Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1240-1258 e-ISSN: 2656-8632

RESEARCH ARTICLE OPEN ACCESS

Automatic Target Recognition using Unmanned
Aerial Vehicle Images with Proposed YOLOvVS8-
SR and Enhanced Deep Super-Resolution
Network

Gangeshwar Mishra'®, Rohit Tanwar?

and Prinima Gupta'

"Department of CST, Manav Rachna University, Faridabad, Haryana, India.
2School of CSE, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India.

Corresponding author: Rohit Tanwar (e-mail: rohit.tanwar.cse@gmail.com), Author(s) Email: Gangeshwar
Mishra (e-mail: gangeshwarmishra045@gmail.com, Prinima Gupta (e-mail: prinima@mru.edu.in)

Abstract Modern surveillance necessitates the use of automatic target recognition (ATR) to identify targets
or objects quickly and accurately for multiclass classification in unmanned aerial vehicles (UAVs) such as
pedestrians, people, bicycles, cars, vans, trucks, tricycles, buses, and motors. The inadequate recognition
rate in target detection for UAVs could be due to the fundamental issues provided by the poor resolution
of photos recorded from the distinct perspective of the UAVs. The VisDrone dataset used for image analysis
consists of a total of 10,209 UAV photos. This research work presents a comprehensive framework
specifically for multiclass target classification using VisDrone UAV imagery. The YOLOV8-SR, which stands
for "You Only Looked Once Version 8 with Super-Resolution,” is a developed model that builds on the
YOLOv8s model with the Enhanced Deep Super-Resolution Network (EDSR). The YOLOvV8-SR uses the
EDSR to convert the low-resolution image to a high-resolution image, allowing it to estimate pixel values
for better processing better. The high-resolution image was generated by the EDSR model, having a Peak
Signal-to-Noise Ratio (PSNR) of 25.32 and a Structural Similarity Index (SSIM) of 0.781. The YOLOvV8-SR
model's precision is 63.44%, recall is 46.64%, F1-score is 52.69%, mean average precision (MAP@50) is
51.58%, and the mAP@50-95 is 50.67% over the range of confidence thresholds. The investigation
fundamentally transforms the precision and effectiveness of ATR, indicating a future in which ingenuity
overcomes obstacles that were once considered insurmountable. This development is characterized by
the use of an improved deep super-resolution network to produce super-resolution images from low-
resolution inputs. The YoLov8-SR model, a sophisticated version of the YoLov8s framework, is key to this
breakthrough. By amalgamating the EDSR methodology with the advanced YOLOv8-SR framework, the
system generates high-resolution images abundant in detail, markedly exceeding the informational quality
of their low-resolution versions.
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. Introduction
The low resolution of pictures taken from the unique

perspective of UAVs contributes to the inadequate
identification rate in UAV target detection. The aerial

[3]. Deep learning models such as YOLOvS8, developed
by Ultralytics, address this problem with a single-stage
object detection paradigm that enables real-time
recognition [4], [5]. YOLOvS8 is an advanced iteration of

photos, which have low resolution and limited pixel
data, make it difficult to identify and locate things of
interest accurately. The lack of resolution hindered
traditional object identification deep learning
algorithms, limiting their capacity to distinguish intricate
features and accurately identify items [1], [2]. The
challenge of reliable object detection in low-resolution
UAV imagery necessitates specialized solutions for
effective target recognition in complex environments

the YOLO series, optimizing both accuracy and
inference speed [6]. To further enhance efficiency,
YOLOv8s, a smaller variant, reduces network size and
parameters, prioritizing resource optimization while
maintaining precision [4], [7]. Both YOLOv8 and
YOLOv8s operate using a grid-based framework that
includes image preprocessing, feature extraction,
target detection, and post-processing via non-
maximum suppression (NMS) to refine results by
eliminating duplicate detections [4], [5]. Anchor boxes
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facilitate precise bounding box predictions, with
YOLOv8s employing fewer anchor variations to
improve computational efficiency [7], [8]. While
YOLOv8 emphasizes accuracy, YOLOv8 maximizes
speed and resource efficiency, making it particularly
suitable for real-time UAV applications that demand

rapid inference within constrained processing
capabilities  [3],[4],[5]. By refining detection
mechanisms and optimizing network structure,

YOLOv8 models contribute to overcoming the
limitations of UAV-based object recognition, advancing
autonomous visual processing in aerial contexts.

