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Abstract. Diabetic retinopathy (DR) is an eye condition caused by damage to the blood vessels of the retina
due to high blood sugar levels, commonly associated with diabetes. Without proper treatment, it can lead
to visual impairment or blindness. Traditional machine learning (ML) approaches for detecting Diabetic
retinopathy rely on centralized data aggregation, which raises significant privacy concerns and often
encounters regulatory challenges. To address these issues, the DR-FEDPAM model is proposed for the
detection of diabetic retinopathy. Initially, the images are preprocessed using a Median Filter (MeF) and
Gaussian Star Filter (GaSF) to reduce noise and enhance image quality. The preprocessed images are then
input into a federated proximal model. Federated Learning (FL) enables multiple local models to train on
distributed devices without sharing raw data. After the local models process the data, their parameters are
aggregated through a Global Federated Averaging (GFA) model. This global model combines the
parameters from all local models to produce a unified model that classifies each image as either normal or
diabetic retinopathy. The model’s performance is evaluated using precision (PR), F1-score (F1), specificity
(SP), recall (RE), and accuracy (AC). The DR-FEDPAM achieves a balanced trade-off with 7.8 million
parameters, 1.7 FLOPs, and an average inference time of 13.9 ms. The model improves overall accuracy by
5.44%, 1.89%, and 4.43% compared to AlexNet, ResNet, and APSO, respectively. Experimental results show
that the proposed method achieves an accuracy of 98.36% in detecting DR.

Keywords Diabetic retinopathy; Retinal image; Median Filter; Gaussian Star Filter; Federated Learning;
MobileNet; Global Federated Averaging Model

I. Introduction federated learning (FL) has emerged as a promising

Diabetic retinopathy (DR) is a severe microvascular
complication of diabetes mellitus that damages the
retinal blood vessels, leading to vision impairment and,
in advanced stages, blindness [1], [2]. The disease
progression is categorized into non-proliferative DR
(NPDR) and proliferative DR (PDR), both of which can
cause irreversible vision loss if not detected early [3],
[4]. The global burden of diabetes is increasing at an
alarming rate, and consequently, DR prevalence is
expected to reach unprecedented levels [5]. Delayed
detection remains a critical issue because early
symptoms are often subtle, requiring advanced image
analysis techniques for accurate diagnosis [6]. Deep
learning (DL) [7] and machine learning (ML) [8]
methods, particularly convolutional neural networks
(CNNs) [9], have shown strong performance in
automated DR detection from retinal fundus images
[10]. Various architectures such as ResNet [11],
AlexNet [12], RegNet [13], and GoogleNet [14] have
been used for feature extraction and classification.
Some approaches integrate lesion detection, attention
mechanisms, or hybrid feature selection strategies,
achieving moderate to high accuracy [15]. Moreover,

paradigm for collaboratively training models without
centralizing sensitive medical data, thereby enhancing
privacy preservation [16].

Despite these advancements, existing DR detection
methods still face challenges such as high
computational complexity, limited generalization
across datasets, dependency on large labeled
datasets, and data privacy concerns in centralized
training [17]. Many models require substantial
hardware resources, which hinders real-time clinical
deployment, particularly in resource-constrained
environments [18]. Furthermore, privacy regulations
restrict the direct sharing of patient images, making
centralized learning models less feasible in real-world
medical scenarios [19]. To address these limitations,
this study proposes DR-FEDPAM (Detection of
Diabetic Retinopathy using Federated Proximal
Averaging Model). The proposed approach begins with
image preprocessing using the Median Filter (MeF) and
Gaussian Star Filter (GaSF) to reduce noise and
enhance image quality. A federated proximal learning
framework is then employed, where multiple clients
train local MobileNet-based models without sharing raw
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data. The server aggregates the local model
parameters using a Global Federated Averaging (GFA)
strategy to create an optimized global model that
classifies retinal images into Normal or DR categories.

