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Abstract. Diabetic retinopathy (DR) is an eye condition caused by damage to the blood vessels of the retina 
due to high blood sugar levels, commonly associated with diabetes. Without proper treatment, it can lead 
to visual impairment or blindness. Traditional machine learning (ML) approaches for detecting Diabetic 
retinopathy rely on centralized data aggregation, which raises significant privacy concerns and often 
encounters regulatory challenges. To address these issues, the DR-FEDPAM model is proposed for the 
detection of diabetic retinopathy. Initially, the images are preprocessed using a Median Filter (MeF) and 
Gaussian Star Filter (GaSF) to reduce noise and enhance image quality. The preprocessed images are then 
input into a federated proximal model. Federated Learning (FL) enables multiple local models to train on 
distributed devices without sharing raw data. After the local models process the data, their parameters are 
aggregated through a Global Federated Averaging (GFA) model. This global model combines the 
parameters from all local models to produce a unified model that classifies each image as either normal or 
diabetic retinopathy. The model’s performance is evaluated using precision (PR), F1-score (F1), specificity 
(SP), recall (RE), and accuracy (AC). The DR-FEDPAM achieves a balanced trade-off with 7.8 million 
parameters, 1.7 FLOPs, and an average inference time of 13.9 ms. The model improves overall accuracy by 
5.44%, 1.89%, and 4.43% compared to AlexNet, ResNet, and APSO, respectively. Experimental results show 
that the proposed method achieves an accuracy of 98.36% in detecting DR. 

Keywords Diabetic retinopathy; Retinal image; Median Filter; Gaussian Star Filter; Federated Learning; 
MobileNet; Global Federated Averaging Model 
 
I.  Introduction 

Diabetic retinopathy (DR) is a severe microvascular 
complication of diabetes mellitus that damages the 
retinal blood vessels, leading to vision impairment and, 
in advanced stages, blindness [1], [2]. The disease 
progression is categorized into non-proliferative DR 
(NPDR) and proliferative DR (PDR), both of which can 
cause irreversible vision loss if not detected early [3], 
[4]. The global burden of diabetes is increasing at an 
alarming rate, and consequently, DR prevalence is 
expected to reach unprecedented levels [5]. Delayed 
detection remains a critical issue because early 
symptoms are often subtle, requiring advanced image 
analysis techniques for accurate diagnosis [6]. Deep 
learning (DL) [7] and machine learning (ML) [8] 
methods, particularly convolutional neural networks 
(CNNs) [9], have shown strong performance in 
automated DR detection from retinal fundus images 
[10]. Various architectures such as ResNet [11], 
AlexNet [12], RegNet [13], and GoogleNet [14] have 
been used for feature extraction and classification. 
Some approaches integrate lesion detection, attention 
mechanisms, or hybrid feature selection strategies, 
achieving moderate to high accuracy [15]. Moreover, 

federated learning (FL) has emerged as a promising 
paradigm for collaboratively training models without 
centralizing sensitive medical data, thereby enhancing 
privacy preservation [16]. 

Despite these advancements, existing DR detection 
methods still face challenges such as high 
computational complexity, limited generalization 
across datasets, dependency on large labeled 
datasets, and data privacy concerns in centralized 
training [17]. Many models require substantial 
hardware resources, which hinders real-time clinical 
deployment, particularly in resource-constrained 
environments [18]. Furthermore, privacy regulations 
restrict the direct sharing of patient images, making 
centralized learning models less feasible in real-world 
medical scenarios [19]. To address these limitations, 
this study proposes DR-FEDPAM (Detection of 
Diabetic Retinopathy using Federated Proximal 
Averaging Model). The proposed approach begins with 
image preprocessing using the Median Filter (MeF) and 
Gaussian Star Filter (GaSF) to reduce noise and 
enhance image quality. A federated proximal learning 
framework is then employed, where multiple clients 
train local MobileNet-based models without sharing raw 
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data. The server aggregates the local model 
parameters using a Global Federated Averaging (GFA) 
strategy to create an optimized global model that 
classifies retinal images into Normal or DR categories. 

The main objective of this study is to develop a high-
accuracy, privacy-preserving, and computationally 
efficient deep learning model for early detection of 
diabetic retinopathy using federated learning, enabling 
robust performance without compromising patient data 
confidentiality. The key contributions of this model are 
summarized as follows: 

1. Input retinal images undergo preprocessing steps, 
including the GaSF and MeF, to eliminate noise 
and improve image quality. 