While YOLOvVS8s offers speed advantages for UAV
deployment, its accuracy is compromised when
processing low-resolution UAV imagery. The model's
simplification (reduced parameters/anchor boxes)
inherently limits its ability to recover fine-grained details
crucial for detecting small or indistinct objects in low
pixel count aerial images. Existing YOLO variants lack
integrated mechanisms to enhance input resolution
effectively.

This method integrates the EDSR (Enhanced Deep
Super-Resolution) network with the YOLOv8s
architecture. EDSR first processes the low-resolution
UAV input image to generate a high-resolution
counterpart. This super-resolved image is then fed into
the YOLOv8s model for object detection. The hybrid
design aims to overcome the low-resolution limitation
by enhancing input quality before detection, leveraging
EDSR's proven ability to recover image detail and
YOLOVS8's efficient detection capabilities. Simplifying
the model improved its performance without affecting
its capacity to handle objects of various sizes and
forms.

To develop a robust object detection solution
(YOLOV8-SR) that overcomes the challenge of low-
resolution UAV perspective images by integrating
super-resolution through EDSR with the efficient
YOLOv8s detector, enabling reliable and high-
performing target recognition in aerial applications.

This research advances real-time UAV object
detection by optimizing and proposing YOLOv8 models
for efficiency and accuracy in a constrained
environment. One of the key contributions is
introducing a new hybrid architecture, YOLOV8-SR,
combining the Enhanced Deep Super-Resolution
(EDSR) network with the lightweight YOLOv8s
detector. This is the first known integration of such,
intended to solve the serious issue of low-resolution
UAV images. By improving input resolution with EDSR
prior to detection, the model enhances significantly the
capacity of YOLOvS8s to detect features from low pixel
inputs. Without any increase in complexity, the design
preserves the computational demands required for
real-time UAV usage. Experimental verification verifies
that YOLOV8-SR surpasses baseline YOLOv8s and

competing approaches in target detection precision at
no prohibitive computational cost.

The research paper follows a structured approach
to YOLOV8-SR’s development and evaluation. Section
II. reviews YOLOv8/YOLOv8s, EDSR, and prior UAV
research methodology. Section Il details about
proposed YOLOvV8-SR: An Improved YOLOv8s variant
for Super-Resolution with EDSR, and its methodology.
Section IV presents the datasets, preprocessing,
evaluation, and analysis of YOLOvV8-SR super-
resoluton by EDSR  comparisons, results
visualizations, ablation studies, and comparative
analysis of the results. Section V presents a brief
discussion on comparison and limitations. Section VI
summarizes the research problem, contributions,
findings, and future directions.

Il. Methodology
A. Image preprocessing

In order to ensure high quality, it was necessary to
preprocess each image from the VisDrone dataset. The
dataset exhibits a range of image sizes and resolutions,
spanning from low to high. Nevertheless, we conducted
preprocessing on all photographs by shrinking them to
dimensions of 640x640. Utilizing deep learning models
such as YOLOVS, the input image can be preprocessed
by applying a Gaussian blur and morphological
smoothing to remove noise. The initial step involves
preparing the data for the YOLOVS8, which is necessary
for data interpretation and preprocessing [9], [10].

B. YOLOv8s

The YOLOv8s architecture is designed with a depth
coefficient of 0.33, a width coefficient of 0.50, a feature
size of 1024 bits, and a scaling ratio of 2.0. This setup
provides the best balance between detection precision
and computational efficiency and is very well-suited for
real-time object detection purposes. In comparison to
other YOLOVS8 variants such as YOLOv8n, YOLOv8m,
YOLOVS8I, and YOLOv8x, the YOLOv8s model has
lowered depth and width parameters, making it smaller
in terms of trainable parameters but quicker in
inference speed with minimal loss in precision.
However, due to its exceptional balance between
speed and accuracy, YOLOv8s remains widely used in
many applications. The device's small size and
effective processing make it a useful alternative for
devices with limited resources, where quicker
processing is essential for maximum performance [4],
[11]. The procedure for target recognition with
YOLOv8s encompasses the following steps:

Step 1- Input

The YOLOv8s model receives the input image, which
contains some objects for recognition, such as
pedestrians, people, bicycles, cars, vans, trucks,
tricycles, buses, and motors.
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Fig. 1. YOLOV8SR (YOLOv8s detector with integrated EDSR super-resolution backbone for enhanced

small-object features.)

