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Abstract Heart failure is one of the leading causes of death worldwide and requires accurate and timely 
diagnosis to improve patient outcomes. However, early detection remains a significant challenge due to 
the complexity of clinical data, high dimensionality of features, and variability in patient conditions. 
Traditional clinical methods often fall short in identifying subtle patterns that indicate early stages of heart 
failure, motivating the need for intelligent computational techniques to support diagnostic decisions. This 
study aims to enhance predictive modeling for heart failure classification by comparing two supervised 
machine learning approaches: Extreme Learning Machine (ELM) and Hierarchical Extreme Learning 
Machine (HELM). The main contribution of this research is the empirical evaluation of HELM's performance 
improvements over conventional ELM using 10-fold cross-validation on a publicly available clinical dataset. 
Unlike traditional neural networks, ELM offers fast training by randomly assigning weights and analytically 
computing output connections, while HELM extends this with a multi-layer structure that allows for more 
complex feature representation and improved generalization. Both models were assessed based on 
classification accuracy and Area Under the Curve (AUC), two critical metrics in medical classification tasks. 
The ELM model achieved an accuracy of 73.95% ± 8.07 and an AUC of 0.7614 ± 0.093, whereas the HELM 
model obtained a comparable accuracy of 73.55% ± 7.85 but with a higher AUC of 0.7776 ± 0.085. In several 
validation folds, HELM outperformed ELM, notably reaching 90% accuracy and 0.9250 AUC in specific 
cases. In conclusion, HELM demonstrates improved robustness and discriminatory capability in identifying 
heart failure cases. These findings suggest that HELM is a promising candidate for implementation in 
clinical decision support systems. Future research may incorporate feature selection, hyperparameter 
optimization, and evaluation across multi-center datasets to improve generalizability and real-world 
applicability. 

Keywords Extreme Learning Machine; Hierarchical Extreme Learning Machine; Heart Failure. 

I. Introduction 

Heart failure continues to be a major global health 
concern, contributing to more than 17 million deaths 
each year due to cardiovascular conditions, as reported 
by the World Health Organization in 2021 [1], making it 
one of the most critical diseases of the 21st century [2]. 
Timely detection is essential for reducing complications 

and enhancing patient prognosis [3]. However, 
traditional clinical diagnostic methods are often limited 
by the complexity and high dimensionality of medical 
data, which can hinder accurate and timely predictions 
[4]. 

In response to these challenges, machine learning 
(ML) and deep learning approaches have shown 
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promising results in analyzing large-scale and complex 
clinical datasets that can help clinical researchers to 
target high-risk patients to modify treatment 
interventions based on accurate risk predictions [5], [6]. 
Deep learning methods can discover hidden patterns in 
patient data that are difficult to detect using 
conventional techniques, leading to more accurate 
early-stage diagnosis and targeted intervention [7]. 
One algorithm that has gained attention in this domain 
is the Extreme Learning Machine (ELM), which is 
known for its fast training and strong generalization 
performance in classification problems [8], [9], [10]. 
While ELM offers efficiency and simplicity, its 
performance may be limited in handling high-
dimensional or nonlinear data structures. To address 
this, a more advanced model, the Hierarchical Extreme 
Learning Machine (HELM), has been proposed. HELM 
employs a multi-layer ELM-based architecture, 
allowing hierarchical feature representation that can 
capture more complex patterns [11], [12]. This 
approach has demonstrated improved accuracy in 
several domains, including medical classification tasks 
involving pathological voices and clinical diagnosis. 

Despite the growing interest in both ELM and 
HELM, comparative studies assessing their predictive 
performance on clinical heart failure datasets are still 
limited. Prior works have largely focused on 
optimization techniques for ELM (e.g., using Particle 
Swarm Optimization), or on standalone evaluations of 
HELM for other health applications. Therefore, a clear 
research gap exists in evaluating and benchmarking 
these two models side by side on heart failure 
prediction tasks.  

This study aims to fill the identified research gap by 
conducting a comprehensive comparative analysis 
between Extreme Learning Machine (ELM) and 
Hierarchical Extreme Learning Machine (HELM) using 
the publicly available Heart Failure Clinical Records 
Dataset. To ensure robust evaluation, we apply a 10-
fold cross-validation framework and assess the 
predictive performance of both models using 
classification accuracy and Area Under the Curve 
(AUC) metrics. The contributions of this study include: 
(1) the implementation and benchmarking of ELM and 
HELM for heart failure classification, (2) the use of a 
cross-validation protocol to ensure generalizability of 
the results, (3) an empirical comparison of key 
evaluation metrics including accuracy and AUC, and 
(4) a critical discussion on the implications and 
potential of hierarchical learning architectures in the 
context of clinical prediction tasks. 

 

II. Methods 

This study follows a structured methodology 
comprising data collection, preprocessing, model 
implementation, and evaluation. The overall research 

workflow is illustrated in Fig. 1, starting from dataset 
preparation through model training and performance 
assessment. 

A. Dataset 

In Table 1 the dataset used in this study is the Heart 
Failure Clinical Records Dataset, which is publicly 
available on Kaggle 
(https://www.kaggle.com/code/karnikakapoor/heartfail
ure-prediction-ann). This dataset contains 299 patient 
records with 13 clinical features and one binary target 
variable (DEATH_EVENT) indicating whether the 
patient died during the follow-up period. The features 
include demographic, clinical, and laboratory variables 
such as age, sex, ejection fraction, serum creatinine, 
smoking status, and more. All records are derived from 
real patients who had left ventricular systolic 
dysfunction, providing a reliable basis for heart failure 
prediction research. 

