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Abstract: The increasing prevalence of brain cancer has emerged as a significant global health issue, with 

brain neoplasms, particularly gliomas, presenting considerable diagnostic and therapeutic obstacles. The 

timely and precise identification of such tumors is crucial for improving patient outcomes. This 

investigation explores the advancement of Convolutional Neural Networks (CNNs) for detecting brain 

tumors using MRI data, incorporating the Whale Optimization Algorithm (WOA) for the automated tuning 

of hyperparameters. Moreover, two callbacks, ReduceLROnPlateau and early stopping, were utilized to 

augment training efficacy and model resilience. The proposed model exhibited exceptional performance 

across all tumor categories. Specifically, the precision, recall, and F1-scores for Glioma were recorded as 

0.997, 0.980, and 0.988, respectively; for meningioma, as 0.983, 0.986, and 0.984; for no tumors, as 0.998, 

0.998, and 0.998; and for pituitary, as 0.997, 0.997, and 0.997. The mean performance metrics attained were 

0.994 for precision, 0.990 for recall, and 0.992 for F1-score. The overall accuracy of the model was 

determined to be 0.991. Notably, incorporating callbacks within the CNN architecture improved accuracy 

to 0.994. Furthermore, when synergized with the WOA, the CNN-WOA model achieved a maximum accuracy 

of 0.996. This advancement highlights the effectiveness of integrating adaptive learning methodologies 

with metaheuristic optimization techniques. The findings suggest that the model sustains high 

classification accuracy across diverse tumor types and exhibits stability and robustness throughout 

training. The amalgamation of callbacks and the Whale Optimization Algorithm significantly bolster CNN 

performance in classifying brain tumors. These advancements contribute to the development of more 

reliable diagnostic instruments in medical imaging. 
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I. Introduction

The increasing incidence of brain cancer has become
a significant public health concern globally. Recent
findings highlight a growing trend in diagnosing
cerebral neoplasms, which may result from various
factors, including innovations in imaging methods and
enhanced awareness among healthcare practitioners
and patients [1]. The World Health Organization has
emphasized that early detection is crucial for improving
patient outcomes, as it allows for timely interventions
that can significantly enhance the survival rate [2].
Brain tumors, particularly gliomas, present unique
challenges due to their complex nature and the critical
functions of the brain [3]. In early detection,
technological advancements, especially those related
to deep learning and artificial intelligence, have shown
significant promise in improving diagnostic accuracy.
Deep learning techniques, such as Convolutional
Neural Networks (CNNs), have been employed to
analyze medical imaging data, enabling the
identification of tumors at earlier stages [4]. These
methods can handle large volumes of data swiftly and

accurately, which is vital given the urgency associated 
with cancer treatment  [5]. For instance, integrating 
deep learning with magnetic resonance imaging (MRI) 
has been highlighted as an efficient approach for 
detecting brain tumors, offering improved precision [6]. 
Moreover, the development of applications that utilize 
deep learning for early brain cancer detection is gaining 
traction. These applications aim to provide healthcare 
professionals with tools that enhance diagnostic 
capabilities and facilitate better patient management 
[7]. 

Convolutional Neural Networks (CNNs) have 
become a cornerstone in medical imaging, particularly 
for classifying brain tumors from Magnetic Resonance 
Imaging (MRI) datasets. Recent advancements in deep 
learning techniques have significantly improved 
diagnostic accuracy and efficiency, making CNNs a 
vital tool in neuro-oncology. This article synthesizes 
findings from various studies published in the last three 
years, highlighting the effectiveness of CNNs in brain 
tumor classification, along with the reported accuracy 
and F1 scores. 
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Significant advancements in cancer research are 
evident. Among these developments, various CNN 
architectures have been employed in brain tumor 
classification, demonstrating unique strengths. For 
instance, Mahjoubi reported that their proposed CNN 
networks achieved an accuracy of 95.44% and an F1 
score of 95.36% in classifying brain tumors from MRI 
images [8]. Similarly, Raza developed a hybrid deep 
learning model that combined CNNs with traditional 
machine learning techniques, achieving an accuracy of 
94.5% [9]. Transfer learning has also been pivotal; for 
example, [10] utilized a transfer learning model based 
on AlexNet, achieving an impressive accuracy of 
99.62%.  Another study, Inception architecture by [11] 
reports that their proposed CNN networks achieved an 
accuracy of 0.993. Furthermore, the FL+VGG16 [12] 
study has achieved an accuracy of 0.98. There is also 
research using EfficientnetV2S that has achieved an 
accuracy of 0.989 [13]. The last one is research using 
a 2DCNN ensemble conducted by [14]  and Xception 
conducted by [15], which achieved accuracies of 
0.9647 and 0.940, respectively. The above state-of-
the-art research still has room for improvement. 

Data augmentation methodologies have played an 
essential role in enhancing the resilience of 
Convolutional Neural Network (CNN) architectures. 
Rasool [16] provided evidence that their integrative 
deep learning framework, which synergistically 
incorporated GoogleNet for feature extraction 
alongside Support Vector Machine (SVM) classifiers, 
attained a classification accuracy of 97.5%. This 
methodology highlights the crucial need to augment 
training datasets to mitigate the risk of overfitting and 
improve the model's generalizability. Furthermore, the 
investigation analyzed a range of convolutional neural 
network (CNN) methodologies and concluded that 
proficient data augmentation practices could lead to 
substantial improvements in classification efficacy [17], 
[18]. To enhance the efficacy of deep learning, a crucial 
step involves appropriately utilizing hyperparameters. 
Hyperparameters are variables that remain fixed during 
the training of a machine learning model, and their 
selection significantly influences the model's accuracy 
and performance. As noted by Shi et al., the 
effectiveness of deep learning methodologies heavily 
relies on the correct hyperparameter configurations, 
which the user establishes before the model training 
process begins [19]. In numerous instances, 
inadequate hyperparameter choices can result in 
suboptimal model performance, underscoring the 
significance of a strategic approach in this 
customization [20]. 