Step 2 - Structure

Optimized for computational efficiency, the YOLOv8s
architecture excels in real-time object identification
across various platforms. The YOLOv8s architecture
consists of three fundamental components: the
backbone, neck, and head. These components carry
out all the necessary computations. Each block's
function is outlined below. Fig. 1 depicts the structure
that YOLOv8s executes [4], [5].

Step 2.1 - Backbone

The YOLOv8s model utilizes a novel backbone design,
also known as the feature extractor, which has a vital
function in extracting significant features from the
incoming data. During its operation, the backbone
performs a variety of actions. This architecture employs
a compound scaling technique that optimizes the
depth, breadth, and resolution of the network to ensure
efficient and effective feature extraction. Initially, it
detects fundamental patterns, such as edges and
textures, in the very first layers. Furthermore, it can
embrace many scales of representation, allowing it to

capture features at different levels of abstraction. The
backbone ultimately creates a detailed and complex
hierarchical representation of the input image, which
includes a variety of significant features [5], [7].

Step 2.1.1 - Convolution Block

In YOLOv8s, the convolution block typically consists of
convolutional layers, followed by additional processes
like batch normalization and activation functions. The
precise specifications of the convolution block may vary
depending on the variants; however, the following
equation provides a basic representation for a single
convolutional layer inside the block:
Y = SiLU(convolution(X,W) + B) )
A collection of adaptable convolutional filters,
symbolized as W, and an additional term known as the
bias, B, subject the input feature map, labeled as X, to
a process of alteration as presented in Eq. (1) [12]. The
convolution procedure entails the process of sliding
these filters across the input, doing element-wise
multiplications, and then summing the outcomes.
Afterwards, a Sigmoid Linear Units (SiLU) activation
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function is applied to each element of the resultant
feature map as shown in Eq. (2) [13].

SiLU(x) = x.Sigmoid(x) (2)

The output feature map, denoted as Y, as

presented in Eq.(1), contains the modified information
that is prepared for further processing in the network
[11], [14].
Step 2.1.2 — Cross-stage partial bottleneck with two
convolutions (C2f)

The C2F module in YOLOv8s serves to link the
backbone to the Feature Pyramid Network (FPN),
including more skip links and extra split operations. The
C2F block is often used to reduce the resolution of the
feature maps that are supplied and capture significant
features from the backbone. It aids in extracting
characteristics at varying spatial resolutions. The
equation for the C2F block can be expressed as
follows:
Fi = convpieci(ry_y) 3)
Feature map Fi represents the Mstage and Fi
represents the prior i-1" stage. The convsocis the
convolution block with convolutional layers, as
presented in Eq.(3) [7]. As the input travels across the
network, this structure gradually extracts hierarchical
characteristics, improving model performance and
learning [7], [15].
Step 2.1.3 - SPPF (Spatial Pyramid Pooling and
Fusion) Block

The SPPF block is used to collect features at various
sizes and combine them into a unified feature map. It
enhances the network's capacity to identify objects of
varying sizes. In the SPPF block, spatial pyramid
pooling is used at different scales, followed by separate
convolution blocks. Finally, the feature maps are joined
together to make a multi-scale feature representation.
The equations governing the SPPF block may be
expressed in the following manner:

X = Sppconvblock(x) ©
Y, = CONMVpiock(Y(_1y) o
Y = concatenate([Yy,Ys, ..., ¥n]) ot

The input feature map is X, while the intermediate
feature map at the i scale is Yi. By using concatenate
to combine features from different scales, Y represents
the final concatenated feature map. The input feature
map is convolutionally processed by the sppconv,,,.;.
which processes each scale. This technique may also
enhance features using the convy,,. discussed before
as presented in Eq. (4). This multi-scale technique
improves the network's spatial information acquisition,
making target identification and semantic segmentation
more successful. Egs. (4), (5), (6) illustrate key
computational  formulations  relevant to the
methodology, supporting the theoretical framework and
experimental validation presented in [4], [16].