2. The enhanced image are fed into a Federated 
Proximal Model. FL enables multiple local models 
to train on different devices without sharing raw 
data. 

3. After the local models process the data, their 
parameters are aggregated using the GFA Model. 
This model combines parameters from all local 
models to create a global model that classifies 
images as either Normal or DR.  

4. The efficiency of the proposed DR-FEDPAM 
model is evaluated/assessed based on F1-score 
(F1), recall (RE), specificity (SP), precision (PR), 
and accuracy (AC). 

The structure of this paper (study) is organized as 
follows: Section 2 briefly describes the literature 
survey; Section 3 presents the proposed DR-FEDPAM 
model; Section 4 discusses the performance results 
and comparative analysis; and Section 5 concludes 
with remarks and future work. 

 

II.  Literature Survey 

In recent years, several studies have investigated the 
classification of DR detection using deep neural 
networks and ML methods. The section that follows 
provides a review of some recent research works. 

In 2022 Lahmar, C. and Idri, A., [20] proposed CNN 
and ML models for DR classification. The hybrid 
architecture combining MobileNetV2 and an SVM 
classifier for feature extraction achieved the best 
performance and was classified as one of the most 
effective end-to-end DL architectures, with an accuracy 
of 88.80%. Dasari, S., et al. [21] developed an efficient 
ML-based technique for DR identification in 2023. This 
study described an effective system-based DR 
classification method. To detect DR spontaneously and 
accurately, the efficient ML-DRGC design was 
proposed for ML-based grading classification. A DL-
based method for DR was introduced by Fayyaz, A.M 
et al [22] in 2023. This method utilized DL to enhance 
the performance of computer-aided diagnosis for DR. 
The system was designed for portable diagnostic 

equipment and incorporated CNN and ResNet 
architectures, as suggested by Basheer, S. and 
Varghese, R.E., [23] in 2024.  

DL with optimized feature selection was proposed 
by Sapra et al. [24] in 2024 for DR detection. The 
proposed DL model achieved 93.5% accuracy (AC) 
with an optimized feature subset. Based on lesion 
features, Jabbar et al [25] developed a DL model for 
DR detection. Experimental results demonstrated that 
the proposed hybrid model/framework outperformed 
advanced techniques on the benchmark dataset, 
achieving 94% accuracy. To detect DR, Chaudhuri, R 
and Deb, S., proposed Mask-RCNN and Generative 
Adversarial Networks [26]. The objective of this study 
was to diagnose DR by analyzing fundus images using 
DL techniques. In 2024,  Mutawa et al. [27] outlined a 
DL model for detecting DR stages. This study made a 
significant contribution to understanding DR by 
employing two distinct public datasets. The CNN 
architecture was fine-tuned using various learning rates 
and optimizers. 

Based on the above literature survey, various DL 
and ML approaches have been developed for DR 
detection. However, these methods exhibit low 
reliability due to factors such as high time complexity 
and limited image datasets. To address these 
challenges, the DR-FEDPAM model has been 
proposed for more effective DR detection. 

 

III.  Proposed System 

In this section, the DR-FEDPAM model is proposed for 
DR detection. The proposed DR-FEDPAM model is 
illustrated in Fig. 1. The DR-FEDPAM workflow begins 
by dividing the DDR dataset among 20 clients with non-
IID data distributions. Each client performs local 
training on its dataset using the MobileNet model for 
one epoch. After training, only the model weights are 
transmitted to the central server, thereby preserving 
data privacy. The server aggregates these updates 
using the Federated Averaging algorithm. This process 
is repeated for 100 communication rounds. The final 
global model is then used to classify retinal images as 
either Normal or DR.    

A. Dataset description  

The DDR dataset [28] contains 13,673 fundus images, 
comprising 6835 training images, 4105 test images, 
and 2733 validation images acquired at a 45° field of 
view for DR grading and lesion segmentation. The data 
were collected from 147 hospitals across 23 regions in 
China and annotated by a professional team using the 
International Classification of Diseases and Risks 
scale. Several qualified graders categorized the 
photographs into six classes. The dataset includes 
1151 non-gradable images, 6266 normal images, and 
6256 DR images. A total of 757 images were pixel-
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labeled with bounding boxes to assist in lesion 
detection and segmentation.  

B. Data preprocessing 

Preprocessing enhances medical images by 
eliminating noise and improving subtle visual 
variations. The Median Filter (MeF) is applied to 
enhance image quality, while the Gaussian Star Filter 
(GaSF) is used to suppress noise in the images. 