Researchers can employ two strategies to 
determine the best hyperparameters: manually 
performing repeated experiments or automatically 
using optimization algorithms. Some commonly utilized 

algorithms are Ant Colony Optimization (ACO), Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), 
Grey Wolf Optimization (GWO), and Whale 
Optimization Algorithm (WOA) [21] [22]. Among these 
options, WOA was selected for its benefits in locating 
optimal solutions through a method inspired by the 
hunting techniques of whales. WOA has demonstrated 
its effectiveness across various optimization tasks in 
deep learning, as noted by Sanmorino et al  [23]. It was 
observed that this optimization technique can enhance 
model performance with greater efficiency [23]. 

WOA operates by exploring a broad search 
landscape to identify optimal hyperparameter values, 
and this algorithm has the advantage of avoiding local 
minima often encountered by traditional optimization 
methods. The research conducted by Ilemobayo et al. 
highlights how different techniques for hyperparameter 
tuning, including WOA, can minimize the time and 
resources necessary to attain high accuracy in a model 
[24]. Furthermore, WOA offers scalability and 
sustainability advantages when training becomes more 
intricate. This is elaborated upon in the study by Rao 
and Jaganathan [22]. 

 
Fig. 1. Research Gap Visualization 

 
Thus, employing a suitable optimization algorithm, 

such as WOA, enhances the efficiency of the 
hyperparameter search process and plays a crucial 
role in achieving superior performance in deep learning 
models. This is particularly important, as effective 
hyperparameter selection can significantly enhance the 
accuracy of the developed model. Based on the 
provided explanation, this research aims to construct a 
deep learning model that integrates automatic 
hyperparameter search using WOA on brain cancer 
MRI datasets. This research is expected to yield a 
model that outperforms previous studies conducted in 
this area. 

This article presents a scenario illustrating the 
outcomes of a vanilla CNN-based deep learning model, 
derived from parameters obtained using the default 
hyperparameters. The second scenario employs 
callbacks with predetermined hyperparameters, 
whereas the third uses hyperparameters derived from 
the outcomes of the WOA search. To implement WOA, 
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an objective function will be established to achieve 
optimal accuracy. 

Despite achieving optimal outcomes, deep learning 
models often remain enigmatic regarding their 
functionality and comprehensibility, primarily due to 
their reliance on black-box mechanisms for feature 
extraction [25], [26], [27]. This leads to another 
problem, namely the difficulty of revealing these 
mysterious parts. To explain this, explainable AI can be 
employed so that consumers are not perplexed about 
how the deep learning model generates results, and 
the tumor's location in the brain can be correctly 
identified. To address this, Grad-CAM can help deep 
learning models explain where the brain cancer is in an 
image [28]. The capability above is of paramount 
importance within the realm of medical applications, as 
healthcare professionals require the ability to validate 
and comprehend the underlying reasoning associated 
with model predictions, thereby fostering trust and 
promoting the integration of artificial intelligence tools 

into clinical practice [25], [29].  
As previously explained, this study aims to answer 

the following research question: RQ1: How can a deep 
learning model be developed with improved accuracy 
compared to current research? RQ2: How can brain 
tumor area segmentation be visualized from a deep 
learning model? 

Based on the explanation provided, Fig. 1 illustrates 
the research gap identified in this study. Research 
contributes by constructing a deep learning model 
automatically built to determine the best 
hyperparameters using the whale optimization 
technique. This model defines the hyperparameter 
value based on the dataset used. Additionally, the best 
results can be achieved by segmenting the model 
findings using Grad-CAM. This research is structured 
as follows: introduction, explanation of the methods 
used, including dataset preparation, data 
preprocessing, models employed, ablation 
experiments conducted on prepared scenarios, 
evaluation, and conclusion.  

II. Method 

The approach utilized in this research can be outlined 
in the sequence shown in Fig. 2. This investigation 
commences with the acquisition of datasets. The 
datasets were procured from the reference pages of 
prior research studies. Subsequently, the downloaded 

dataset undergoes a rigorous data preprocessing 
phase, which encompasses validating the dataset size, 
augmenting the dataset, and organizing appropriate 
folders for each class within the dataset. Following the 
data preprocessing stage, the next step involves 
constructing the Convolutional Neural Network (CNN) 
architecture and developing a basic model. 

 
Fig. 2. Research Methodology 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.941
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 136-152                                        e-ISSN: 2656-8632 

 

Manuscript received 25 May 2025; Revised 12 September 2025; Accepted 8 November 2025; Available online 16 December 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.941 

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 139               

In addition to the foundational model, a 
supplementary model is devised by incorporating 
callbacks into the CNN framework. Upon completing 
the foundational model development, the code is 
further refined by integrating automated 
hyperparameter optimization utilizing the Whale 
Optimization Algorithm (WOA). After implementing this 
optimization, the process progresses to the training 
phase, which continues until the optimal model is 
derived from the results of the WOA search. The final 
step involves extensive evaluation of the constructed 
model utilizing testing data. This sequence of 
processes is illustrated in Fig. 2.  

A. Dataset 

This study focuses on preprocessing three pivotal 
datasets: Figshare [30], SARTAJ, and BR35H. These 
establish a comprehensive framework for training, 
validating, and testing models to identify brain tumors 
within MRI imaging. This dataset can be accessed on 
the Kaggle platform [31]. This dataset has been 
processed, and some files contain incomplete or 
inaccurate data. The total number of datasets is 6438, 
divided into two parts, namely, 5127 training 
datasets and 1311 testing datasets. This dataset is 
then used for the modeling process. Some examples of 
brain tumor images are shown in Fig. 3. 