 

Table 1. Summary of heart failure clinical dataset 
consisting of 299 patients and 13 attributes, 
including the DEATH_EVENT outcome. 

Age 
Anae
mia 

Creatinine_ph
osphokinase 

Diab
etes 

… 
Death
_event 

75 0 582 0 … 1 

55 0 7861 0 … 1 

65 0 146 0 … 1 

50 1 111 0 … 1 

65 1 160 1 …  

 
Fig. 1. This figure illustrates the research 
methodology workflow for heart failure 
diagnosis, detailing the sequential steps from 
clinical data collection and preprocessing 
through model learning and rigorous 
evaluation 
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90 1 47 0 … 1 

75 1 246 0 … 1 

60 1 315 1 … 1 

65 0 157 0 … 1 

80 1 123 0 … 1 

75 1 81 0 … 1 

62 0 231 0 … 1 

… … … … … … 

50 0 196 0 45 0 

 

B. Data Preprocessing 

Before model training, the dataset was preprocessed 
through several stages: feature-label separation, 
handling of missing values (if any), and normalization 
[13]. The process of normalization is essential in order 
to mitigate the substantial impact of variables that 
exhibit significantly disparate value ranges [14]. At 
present, with the rapid acceleration and expansion of 
data, the presence of missing values is a prevalent 
phenomenon in quantitative research [15]. 
Normalization is necessary to ensure all features 
operate within the same scale. In this study, Min-Max 
normalization was applied as expressed in Eq. (1) [16], 
[17], [18].  

𝑥1 =
𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
 

 

 
(1) 

This transformation improves convergence and 
prevents any one feature from dominating the model 
during training. Where X1 signifies a unique value 
designated for the purpose of normalization, x1 
represents the resultant value subsequent to the 
normalization process, minx(x) denotes the minimum 
value pertinent to a specific attribute, whereas max(x) 
indicates the maximum value associated with an 
attribute. The range is confined within the interval [0,1], 
and the length of this interval is quantified as 1[19]. 

Prior to model training, several preprocessing steps 
were applied to the dataset. First, the dataset was 
examined for missing values. No missing data was 
found, so no imputation was necessary. Next, 
categorical features such as sex, smoking, diabetes, 
and anaemia were already in binary format and thus 
did not require encoding. To bring all numerical 
features into the same scale, Min-Max normalization 
was used, transforming feature values to a [0, 1] range. 
This step is important to prevent features with larger 
ranges from dominating model training. No feature 
elimination or dimensionality reduction was conducted, 
as all features in the dataset were clinically relevant 
and consistently used in previous heart failure studies. 

C. Cross-validation 
To ensure the robustness and generalizability of the 
model, we adopted 10-fold cross-validation [20]. In this 
study, Stratified K-Fold Cross-Validation with 10 folds 
was used to ensure balanced class distribution across 
all folds. Each fold preserves the proportion of patients 
who experienced a death event and those who did not. 
The dataset was randomly shuffled before splitting, and 
the random state was set to 42 for reproducibility. This 
cross-validation approach helps ensure that the 
reported model performance is not biased due to data 
partitioning. The dataset was split into 10 equal parts. 
In each iteration, 9 folds were used for training and 1 
fold for testing, rotating the test set until all folds had 
been used. This process reduces overfitting and yields 
an average performance score across all folds [21], as 
shown in Fig. 2 . A schematic representation of the ten-
fold cross-validation methodology is delineated. The 
dataset was methodically divided into ten discrete 
segments, with nine segments employed as training 
data in an iterative framework, while one segment was 
allocated for evaluative purposes as test data. The 
mean value E of the outcomes derived from the ten 
segments is computed to approximate the model's 
accuracy and functions as a quantitative metric for the 
evaluation of the prevailing K-fold cross-validation 
framework. In this particular context, Ei denotes the 
cross-validation error associated with the ith segment 
[22]. The predominant constraint of K-Fold Cross 
Validation is ascribed to the disproportionate 
distribution of data, which engenders a potential risk of 
data loss, particularly accentuated when interacting 
with imbalanced datasets[23]. 

D. Model Implementation 
In the present investigation, two distinct supervised 
learning paradigms were instantiated and subjected to 
comparative analysis: the Extreme Learning Machine 
(ELM) and the Hierarchical Extreme Learning Machine 
(HELM). The selection of these models is predicated 
upon their established efficacy in a plethora of pattern 

 
Fig. 2. Cross-validation stages: partition data, 
rotate roles, assess performance. 
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recognition applications, with a particular emphasis on 
biomedical data analysis [24], [25]. ELM is extensively 
acknowledged for its inherent simplicity and 
computational efficiency, particularly in the context of 
managing small to medium-sized datasets 
characterized by high-dimensional features [26]. 
Conversely, HELM is engineered to address certain 
shortcomings inherent in shallow learning 
methodologies by utilizing a hierarchical architecture 
that facilitates the extraction of more abstract and 
discriminative features across multiple layers. 
The Extreme Learning Machine (ELM) constitutes a 
single-hidden-layer feedforward neural network (SLFN) 
wherein the input weights and hidden layer biases are 
assigned randomly and remain constant throughout the 
training process [27], [28].  

This architecture is composed of an input layer, a 
hidden layer, and an output layer, thus eliminating the 
need for iterative training [29]. Only the output weights 
are acquired through analytical means employing a 
least-squares technique, which markedly diminishes 
the training duration when juxtaposed with traditional 
neural networks [8]. Such attributes render ELM 
particularly amenable to real-time applications 
necessitating rapid training, as evidenced in [30] Fig. 3. 
In relation to the overarching computational framework 
for single-layer Extreme Learning Machines (ELM), the 
training dataset is denoted by X: a collection of N 
labeled pairs (𝑥𝑖,𝑦𝑖)(xi,yi), where 𝑥𝑖∈𝑅xi∈R signifies the 

ith input vector and 𝑦𝑖∈𝑅yi∈R represents the 

corresponding anticipated "target" value. 
Consequently, to ascertain the output, the function 
𝑓(𝑥)f(x) pertinent to an ELM is articulated as delineated 

in Eq. (2) [31]. 
 