1. Median filter 

In this stage, the MeF [29] is applied to improve image 
quality and is particularly effective at reducing salt-and-
pepper noise, which occurs when certain pixels have 
extremely high or low intensity values compared to their 
surroundings. In this method, surrounding pixels are 
ranked by brightness, and the median value is 
assigned as the new intensity for the central pixel. 
Unlike conventional smoothing filters that blur edges, 
the median filter preserves boundaries effectively. The 
kernel is less sensitive to outliers, allowing unwanted 
artifacts to be removed more efficiently. Because the 
edges are only slightly degraded, the MeF can be 
applied multiple times if necessary. Digitization 
artifacts, such as straight lines that appear in 

mammographic images, can be addressed using a two-
dimensional (2D) median filtering approach for a 3×3 
neighborhood window. The primary drawback of MeF 
is that it generates a new flag point that does not exist 
in the original flag, which may be problematic in certain 
applications. The MeF removes both noise and fine 
details. Features smaller than the neighborhood size 
have minimal effect on the median value and are 
therefore filtered out. Thus, the MeF cannot distinguish 
fine details from noise. Given an image l of size M×N 
times: let (x, y) denote the coordinates of the pixel being 
processed. Consider a neighborhood 𝑊𝑥,𝑦 around the 

pixel I (x, y) of size m×n. The MeF output for the pixel 
𝐼′(x,y) is defined in (Eq. (1)): [30] 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝐼(𝑥 + 𝑘, 𝑦 + 𝑙)| 𝑘 = −
𝑚−1

2
, … }      (1) 

Where, I (x+k, y+l) denotes the pixel values within 
the window centered on (x, y). With k and l representing 
the horizontal and vertical offsets, respectively. The 
median value corresponds to the middle value when all 
pixels in 𝑊𝑥,𝑦 are arranged in ascending order.  

2. Gaussian star filter 

 
Fig. 1. Proposed DR-FEDPAM model 
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In this stage, the GaSF [31] is used for noise 
suppression, image smoothing, and nonlinear edge 
shaping in the input image. The proposed filter consists 
of two orthogonal Gaussian filters with elliptic profiles, 
each forming a star-shaped filter for every noise peak. 
Based on image amplitude, a region-growing technique 
is employed to estimate the filter parameters for each 
noise peak.  

The Fourier amplitude spectrum of periodic and 
quasi-periodic noise typically exhibits a star-like 
pattern, which motivates the star-shaped filter design. 
The GaSF applies linear smoothing using a 3×3 
average filter. The square region is identified as an 
unclassified low-frequency zone using the GaSF 
method. Manual threshold values are applied for 
parameter control. The Gaussian function is defined in  
Eq. (2): [32] 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2𝜎2 )                                        (2) 

where x and y represent the horizontal and vertical 
axes, and G(x, y) denotes the Gaussian kernel value at 
coordinates (x,y).  σ represents the standard deviation 
of a Gaussian distribution, while 2𝜋𝜎2 defines the 

normalization factor ensuring that the total volume 
under the Gaussian function equals 1. Consequently, σ  
determines the amount of blurring produced by the 
Gaussian kernel.  

Table 1 presents the parameter settings used in the 
pre-processing stage of the DR-FEDPAM model. The 
MeF applies a 3×3 kernel to eliminate salt-and-pepper 
noise while preserving edge details. The GaSF also 
uses a 3×3 kernel and is configured with a σ of 1.5 to 
control smoothing intensity. A manual threshold of 0.25 
and an elliptic radius of 2 enable precise suppression 
of periodic noise peaks in retinal images.  

 

A. Federated Proximal Model  

The preprocessed image is fed into the Federated 
Proximal (FedProx) model. Federated learning enables 
multiple local models to train on different devices 
without sharing raw data. Each local model processes 
its data independently on the respective device. 
MobileNet, developed by a Google research team, 
employs convolutional layers that are separable by 
depth. The ideal weighted model refers to a pretrained 
MobileNet initialized with weights obtained from prior 
training on the DDR dataset. This model is not trained 
from scratch at the client level but is loaded for feature 
extraction. Channel-wise and spatial features are 
extracted from retinal images using MobileNet’s 
depthwise separable convolutions. These features 
assist in detecting DR-related patterns locally. The use 
of pretrained weights enhances convergence speed 
and reduces training overhead at each client. All model 
updates are performed using local data, and the global 
model is constructed through federated averaging. This 
approach ensures computational efficiency and privacy 
preservation while maintaining high classification 
performance. The architecture of MobileNet is shown 
in Fig. 2. 