B. Data Preprocessing 

The pre-processing of datasets for detecting brain 
tumors constitutes a vital phase in guaranteeing the 

efficacy of machine learning models, especially those 
that leverage advanced deep learning methodologies. 
This dataset is then augmented with parameters such 
as those in Table 1. This technique allows the model to 
learn to recognize objects from both orientations, which 
is especially useful in situations where the orientation 
of an object is variable. Research has indicated that 
such transformations can substantially enhance the 
model's capacity for generalization; random rotation 
can yield considerable advancements in model 
accuracy as it exposes the network to a broader 
spectrum of object orientations and spatial 
configurations [32], [33] [34], [35].  

Moreover, varying contrast throughout the training 
process can significantly aid in refining the model's 
ability to extract relevant features, thereby mitigating 
the risk of overfitting [33], [34], [36]. Random zoom 
techniques can also effectively reduce model overfitting 
and improve performance on previously unseen data 
[37], [38]. In contrast, random translation instructs the 
model to maintain robustness against variations in 
object placement, which frequently occur in real-world 
scenarios [38], [39].  
Table 1. Dataset Augmentation Parameter 

Action Value 

random flip horizontal 

random rotation 0.02; fill mode=constant 

random contrast 0.1 

random zoom height factor=0.01, width 
factor=0.05 

random translation height factor=0.0015, width 
factor=0.0015, fill 
mode=constant 

 

C. Modelling 

Convolutional Neural Networks (CNNs) have emerged 
as a formidable tool within deep learning, particularly in 
image processing applications. The structural design of 
these networks is intended to autonomously and 
adaptively acquire spatial hierarchies of characteristics 
from input images, rendering them especially effective 
for applications such as medical image analysis and 
object recognition [40]. The input to a Convolutional 
Neural Network (CNN) is conventionally represented 
as a multi-dimensional array that encapsulates an 
image, with each pixel value signifying a particular 
intensity level. This input undergoes processing 
through a succession of convolutional layers, wherein 
the fundamental operation is the convolution itself. 
Convolution entails the systematic traversal of a filter 
(or kernel) across the input image, generating feature 
maps that accentuate distinct patterns or features 
present in the image [41]. The selection of kernel 
dimensions is paramount; small kernels can capture 
intricate details, whereas larger kernels can delineate 
more extensive features [42]. For instance, a typical 

  
(a) (b) 

  
(c) (d) 

Fig. 3. The Brain Tumor Dataset a) Meningioma b) 
Pituitary c) No Tumor d) Glioma 
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kernel size is 3x3, which strikes a balance between 
detail and computational efficiency. 

Strides denote the number of pixels traversed by the 
filter across the image throughout the convolution 
process. A stride of one indicates that the filter 
progresses one pixel at a time. In contrast, a stride of 
two omits every other pixel, thereby diminishing the 
dimensions of the resultant feature map [41]. Padding 
represents a crucial concept in image processing, 
involving the addition of extra pixels surrounding the 
input image to control the spatial dimensions of the 
resulting output. Widely utilized padding methodologies 
encompass 'valid' padding (which entails no extra 
padding) and 'same' padding (where the dimensions of 
the production are congruent with those of the input). 
Lecun[43] defines that the core of CNN lies in the 
convolution operation, which can be expressed as Eq. 
(1) [44]   

𝑦𝑖,𝑗
(𝑘)

= ∑ ∑ 𝑥𝑖+𝑚,𝑗+𝑛
𝑁
𝑛=1

𝑀
𝑚=1 ⋅ 𝑤𝑚,𝑛

(𝑘)
+ 𝑏(𝑘),  (1) 

where 𝑥𝑖,𝑗 denotes the input pixel intensity at location 

𝑖, 𝑗, 𝑤𝑚,𝑛
(𝑘)

 represents the convolution kernel weights of 

the 𝑘-th filter, 𝑏(𝑘)is the corresponding bias term, and 

𝑦𝑖,𝑗
(𝑘)

 is the resulting feature map. This formulation 

allows the network to learn spatially localized patterns 
critical for identifying tumor regions. 

Activation functions are of paramount significance in 
the structural design of neural networks, as they 
facilitate the introduction of non-linearity, thereby 
empowering the models to discern intricate patterns 
within datasets. The Rectified Linear Unit (ReLU) is 
highly regarded among the various activation functions. 
It has established itself as a fundamental component 
that is beneficial for Convolutional Neural Networks 
(CNNs) due to their efficacy in alleviating challenges 
such as the vanishing gradient problem [45]. The 
mathematical formulation of ReLU permits it to yield a 
value of zero for negative inputs while enabling positive 
inputs to traverse linearly, thus maintaining the inherent 
characteristics of the data. 

The widespread adoption of the Rectified Linear 
Unit (ReLU) activation function can be ascribed to its 
inherent simplicity and efficacy in training deep neural 
networks. Empirical studies show that the application 
of ReLU accelerates convergence during the training 
process compared to conventional activation functions 
such as sigmoid or hyperbolic tangent (tanh), mainly 
due to its ability to overcome the saturation dilemma, 
where gradients approach insignificant values for 
extreme input values [46], [47]. For instance, a 
research investigation highlighted that convolutional 
neural networks utilizing the Rectified Linear Unit 
(ReLU) activation function demonstrate superior 
efficacy and proficiently capture nonlinear 
characteristics, which is critical for applications such as 
image classification [48], [49]. Recent progressions in 

activation functions, encompassing variations of ReLU 
such as Leaky ReLU. Parametric ReLU (PReLU) has 
been scrutinized to mitigate its shortcomings, including 
the 'dying ReLU' phenomenon, wherein neurons may 
become dormant and thus fail to partake in the learning 
[50], [51]. Notwithstanding these apprehensions, ReLU 
remains a dominant feature in contemporary deep 
learning architectures, highlighting its integral position 
in the evolution of neural network functionalities [47]. 
Consequently, grasping the advantages and limitations 
of various activation functions is essential for 
formulating effective deep learning architectures, 
particularly as novel variants continue to emerge with 
prospective enhancements in performance attributes 
[52], [53]. 