Step 2.2 - Neck

The neck functions as an essential component in
establishing a connection between the backbone and
the head of a network, facilitating the integration of
contextual information and running feature fusion
operations. In essence, the neck's primary function is
to aggregate feature maps from the backbone in order
to form FPN. It simply compiles feature maps from
different phases of the backbone. The neck's functions
include a variety of essential components. To begin,
the network performs concatenation or fusion of
features belonging to distinct scales, thereby enabling
the efficient detection of objects of diverse sizes.
Furthermore, by incorporating contextual information,
the neck improves object detection precision by taking
into account the scene's wider context. Finally, the
implementation of the neck results in a reduction of
both the spatial resolution and dimensionality of
resources, thereby contributing to enhanced
computational efficiency. Nevertheless, it is critical to
acknowledge that this decrease in resolution and
dimensionality has the potential to affect the model's
quality [4], [7].

Step 2.2.1 Concatenation

This operation is utilized to merge feature maps
obtained from various network scales. The network
frequently uses it to fuse multi-scale data, enabling it to
detect objects of varying sizes. By means of
concatenation, the network is capable of capturing
features at various resolutions and integrating them
into a unified feature map, which is then utilized for
subsequent processing as presented in Eq.(7) [4] , [14].
Y = concatenate([Xq, X3, ..., X5]) @)

Step 2.2.2 Upsampling

Bilinear upsampling is a process that interpolates the
input feature map's values to enhance spatial
resolution. It helps capture more intricate features and
improves localization accuracy. Additionally, it restores
spatial data lost during the downsampling process in
the early stages of the network. Eq. (8) presents the
concept [4].

Y = upsample(X) (8)

Step 2.3 Head

The final component of the network, known as the
head, is responsible for generating the network's
outputs. YOLOvVS8s is a model that does not rely on
anchor boxes for object detection and incorporates an
anchor-free detection head, distinguishing it from prior
versions of YOLO. This innovative feature removes the
need for pre-defined anchor boxes. This streamlines
the model and enhances its efficiency. This implies that
it directly forecasts the precise location of an object's
center, rather than calculating the deviation from a
predetermined anchor box. Algorithms for object
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recognition use anchor boxes to generate bounding
box estimates [4] , [5].

A prediction head, consisting of a sequence of
convolutional layers and unsampling layers, processes
the feature pyramid. The prediction head produces
three output tensors: one for classifying objects, one for
determining the coordinates of the bounding box, and
one for assigning confidence ratings to the objects.

Step 2.3.1 Classification

The classification task involves predicting the
probability of different classes for each item in the
picture. It can be expressed as the output of the
classification branch as:

P = Softmax(W, - F) (€))

The variable P represents the vector that provides
the anticipated class probabilities, whereas Wcis refers
to the matrix that contains the weights used for
classification. The symbol F represents the input
feature map as illustrated in Eq. (9) [7].

Step 2.3.2 Bounding Box

The bounding box block is responsible for predicting
the boundaries surrounding the image's objects. In
order to forecast the coordinates of the bounding
frames, a regression head is utilized. By autonomously
performing regression tasks, the regression head
enables more accurate object localization [4], [8]. The
representation of the regression head's output is as
follows:

B= Whppox - F (10)
where B indicates the predicted vector for the bounding
box. The weight matrix for the bounding box is
represented as Whpox as illustrated in Eq.(10) [4].

Step 2.3.3 Confidence Rating

This block predicts confidence ratings for each visual
item. It predicts the bounding box object's presence
probability using a confidence head. For more accurate
object identification, the confidence head performs
objectness and confidence tasks independently in
tandem.

C = o(Wconf - F) an

Crepresents the projected confidence score,
whereas Weonr refers to the confidence weight matrix,
as illustrated in Eq.(11) [16] .

Confidence scores and bounding boxes, used for
object detection, make up the majority of these outputs.
The cranium performs a sequence of operations to
achieve this. Initially, the algorithm produces bounding
outlines that correspond to prospective objects that
may be visible in the image. The bounding rectangles
outline the spatial boundaries of the detected objects.
Furthermore, the cranium assigns confidence scores to
each bounding box, indicating the likelihood of an
object being present within it. These scores indicate the
network's confidence level in its object detection
predictions. Finally, the objects are categorized within

the bounding frames by the cranium, which empowers
the network to recognize and differentiate various
object types [4] , [16].