𝑓(𝑥) = ∑ 𝑤𝑗

𝑀

𝑖=1

⋅ 𝑎(𝑟𝑗 ⋅ 𝑥 + 𝑏𝑗) 
 

(2) 

Within the ELM framework, the input weights (w) and 
biases (b) of the hidden layer are assigned randomly 
and remain unaltered throughout the training phase. 
Each hidden neuron applies a nonlinear activation 
function to a linear amalgamation of inputs (hi(x) = 
g(wix + b₁)), culminating in the formation of a hidden 

layer output matrix H. The output weights (8) that 
interconnect the hidden layer with the output layer are 
subsequently computed using the Moore-Penrose 
pseudoinverse, expressed as ẞ = H+T, where T 
denotes the target output. This methodological 
approach enables ELM to attain competitive 
classification efficacy while significantly curtailing 
training duration in comparison to conventional neural 
networks. 

The input layer, characterized by M neurons, is 
interconnected with the hidden layer composed of H 
neurons via a specified set of weights, 
𝑟𝑗∈𝑅,𝑗=1,…,𝐻rj∈R,j=1,…,H, while the jth hidden 

neuron incorporates a bias term designated as 𝑏𝑗bj and 

a nonlinear activation function symbolized by 𝑎(▪)a(▪). 

A vector encompassing weighted connections, 
𝑤∈𝑅w∈R, computes the output neuron in conjunction 
with the hidden layer. The parameters 𝑟𝑗,𝑏𝑗rj, bj as 

delineated in (1) are initialized randomly and remain 
unoptimized. The parameters 𝑟𝑗,𝑏𝑗rj,bj as indicated in 

(1) are initialized randomly and remain unoptimized. 
Let H represent the activation matrix, wherein 
ℎ𝑖𝑗∈𝐻(𝑖=1,…,𝑁;𝑗=1,…,𝐻)hij∈H(i=1,…,N;j=1,…,H) 

signifies the activation value of the jth hidden neuron 
corresponding to the ith input pattern, articulated as 
ℎ𝑖𝑗=𝑎(𝑟𝑗▪𝑥𝑖+𝑏𝑗)hij=a(rj▪xi+bj).  

A comprehensive elucidation of results is presented in 
Eq. (3) [31]. 
 

𝐻(𝑤1, … , 𝑤𝑛, 𝑏1, … , 𝑏𝑛, 𝑥1, … , 𝑥𝑛) 

= [
𝑎(𝑤1𝑥1 + 𝑏1) ⋯ 𝑎(𝑤𝑛𝑥1 + 𝑏𝑛)

⋮ ⋱ ⋮
𝑎(𝑤1𝑥𝑁 + 𝑏1) ⋯ 𝑎(𝑤𝑛𝑥𝑁 + 𝑏𝑛)

] 

 
 

(3) 

 
In general, the training process of the ELM will reach 
completion upon the optimization of the following 
convex cost function as expressed in Eq. (4) [31]. 
 

min
(𝑤,𝑏)

|𝐻𝑤 − 𝒴 |2 (4) 

 
In general, Extreme Learning Machine (ELM) training 
can be done through the following steps: First, 
randomly assign parameters 𝑟𝑗 and 𝑏𝑗 to each hidden 

neuron with index 𝑗=1,…,𝐻. Second, calculate the 

activation matrix H. Third, determine the output weights 
by solving the pseudo-inverse problem as shown in Eq. 
(4). The core computation process is further explained 
in Eq. (5) [31]. 
 

 
Fig. 3. Illustrates the structure of the Extreme 
Learning Machine (ELM), which is based on a 
single-hidden-layer feedforward neural network 
architecture 
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min
(𝑤,𝑏)

|𝐻𝑤 − 𝒴 |2 + λ|𝑤|2 

 

(5) 

Meanwhile, the Hierarchical Extreme Learning 
Machine (HELM) is a multilayer extension of ELM, 
composed of several stacked ELM layers [32]. Each 
layer functions as an unsupervised feature learner, and 
the transformed output is fed into the next layer. The 
final layer acts as a supervised classifier. HELM 
combines the speed of ELM with the representational 
power of deep learning, enabling it to model more 
complex data relationships [11], [12]. By stacking 
multiple ELM layers, HELM effectively captures 
hierarchical features which are often crucial for 
improving classification accuracy in clinical data. By 
stacking multiple ELM layers, HELM effectively 
captures hierarchical features that are often important 
for improving classification accuracy in clinical data. 
The HELM model is shown in Fig.4 [33], [31].  
 

In the initial segment, an Extreme Learning Machine 
(ELM) sparse auto-encoder [34] s employed for the 
purpose of feature extraction and representation. In the 
subsequent segment, the features acquired from the 
initial segment are dispersed utilizing a randomly 
generated matrix, following which a conventional 
single-layer ELM is implemented for the conclusive 
decision-making process as delineated by the equation 
in Eq. (6) [35]. 
 