The Rectified Linear Unit (ReLU) is recognized as 
one of the most prevalent activation functions utilized 
in Convolutional Neural Networks (CNNs), as 
delineated in Eq. (2)  [54] 

𝑅𝑒𝑙𝑢(𝑥) = max(0, 𝑥),        (2) 

where 𝑥 is the input to the activation layer. This 

research uses Adam as an optimizer. The Adam 
optimizer is widely regarded as an advantageous 
algorithm for training convolutional neural networks 
(CNNs), primarily due to its inherent adaptive learning 
capabilities. This optimizer integrates the beneficial 
features of two prominent variants of stochastic 
gradient descent, specifically AdaGrad and RMSProp. 
This thereby facilitates practical training even in high-
dimensional parameter spaces [12], [40]. Adam's 
Algorithm is shown as Algorithm 1.  
 
Algorithm 1. Adam:Stochastic 

Optimization Algoritm 

Input: Objective function $J(\theta); 

initial parameters θ₀; learning rate 
η; exponential decay rates β₁, β₂; 
numerical stability constant ε maximum 

iterations T. 

Output: Optimized parameters θT 

 

1 

2 

3 

4 

 

Initialize parameters:  

θ₀ (initial parameters),  
m₀ = 0 (first moment),  
v₀ = 0 (second moment),  
timestep t = 0.  

The hyperparameters are: learning 

rate η, exponential decay rates 

β₁, β₂ (typically β₁=0.9, 
β₂=0.999), and ε for numerical 
stability. 

5 for t = 1 to T do 

6  Compute gradient: gt ← ∇θ 
J(θt−1) 

7  Update biased first moment: mt 

← β1mt−1 + (1 − β1)gt 
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8  Update biased second moment: vt 

← β2vt−1 + (1 − β2)g2 

9  Compute bias-corrected first 

moment: ˆmt ← mt/(1−β1t) 

10  Compute bias-corrected second 

moment: ˆvt ← vt/(1−β2
t) 

11  Update parameters: θt ← θt−1 – 

(η · ˆmt/(√(ˆvt+ε))) 

12 end for 

13 return θT 

 
To reduce dimensionality while preserving essential 

information, CNNs typically apply pooling layers. In the 
case of max pooling, the operation selects the 
maximum value within a local neighborhood Ω, 
formulated as Eq. (3)  [55] 

Pi,j = max
(m,n)∈Ω

𝑋𝑖+𝑚, 𝑗+𝑛            (3) 

where 𝑥𝑖,𝑗 denotes the input pixel intensity at location 

𝑖, 𝑗 .  Following several convolution and pooling stages, 

the network transitions into fully connected layers 
where linear combinations of previous activations are 

computed, written as Eq. (1).  For multiclass prediction 

tasks, the final layer commonly employs the softmax 
function, which normalizes the logits into a probability 
distribution over 𝐾 classes as formulated in Eq. (4) [56] 

σ(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

,                (4) 

where the index j ∈ {1,2, … , K} iterates over all class 

logits to ensure probabilistic normalization. 𝐾 ∈ 𝑁 is the 

total number of classes, and the variable 𝑧𝑖 denotes the 

logit corresponding to class 𝑖.  The resulting output 

satisfies σ(𝑧𝑖) ∈ [0,1]. To facilitate the learning process, 

Convolutional Neural Networks (CNNs) are trained 
using appropriate loss functions, with the cross-entropy 
loss function being the most commonly chosen option. 
This loss function is denoted ℒ, measuring the 

difference between the predicted distribution ŷ and the 

actual target distribution y as shown in Eq. (5) [57] 

ℒ = − ∑ 𝑦𝑖
𝐾
𝑖=1 log(𝑦𝑖̂).                  (5) 

variable 𝐾 ∈ 𝑁 denotes the total number of classes in 

the classification problem. The vector 𝑦 ∈ 𝑅𝐾 

represents the ground-truth label encoded in one-hot 
format, where 𝑦𝑖 = 1 if the sample belongs to the class 

𝑖 and 𝑦𝑖 = 0 otherwise. The predicted probability vector 

is given by 𝑦̂ ∈ [0,1]𝐾, obtained from the softmax 

function applied to the final logit outputs of the network. 
Each scalar 𝑦𝑖̂ denotes the model's estimated 

probability that the input sample belongs to class 𝑖. The 

preliminary modeling conducted in this investigation 
employed hyperparameters, as delineated in Table 
2. This model shall be designated the vanilla model, 
representing the baseline model for this research 

endeavor. The performance and convergence behavior 

of a CNN are significantly influenced by the choice of 
hyperparameters that govern the optimization process. 

In this study, the network is trained using a 
configuration comprising 50 epochs, a batch size of 32, 
an initial learning rate of 0.001, and the Adam 
optimization algorithm with a momentum 
coefficient 𝛽1 = 0.85, and  𝛽2 = 0.9925. Each of these 

settings makes a distinct contribution to the learning 
dynamics of the model. 
 

Table 2. Default Hyperparameter 

Hyperparameter Values 

epoch 50 

batch size 32 

learning rate 0.001 

optimizer Adam 

𝛽1 0.85 

𝛽1 0.9925 

 

 
Fig. 4. Brain Cancer CNN Architecture 
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Training 50 epochs provides the optimizer with 
multiple opportunities to refine the parameter space, 
allowing the network to assimilate the discriminative 
patterns embedded within the data gradually. The 
batch size of 32 dictates how many samples are 
processed before a parameter update is performed. 
The learning rate of 0.001 represents the initial step 
size used in navigating the loss landscape. The Adam 
optimizer is employed due to its ability to adapt step 
sizes for individual parameters by maintaining moment 
estimates of both gradients and squared gradients. 