Furthermore, with only a few hyperparameters, the 
MobileNet architecture achieves high accuracy. The 
depthwise separable convolution layers represent the 
cross-channel and spatial correlations detected in the 
input image feature maps. To operate, a depthwise 
separable convolution performs two types of 
convolutions: pointwise and depthwise. The pointwise 
convolution (1×1) applies a filter to identify cross-
channel patterns, whereas the depthwise convolution 
(DWC) employs a single spatial filter for each input 
feature map. Standard convolutional layers extract both 
cross-channel and spatial patterns simultaneously, 
whereas separable convolutional layers process them 
independently. The integration of deep and separable 
convolutional networks accelerates MobileNet training 
and significantly reduces overall computational cost. 
The standard convolutional structure is mathematically 
defined in   Eq. (3) [33]: 

ℜ𝑟 = ∑ 𝜔𝑖,𝑙𝑖 ∙ Ι𝑖                                                                           (3) 

where ℜ𝑟 represents the Output feature representation 

at layer r and 𝜔𝑖,𝑙  defines the Learnable weights 

(convolutional filter parameters) for input channel i at 
layer l. Ι𝑖  represents the input feature map from the i-
th channel, while ∑ 𝑖 denotes the summation over all 

input channels i.

Eq. (4) [33] illustrates the usual convolutional layer's 
computing cost. 

𝒬𝑟 = Η𝑜/𝑝
× Η𝑜/𝑝

× 𝑖 × 𝑙 × Η𝑖𝑝
× Η𝑖𝑝

                             (4) 

Where, 𝒬𝑟 denotes the Computational cost of a 
conventional convolution layer and Η𝑜/𝑝

 denotes height 

of the output feature map. I denote number of input 

channels and l denote number of output channels. 
Η𝑖𝑝

represents the Kernel size. 

Eq. (5) [33] illustrates the DWC stage.  where Ι𝑘  

indicates the input data and ℘1,𝑖 represents the kernels. 

𝜒𝑖 = ∑ ℘1,𝑖 ∙ Ι𝑖                                                                      (5) 

Table 1. Parameter for pre-processing filter 

Filter Parameter Value 

MeF and GaSF Kernel Size 3×3 

GaSF Sigma (σ) 1.5 

GaSF Manual Threshold 0.25 

GaSF Elliptic Filter Radius 2 
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where, 𝜒𝑖 represents the output of the depthwise 

convolution for input channel I and ℘1,𝑖 represents the 

depthwise convolution kernel applied only to the i-th 
input channel. A Η𝑜/𝑝

× Η𝑜/𝑝
 length and k filters with l 

channels are provided for DWC. Eq. (6) [33] is used to 
determine the computing cost of the extensive 
separable convolution structure. 

ℱ𝜈 = Η𝑜/𝑝
× Η𝑜/𝑝

× 𝑘 × Η𝑖𝑝
× Η𝑖𝑝

+ 𝑘 × 𝑙 × Η𝑖𝑝
× Η𝑖𝑝

 (6) 

Where, ℱ𝜈 denotes the computational cost of 

depthwise separable convolution and Η𝑜/𝑝
 defines the 

Output feature map size. k denotes number of filters 
applied in the depthwise convolution stage, l Number 
of output channels after pointwise convolution and Η𝑖𝑝

 

denotes the Kernel size. The cost of the suggested 

technique is 
1

𝑙
+

1

Η2
𝑜/𝑝

  when comparing the above 

computational cost equation with the conventional 
convolutional method.  By using deep and separable 
convolutional structures, MobileNet enables rapid 
training and fewer computations.  

Table 2 outlines the key hyperparameters and 
regularization settings used to train the MobileNet 
model in the proposed DR-FEDPAM model. Each local 

client trains for one epoch per communication round to 
maintain computational efficiency. A learning rate of 
0.001 ensures stable convergence, while a batch size 
of 32 balances performance and memory usage. The 
Adam optimizer (AO) is selected for its adaptive 
learning capability. Dropout is applied to reduce 
overfitting, and L2 regularization (λ = 0.0001) is 
employed to penalize large weights. Early stopping with 
a patience of 10 communication rounds is implemented 
to prevent unnecessary training when validation 
performance plateaus.  