The main objective of this study is to develop a high-
accuracy, privacy-preserving, and computationally
efficient deep learning model for early detection of
diabetic retinopathy using federated learning, enabling
robust performance without compromising patient data
confidentiality. The key contributions of this model are
summarized as follows:

1. Input retinal images undergo preprocessing steps,
including the GaSF and MeF, to eliminate noise
and improve image quality.

2. The enhanced image are fed into a Federated
Proximal Model. FL enables multiple local models
to train on different devices without sharing raw
data.

3. After the local models process the data, their
parameters are aggregated using the GFA Model.
This model combines parameters from all local
models to create a global model that classifies
images as either Normal or DR.

4. The efficiency of the proposed DR-FEDPAM
model is evaluated/assessed based on F1-score
(F1), recall (RE), specificity (SP), precision (PR),
and accuracy (AC).

The structure of this paper (study) is organized as
follows: Section 2 briefly describes the literature
survey; Section 3 presents the proposed DR-FEDPAM
model; Section 4 discusses the performance results
and comparative analysis; and Section 5 concludes
with remarks and future work.

ll. Literature Survey

In recent years, several studies have investigated the
classification of DR detection using deep neural
networks and ML methods. The section that follows
provides a review of some recent research works.

In 2022 Lahmar, C. and Idri, A., [20] proposed CNN
and ML models for DR classification. The hybrid
architecture combining MobileNetV2 and an SVM
classifier for feature extraction achieved the best
performance and was classified as one of the most
effective end-to-end DL architectures, with an accuracy
of 88.80%. Dasari, S., et al. [21] developed an efficient
ML-based technique for DR identification in 2023. This
study described an effective system-based DR
classification method. To detect DR spontaneously and
accurately, the efficient ML-DRGC design was
proposed for ML-based grading classification. A DL-
based method for DR was introduced by Fayyaz, A.M
et al [22] in 2023. This method utilized DL to enhance
the performance of computer-aided diagnosis for DR.
The system was designed for portable diagnostic

equipment and incorporated CNN and ResNet
architectures, as suggested by Basheer, S. and
Varghese, R.E., [23] in 2024.

DL with optimized feature selection was proposed
by Sapra et al. [24] in 2024 for DR detection. The
proposed DL model achieved 93.5% accuracy (AC)
with an optimized feature subset. Based on lesion
features, Jabbar et al [25] developed a DL model for
DR detection. Experimental results demonstrated that
the proposed hybrid model/framework outperformed
advanced techniques on the benchmark dataset,
achieving 94% accuracy. To detect DR, Chaudhuri, R
and Deb, S., proposed Mask-RCNN and Generative
Adversarial Networks [26]. The objective of this study
was to diagnose DR by analyzing fundus images using
DL techniques. In 2024, Mutawa et al. [27] outlined a
DL model for detecting DR stages. This study made a
significant contribution to wunderstanding DR by
employing two distinct public datasets. The CNN
architecture was fine-tuned using various learning rates
and optimizers.

Based on the above literature survey, various DL
and ML approaches have been developed for DR
detection. However, these methods exhibit low
reliability due to factors such as high time complexity
and limited image datasets. To address these
challenges, the DR-FEDPAM model has been
proposed for more effective DR detection.

lll. Proposed System

In this section, the DR-FEDPAM model is proposed for
DR detection. The proposed DR-FEDPAM model is
illustrated in Fig. 1. The DR-FEDPAM workflow begins
by dividing the DDR dataset among 20 clients with non-
IID data distributions. Each client performs local
training on its dataset using the MobileNet model for
one epoch. After training, only the model weights are
transmitted to the central server, thereby preserving
data privacy. The server aggregates these updates
using the Federated Averaging algorithm. This process
is repeated for 100 communication rounds. The final
global model is then used to classify retinal images as
either Normal or DR.

A. Dataset description

The DDR dataset [28] contains 13,673 fundus images,
comprising 6835 training images, 4105 test images,
and 2733 validation images acquired at a 45° field of
view for DR grading and lesion segmentation. The data
were collected from 147 hospitals across 23 regions in
China and annotated by a professional team using the
International Classification of Diseases and Risks
scale. Several qualified graders categorized the
photographs into six classes. The dataset includes
1151 non-gradable images, 6266 normal images, and
6256 DR images. A total of 757 images were pixel-
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Fig. 1. Proposed DR-FEDPAM model

labeled with bounding boxes to assist in lesion
detection and segmentation.