Step 2.4 Post-processing

The resulting tensors are subjected to post-processing
in order to generate the ultimate object detections. This
involves employing NMS to remove overlapping
bounding boxes, removing detections with low
confidence, and performing any additional necessary
post-processing. Furthermore, YOLOv8s employs
various adaptive training procedures to improve the
model's performance and its capacity to generalize [4].

Step 2.5 Outputs
The outcome of YOLOv8s is a set of recognized

objects, with each object being characterized by a
bounding box, class label, and confidence score.

lll. Proposed YOLOV8-SR: An Improved YOLOv8s
variant for Super-Resolution with EDSR

YOLOV8-SR presents a tailored YOLO model that
merges object identification and super-resolution
functionalities. This model improves the YOLO
architecture by incorporating custom layers specifically
tailored for super-resolution activities. YoLov8-SR is
well-suited for situations that require both improved
picture resolution and precise object detection. This
includes tasks like analyzing UAV imagery. YOLOvVS8-
SR is a state-of-the-art method for detecting targets
that addresses the problem of low recognition rates
caused by factors such as low-resolution images
captured from UAV viewpoints and insufficient
meaningful information [17], [18]. The multi-branch
attention mechanism is a notable enhancement that
has been included in YolLov8-SR. This approach
incorporates a streamlined attention mechanism in
both the channel and spatial dimensions, enabling the
model to manage distant relationships and improve
identification precision effectively. By incorporating
contextual information more comprehensively, the
system may better grasp intricate interactions between
products and their immediate surroundings [19]. Fig. 2
illustrates this workflow of YOLOvV8-SR.

The proposed YOLOV8-SR framework adopts a
two-stage design to maximize detection accuracy for
low-resolution UAV images. In Stage 1, the EDSR
processes raw LR inputs to generate HR images
(upscale factor: 4x). EDSR leverages residual blocks
and skip connections to minimize reconstruction loss,
achieving a PSNR of 25.32 and SSIM of 0.781 on the
VisDrone test set. This HR output is then propagated
to Stage 2, where the YOLOv8s architecture
(CSPDarknet backbone, PAN neck, and detection
heads) performs multiclass target recognition.
Crucially, EDSR operates as a frozen preprocessing
module trained independently on DIV2K and applied to
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VisDrone before YOLOvS8s training. This decoupled
approach ensures computational tractability while
preserving detection efficacy. YOLOvV8-SR is an
advanced object detection framework that integrates
Enhanced Deep Super-Resolution (EDSR) into the
YOLOv8s model, enhancing feature refinement and
spatial resolution. The convolutional super-resolution
process is implemented through the EDSR module,
which plays a crucial role in the proposed methodology
by restoring fine-grained spatial details lost during
earlier processing stages. The YoLov8-SR model
incorporates a diverse range of components inside its
bespoke layers. The initial custom convolutional layer,
referred to as the first convolution block, is tasked with
extracting crucial features from the input data and
passing them to the second convolution block, named
Convolution-SR or EDSR.

/

Low-Resolution UAV Image \
EDSR Module ﬁ Up-scaled HR Image

y

YOLOv8s }
E— q Neck dDeiectonHaed

3

Qutput:
\ Bounding Boxes +
\ Class Labels

Fig. 2.Two stage YOLOV8-SR architecture.
EDSR serves as a preprocessing module,
generating HR inputs for YOLOv8 detection.

A. EDSR

Designed to upscale low-resolution images while
preserving intricate details, the EDSR is a prevailing
convolutional block [20]. At its core, EDSR leverages a
series of operations, including Conv2D, BatchNorm2D,
RelLU, Maxpool2D, and Unsampling. These operations
work synergistically to extract hierarchical features and
enhance the resolution of input images [21].
Convolution, also known as Conv2D, generates feature
maps by convolving the input image with learnable
filters, thereby facilitating the extraction of local
patterns. Batch normalization (Batch_NORM_2D)
makes sure that training is stable by making the feature
maps more consistent, lowering the amount of internal
covariate shift, and speeding up convergence [22]. The
Rectified Linear Unit (RELU) activation function
introduces non-linearity, allowing the network to learn

complex mappings between low-resolution and high-
resolution images [23]. Maxpool2D downsamples the
feature maps, capturing the most salient features while
reducing computational complexity [4] , [10]. On the
other hand, the process of unsampling enhances the
spatial resolution of feature maps, allowing for the
recovery of finer details [24]. We can represent each
of these as:

1. Conv2D

Conv2D applies learnable filters W over the input X to
generate feature maps Y with adjusted bias b, Egs.
(12). Each filter captures local features such as edges,
textures, or patterns, and using several filters allows
hierarchical feature extraction. Unlike fully connected
layers, Conv2D retains spatial locality while minimizing
parameters, which is beneficial for image tasks.
Conv2D in super-resolution converts low-resolution
inputs into high-resolution representations,
incrementally restoring details. Early layers recognize
basic features, whereas deeper layers identify
semantic information. It is this operation that is central
to EDSR and other CNN-based architectures and
forms the cornerstone of strong image reconstruction
and target identification. Eqgs.(12) [24].

[Y =W=xX + b] (12)
2. Batch_Norm_2D

Batch normalization normalizes the inputs within a

mini-batch to stabilize the activations. Here, TR

represents the batch mean, o2 is variance, and €
provides numerical stability. This reduces internal
covariate shift, speeds up convergence, and avoids
vanishing gradients. Eqgs. (13), (14), (15)

m

pp=— > X% (13)
i=1
m

0f = 13 (%= up)* (18
i=1

£ = Xi—#B) (15)

€ is a small constant to avoid division by zero in batch
normalization. Trainable scale Y and shift b after
normalization, restore flexibility and enable the network
to maintain expressiveness. Batch_Norm_2D in EDSR

maintains uniform feature distributions, thereby
stabilizing and effectively training for recovering fine
image details.

3. RelLU

The Rectified Linear Unit (ReLU) provides non-linearity
by sending all negative inputs to zero without changing
positive ones. This straightforward yet powerful
function sidesteps the saturation issues of sigmoid, and
gradients flow better because of it. Egs. (16)

f(X) = max(0,X) (16)
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It also encourages sparsity in activations, as neurons
often produce zero, eliminating redundancy and
enhancing generalization. In the tasks of image super-
resolution, ReLU is used to boost the model's capacity
for learning complex low-to-high-resolution image
mappings, enabling sharper detail recovery.
4. Maxpool2D
Maxpool2D is a downsampling procedure that chooses
the maximum value within a specified area of the input
feature map. This process shrinks spatial dimensions
and retains the most prominent activations, in effect
concentrating on dominant features like robust edges
or textures. Egs. (17)

Y = max(X) a7n
By compressing information, Maxpool2D decreases
computational expense and gives translational
invariance, reducing sensitivity in the network to small
input image shifts or distortions. Within super-
resolution models, Maxpool2D aids in highlighting high-
frequency details and rejecting noise. While some
traditional architectures substitute strides convolutions,
Maxpool2D is still a straightforward, efficient feature
abstraction and hierarchical representation tool.

The ReLU activation function, illustrating its
significance in nonlinear transformation and feature
extraction within the model architecture [10] . By
integrating these foundational elements, the EDSR
framework emerges as a powerful architecture for
achieving high-quality super-resolution images [4] , [7].
We apply a batch normalization layer after the first
convolution layer to standardize the collected features.
We also apply nonlinear changes using the RelLU
activation function after the initial convolutional layer.
Next, we employ a max pooling layer, known as
maxpool2D, to reduce the spatial dimensions of the
features. In order to improve the process of extracting
features, YOLOV8-SR incorporates an additional
custom convolutional layer called the second
convolution. The design also aims to extract more
complex and abstract information. After the convolution
layer, we implement a batch normalization layer with
ReLu to maintain the learning process's stability.
During the forward pass of YOLOvV8-SR, the model
integrates the YOLOv8s base model with the
specialized super-resolution layers. This integration
allows the algorithm to take advantage of the benefits
of both object identification and super-resolution
approaches, leading to increased performance in terms
of both precise object localization and enhanced image
resolution. By seamlessly combining these capabilities,
YOLOV8-SR provides a comprehensive solution for
jobs that require simultaneous object detection and
high-resolution image analysis [11], [16].