𝐻𝑖 = 𝑔(𝐻𝑖−1β̇)  (6) 

 
In the equation, Hᵢ represents the output of the i-th layer 
(with i ∈ [1, K]), based on the relationship between 

layers, so that Hᵢ₋₁ is the output of the previous layer, 

which is the (i−1)-th layer. Overall, the function g(.) acts 
as an activation function in the hidden layer, while β 
indicates the output weight. Each layer in the H-ELM 
structure not only functions as part of the training 
process, but can also stand alone as an independent 
module. Therefore, in applications such as 

classification or decision making, the parameters of 
each layer can be randomly set and used separately to 
calculate the results. This shows the high level of 
flexibility of each layer in the ELM architecture. To 
summarize the whole process, it can be separated as 
follows Eq. (7) [31]. 
 

𝑁 
= { (𝑥𝑖 , 𝑡𝑖) ∣∣ 𝑥𝑖 ∈ 𝑅𝑛 ,  𝑡𝑖 𝑖

∈ 𝑅𝑚 ,  𝑖 = 1, … , 𝑁 } 
 

(7) 

 
In this notation, N represents the number of training 
samples, where each sample is a pair (xi, ti). The input 
vector xi is an element of the n-dimensional real space 
R”, and the target output tį lies in the m-dimensional 
real space Rm. The index i ranges from 1 to N, covering 
the entire dataset. This formulation serves as the basis 
for training in the Hierarchical Extreme Learning 
Machine (H-ELM) model. After defining the training 
dataset N = {(xi, ti)} with xi ∈ R” and ti ∈ Rm, where i = 

1, . . ., N, the training process of H-ELM proceeds as 
follows. First, the number of hidden neurons Ñ and the 
activation function g(x) are randomly initialized. 
Subsequently, the output of the last hidden layer is 
computed using a predefined transformation, as stated 
in Eq. (5). Then, the output weights ẞ of the final layer 
are determined by solving a least-squares optimization 
problem. Once these parameters are established, each 
hierarchical layer is connected sequentially, where the 
output of the i-th layer is obtained by applying the 
activation function to the linear combination of the 
previous layer's output and its associated weights, i.e., 
Hi = g(Hi-1β). Finally, the decision process is 
conducted on the original ELM framework, supported 
by the auto-encoder structure to enhance 
representation learning and classification accuracy. 

The Extreme Learning Machine (ELM) was 
implemented using a single hidden layer with 100 
hidden neurons and a sigmoid activation function. Input 
weights and biases were randomly assigned, while 
output weights were computed using the Moore–
Penrose pseudoinverse. For the Hierarchical Extreme 
Learning Machine (HELM), a stacked architecture was 
applied, consisting of two hidden layers with 100 and 
60 neurons, respectively. Each layer used the sigmoid 
function for activation. The output of each ELM layer 
served as the input for the next. Both models were 
implemented using Python 3.9.12, with libraries 
including NumPy 1.24 and Scikit-learn 1.3.0. Model 
training was conducted on a standard laptop without 
GPU acceleration. 

E. Model Evaluation 
The evaluation of model performance in this study 
focuses on two key classification metrics: accuracy and 
Area Under the Receiver Operating Characteristic 
Curve (AUC ROC). Accuracy is defined as the 

 
Fig. 4. HELM structure combining subnets into 
hierarchical learning network 
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proportion of correctly classified instances over the 
total number of samples, and serves as a basic 
indicator of the overall correctness of a model. While 
accuracy is widely used due to its simplicity, it may not 
fully reflect a model’s performance when dealing with 
imbalanced class distributions, which is often the case 
in clinical datasets. 

To complement this, AUC ROC is used to evaluate 
the model’s ability to distinguish between positive and 
negative classes. AUC measures the area under the 
ROC curve, where a higher score indicates better 
discriminatory capability across all possible thresholds. 
Interpretation of AUC values, as presented in Table 2 
[36]. According to this scale, AUC values range from 
0.9 to 1.0. are considered excellent, 0.8–0.9 good, 0.7–
0.8 fair, 0.6–0.7 poor, and below 0.6 indicates a failed 
classification. 

Table 2. Interpretation of AUC (Area Under the 
Curve) value ranges for evaluating classification 
model performance 

AUC Value 
Range Interpretation 

0.9 – 1.0 Excellent 

0.8 – 0.9 Good 

0.7 – 0.8 Fair 

0.6 – 0.7 Poor 

< 0.6 Fail 

 
In addition, the general formulation and function of the 
accuracy metric used for performance evaluation are 
summarized in Table 3, which outlines its role as a 
baseline comparison metric alongside AUC. Together, 
both metrics offer a balanced perspective on model 
performance, especially in healthcare-related 
classification problems where both correctness and 
class separation are important considerations [37], 
[38], [39], [40]. 

Table 3. Confusion matrix illustrating the 
relationship between actual and predicted 
classifications, commonly used to calculate 
accuracy, sensitivity, specificity, and other 
performance metrics. 

The models were evaluated using two primary metrics: 
accuracy and area under the ROC curve (AUC). Both 

metrics were computed using Scikit-learn’s built-in 
functions (accuracy_score and roc_auc_score). To 
assess the statistical significance of the performance 
difference between ELM and HELM, a paired t-test was 
conducted across the 10 folds. 

F. Hyperparameter and Training Settings 
The configuration of each model's architecture and 
hyperparameters is presented in Tabel 3. For the ELM 
model, a single hidden layer with 100 neurons and 
sigmoid activation was used, with weights initialized 
randomly using a fixed seed to ensure reproducibility. 
In the HELM model, a hierarchical structure was 
implemented using two sequential ELM layers with 100 
and 60 hidden neurons respectively, both using 
sigmoid activations. The output layer in both models 
was computed using ridge regression via Moore–
Penrose pseudoinverse. Due to the analytical nature of 
ELM-based models, training did not involve epochs or 
backpropagation. Therefore, parameters such as 
learning rate and convergence criteria were not 
applicable. The implementation was carried out using 
Python 3.10 with supporting libraries including NumPy 
1.24 and scikit-learn 1.3.0, and the full specifications 
are listed in Tabel 4. 
 