B. Data preprocessing

Preprocessing enhances medical images by
eliminating noise and improving subtle visual
variations. The Median Filter (MeF) is applied to
enhance image quality, while the Gaussian Star Filter
(GaSF) is used to suppress noise in the images.

1. Median filter

In this stage, the MeF [29] is applied to improve image
quality and is particularly effective at reducing salt-and-
pepper noise, which occurs when certain pixels have
extremely high or low intensity values compared to their
surroundings. In this method, surrounding pixels are
ranked by brightness, and the median value is
assigned as the new intensity for the central pixel.
Unlike conventional smoothing filters that blur edges,
the median filter preserves boundaries effectively. The
kernel is less sensitive to outliers, allowing unwanted
artifacts to be removed more efficiently. Because the
edges are only slightly degraded, the MeF can be
applied multiple times if necessary. Digitization
artifacts, such as straight lines that appear in

mammographic images, can be addressed using a two-
dimensional (2D) median filtering approach for a 3x3
neighborhood window. The primary drawback of MeF
is that it generates a new flag point that does not exist
in the original flag, which may be problematic in certain
applications. The MeF removes both noise and fine
details. Features smaller than the neighborhood size
have minimal effect on the median value and are
therefore filtered out. Thus, the MeF cannot distinguish
fine details from noise. Given an image | of size MxN
times: let (X, y) denote the coordinates of the pixel being
processed. Consider a neighborhood W, ,, around the
pixel I (x, y) of size mxn. The MeF output for the pixel
I'(x,y) is defined in (Eq. (1)): [30]

I'(x,y) = median {I(x+ ky+D|lk= —mT_l,...} )]

Where, | (x+k, y+l) denotes the pixel values within
the window centered on (X, y). With k and | representing
the horizontal and vertical offsets, respectively. The
median value corresponds to the middle value when all
pixels in W, , are arranged in ascending order.

2. Gaussian star filter
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In this stage, the GaSF [31] is used for noise
suppression, image smoothing, and nonlinear edge
shaping in the input image. The proposed filter consists
of two orthogonal Gaussian filters with elliptic profiles,
each forming a star-shaped filter for every noise peak.
Based on image amplitude, a region-growing technique
is employed to estimate the filter parameters for each
noise peak.

The Fourier amplitude spectrum of periodic and
quasi-periodic noise typically exhibits a star-like
pattern, which motivates the star-shaped filter design.
The GaSF applies linear smoothing using a 3x3
average filter. The square region is identified as an
unclassified low-frequency zone using the GaSF
method. Manual threshold values are applied for
parameter control. The Gaussian function is defined in
Eq. (2): [32]

2 2
Glx,y) = 21'1:1z12 exp (_ ng ) (2)
where x and y represent the horizontal and vertical
axes, and G(x, y) denotes the Gaussian kernel value at
coordinates (x,y). o represents the standard deviation
of a Gaussian distribution, while 2mg? defines the
normalization factor ensuring that the total volume
under the Gaussian function equals 1. Consequently, o

determines the amount of blurring produced by the
Gaussian kernel.

Table 1. Parameter for pre-processing filter

Filter Parameter Value
MeF and GaSF Kernel Size 3x3
GaSF Sigma (o) 1.5
GaSF Manual Threshold 0.25
GaSF Elliptic Filter Radius 2

Table 1 presents the parameter settings used in the
pre-processing stage of the DR-FEDPAM model. The
MeF applies a 3x3 kernel to eliminate salt-and-pepper
noise while preserving edge details. The GaSF also
uses a 3x3 kernel and is configured with a o of 1.5 to
control smoothing intensity. A manual threshold of 0.25
and an elliptic radius of 2 enable precise suppression
of periodic noise peaks in retinal images.