B. Global Federated Averaging Model  

After the local models process the data, the results are 
combined using the Global Federated Averaging (GFA) 
model. In this model, all local parameters are 
aggregated to create a global model, which is then 
used to classify images as Normal or DR. In DR-
FEDPAM model, federated learning involves 20 local 
clients with non-independent and identically (non-IID) 
data. For each training round, 10 clients are randomly 
selected to participate. Each client trains the model 
locally for one epoch. The local updates are sent to a 
central server for aggregation using the Federated 
Averaging algorithm. Client selection is performed 
using uniform random sampling without replacement. 
This process continues for 100 global communication 
rounds to construct the final global model. In the 
outermost loop, a global learning cycle is iterated a 
predetermined number of times. During each iteration, 
the system sets global parameters. The client-side 
feature extraction process involves loading a pretrained 
model from the retinal image dataset, randomly splitting 
the data into packets for prediction, packaging the data 
as 𝐹𝐸𝑥 and transmitting it to the edge server. The edge 

server performs two main processes: the first is global 
edge communication training, followed by extraction 
and linking of local features from client data. The model 
is then weighted in conjunction with the overall global 

Table 2. Training Parameters of MobileNet 

Hyperparameter Value 

Epochs per local client 1 

Learning rate 0.001 

Optimization algorithm AO 

Dropout rate 0.3 

Batch size 32 

Loss function Categorical Cross-Entropy 

Regularization L2 (λ = 0.0001) 

Early stopping Patience = 10 rounds 

 

 

 

 

 

 
Fig. 2.  Architecture of MobileNet 
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model. The client utilizes the DDR dataset to update 
the pretrained data, after which the extracted data are 
reconnected. The edge server subsequently trains on 
the full dataset to generate local weights. The algorithm 
can send a predetermined round-robin schedule to the 
edge-sever based on the assigned weight 𝑤0. After the 

training stage, the edge server weight is adjusted 
during communication loops. Upon collecting the 
weight lists from all contributing edges, the model 
combines and averages them. The weights are 
adjusted again for the next round. Following local 
training, the server receives the models from all 

participating clients. The global model 𝑤(𝑖+1)at round 

i+1 is obtained by averaging the weights of all local 
models, weighted by the number of data points |𝐷𝑘|for 

each client, as defined in Eq. (7) [34]: 

𝑤(𝑖+1) = ∑
|𝐷𝑘|

∑ |𝐷𝑗|𝐾
𝑗=1

𝐾
𝑘=1 𝑤𝑘

(𝑖+1)
                                           (7) 

Where, 𝑤(𝑖+1) is the global model after round i+1, 

|𝐷𝑘| is the number of data points on client k and 

𝑤𝑘
(𝑖+1)

 is the local model for client k after round i+1 K is 

the number is contributing clients. The classification 
model is trained to identify whether the retinal image 
indicates Normal or DR. 

IV.  Result 

This section presents the evaluation of the proposed 
DR-FEDPAM model using the collected dataset, 
applying several performance metrics including 
precision (PR), recall (RE), specificity (SP), accuracy 
(AC), and F1 score. The benchmark includes the 
performance of the proposed model as well as the 
overall accuracy rate, which has been clearly defined 
and evaluated. Fig. 3 presents the classification results 
of the proposed DR-FEDPAM model using the DDR 

dataset. Column 1 shows the input image, and Column 
2 displays the preprocessed image. Column 3 presents 
the feature-extracted image, and Column 4 represents 
the final classification output. 

A. Performance analysis 

The proposed DR-FEDPAM model is evaluated based 
on specificity (SP), precision (PR), recall (RE), 
accuracy (AC), and F1 score. Specificity measures the 
model’s accuracy in identifying negative cases. It is 
computed by dividing the total number of negatives by 
the number of correctly predicted negatives, as defined 
in Eq. (8) [35]: 

𝑆𝑃 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
                                                             (8) 

PR calculates the percentage of optimistic forecasts 
that come true. It emphasizes the model’s ability to 
minimize false positives in Eq. (9) [35]: 

𝑃𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
                                                                 (9) 

RE evaluates the model's capacity to accurately detect 
every real positive case. It is the ratio of correctly 
predicted positive observations to all actual positives in 
Eq. (10) [35]: 

𝑅𝐸 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                                          (10) 

AC calculates how accurate the model's predictions are 
overall.  It is computed as the proportion of accurately 
predicted samples to all samples in Eq. (11) [35]: 

𝐴𝐶 =
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                    (11) 

F1 represents the harmonic mean of PR and RE, 
offering a balanced measure when there is an uneven 
class distribution in Eq. (12) [35]: 

Input Preprocessing Feature extraction Classification 
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Fig. 3. Classification results of proposed DR-FEDPAM model 
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𝐹1 = 2(
𝑃𝑅+𝑅𝐸