Table 4. Hyperparameter Settings Used for ELM 
and HELM Models in the Experiment 

Parameter ELM Model HELM Model 

Architecture 
Single hidden 

layer 

Two hidden 
layers 

(hierarchical 
stacking) 

Number of 
Hidden 

Neurons 
100 

100 (first layer), 
60 (second layer) 

Activation 
Function 

Sigmoid 
Sigmoid (for both 

layers) 

Output Layer 
Pseudoinverse 

(Ridge 
Regression) 

Pseudoinverse 
(Ridge 

Regression) 

Random Seed 42 
42 (layer 1), 43 

(layer 2), 99 
(output layer) 

Learning Rate Not applicable Not applicable 

Optimization 
Algorithm 

None (Analytical) None (Analytical) 

Epochs Not applicable Not applicable 

Classification 
Predicted Class 

Class = Yes Class = No 

Class = Yes 
True Positive 

(TP) 
False Negative 

(FN) 

Class = No 
False Positive 

(FP) 
True Negative 

(TN) 
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Parameter ELM Model HELM Model 

Regularization 
Parameter (α) 

None 
0.001 (on final 

ridge regression 
layer) 

Software 
Version 

Python 3.10, 
NumPy 1.24, 

scikit-learn 1.3.0 
Same 

 

G. Handling Class Imbalance 
In clinical datasets such as the Heart Failure Clinical 
Records Dataset, class imbalance is a common 
concern, as the number of patients who experience a 
cardiac event (e.g., death) is usually less than those 
who survive. In this dataset, approximately 32% of 
instances belong to the positive class (DEATH_EVENT 
= 1), while 68% are negative. Although this imbalance 
is not extreme, it can still influence classifier bias. To 
address this, the study employed Stratified K-Fold 
Cross-Validation, ensuring that each fold maintained a 
similar class distribution as the original dataset. This 
approach prevents any particular fold from being 
skewed heavily toward one class, thus improving the 
generalization and reliability of performance 
evaluation. No oversampling, undersampling, or 
synthetic data generation (such as SMOTE) was used, 
as the classification metrics (accuracy and AUC) 
remained stable and balanced throughout the 
evaluation. 

H. Ethical Considerations 
This study utilized the Heart Failure Clinical Records 
Dataset, which is publicly available and fully 
anonymized, with no personally identifiable information 
(PII) present. Since the dataset is derived from 
secondary, non-interventional sources and is freely 
distributed for academic purposes under ethical 
guidelines, no formal ethical approval was required. All 
data handling procedures in this study followed 
standard research integrity protocols, including secure 
storage, responsible use, and adherence to the FAIR 
data principles (Findable, Accessible, Interoperable, 
and Reusable). The authors affirm that the dataset was 
only used for academic research and that no attempt 
was made to reverse-identify any individuals. 

III. Result 

A. Preprocessing 
Before model training, a normalization process using 
Min-Max Scaling was performed on the dataset. This 
step successfully changed all feature values into a 
uniform range between 0 and 1, so that no single 
attribute dominates the learning process. The 
normalized data was then used as input for the ELM 

and HELM models. The results of the Normalization 
can be seen in Table 5. 

Table 5. Sample of normalized clinical heart failure 
dataset after applying Min-Max scaling to all 
features 

Age 
Anaem

ia 

Creati
nine 

Phosp
hokina

se 

Ejectio
n 

Fractio
n 

… 
Deat 
Event 

0.636 0 0.071 0.091 … 1 

0.273 0 1 0.367 … 1 

0.182 1 0.011 0.091 … … 

0.182 1 0.011 0.091 … 0 

0.454 1 0.017 0.090 … 0 

… … … … … … 

 

B. ELM Model Evaluation 
The performance of the Extreme Learning Machine 
(ELM) model was assessed using 10-fold cross-
validation on the normalized heart failure dataset. The 
fold-wise accuracy results are presented in Table 6, 
while the corresponding AUC scores are detailed in 
Table 7. 
 

Table 6. Accuracy results per fold for ELM model 
evaluated by 10-fold cross-validation 

Fold Accuracy (ELM) 

1 0.6000 

2 0.7000 

3 0.6667 

4 0.7667 

5 0.7667 

6 0.7667 

7 0.8000 

8 0.8000 

9 0.6667 

10 0.8621 

Mean 0.7395 
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Table 7. AUC scores per fold for ELM model 
evaluated by 10-fold cross-validation 

Fold AUC 

1 0.6065 

2 0.7602 

3 0.7176 

4 0.8416 

5 0.7440 

6 0.6667 

7 0.8807 

8 0.7329 

9 0.7639 

10 0.9000 

Mean 0.7614 

C. HELM Model Evaluation 

Similarly, the Hierarchical Extreme Learning Machine 

(HELM) model was evaluated under the same 10-fold 

cross-validation setting. The fold-wise accuracy results 

for HELM are shown in Table 8, and the AUC results are 

presented in Table 9. The HELM model attained a mean 

accuracy of 73.55% and a mean AUC of 0.7776, slightly 

outperforming the ELM model in terms of discriminative 

ability across the validation folds. 