A. Federated Proximal Model

Eq. (4) [33] illustrates the usual convolutional layer's
computing cost.

Qr =H, X Hy/ xixIxH; xH (4)
Where, Q, denotes the Computational cost of a
conventional convolution layer and H, = denotes height
of the output feature map. | denote number of input

The preprocessed image is fed into the Federated
Proximal (FedProx) model. Federated learning enables
multiple local models to train on different devices
without sharing raw data. Each local model processes
its data independently on the respective device.
MobileNet, developed by a Google research team,
employs convolutional layers that are separable by
depth. The ideal weighted model refers to a pretrained
MobileNet initialized with weights obtained from prior
training on the DDR dataset. This model is not trained
from scratch at the client level but is loaded for feature
extraction. Channel-wise and spatial features are
extracted from retinal images using MobileNet's
depthwise separable convolutions. These features
assist in detecting DR-related patterns locally. The use
of pretrained weights enhances convergence speed
and reduces training overhead at each client. All model
updates are performed using local data, and the global
model is constructed through federated averaging. This
approach ensures computational efficiency and privacy
preservation while maintaining high classification
performance. The architecture of MobileNet is shown
in Fig. 2.

Furthermore, with only a few hyperparameters, the
MobileNet architecture achieves high accuracy. The
depthwise separable convolution layers represent the
cross-channel and spatial correlations detected in the
input image feature maps. To operate, a depthwise
separable convolution performs two types of
convolutions: pointwise and depthwise. The pointwise
convolution (1x1) applies a filter to identify cross-
channel patterns, whereas the depthwise convolution
(DWC) employs a single spatial filter for each input
feature map. Standard convolutional layers extract both
cross-channel and spatial patterns simultaneously,
whereas separable convolutional layers process them
independently. The integration of deep and separable
convolutional networks accelerates MobileNet training
and significantly reduces overall computational cost.
The standard convolutional structure is mathematically
defined in Eq. (3) [33]:

R =Yiwy, | )
where R, represents the Output feature representation
at layer r and w;; defines the Learnable weights
(convolutional filter parameters) for input channel i at
layer I. I; represents the input feature map from the i-
th channel, while Y i denotes the summation over all
input channels i.

channels and | denote number of output channels.
Hiprepresents the Kernel size.

Eq. (5) [33] illustrates the DWC stage. where I,
indicates the input data and g, ; represents the kernels.

Xi =X ()
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Fig. 2. Architecture of MobileNet

where, yx; represents the output of the depthwise
convolution for input channel | and , ; represents the
depthwise convolution kernel applied only to the i-th
input channel. A Ho/, X Hoy, length and k filters with |

channels are provided for DWC. Eq. (6) [33] is used to
determine the computing cost of the extensive
separable convolution structure.

TV=Ho/pXHO/pXkXHipXHip+kxlXHiPXHip(6)

Where, F, denotes the computational cost of
depthwise separable convolution and Ho/p defines the

Output feature map size. k denotes number of filters
applied in the depthwise convolution stage, | Number
of output channels after pointwise convolution and H;,

denotes the Kernel size. The cost of the suggested

technique is %+Hz when comparing the above
o/p

computational cost equation with the conventional
convolutional method. By using deep and separable
convolutional structures, MobileNet enables rapid
training and fewer computations.

Table 2 outlines the key hyperparameters and
regularization settings used to train the MobileNet
model in the proposed DR-FEDPAM model. Each local

Table 2. Training Parameters of MobileNet

Hyperparameter Value
Epochs per local client 1
Learning rate 0.001
Optimization algorithm AO
Dropout rate 0.3
Batch size 32

Loss function Categorical Cross-Entropy

Regularization L2 (A =0.0001)

Early stopping Patience = 10 rounds

client trains for one epoch per communication round to
maintain computational efficiency. A learning rate of
0.001 ensures stable convergence, while a batch size
of 32 balances performance and memory usage. The
Adam optimizer (AO) is selected for its adaptive
learning capability. Dropout is applied to reduce
overfitting, and L2 regularization (A = 0.0001) is
employed to penalize large weights. Early stopping with
a patience of 10 communication rounds is implemented
to prevent unnecessary training when validation
performance plateaus.

