9c. The accuracy
obtained in this process is 0.9962. The Grad-CAM is

(b)
Fig. 7. Comparison Ground Truth and Grad-CAM

illustrated in Fig. 7 to highlight its salient features. From
Fig. 7, the area of the tumor on the brain MRI image
can be identified. This can make it easier to understand
and diagnose brain tumors.

0.980, signifying commendable performance, albeit
marginally trailing the CNN
frameworks. 2DCNN+ensemble and Xception, while
remaining valuable, exhibited comparatively lower
accuracies of 0.9647 and 0.940, respectively,
suggesting that ensemble methodologies and specific
pre-trained networks may encounter limitations within
the present context. The results of this study are
compared with those of previous research. This
comparison is illustrated in Table 5. Table 5 shows that
the proposed method outperforms the earlier research,
achieving an accuracy of 0.9962. The results of this
study are compared with those of previous research.
This comparison is illustrated in Table 5. The CNN
model, devoid of Callback mechanisms (our
methodology), attained an accuracy of 0.991,
surpassing several prominent architectures, such as
Xception and 2DCNN+ensemble, when evaluated on
the integrated dataset. Table 5 highlights the proposed

CNN-WOA(our)

CNN with Callback (our) 1

Xception 1

FL+VGG16

EfficientnetV2s

Inception

Performance Comparison with Previous Study

0.9962

0.9940

0.9400
0.9800
0.9890

0.9930

0.95 0.9 0.97 0.98 0.99 1.00
Accuracy
Fig. 8. Model Performance Comparison

IV. Discussion

From Fig. 8, it can be seen that the models derived
from antecedent investigations, encompassing
Inception, EfficientNetV2S, FL+VGG16,
2DCNN+ensemble, and Xception, all yielded significant
outcomes; however, none attained the efficacy exhibited
by the proposed models. For instance, Inception and
EfficientNetV2S demonstrated commendable
performance, achieving accuracies of 0.993 and 0.989,
respectively. These  architectures exemplify  the
effectiveness of pre-trained models in addressing
intricate tasks. FL+VGG16 realized an accuracy of

method in bold, which achieves the best accuracy
among the previous techniques. The CNN model
incorporating callback mechanisms
(ReduceLRonPlateau) demonstrated even superior
accuracy, achieving a score of 0.994, which signifies the
efficacy of employing callbacks to optimize the training
process. The model that exhibited the highest
performance in this investigation was CNN-WOA, which
realized an accuracy of 0.9962, representing the
pinnacle among all methods applied to the combined
dataset. This observation implies that the Whale
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Optimization Algorithm (WOA) enhances classification
accuracy.

Table 5. Performance Comparison

Method Dataset Acc
Inception [11] BR35H 0.993
EfficientNetV2S [13] BR35H 0.989
FL+VGG16 [12] Combine  0.980
2DCNN+ ensemble [14] Combine  0.9647
Xception[15] BR35H 0.940
CNN without Callback Combine  0.991
(our)

CNN with Callback (our) Combine  0.994
CNN-WOA (our) Combine  0.9962

This study set out to investigate whether a carefully
tuned convolutional neural network (CNN) could achieve
higher accuracy than existing approaches by leveraging
training callbacks and meta-heuristic hyperparameter
optimization. The comparative results in Table 5 show
that the proposed CNN variants are competitive with,
and in several cases superior to, previously reported
models, including Inception [11], EfficientNetV2S [13],
FL+VGG16 [12], 2DCNN+ensemble [14], and Xception
[15].

When focusing on methods evaluated on the
combined dataset, the baseline CNN without callbacks
achieved an accuracy of 0.991. Introducing training
callbacks in the form of ReduceLROnPlateau and
ModelCheckpoint increased the accuracy to 0.994,
corresponding to an absolute gain of 0.30 percentage
points (difference callback vs. no-callback: 0.994 —0.991
= 0.003, i.e., 0.3%). This suggests that relatively simple
training strategies, such as adaptive learning-rate
scheduling and model checkpointing, already yield a
measurable performance improvement, facilitating the
model's convergence to a better local optimum.