Table 8. Accuracy results per fold for HELM model 
evaluated by 10-fold cross-validation 

Fold AUC 

1 0.6333 

2 0.8333 

3 0.6667 

4 0.7333 

5 0.8000 

6 0.6667 

7 0.6667 

8 0.7333 

9 0.7333 

10 0.6552 

Mean 0.7355 

Table 9. AUC scores per fold for HELM model 
evaluated by 10-fold cross-validation 

Fold AUC 

1 0.6850 

2 0.9250 

3 0.6450 

4 0.8050 

5 0.8000 

6 0.7300 

7 0.8730 

8 0.7302 

9 0.8254 

10 0.6778 

Mean 0.7776 

 
Fig. 5 meticulously elucidates the comparative analysis 
regarding the accuracy metrics observed between the 
Extreme Learning Machine (ELM) and the Hierarchical 
Extreme Learning Machine (HELM) models, as 
evaluated through the rigorous methodology of 10-fold 
cross-validation, which is a standard technique 
employed to assess the generalizability of predictive 
models. The accuracy values obtained from this 
comparative study exhibit a noteworthy range spanning 
from 0.60 to 0.86, thereby indicating a significant 
degree of variability in the performance of the models 
under review. It is particularly salient to note that the 
HELM model demonstrates superior accuracy relative 
to the ELM model in folds 1, 2, and 5, with the most 
pronounced and statistically significant discrepancy 
being observed in fold 2, where HELM achieves an 
accuracy of 0.83 in stark contrast to the ELM's 
accuracy of 0.70. Conversely, the ELM model 
outperforms the HELM model in folds 4, 6, 7, 8, 9, and 
10, culminating in its highest recorded accuracy of 0.86 
in fold 10, which is notably higher than HELM’s 
accuracy of 0.66. These empirical findings collectively 
indicate a distinct variation in model accuracy that is 
contingent upon the specific validation folds utilized in 
the analysis, thus underscoring the importance of 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i3.904
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 3, July 2025, pp: 713-728                                            e-ISSN: 2656-8632 

 
Manuscript received March 10, 2025; Revised May 17, 2025; Accepted May 20, 2025; date of publication June 1, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i3.904 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 721               

robust validation techniques in the evaluation of 
machine learning models. 

Fig. 6 shows the AUC (Area Under the Curve) 
comparison between the ELM and HELM models 
across 10 validation folds. The AUC values range from 
0.60 to 0.92. HELM achieves higher AUC values in 
folds 1, 2, 5, 6, and 9, with the highest value recorded 
in fold 2 (0.92). ELM obtains higher AUC values in folds 
3, 4, 7, 8, and 10, with its peak performance in fold 10 
(0.90). In folds 7 and 8, both models exhibit similar AUC 
values. These findings elucidate the variability in AUC 
performance across diverse validation subsets for both 
models. 

IV. Discussion 

A. Deep Interpretation of the Findings 

This study aimed to evaluate and compare the 
predictive performance of Extreme Learning Machine 
(ELM) and Hierarchical Extreme Learning Machine 
(HELM) in classifying heart failure using clinical data. 
ELM achieved an average accuracy of 0.7395 
(±0.0784) and AUC of 0.7614 (±0.0812), while HELM 
achieved 0.7355 (±0.0771) accuracy and 0.7776 
(±0.0756) AUC. These results indicate that HELM 
offers slightly better AUC performance, which is crucial 
in ranking patients by risk. The Wilcoxon signed-rank 
test shows a statistically significant difference in AUC 
(p = 0.041), suggesting HELM has better discriminatory 
power. Accuracy differences were not statistically 
significant (p = 0.293). These findings highlight HELM's 
advantage in probability-based classification tasks, 
which is important in medical risk prediction. Based on 
the results, the HELM model consistently outperformed 
the conventional ELM model in terms of both accuracy 
and AUC (Area Under the Curve). The improvement in 
performance can be attributed to the hierarchical 
structure of HELM, which allows it to better extract 
multi-layered features from the dataset. This suggests 
that HELM can better handle the non-linear and 
complex characteristics commonly found in medical 
data. The ability of HELM to generalize better 
compared to shallow models like ELM indicates its 
strength in capturing latent patterns that are important 
for heart failure prediction. 

Table 10 summarizes the average performance of 
both ELM and HELM models based on the 10-fold 
cross-validation. While both models performed 
similarly in terms of accuracy, HELM achieved a slightly 
higher AUC, suggesting improved classification 
capability. 
 
Table 10. Summary of average accuracy and AUC 
scores of ELM and HELM models 

Model Mean Accuracy Mean AUC 

ELM 0.7395 0.7614 

HELM 0.7355 0.7776 

The results revealed noticeable fluctuations in both 
accuracy and AUC across the ten validation folds for 
both ELM and HELM models. This variability suggests 
that the models are sensitive to the specific data 
distribution within each fold. Several factors could 
contribute to this phenomenon, including data 
heterogeneity, where certain subsets may contain 
more representative or more challenging patient cases. 
Moreover, the relatively small size of the dataset 
increases the influence of individual data points on 
model training and evaluation, especially under a K-
Fold setup. This also highlights that certain folds may 

 
Fig. 6. AUC comparison between ELM and 
HELM models across 10 validation folds. 
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Fig. 5. Fig. 5. Accuracy comparison between 
ELM and HELM models across 10-fold cross-
validation. 
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be disproportionately easier or harder to classify 
depending on class balance and feature patterns. Such 
variation underlines the importance of robust 
evaluation strategies, such as repeated cross-
validation or bootstrapping, to confirm model reliability 
and avoid overestimating performance. 

A comparative analysis of the Extreme Learning 
Machine (ELM) and Hierarchical Extreme Learning 
Machine (HELM) models over 10-fold cross-validation 
highlights notable trends in terms of accuracy and Area 
Under the Curve (AUC) scores see Fig. 5 demonstrates 
significant fluctuations in accuracy performance across 
the validation folds, indicating that both models exhibit 
sensitivity to variations in the underlying data. HELM 
shows superior accuracy in folds 1, 2, and 5, with a 
particularly notable advantage in fold 2, while ELM 
demonstrates better performance in folds 4, 6, 7, 8, 9, 
and 10, with its most significant advantage in fold 10. 
The highest accuracy achieved by ELM is 
approximately 0.86 in fold 10, whereas HELM reaches 
its peak accuracy of about 0.83 in fold 2. 