B. Global Federated Averaging Model

After the local models process the data, the results are
combined using the Global Federated Averaging (GFA)
model. In this model, all local parameters are
aggregated to create a global model, which is then
used to classify images as Normal or DR. In DR-
FEDPAM model, federated learning involves 20 local
clients with non-independent and identically (non-IID)
data. For each training round, 10 clients are randomly
selected to participate. Each client trains the model
locally for one epoch. The local updates are sent to a
central server for aggregation using the Federated
Averaging algorithm. Client selection is performed
using uniform random sampling without replacement.
This process continues for 100 global communication
rounds to construct the final global model. In the
outermost loop, a global learning cycle is iterated a
predetermined number of times. During each iteration,
the system sets global parameters. The client-side
feature extraction process involves loading a pretrained
model from the retinal image dataset, randomly splitting
the data into packets for prediction, packaging the data
as FE, and transmitting it to the edge server. The edge
server performs two main processes: the first is global
edge communication training, followed by extraction
and linking of local features from client data. The model
is then weighted in conjunction with the overall global
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model. The client utilizes the DDR dataset to update
the pretrained data, after which the extracted data are
reconnected. The edge server subsequently trains on
the full dataset to generate local weights. The algorithm
can send a predetermined round-robin schedule to the
edge-sever based on the assigned weight w,. After the
training stage, the edge server weight is adjusted
during communication loops. Upon collecting the
weight lists from all contributing edges, the model
combines and averages them. The weights are
adjusted again for the next round. Following local
training, the server receives the models from all
participating clients. The global model w*Vat round
i+1 is obtained by averaging the weights of all local
models, weighted by the number of data points |D,|for
each client, as defined in Eq. (7) [34]:

w(+D = K |Dgl W}Ei"'l) (7)

Where, w(*V is the global model after round i+1,
|[Dy| is the number of data points on client k and
w,E‘“) is the local model for client k after round i+1 K'is
the number is contributing clients. The classification
model is trained to identify whether the retinal image
indicates Normal or DR.

IV. Result

This section presents the evaluation of the proposed
DR-FEDPAM model using the collected dataset,
applying several performance metrics including
precision (PR), recall (RE), specificity (SP), accuracy
(AC), and F1 score. The benchmark includes the
performance of the proposed model as well as the
overall accuracy rate, which has been clearly defined
and evaluated. Fig. 3 presents the classification results
of the proposed DR-FEDPAM model using the DDR

dataset. Column 1 shows the input image, and Column
2 displays the preprocessed image. Column 3 presents
the feature-extracted image, and Column 4 represents
the final classification output.

A. Performance analysis

The proposed DR-FEDPAM model is evaluated based
on specificity (SP), precision (PR), recall (RE),
accuracy (AC), and F1 score. Specificity measures the
model’s accuracy in identifying negative cases. It is
computed by dividing the total number of negatives by
the number of correctly predicted negatives, as defined
in Eq. (8) [35]:

— Tneg
SP = Tneg+Fpos (8)
PR calculates the percentage of optimistic forecasts
that come true. It emphasizes the model’s ability to
minimize false positives in Eq. (9) [35]:

— TPOS
PR = Tpost+Fpos (9)
RE evaluates the model's capacity to accurately detect
every real positive case. It is the ratio of correctly
predicted positive observations to all actual positives in
Eq. (10) [35]:
RE = b2 _ (10)

TpostFneg

AC calculates how accurate the model's predictions are
overall. It is computed as the proportion of accurately
predicted samples to all samples in Eq. (11) [35]:

AC = — TpostTneg (11)
Total no.of samples

F1 represents the harmonic mean of PR and RE,
offering a balanced measure when there is an uneven
class distribution in Eq. (12) [35]:
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Fl = z(ﬁiiii) (12)  testing accuracy (AC). The MobileNet model achieves