The constructed Convolutional Neural Network 
(CNN) model features an architectural design similar to 
that depicted in Fig. 4. An early stopping mechanism 
and an adaptive learning rate strategy have been 
implemented within this architectural framework, 

specifically using the ReduceLROnPlateau function. 

D. Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) was first 
proposed by Mirjalili and Lewis in 2016. This algorithm 
emulates the bubble-net foraging strategy of humpback 
whales, whereby the cetaceans encircle a 
congregation of fish and generate bubbles to trap them. 
The methodology employed in this algorithm is 
population-based, wherein each whale represents a 
prospective solution, and it methodically adjusts its 
position to move closer to the optimal solution 
identified. The principal phases of the algorithm 
encompass encircling the prey, executing bubble-net 
attacks, and conducting exploratory activities [58].  

The Whale Optimization Algorithm (WOA) 
represents a sophisticated metaheuristic optimization 
technique that draws inspiration from the foraging 
behaviors exhibited by humpback whales, particularly 
their distinctive "bubble-net" hunting strategy. The 
underlying principle of WOA is to replicate the hunting 
dynamics of whales through three fundamental phases: 
the circling of prey, the spiral bubble-net approach, and 
a stochastic search to facilitate further exploration.  

In this study, the Whale Optimization Algorithm 
(WOA) is employed to identify the optimal set of 
hyperparameters for a Convolutional Neural Network 
(CNN) trained on brain tumor classification tasks. The 
primary objective is to minimize the Cross-Entropy 
validation loss, thereby improving the network's 
generalization capability. Each whale in the population 
represents a four-dimensional hyperparameter vector, 
as shown in Eq. (7) [59] 

𝑋𝑖
𝑡 = [𝑙𝑟 𝑓𝑎𝑐𝑡𝑜𝑟     𝑚𝑖𝑛_𝑙𝑟 𝑏𝑎𝑡𝑐ℎ]𝑖

𝑡⊤
∈ 𝑅𝟜            (7) 

where 𝑙𝑟 is the learning rate, 𝑓𝑎𝑐𝑡𝑜𝑟 denotes the 

learning rate reduction factor on the plateau, 𝑚𝑖𝑛_𝑙𝑟 is 

the minimum allowed learning rate, and 𝑏𝑎𝑡𝑐ℎ 

represents the minibatch size. WOA iteratively refines 
these parameters by exploring and exploiting the 
search space. For a multiclass brain tumor 
classification problem consisting of 𝐶 tumor classes, 

each input image 𝑛 yields a predicted probability vector 

𝑦𝑛̂ ∈ 𝑅𝐶 and a one-hot encoded ground truth vector 

𝑦𝑛 ∈ 𝑅𝐶. WOA performs optimization to minimize the 

loss function. The loss function used in this study is 
cross-entropy. The Cross-Entropy (CE) loss is defined 
as Eq. (8) [59] 

ℒ𝒞ℰ = −
1

𝐵
∑ ∑ 𝑦𝑐

𝑛 log 𝑦𝑐
𝑛̂𝐶

𝑐=1
𝐵
𝑛=1 ,                                (8) 

where 𝐵 is the batch size. The fitness value of each 

whale 𝑖 at iteration 𝑡 is obtained by training the CNN 

using the hyperparameter vector Xi
t and computing Eq. 

(9) [60] 

𝑓𝑖
𝑡 = ℒ𝒞ℰ,𝓋𝒶ℓ(𝑋𝑖

𝑡).                                             (9) 

 

The objective function can be shown by Eq. (10) [61] 
𝑋∗ = 𝑎𝑟𝑔 min

𝑋∈𝑅𝟜
𝑓 (𝑋).                                                    (10) 

A population of 𝑁 whales are initialized randomly within 

the predefined hyperparameter bounds. WOA uses a 
linearly decreasing parameter a(t) to balance 

exploration and exploitation, where a(t) is shown as Eq. 
(11)  [62] 

𝑎(𝑡) = 2 − 2
𝑡

𝑇𝑚𝑎𝑥
,                                                     (11) 

where 𝑇𝑚𝑎𝑥  notes the maximum number of iterations. 

For each whale, random vectors are generated as Eq. 
(12)  [62] 
𝑟 = [𝑟1, 𝑟2, . . . , 𝑟4]⊤,               (12) 
where component 𝑟𝑗 denotes the 𝑗-th element of the 

random vector, corresponding to the 𝑗-th dimension of 

the hyperparameter search space. Each component of 
the random vector is sampled from a continuous 
uniform distribution on the interval [0,1], expressed 
concisely as shown in Eq. (13) [62] 
𝑟𝑗 ∼ U(0,1),               (13) 

where the notation ∼ indicates that the random variable 
𝑟𝑗 is drawn according to a specified uniform probability 

distribution. The uniform distribution 𝑈(0,1) assigns 

equal probability density to all values within 
the interval [0,1], and its probability density function is 
defined as Eq. (14)  [63] 

𝑓𝑈(0,1)(𝑥) {
1, 0 ≤ 𝑥 ≤ 1
0,         𝑜𝑡ℎ𝑒𝑟𝑠

  .                           (14) 

Sampling each component 𝑟𝑗 independently 𝑈(0,1) 

ensures unbiased stochastic perturbations across all 
hyperparameter dimensions. These random values are 
subsequently used to compute the WOA coefficient 
vectors, Eq. 15 and Eq. 16 [64] 
𝐴 = 2𝑎(𝑡)𝑟 − 𝑎(𝑡),                    (15) 

𝐶 = 2𝑟.                (16) 

In the exploitation phase, when |𝐴| < 1 the whale 

updates its position by moving toward the best-known 
hyperparameter vector, 𝑿∗(𝑡) as shown in Eq. (17)  [64] 

𝑫 = |𝑪 ⊙ 𝑿∗(𝑡) − 𝑿𝒊
(𝒕)

|,                      (17) 

𝑿𝑖
(𝑡+1)

= 𝑿∗(𝑡) − 𝐴 ⊙ 𝑫,          (18) 
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where ⊙ denotes the Hadamard product, 𝑖 ∈ {1, … , 𝑁} 
is the whale index and 𝑘 is the index of a candidate 

spiral trajectory. 𝑋𝑖
(𝑡)

∈ 𝑅𝑑 is the position of the whale 𝑖 

at iteration 𝑡. Furthermore 𝑋∗(𝑡) ∈ 𝑅𝑑 is the best-known 

solution at iteration 𝑡. 𝐷, 𝐷′ ∈ 𝑅𝑑 is the distance vectors. 