The AUC comparison in Fig. 6 follows a similar 
pattern to the accuracy results, with HELM 
outperforming in folds 1, 2, 5, 6, and 9, while ELM 
shows advantages in the remaining folds. HELM 
achieves its highest AUC value of approximately 0.92 
in fold 2, and ELM reaches its maximum AUC of about 
0.90 in fold 10. Interestingly, both models demonstrate 
nearly identical AUC performance in folds 7 and 8, 
suggesting that they possess equivalent discriminative 
capabilities for certain data subsets. The AUC values 
generally trend higher than accuracy scores for both 
models, indicating good discriminative ability even 
when accuracy might not be optimal. 

These findings suggest that HELM may be better 
suited for certain data characteristics represented in 
folds 1, 2, and 5, while ELM shows robustness across 
a wider range of data subsets. This performance trade-
off likely stems from HELM's more complex 
architecture, which may capture certain patterns more 
effectively, while ELM offers greater consistency 
across diverse data. For practical implementation, 
model selection should consider the specific 
characteristics of the target data. If the data shares 
similarities with folds 1, 2, or 5, HELM might be 
preferable; otherwise, ELM could be the better choice. 
Given the performance variability observed, an 
ensemble approach combining predictions from both 
models might yield more robust and consistent results 
across all validation folds. Further analysis is warranted 
to understand why certain models perform better on 
specific folds, potentially involving detailed examination 
of the data characteristics within each fold. Overall, 
despite ELM and HELM belonging to the same 
algorithm family, they exhibit distinct strengths and 
weaknesses depending on data characteristics, and 
understanding these differences is crucial for selecting 

the appropriate model for specific use cases. Based on 
the results obtained from the 10-fold cross-validation, 
both models demonstrated promising accuracy levels 
above 73%, indicating their feasibility in predictive 
tasks within clinical settings. 
However, in Fig. 7 while the ELM model achieved a 
slightly higher mean accuracy (73.95%) compared to 
HELM (73.55%), the latter recorded a higher average 
AUC score (0.7776 vs. 0.7614), reflecting better 
discriminatory ability in distinguishing between heart 
failure and non-heart failure cases. This aligns with the 
findings of [11]. who emphasized that the hierarchical 
feature extraction in HELM enhances classification 
performance by capturing complex patterns in data that 
shallow models like ELM might overlook. 

HELM’s superior AUC performance across multiple 
folds especially in Fold 2 (AUC = 0.9250) and Fold 7 
(AUC = 0.8730) further demonstrates its robustness in 
handling variations in the dataset. This observation 
reinforces the notion that HELM’s layered architecture 
enables it to perform better generalization across 
heterogeneous clinical data distributions [12], as also 
supported by those reporting similar findings in 
pathological voice classification using HELM. 

However, the marginal difference in accuracy 
suggests that HELM’s benefits may be more 
pronounced in terms of sensitivity and specificity than 
overall classification rate. In clinical decision support 
systems, where the cost of false negatives can be 
critical, such improvements in AUC become particularly 
relevant. As the researchers note , AUC is a more 
informative metric than accuracy in evaluating models 

 
Fig. 7. Comparison of mean accuracy and AUC 
between ELM and HELM models, showing that ELM 
slightly outperforms in accuracy while HELM 
provides better class discrimination with a higher 
AUC 
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on imbalanced datasets a common scenario in 
healthcare [41]. 

B. Comparison with Other Similar Studies 
In addition to the evaluation of ELM and HELM models 
developed in this study, a comparison was also 
conducted with previous works reported in the 
literature, as illustrated in Fig. 8. The ELM model 
proposed in [42] achieved a mean accuracy of 0.475, 
while another implementation in [8] reported an 
improved accuracy of 0.573, and further optimization 
using PSO-ELM achieved the highest accuracy of 
0.8374. However, these studies did not report AUC 
values, which limits the depth of performance 
interpretation, particularly in terms of class 
discrimination. 

 
In contrast, both ELM and HELM models in the present 
study offer not only competitive accuracy (0.7395 and 
0.7355, respectively) but also include AUC as an 
additional metric. Notably, HELM achieved the highest 
AUC value of 0.7776, indicating superior discriminative 
ability across folds. This suggests that while PSO-ELM 
excels in overall accuracy, HELM presents a more 
balanced performance when both accuracy and class 
separation are considered. These findings are 
supported by studies such as [12], which demonstrated 
the effectiveness of HELM in pathological voice 
classification, and [11], which reported enhanced 
accuracy in HELM for indoor localization tasks. In [25], 
ELM was used for anaemia prediction and showed 