In Eq. (8), Eq. (9), Eq. (10), Eq. (11) and Eq. (12) [35],
Theg @and T, Specifies true negatives and true positives
of the sample images, F,., and F,, requires false
negatives and false positives of the sample images.
High AC reflects the overall correctness of the model’s
predictions across all cases. High RE ensures that
most DR cases are detected, reducing the risk of
missed diagnoses and vision loss. High PR minimizes
false positives, avoiding unnecessary referrals and
patient anxiety. SP helps correctly identify non-DR
cases, reducing burden on healthcare resources. A
balanced F1 indicates reliable detection in both positive
and negative cases, which is crucial for clinical
decision-making. Table 3 presents the classification
performance obtained by proposed DR-FEDPAM
model for diabetic retinopathy (DR) classification. AC,
RE, F1, SP, and PR are the metrics used to determine

an accuracy of 98.36%, as observed from its training
and testing accuracy curves across epochs. Fig. 5 b)
illustrates the loss curve plotted against epochs,
indicating that the loss decreases as the number of
epochs increases. The proposed method produces
accurate results with a relatively low loss of 1.6%. After
both training and testing, the proposed network
demonstrates strong overall performance.

B. Comparative analysis

The effectiveness of each DL network was evaluated
to verify that the proposed DR-FEDPAM model
produces results with a high level of AC. In the
comparative analysis, the baseline models AlexNet,
ResNet, RegNet, and GoogleNet were implemented
using standard publicly available architectures. All
models, including the proposed DR-FEDPAM with
MobileNet, were trained on the same DDR dataset. The

Table 3. Performance assessment of the proposed DR-FEDPAM model

Classes AC SP PR RE F1
DR 97.90 95.27 97.02 96.33 96.48
No DR 98.82 96.12 95.70 94.21 97.89

performance. An overall accuracy of 98.36% was
achieved by the proposed DR-FEDPAM model using
the DDR dataset. Fig. 4 provides a graphical
representation of the DR-FEDPAM model's
performance evaluation. In this figure, the proposed
DR-FEDPAM model achieves 95.69%, 95.27%,
96.36%, and 97.18% for overall SP, RE, PR, and F1,
respectively. High RE and F1 indicate strong DR
detection with minimal missed cases. The balanced
metrics demonstrate the model's reliability for clinical
DR screening. In Fig. 5 a), the epochs on the x- and y-
axes are shown along with a comparison of training and

dataset was divided into 50% training, 30% testing, and
20% validation subsets to maintain uniformity. A batch
size of 32 was used to train the models for 50 epochs
using the AO with a learning rate of 0.001. Data
augmentation techniques such as horizontal flipping,
random cropping, and brightness adjustment were
applied consistently across all models. These settings
ensure that the performance comparison remains fair
and reproducible under uniform experimental
conditions. In Table 4, the proposed DR-FEDPAM
model was compared with four classifiers: ResNet,
AlexNet, RegNet, and GoogleNet. Several metrics
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Fig. 5. Performance of the proposed DR-FEDPAM, (a) Accuracy and (b) loss graph

were used to evaluate each DL technique’s
performance, including F1, RE, PR, SP, and AC. The
reported p-values from paired t-tests are all below 0.05,
indicating that the performance improvements
achieved by DR-FEDPAM are statistically significant.
The proposed DR-FEDPAM model attained an overall
accuracy of 98.36%. This study primarily focuses on
binary classification, where DR-FEDPAM achieved a
high accuracy of 98.05%, confirming its strong
capability to distinguish between Normal and DR
cases. Notably, during evaluation, the model also
demonstrated promising performance in five-class