WOA incorporates an additional exploitation 
mechanism modeled as whale spiral hunting behavior. 
With probability 𝑝 ≥ 0.5, the whale updates its position 

following a logarithmic spiral, which is modeled by Eq. 
(19) and Eq. (20)  [64] 

𝒘(𝒌)(𝑡 + 1) = 𝑫′  ⊙ 𝑒𝑏𝑙 cos(2π𝑙) + 𝒘∗(𝑡), (19)  

where 

𝑫′ = | 𝒘∗(𝑡) − 𝒘(𝒌)(𝑡) |,                     (20) 

with b > 0 is a spiral constant, and 𝑙 ∈ [−1,1] is a 

random number and 𝒘(𝒌)(𝑡) ∈ 𝑅𝑑 is the spiral 

candidate position. 

E. Gradient-weighted Class Activation Mapping 
(Grad-CAM) 

Gradient-weighted Class Activation Mapping (Grad-
CAM) is a sophisticated visualization methodology that 
enhances the interpretability of convolutional neural 
networks (CNNs) by highlighting the regions within 
input images that have the most significant impact on 
the model's predictions. This technique produces a 
rudimentary localization map that accentuates 
substantial areas within the image, thereby facilitating 
researchers and clinicians in comprehending the 
cognitive processes underlying the decision-making of 
deep learning models [65]. Grad-CAM functions by 
employing the gradients associated with the target 
class that propagate into the terminal convolutional 
layer, thereby facilitating the identification of the 
prominent features that influence the model's output 
[66]. Grad-CAM involves computing the gradient of the 
class score with respect to the feature maps of the final 
convolutional layer. The key mathematical outputs can 
be expressed as Eq. (21) [67] 

𝛼 =
𝜕𝑦𝑘

𝜕𝐴𝑖𝑗
 ,                              (21) 

where 𝑦𝑘 is the score for the class 𝑘, and 𝐴𝑖𝑗 

represents the activations of the feature map [29], [30]. 
The gradients are subsequently processed through 
global average pooling. This technique transforms 
these gradients into a weight vector [70]. The 
mathematical equation for this step is presented in Eq. 
(22) [67] 

αk =
1

𝑍
∑ 𝑖 ∑ 𝑗

𝜕𝑦𝑘

𝜕𝐴𝑖𝑗
                         (22) 

where 𝑍 is the number of pixels in the feature map 𝐴𝑖𝑗, 

giving a normalization of the accumulated gradients for 
output stability. This vector delineates the significance 
of each feature map. This methodology accentuates 
areas that play a significant role in attaining the 
anticipated class score. The mathematical 

representation employed in Grad-CAM can be 
articulated as Eq. (23) [67] 

 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑘 = 𝑅𝐸𝐿𝑈(∑ 𝛼𝑘

𝑐
𝑘 𝐴𝑘)                (23) 

where the RELU function is represented as shown in 

Eq. (2) and 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑘 ∈ ℝ 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀

𝑘  represents the 

class localization map, derived from the feature maps 
of the last convolutional layer [71], [72]. 

The primary role of Grad-CAM is to furnish visual 
explanations for the predictions generated by 
convolutional neural networks (CNNs). This aspect is 
especially vital in medical imaging, where 
comprehending the underlying rationale of a model's 
determinations can profoundly influence clinical 
outcomes. For example, in brain tumor identification, 
Grad-CAM can facilitate the localization of specific 
areas within MRI scans that the model deems 
indicative of tumor existence, thereby aiding 
radiologists in diagnostic evaluation. The F1-score 
integrates these two metrics, offering a harmonized 
measure that can be especially enlightening in 
scenarios characterized by class imbalance [73]. 

The aggregated insights from these metrics 
facilitate a more comprehensive understanding of 
model efficacy and empower more informed decision-
making in advancing and implementing deep learning 
frameworks. For example, a research investigation 
demonstrated that disparate machine learning models 
exhibited varying degrees of performance in 
forecasting health outcomes, while using these metrics 
to benchmark performance proficiently [74]. Accuracy 
serves as a broad indicator of a model's efficacy; 
however, it may present a distorted representation 
when the dataset exhibits an imbalance [63]. To 
ascertain the value of accuracy, one may employ Eq. 
(24)  [63] as delineated below 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
.   (24) 

This 𝑇𝑃 is for true positive, TN  for true negative, TP  
for false positive, and 𝐹𝑁 FN for false negative. This 

metric measures the proportion of correct predictions 
from the total predictions made. To ascertain the 
ratio, where the accuracy of optimistic predictions is 
relative to the total number of optimistic predictions 
executed. The equation is shown as Eq. 25 [75] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.     (25) 

Precision holds significant importance in scenarios 
where the repercussions of false positives are 
substantial, particularly in medical diagnostics [64]. The 
next metric is recall. The concept of recall is crucial, and 
identifying all positive examples, such as disease 
identification, is critical [75]. This metric assesses the 
proportion of accurate optimistic predictions about the 
overall count of actual positive occurrences. The 
formula is shown as Eq. 26 [75]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.                     (26) 
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The next metric is the F1 score. The F1-score 
represents the harmonic mean of precision and recall, 
striking a balance between the two metrics. The 
formula is shown as Eq. 27 [75]: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
          (27) 

 

III. Result 

The results of this research commence with the 
preprocessing phase, which is precisely the 
augmentation technique. Overall, the combination of 
augmentations successfully increased data 
diversification without causing artifacts that damaged 
the image structure. Visual observation of the 
augmentation samples revealed that the main pattern 
characteristics were maintained, while the model 
acquired additional variation that facilitated the 
generalization process during training. The training 
process is carried out using three scenarios, and each 
scenario will be evaluated. The first scenario is using 
default parameters without adding callbacks. The 
second scenario is achieved by adding callbacks, 
specifically ReduceLROnPlateau and 
ModelCheckpoint. The last one uses callbacks and 
hyperparameter search results from WOA. The three 
results will be presented below. 