The integration of the Whale Optimization Algorithm
(WOA) for hyperparameter tuning further boosted the
accuracy of the CNN to 0.9962 on the same combined
dataset. Compared to the CNN without callbacks, this
represents an absolute improvement of 0.52 percentage
points (difference CNN-WOA vs. CNN without callback:
0.9962 — 0.991 = 0.0052 = 0.52%), and compared to the
CNN with callbacks, the improvement is 0.22
percentage points (difference CNN-WOA vs. CNN with
callback: 0.9962 — 0.994 = 0.0022 = 0.22%). Although
these numerical differences are below 1%, they occur in
an already high-accuracy regime (>0.99), where small
gains are typically difficult to achieve and can still be
meaningful for safety-critical applications such as brain
tumor analysis.

A broader comparison with other methods on the
combined dataset reinforces this conclusion. The
FL+VGG16[12] approach reports an accuracy of 0.980,
whereas 2DCNN+ensemble achieves 0.9647. The
proposed CNN variants improve upon FL+VGG16 by
1.10, 1.40, and 1.62 percentage points for the CNN
without callbacks (0.991 — 0.980 = 0.011), CNN with
callbacks (0.994 — 0.980 = 0.014), and CNN-WOA
(0.9962 — 0.980 = 0.0162), respectively. Relative to
2DCNN+ensemble [14], the gains are even larger: 2.63,
2.93, and 3.15 percentage points for the same three
CNN variants. These differences suggest that both the
architectural design of the CNN and the proposed
optimization strategy contribute to systematically higher
performance on the combined dataset.

Itis also informative to compare the proposed models
with architectures evaluated on the BR35H dataset only.
Inception achieves an accuracy of 0.993,
EfficientNetV2S [13] achieves 0.989, and Xception [15]
yields 0.940. While these results are reported on a single
dataset, the proposed CNN-WOA on the more
heterogeneous combined dataset still attains a slightly
higher accuracy of 0.9962. The difference between
CNN-WOA and Inception is approximately 0.32
percentage points (0.9962 — 0.993 = 0.0032), and CNN
with callbacks exceeds Inception by about 0.10
percentage points (0.994 — 0.993 = 0.001). Although
cross-dataset comparisons should be interpreted with
caution, these numbers indicate that the proposed
approach remains competitive even when contrasted
with state-of-the-art deep architectures. According to
prior research, deep learning methodologies can yield
favorable outcomes contingent upon the optimal
selection of hyperparameters.

Overall, the numerical analysis shows a consistent
trend: (i) adding callbacks yields a modest but clear
improvement over the plain CNN, and (ii) incorporating
WOA-based hyperparameter tuning produces the
highest accuracy among all evaluated methods. These
findings support the conclusion that systematic
hyperparameter optimization, combined with
appropriate training strategies, can lead to measurable
accuracy gains beyond what is achievable by relying
solely on architectural complexity. Fig. 7 is the Grad-
CAM visualization, highlighting the areas that
contributed most to the model’s decision. Warmer colors
(red, orange, and yellow) indicate regions with a larger
influence on classification, while cooler colors (blue and
purple) represent less significant areas.

V. Conclusion

This investigation aimed to enhance the efficacy and
interpretability of deep learning algorithms used for
brain tumor classification by integrating training
callbacks and  meta-heuristic  hyperparameter
optimization techniques. The findings reveal that
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integrating ReducelLROnPlateau and
ModelCheckpoint callbacks resulted in an increase in
the CNN accuracy to 0.994. Furthermore, applying
hyperparameter tuning via the Whale Optimization
Algorithm (WOA) further elevated the accuracy to
0.996. Moreover, supplementary analyses using Grad-
CAM yielded more accurate visual representations that
distinguished between tumor-affected and unaffected
cerebral regions, thereby bolstering the interpretability
of the model. The results also indicate that the
implementation of meta-heuristic  optimization
significantly prolongs training durations, thereby
imposing  practical limitations on  extensive
experimental undertakings. Subsequent investigations
should explore more rapid or adaptive optimization
methodologies, such as Particle Swarm Optimization
(PSO), Genetic Algorithms (GA), Grey Wolf
Optimization (GWO), or hybrid approaches, and
assess the proposed methodology on larger and more
heterogeneous multi-institutional datasets to enhance
both robustness and generalizability.
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