Although five-class classification is not part of the
current DR-FEDPAM model, this result highlights its
potential for future in multi-stage DR detection,
enabling finer-grained classification of disease
severity. Fig. 6 provides a graphical representation of
the MobileNet comparative evaluation. The proposed
MobileNet outperforms ResNet, AlexNet, RegNet, and
GoogleNet by 4.1%, 3.1%, 3.9%, and 1.6%,
respectively, in terms of overall accuracy. MobileNet
also demonstrates superior performance in RE and F1,
indicating strong detection capabilities with balanced
PR. Its consistent lead across all metrics confirms its

classification, reaching an accuracy of 98.79%. suitability for accurate and efficient DR classification.
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Fig. 6. A graphic representation of performance analysis for MobileNet
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Table 4. Comparison between traditional DL networks and proposed the DR-FEDPAM model

Networks AC SP PR RE F1 p-value Binary Five class
classification  classification
ResNet [36] 93.65 89.04 86.23 92.21 90.25 0.056 94.54 97.36
AlexNet [37] 95.28 9458 91.04 90.05 91.48 0.070 95.76 96.12
RegNet [38] 9445 9124 8845 9428 90.24 0.066 96.24 97.88
GoogleNet [39] 97.07 9256 89.27 90.75 93.75 0.054 97.21 98.34
MobileNet (proposed) 98.36 95.89 95.83 96.28 96.04 0.05 98.05 98.79

Table 5. Dataset comparison of the proposed DR-FEDPAM model

Dataset AC PR RE
Kaggle DRD [40] 95.34 94.22 95.12
IDRID [41] 93.58 91.54 93.73
MESSI-DOR [42] 91.20 93.45 90.32
DDR dataset (proposed) 98.36 95.83 96.28

Table 6. Performance comparison of the DR-FEDPAM model with and without pre-processing

Metrics With pre-processing Without pre-
processing
AC 95.23 94.44
PR 92.10 91.12
SP 93.69 90.47
RE 91.73 89.55
F1 94.38 93.28

Table 5 presents the efficiency of the proposed DR-
FEDPAM model for DR detection using different
datasets. The existing datasets namely Kaggle DRD
[40], IDRID [41], and MESSI-DOR [42] exhibit relatively
lower accuracy levels. The proposed DR-FEDPAM
model achieved 98.36% AC, 95.83% PR, and 96.28%
RE on the DDR dataset. The results emphasize that the
proposed model attained better performance on the
DDR dataset compared to the other datasets.

C. Ablation Study

An ablation study was conducted on the DR-FEDPAM
model to evaluate the effect of preprocessing. The
comparison includes configurations with and without
preprocessing. A contrastive analysis of DR-FEDPAM
with and without MeF and GaSF is presented in Table
6. Table 6 presents the comparative performance
analysis of the DR-FEDPAM model under different
configurations: with and without preprocessing.
Applying preprocessing significantly improved model
performance across all metrics, enhancing accuracy by

0.79% and F1 by 1.10%. Noise reduction and image
quality enhancement through filtering contributed to
improved feature extraction and classification
accuracy.

V. Discussion

The findings of this study highlight the effectiveness of
the proposed DR-FEDPAM model in addressing two
major challenges in DR detection: achieving high
diagnostic accuracy while maintaining patient data
privacy. By combining image preprocessing (Median
Filter and Gaussian Star Filter) with a federated
proximal averaging strategy, the model achieved an
overall accuracy of 98.36%, which ranks among the
highest reported for DR classification. This
demonstrates that lightweight architectures, when
integrated with federated optimization, can provide
robust feature extraction and reliable classification
without requiring centralized data aggregation. The
balanced performance across all key metrics precision,
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Table 7. Comparing the accuracy of current models with DR-FEDPAM model

Authors Approaches AC Parameters FLO Inference

(Millions) Ps Time (ms)
Fayyaz, A.M et al [22] AlexNet 93 15.5 3.1 25.3
Basheer, S. and Varghese, R.E., [23] ResNet 96.5 10.3 4.3 14.6
Jabbar et al [25] APSO 94 8.4 2.6 18.5
Proposed DR-FEDPAM  98.36 7.8 1.7 13.9