𝑃𝑅+𝑅𝐸
)                                                         (12) 

In Eq. (8), Eq. (9), Eq. (10), Eq. (11) and Eq. (12) [35], 
𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 specifies true negatives and true positives 

of the sample images, 𝐹𝑛𝑒𝑔  and 𝐹𝑝𝑜𝑠  requires false 

negatives and false positives of the sample images. 
High AC reflects the overall correctness of the model’s 
predictions across all cases. High RE ensures that 
most DR cases are detected, reducing the risk of 
missed diagnoses and vision loss. High PR minimizes 
false positives, avoiding unnecessary referrals and 
patient anxiety. SP helps correctly identify non-DR 
cases, reducing burden on healthcare resources. A 
balanced F1 indicates reliable detection in both positive 
and negative cases, which is crucial for clinical 
decision-making. Table 3 presents the classification 
performance obtained by proposed DR-FEDPAM 
model for diabetic retinopathy (DR) classification. AC, 
RE, F1, SP, and PR are the metrics used to determine 

performance. An overall accuracy of 98.36% was 
achieved by the proposed DR-FEDPAM model using 
the DDR dataset. Fig. 4 provides a graphical 
representation of the DR-FEDPAM model’s 
performance evaluation. In this figure, the proposed 
DR-FEDPAM model achieves 95.69%, 95.27%, 
96.36%, and 97.18% for overall SP, RE, PR, and F1, 
respectively. High RE and F1 indicate strong DR 
detection with minimal missed cases. The balanced 
metrics demonstrate the model's reliability for clinical 
DR screening. In Fig. 5 a), the epochs on the x- and y-
axes are shown along with a comparison of training and 

testing accuracy (AC). The MobileNet model achieves 
an accuracy of 98.36%, as observed from its training 
and testing accuracy curves across epochs. Fig. 5 b) 
illustrates the loss curve plotted against epochs, 
indicating that the loss decreases as the number of 
epochs increases. The proposed method produces 
accurate results with a relatively low loss of 1.6%. After 
both training and testing, the proposed network 
demonstrates strong overall performance.  

B. Comparative analysis  

The effectiveness of each DL network was evaluated 
to verify that the proposed DR-FEDPAM model 
produces results with a high level of AC. In the 
comparative analysis, the baseline models AlexNet, 
ResNet, RegNet, and GoogleNet were implemented 
using standard publicly available architectures. All 
models, including the proposed DR-FEDPAM with 
MobileNet, were trained on the same DDR dataset. The 

dataset was divided into 50% training, 30% testing, and 
20% validation subsets to maintain uniformity. A batch 
size of 32 was used to train the models for 50 epochs 
using the AO with a learning rate of 0.001. Data 
augmentation techniques such as horizontal flipping, 
random cropping, and brightness adjustment were 
applied consistently across all models. These settings 
ensure that the performance comparison remains fair 
and reproducible under uniform experimental 
conditions. In Table 4, the proposed DR-FEDPAM 
model was compared with four classifiers: ResNet, 
AlexNet, RegNet, and GoogleNet. Several metrics 

Table 3. Performance assessment of the proposed DR-FEDPAM model 

Classes AC SP PR RE F1  

DR 97.90 95.27 97.02 96.33 96.48 

No DR 98.82 96.12 95.70 94.21 97.89 

 

 

 

 

 

 
Fig. 4. Graphical representation of performance analysis 
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were used to evaluate each DL technique’s 
performance, including F1, RE, PR, SP, and AC. The 
reported p-values from paired t-tests are all below 0.05, 
indicating that the performance improvements 
achieved by DR-FEDPAM are statistically significant. 
The proposed DR-FEDPAM model attained an overall 
accuracy of 98.36%. This study primarily focuses on 
binary classification, where DR-FEDPAM achieved a 
high accuracy of 98.05%, confirming its strong 
capability to distinguish between Normal and DR 
cases. Notably, during evaluation, the model also 
demonstrated promising performance in five-class 
classification, reaching an accuracy of 98.79%. 

Although five-class classification is not part of the 
current DR-FEDPAM model, this result highlights its 
potential for future in multi-stage DR detection, 
enabling finer-grained classification of disease 
severity. Fig. 6 provides a graphical representation of 
the MobileNet comparative evaluation. The proposed 
MobileNet outperforms ResNet, AlexNet, RegNet, and 
GoogleNet by 4.1%, 3.1%, 3.9%, and 1.6%, 
respectively, in terms of overall accuracy. MobileNet 
also demonstrates superior performance in RE and F1, 
indicating strong detection capabilities with balanced 
PR. Its consistent lead across all metrics confirms its 
suitability for accurate and efficient DR classification. 