Default parameters without adding callbacks: In 
this scenario, the accuracy of the training and 
validation results is obtained, as shown in Fig. 5. The 
loss function for this scenario is illustrated in Fig. 5b. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the calculations in Table 4, it can be inferred 
that the employed classification model exhibited 
commendable performance across all categories. The 
model achieved an accuracy rate of 99.14%, signifying 
that most predictions were accurate. Additionally, the 
Precision and Recall metrics for each category 
demonstrated remarkably high values, with the 
Notumor and Pituitary classes achieving nearly 
flawless precision and recall metrics. The F1-score, 
which indicates the equilibrium between precision and 
recall, also reflected outstanding values across the 
categories, with the Notumor class recording the 
highest F1-score of 0.998. Despite some 

misclassifications within the Glioma and Meningioma 
categories, these figures remained comparatively high, 
indicating that the model was proficient in 
distinguishing between the various tumor classes. In 
summary, the model exhibited an exceptional capability 
in tumor classification, characterized by exceedingly 

low error rates. 

 
Table 4. Model Evaluation Result 

Class Precision Recall F1-Score 

Glioma 0.997 0.98 0.988 

Meningioma 0.983 0.986 0.984 

Notumor 0.998 0.998 0.998 

Pituitary 0.997 0.997 0.997 

Accuracy   0.9914 

Avg 0.994 0.99 0.992 

 
Furthermore, the callback results are obtained by 
adding them, as shown in Fig. 6. Accuracy is illustrated 
in Fig. 6(a), and the loss function for this scenario is 
presented in Fig. 6(b). 
 

 

 

 

 

 

 

 

 

 

 

 
                            
 
 
 
 

a) b) 

 
 
 
 

 
This second scenario resulted in an increase in 
accuracy to 0.9936. This provides an improvement to 
the resulting model. As depicted in Fig. 6a, the model 
demonstrates convergence, improving accuracy 
compared to the preceding scenario. Next, a model 
with WOA is constructed to optimize performance. The 

  
(a) (b) 

Fig. 5. Performance Vanilla Model (a) Accuracy 
Vanilla Model b) Loss Vanilla Model 

  
(a) (b) 

  
(c) (d) 

Fig. 6.  Performance Proposed Model (a) Accuracy 
Vanilla Model with Callback (b) Loss Vanilla Model 
with Callback (c) Accuracy Vanilla Model with 
Callback and WOA (d) Loss Vanilla Model with 
Callback and WOA 
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training results are shown in Fig. 9c. The accuracy 
obtained in this process is 0.9962. The Grad-CAM is 

illustrated in Fig. 7 to highlight its salient features. From 
Fig. 7, the area of the tumor on the brain MRI image 
can be identified. This can make it easier to understand 
and diagnose brain tumors. 

IV. Discussion  

From  Fig. 8, it can be seen that the models derived 
from antecedent investigations, encompassing 
Inception, EfficientNetV2S, FL+VGG16, 
2DCNN+ensemble, and Xception, all yielded significant 
outcomes; however, none attained the efficacy exhibited 
by the proposed models. For instance, Inception and 
EfficientNetV2S demonstrated commendable 
performance, achieving accuracies of 0.993 and 0.989, 
respectively. These architectures exemplify the 
effectiveness of pre-trained models in addressing 
intricate tasks. FL+VGG16 realized an accuracy of 

0.980, signifying commendable performance, albeit 
marginally trailing the CNN 
frameworks. 2DCNN+ensemble and Xception, while 
remaining valuable, exhibited comparatively lower 
accuracies of 0.9647 and 0.940, respectively, 
suggesting that ensemble methodologies and specific 
pre-trained networks may encounter limitations within 
the present context. The results of this study are 
compared with those of previous research. This 
comparison is illustrated in Table 5. Table 5 shows that 
the proposed method outperforms the earlier research, 
achieving an accuracy of 0.9962. The results of this 
study are compared with those of previous research. 
This comparison is illustrated in Table 5. The CNN 
model, devoid of Callback mechanisms (our 
methodology), attained an accuracy of 0.991, 
surpassing several prominent architectures, such as 
Xception and 2DCNN+ensemble, when evaluated on 
the integrated dataset. Table 5 highlights the proposed 

method in bold, which achieves the best accuracy 
among the previous techniques. The CNN model 
incorporating callback mechanisms 
(ReduceLRonPlateau) demonstrated even superior 
accuracy, achieving a score of 0.994, which signifies the 
efficacy of employing callbacks to optimize the training 
process. The model that exhibited the highest 
performance in this investigation was CNN-WOA, which 
realized an accuracy of 0.9962, representing the 
pinnacle among all methods applied to the combined 
dataset. This observation implies that the Whale 

  
(a) (b) 

Fig. 7. Comparison Ground Truth and Grad-CAM 

(a) Brain Tumor Ground Truth,  (b) Grad Cam 

Visualization  

 

 

Fig. 8. Model Performance Comparison 
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Optimization Algorithm (WOA) enhances classification 
accuracy.  