recall, specificity, and F1 indicates that the model can
effectively minimize both false negatives (reducing
missed diagnoses) and false positives (preventing
unnecessary referrals), which are critical for real-world
clinical applications. Although DR-FEDPAM
demonstrates strong performance, it is not without
limitations. The experiments were conducted using
publicly available datasets, which may not fully capture
the diversity and complexity of real-world clinical
environments. Additionally, while federated learning
ensures data privacy, it introduces potential
communication overhead and synchronization delays
when deployed across a large number of clients.
Moreover, extreme variations in data quality or highly
imbalanced class distributions could affect model
generalization, warranting further investigation in future
studies. Table 7 presents that during the testing stage,
the experiment duration of images from the collected
dataset was calculated to evaluate the accuracy of
various methodologies. The classification accuracy
percentages for state-of-the-art models were
determined and used to compare performance metrics.
Compared to AlexNet, ResNet, and APSO, the DR-
FEDPAM model improves overall accuracy by 5.44%,
1.89%, and 4.43%, respectively. The proposed network
outperformed existing architectures in terms of overall
performance. DR-FEDPAM achieves a balanced trade-
off with 7.8 million parameters, 1.7 GFLOPs, and an
average inference time of 13.9 ms. This analysis
demonstrates that the proposed method maintains
practical computational efficiency suitable for real-time
applications.

Despite its strong performance, the proposed
model has several limitations. First, the study was
conducted on publicly available datasets, which may
not capture the full variability of clinical environments,
such as imaging device differences, demographic
variations, or low-quality scans. Second, while
federated learning ensures privacy, it introduces
communication overhead and synchronization
challenges when scaled to a large number of clients.
Third, like many deep learning systems, the model
functions as a “black box,” making it difficult for
clinicians to interpret its decisions. This lack of
explainability could limit trust and hinder adoption in

medical workflows. Addressing these issues through
real-world validation, communication-efficient
federated learning strategies, and the incorporation of
explainable Al techniques such as Grad-CAM would
further strengthen the model’s clinical utility.

The implications of this study are significant for
advancing Al-driven healthcare. By enabling privacy-
preserving collaborative learning, DR-FEDPAM aligns
with regulations such as GDPR and HIPAA, making it
a practical option for deployment in multi-institutional
healthcare systems. The model's low computational
demand and rapid inference time enable deployment
not only in advanced hospitals but also in resource-
constrained settings, improving access to early DR
screening in underserved regions. Furthermore, the
scalability of the model suggests potential extensions
to other imaging modalities, such as glaucoma or age-
related macular degeneration detection, thereby
broadening its applicability. Recent studies have
emphasized that federated learning is a promising
paradigm for medical Al due to its ability to balance
accuracy and privacy [23], [24]. Therefore, DR-
FEDPAM not only advances the state of DR detection
but also contributes to the broader vision of secure,
collaborative, and globally applicable Al-assisted
medical diagnostics.

VI. Conclusion

In this study, the DR-FEDPAM model was proposed for
detecting DR. The input images were preprocessed
and fed into a Federated Proximal Model. Federated
learning enables multiple local models to train on
different devices without sharing inputimages. After the
local models process the data, the results are
combined using a GFA model. Using parameters from
all local models, the global model classifies images as
either Normal or DR. The proposed MobileNet
outperformed ResNet, AlexNet, RegNet, and
GoogleNet by 4.1%, 3.1%, 3.9%, and 1.6%,
respectively, in terms of overall accuracy. As a result of
the experiments, the proposed method achieved
98.36% accuracy, outperforming previous methods in
classifying DR at its early stages. Compared to
AlexNet, ResNet, and APSO, the DR-FEDPAM model
improved overall accuracy by 5.44%, 1.89%, and
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4.43%. One significant limitation of the DR-FEDPAM
model is its reduced interpretability, which makes it
challenging for clinicians to understand the reasoning
behind its predictions. This lack of explainability may
hinder clinical trust and adoption in real-world
diagnostic workflows. To address this, future
enhancements should incorporate explainable Al
techniques such as Grad-CAM or attention maps to
provide visual justification for the model’s decisions.
This would improve transparency, facilitate clinical
validation, and support more informed medical
decision-making.
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