 

(a)                                                     (b) 

Fig. 5. Performance of the proposed DR-FEDPAM, (a) Accuracy and (b) loss graph 
 

 

 

 

 

 
Fig. 6. A graphic representation of performance analysis for MobileNet 

 

 

 

 

 

70

75

80

85

90

95

100

Accuracy Specificity Precision Recall F1 score

P
e
rf

o
m

a
n
c
e
 r

a
te

Parameters

ResNet AlexNet RegNet GoogleNet MobileNet

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.915
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1259-1271                                    e-ISSN: 2656-8632 

 
Manuscript received May 12, 2025; Revised August 20, 2025; Accepted September 10, 2025; date of publication October 16, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.915 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 1267               

Table 5 presents the efficiency of the proposed DR-
FEDPAM model for DR detection using different 
datasets. The existing datasets namely Kaggle DRD 
[40], IDRiD [41], and MESSI-DOR [42]  exhibit relatively 
lower accuracy levels. The proposed DR-FEDPAM 
model achieved 98.36%  AC, 95.83% PR, and 96.28% 
RE on the DDR dataset. The results emphasize that the 
proposed model attained better performance on the 
DDR dataset compared to the other datasets.  

C. Ablation Study  

An ablation study was conducted on the DR-FEDPAM 
model to evaluate the effect of preprocessing. The 
comparison includes configurations with and without 
preprocessing. A contrastive analysis of DR-FEDPAM 
with and without MeF and GaSF is presented in Table 
6. Table 6 presents the comparative performance 
analysis of the DR-FEDPAM model under different 
configurations: with and without preprocessing. 
Applying preprocessing significantly improved model 
performance across all metrics, enhancing accuracy by 

0.79% and F1 by 1.10%. Noise reduction and image 
quality enhancement through filtering contributed to 
improved feature extraction and classification 
accuracy.  

 

V. Discussion 

The findings of this study highlight the effectiveness of 
the proposed DR-FEDPAM model in addressing two 
major challenges in DR detection: achieving high 
diagnostic accuracy while maintaining patient data 
privacy. By combining image preprocessing (Median 
Filter and Gaussian Star Filter) with a federated 
proximal averaging strategy, the model achieved an 
overall accuracy of 98.36%, which ranks among the 
highest reported for DR classification. This 
demonstrates that lightweight architectures, when 
integrated with federated optimization, can provide 
robust feature extraction and reliable classification 
without requiring centralized data aggregation. The 
balanced performance across all key metrics precision, 

Table 4. Comparison between traditional DL networks and proposed the DR-FEDPAM model 

Networks AC SP PR RE F1 p-value Binary 

classification 

Five class 

classification 

ResNet [36] 93.65 89.04 86.23 92.21 90.25 0.056 94.54 97.36 

AlexNet [37] 95.28 94.58 91.04 90.05 91.48 0.070 95.76 96.12 

RegNet [38] 94.45 91.24 88.45 94.28 90.24 0.066 96.24 97.88 

GoogleNet [39] 97.07 92.56 89.27 90.75 93.75 0.054 97.21 98.34 

MobileNet (proposed) 98.36 95.89 95.83 96.28 96.04 0.05 98.05 98.79 

 

Table 5. Dataset comparison of the proposed DR-FEDPAM model 

Dataset AC PR RE 

Kaggle DRD [40] 95.34 94.22 95.12 

IDRiD [41] 93.58 91.54 93.73 

MESSI-DOR [42] 91.20 93.45 90.32 

DDR dataset (proposed) 98.36 95.83 96.28 

 

Table 6. Performance comparison of the DR-FEDPAM model with and without pre-processing 