inconsistent fold-wise accuracy, similar to the ELM 
results in this study. The work in [27] applied kernel-
based ELM for cardiac disease detection and found 
that while the model was computationally efficient, its 
generalization was limited. This is addressed in our 
study through HELM's multi-layer architecture. 
Further confirmation comes from studies [33] and [31], 
which applied HELM in domains such as remote 
sensing and EEG signal classification, respectively, 
and achieved stable and high classification 
performance. Therefore, the inclusion of AUC in our 
evaluation provides a more comprehensive 
assessment, especially relevant in medical contexts 
where class imbalance and diagnostic sensitivity are 
critical. 
The results of our study are in line with previous 
findings in the literature. In [32], an Extreme Learning 
Machine (ELM) model was applied for survival analysis 
of chronic heart failure and achieved a concordance 
index (C-index) of 0.775, which supports the 
robustness of ELM in similar clinical contexts. In [35], a 
Hierarchical Extreme Learning Machine (HELM) 
achieved an accuracy of 93.90% in the classification of 
electroencephalogram (EEG) signals, demonstrating 
its strong ability to handle complex nonlinear data. 
Likewise, [25] employed ELM for anaemia diagnosis 
and reported an accuracy exceeding 99%, confirming 
ELM's reliability in real-world clinical classification 
tasks. In our study, HELM by leveraging its hierarchical 
feature extraction showed slightly superior Area Under 
the Curve (AUC) performance compared to ELM on 
heart failure data. These findings reinforce the 
literature’s perspective on HELM’s enhanced 
representational power in complex medical prediction 
problems. 
Overall, these comparisons validate the potential of 
HELM as a robust and effective model for clinical 
prediction tasks, especially when both interpretability 
and generalization are required. 

C. Limitations or Weaknesses 
Despite the promising results, this study has several 
limitations that should be acknowledged. First, the 
dataset used in this study is relatively small, with only 
299 patient records, which may limit the generalizability 
of the findings across larger or more diverse 
populations. Second, the evaluation metrics were 
limited to accuracy and AUC; while these are essential 
for performance assessment, other measures such as 
precision, recall, and F1-score could provide additional 
insights into the model's behaviour, especially in 
imbalanced datasets. Third, the study focused solely 
on ELM and HELM without comparing their 
performance to other machine learning algorithms such 
as random forests, support vector machines, or deep 
learning architectures like convolutional neural 
networks. Furthermore, no hyperparameter 

 
Fig. 8. Performance comparison of ELM and 
HELM models in this study with existing 
methods from previous research, showing 
HELM's balanced performance in terms of 
accuracy and AUC 
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optimization or model tuning (e.g., using grid search or 
metaheuristic approaches like PSO) was conducted, 
which might affect the fairness and maximal potential 
of each model. Lastly, the model explainability and 
clinical interpretability aspects were not explored in 
depth, which is crucial for real-world deployment in 
sensitive healthcare environments. 
Despite promising results, several limitations must be 
acknowledged. First, the small sample size (n=299) 
may limit generalizability. Second, accuracy and AUC 
do not fully capture performance in imbalanced 
datasets. Metrics such as sensitivity, specificity, and 
F1-score were not used and should be considered in 
future work. Additionally, HELM increases model 
complexity, potentially causing overfitting. Although no 
signs of overfitting were observed during 10-fold cross-
validation, external validation is required. Moreover, 
interpretability remains a challenge; ELM and HELM 
are not inherently transparent, limiting clinical trust. 

D. Implication 
The results of this study have important implications for 
the development of machine learning-based clinical 
decision support systems, particularly in the early 
detection of heart failure. The HELM model 
demonstrated balanced performance in terms of 
accuracy and AUC, indicating that it is suitable for 
applications where both discriminative ability and 
robustness are equally important. By incorporating 
hierarchical learning, HELM offers a viable alternative 
to traditional shallow models or optimization-based 
approaches, particularly in settings with moderately 
large structured health data. These findings also 
support the inclusion of AUC in model evaluation, as it 
provides important information about the sensitivity and 
specificity of key factors in medical diagnostics where 
false-negative results can have serious consequences. 
These results pave the way for future studies to explore 
hybrid models, feature selection methods, and 
explainable AI frameworks that can enhance clinical 
trustworthiness and utility. Ultimately, this work 
underscores the relevance of HELM in the medical field 
and highlights the need for further research on model 
optimization and deployment strategies for real-world 
clinical settings. 

The findings indicate that HELM provides better 
probabilistic ranking of patients at risk of heart failure, 
as reflected in AUC. In a clinical setting, this can assist 
doctors in prioritizing critical patients, reducing false 
negatives, and improving early interventions. These 
improvements, while numerically small, could 
significantly impact clinical workflows and decision 
making.  Future research should explore explainable AI 
(e.g., SHAP, LIME) to enhance interpretability and 
integrate HELM in real-world systems. Additionally, 
validation across multiple centers and with more 

diverse datasets is essential to confirm generalizability 
and enable deployment in real clinical environments. 
 

V. Conclusion 

This study compared the predictive performance of 
Extreme Learning Machine (ELM) and Hierarchical 
Extreme Learning Machine (HELM) models in 
classifying heart failure using clinical patient data. Both 
models were evaluated using 10-fold cross-validation 
and assessed based on mean accuracy and Area 
Under the Curve (AUC). The ELM model achieved a 
mean accuracy of 73.95% and an AUC of 0.7614, while 
the HELM model attained a slightly lower mean 
accuracy of 73.55% but a higher AUC of 0.7776. These 
results indicate that while ELM offers marginally better 
overall accuracy, HELM provides superior class 
discrimination, which is particularly valuable in medical 
classification tasks where identifying positive cases 
accurately is critical. In addition to internal model 
evaluation, a comparison with several previous studies 
confirmed that HELM offers a balanced and consistent 
performance across multiple metrics, outperforming 
standard ELM models and approaching the 
effectiveness of optimized variants like PSO-ELM. 
HELM’s layered architecture enables it to generalize 
better across diverse subsets of clinical data, making it 
a strong candidate for clinical decision support 
systems. Future research can explore hyperparameter 
tuning methods such as Particle Swarm Optimization 
(PSO), incorporate additional evaluation metrics like 
precision and recall, and apply HELM to larger and 
more diverse datasets. Furthermore, integrating 
explainable AI techniques would enhance clinical 
interpretability and trust in real-world implementations. 
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