Table 5. Performance Comparison 

Method Dataset Acc 

Inception [11] BR35H 0.993 

EfficientNetV2S [13] BR35H 0.989 

FL+VGG16 [12] Combine 0.980 

2DCNN+ ensemble [14] Combine 0.9647 

Xception[15] BR35H 0.940 

CNN without Callback 
(our) 

Combine 0.991 

CNN with Callback (our) Combine 0.994 

CNN-WOA (our) Combine 0.9962 

 
This study set out to investigate whether a carefully 

tuned convolutional neural network (CNN) could achieve 
higher accuracy than existing approaches by leveraging 
training callbacks and meta-heuristic hyperparameter 
optimization. The comparative results in Table 5 show 
that the proposed CNN variants are competitive with, 
and in several cases superior to, previously reported 
models, including Inception  [11], EfficientNetV2S  [13], 
FL+VGG16  [12], 2DCNN+ensemble [14], and Xception 
[15]. 

When focusing on methods evaluated on the 
combined dataset, the baseline CNN without callbacks 
achieved an accuracy of 0.991. Introducing training 
callbacks in the form of ReduceLROnPlateau and 
ModelCheckpoint increased the accuracy to 0.994, 
corresponding to an absolute gain of 0.30 percentage 
points (difference callback vs. no-callback: 0.994 – 0.991 
= 0.003, i.e., 0.3%). This suggests that relatively simple 
training strategies, such as adaptive learning-rate 
scheduling and model checkpointing, already yield a 
measurable performance improvement, facilitating the 
model’s convergence to a better local optimum. 

The integration of the Whale Optimization Algorithm 
(WOA) for hyperparameter tuning further boosted the 
accuracy of the CNN to 0.9962 on the same combined 
dataset. Compared to the CNN without callbacks, this 
represents an absolute improvement of 0.52 percentage 
points (difference CNN-WOA vs. CNN without callback: 
0.9962 – 0.991 = 0.0052 ≈ 0.52%), and compared to the 
CNN with callbacks, the improvement is 0.22 
percentage points (difference CNN-WOA vs. CNN with 
callback: 0.9962 – 0.994 = 0.0022 ≈ 0.22%). Although 
these numerical differences are below 1%, they occur in 
an already high-accuracy regime (>0.99), where small 
gains are typically difficult to achieve and can still be 
meaningful for safety-critical applications such as brain 
tumor analysis. 

A broader comparison with other methods on the 
combined dataset reinforces this conclusion. The 
FL+VGG16[12] approach reports an accuracy of 0.980, 
whereas 2DCNN+ensemble achieves 0.9647. The 
proposed CNN variants improve upon FL+VGG16 by 
1.10, 1.40, and 1.62 percentage points for the CNN 
without callbacks (0.991 – 0.980 = 0.011), CNN with 
callbacks (0.994 – 0.980 = 0.014), and CNN-WOA 
(0.9962 – 0.980 = 0.0162), respectively. Relative to 
2DCNN+ensemble [14], the gains are even larger: 2.63, 
2.93, and 3.15 percentage points for the same three 
CNN variants. These differences suggest that both the 
architectural design of the CNN and the proposed 
optimization strategy contribute to systematically higher 
performance on the combined dataset. 

It is also informative to compare the proposed models 
with architectures evaluated on the BR35H dataset only. 
Inception achieves an accuracy of 0.993, 
EfficientNetV2S [13] achieves 0.989, and Xception [15] 
yields 0.940. While these results are reported on a single 
dataset, the proposed CNN-WOA on the more 
heterogeneous combined dataset still attains a slightly 
higher accuracy of 0.9962. The difference between 
CNN-WOA and Inception is approximately 0.32 
percentage points (0.9962 – 0.993 = 0.0032), and CNN 
with callbacks exceeds Inception by about 0.10 
percentage points (0.994 – 0.993 = 0.001). Although 
cross-dataset comparisons should be interpreted with 
caution, these numbers indicate that the proposed 
approach remains competitive even when contrasted 
with state-of-the-art deep architectures. According to 
prior research, deep learning methodologies can yield 
favorable outcomes contingent upon the optimal 
selection of hyperparameters. 

Overall, the numerical analysis shows a consistent 
trend: (i) adding callbacks yields a modest but clear 
improvement over the plain CNN, and (ii) incorporating 
WOA-based hyperparameter tuning produces the 
highest accuracy among all evaluated methods. These 
findings support the conclusion that systematic 
hyperparameter optimization, combined with 
appropriate training strategies, can lead to measurable 
accuracy gains beyond what is achievable by relying 
solely on architectural complexity. Fig. 7 is the Grad-
CAM visualization, highlighting the areas that 
contributed most to the model’s decision. Warmer colors 
(red, orange, and yellow) indicate regions with a larger 
influence on classification, while cooler colors (blue and 
purple) represent less significant areas.  

 

V. Conclusion 

This investigation aimed to enhance the efficacy and 

interpretability of deep learning algorithms used for 

brain tumor classification by integrating training 

callbacks and meta-heuristic hyperparameter 

optimization techniques. The findings reveal that 
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integrating ReduceLROnPlateau and 

ModelCheckpoint callbacks resulted in an increase in 

the CNN accuracy to 0.994. Furthermore, applying 

hyperparameter tuning via the Whale Optimization 

Algorithm (WOA) further elevated the accuracy to 

0.996. Moreover, supplementary analyses using Grad-

CAM yielded more accurate visual representations that 

distinguished between tumor-affected and unaffected 

cerebral regions, thereby bolstering the interpretability 

of the model. The results also indicate that the 

implementation of meta-heuristic optimization 

significantly prolongs training durations, thereby 

imposing practical limitations on extensive 

experimental undertakings. Subsequent investigations 

should explore more rapid or adaptive optimization 

methodologies, such as Particle Swarm Optimization 

(PSO), Genetic Algorithms (GA), Grey Wolf 

Optimization (GWO), or hybrid approaches, and 

assess the proposed methodology on larger and more 

heterogeneous multi-institutional datasets to enhance 

both robustness and generalizability. 
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