Metrics With pre-processing Without pre-
processing 

AC 95.23 94.44 

PR 92.10 91.12 

SP 93.69 90.47 

RE 91.73 89.55 

F1 94.38 93.28 
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recall, specificity, and F1 indicates that the model can 
effectively minimize both false negatives (reducing 
missed diagnoses) and false positives (preventing 
unnecessary referrals), which are critical for real-world 
clinical applications. Although DR-FEDPAM 
demonstrates strong performance, it is not without 
limitations. The experiments were conducted using 
publicly available datasets, which may not fully capture 
the diversity and complexity of real-world clinical 
environments. Additionally, while federated learning 
ensures data privacy, it introduces potential 
communication overhead and synchronization delays 
when deployed across a large number of clients. 
Moreover, extreme variations in data quality or highly 
imbalanced class distributions could affect model 
generalization, warranting further investigation in future 
studies. Table 7 presents that during the testing stage, 
the experiment duration of images from the collected 
dataset was calculated to evaluate the accuracy of 
various methodologies. The classification accuracy 
percentages for state-of-the-art models were 
determined and used to compare performance metrics. 
Compared to AlexNet, ResNet, and APSO, the DR-
FEDPAM model improves overall accuracy by 5.44%, 
1.89%, and 4.43%, respectively. The proposed network 
outperformed existing architectures in terms of overall 
performance. DR-FEDPAM achieves a balanced trade-
off with 7.8 million parameters, 1.7 GFLOPs, and an 
average inference time of 13.9 ms. This analysis 
demonstrates that the proposed method maintains 
practical computational efficiency suitable for real-time 
applications. 

Despite its strong performance, the proposed 
model has several limitations. First, the study was 
conducted on publicly available datasets, which may 
not capture the full variability of clinical environments, 
such as imaging device differences, demographic 
variations, or low-quality scans. Second, while 
federated learning ensures privacy, it introduces 
communication overhead and synchronization 
challenges when scaled to a large number of clients. 
Third, like many deep learning systems, the model 
functions as a “black box,” making it difficult for 
clinicians to interpret its decisions. This lack of 
explainability could limit trust and hinder adoption in 

medical workflows. Addressing these issues through 
real-world validation, communication-efficient 
federated learning strategies, and the incorporation of 
explainable AI techniques such as Grad-CAM would 
further strengthen the model’s clinical utility. 

The implications of this study are significant for 
advancing AI-driven healthcare. By enabling privacy-
preserving collaborative learning, DR-FEDPAM aligns 
with regulations such as GDPR and HIPAA, making it 
a practical option for deployment in multi-institutional 
healthcare systems. The model’s low computational 
demand and rapid inference time enable deployment 
not only in advanced hospitals but also in resource-
constrained settings, improving access to early DR 
screening in underserved regions. Furthermore, the 
scalability of the model suggests potential extensions 
to other imaging modalities, such as glaucoma or age-
related macular degeneration detection, thereby 
broadening its applicability. Recent studies have 
emphasized that federated learning is a promising 
paradigm for medical AI due to its ability to balance 
accuracy and privacy [23], [24]. Therefore, DR-
FEDPAM not only advances the state of DR detection 
but also contributes to the broader vision of secure, 
collaborative, and globally applicable AI-assisted 
medical diagnostics. 
 
VI.  Conclusion 
In this study, the DR-FEDPAM model was proposed for 
detecting DR. The input images were preprocessed 
and fed into a Federated Proximal Model. Federated 
learning enables multiple local models to train on 
different devices without sharing input images. After the 
local models process the data, the results are 
combined using a GFA model. Using parameters from 
all local models, the global model classifies images as 
either Normal or DR. The proposed MobileNet 
outperformed ResNet, AlexNet, RegNet, and 
GoogleNet by 4.1%, 3.1%, 3.9%, and 1.6%, 
respectively, in terms of overall accuracy. As a result of 
the experiments, the proposed method achieved 
98.36% accuracy, outperforming previous methods in 
classifying DR at its early stages. Compared to 
AlexNet, ResNet, and APSO, the DR-FEDPAM model 
improved overall accuracy by 5.44%, 1.89%, and 

Table 7. Comparing the accuracy of current models with DR-FEDPAM model 

Authors Approaches AC Parameters 
(Millions) 

FLO
Ps 

Inference 
Time (ms) 

Fayyaz, A.M et al [22] AlexNet 93 15.5 3.1 25.3 

Basheer, S. and Varghese, R.E., [23] ResNet 96.5 10.3 4.3 14.6 

Jabbar et al [25] APSO 94 8.4 2.6 18.5 

Proposed DR-FEDPAM 98.36 7.8 1.7 13.9 
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4.43%. One significant limitation of the DR-FEDPAM 
model is its reduced interpretability, which makes it 
challenging for clinicians to understand the reasoning 
behind its predictions. This lack of explainability may 
hinder clinical trust and adoption in real-world 
diagnostic workflows. To address this, future 
enhancements should incorporate explainable AI 
techniques such as Grad-CAM or attention maps to 
provide visual justification for the model’s decisions. 
This would improve transparency, facilitate clinical 
validation, and support more informed medical 
decision-making. 
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