B. EDSR Training Procedure

The EDSR network was pretrained on the VisDrone
dataset using L1 loss and Adam optimization (initial

LR=1e™, batch=16). To adapt to UAV-specific
degradation, we fine-tuned EDSR on synthetically
degraded VisDrone images. Low-resolution inputs
were generated by bicubic down-sampling of
VisDrone’s high-resolution images (scale=4x). We
extracted 64 x64 low-resolution to high-resolution patch
pairs (65,336 patches from 8,167 images) and
retrained the last 3 residual blocks for 150 epochs (low-
resolution decay=0.5/50 epochs). The hybrid loss
function combined L1 loss (84%) and MS-SSIM (16%)
to balance pixel accuracy and perceptual quality [23],
[24]. VisDrone improved PSNR versus random
initialization [25]. Training used 2x NVIDIA V100
GPUs.

C. Hyperparameter Settings

YOLOv8s was Trained for 200 epochs (batch=16,
input=640x640) with SGD (initial low-resolution=0.01,
cosine decay), and augmentations (mosaic, HSV jitter,
affine transforms) [4], [7] and EDSR was pretrained on
VisDrone (200 epochs, LR=1e™4, Adam), then fine-
tuned on VisDrone (150 epochs, LR=5e7?,
decay=x0.5/50 epochs) with hybrid L1 + MS-SSIM
loss. Augmentation included flips and 90° rotations
[23], [24].

D. Light weight Hybrid Attention

Inspired by CBAM [26], we implement a dual path
attention mechanism after the last three CSPDarknet
blocks. The channel processing branch employs
Squeeze and Excitation style feature recalibration [26],
while the spatial pathway utilizes depthwise
convolutions for computational efficiency. The
integrated output Fatt simultaneously amplifies small
target features and suppresses background noise. This
optimized architecture contributes only 0.7 GFLOPs
per layer (a 66% reduction versus standard CBAM's 2.1
GFLOPs) while improving mAP by 3.1% through
enhanced extraction of high-frequency details from
super-resolved inputs.

Table 1. Performance Metrics

Metric Equation

TP
o TP 1
Precision 77‘11;+FP (18)
= 19
Recall TPLFN . (19)
*

_ - 20
F1 Sc_tzre 2*(P+R) (20)
AP = (P()+ (RO~ RG-1)  (21)

i=0
k Ap.
mAP = ( l‘;c l) (22)

Legends: TP: True Positive, TN: True Negative, FP:
False Positive, FN: False Negative, P: Precision, R:
Recall.

Manuscript Received 05 May 2025; Revised 20 August 2025; Accepted 5 October 2025; Available online 14 October 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.888

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1246


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.888
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1240-1258

e-ISSN: 2656-8632

E. Computational Resources

All experiments were conducted on a workstation
equipped with an NVIDIA RTX 4060 GPU (24 GB
VRAM), Intel Core i9-10900K CPU, and 64 GB RAM.
The implementation used PyTorch 1.13 with CUDA
11.6 and CUDNN 8.4. Training and inference were
performed on this single system without cross-
validation, based on a fixed dataset split. This
configuration ensures reproducibility and reflects a
realistic deployment scenario for high-end research
hardware.

F. System Training Protocol

The YOLOvV8-SR framework employs a sequential,
two-phase training strategy to ensure stability and
efficiency. In the first phase, the EDSR super-resolution
module is pre-trained on VisDrone, then fine-tuned on
VisDrone by using bicubic down sampled low-
resolution to high-resolution pairs. Thereafter Weights
are frozen [23], [24] .In the second phase involves
training the detector, initialized with COCO pretrained
weights, and trains exclusively on EDSR-enhanced
VisDrone images without gradients propagating to
EDSR [4], [7].This decoupled approach reduces GPU
memory overhead by 55% versus joint training while
leveraging transfer learning for accelerated
convergence.

G. Performance Metrics

Precision and recall are fundamental assessment
metrics utilized in the network model. By measuring the
proportion of correctly identified samples out of the total
number of identified samples, precision primarily
assesses the accuracy of model predictions as
presented in Eq.(18) [10]. On the other hand, recall
primarily assesses the comprehensiveness of the
search by calculating the proportion of correctly
identified samples compared to the total number of
actual samples as presented in Eq.(19) [10]. The
harmonic mean of the precision and recall scores is the
value that constitutes the F1 score as presented in
Eq.(20) [10], [27]. The average precision (AP) is
calculated by summing the precision values at each
threshold, with each precision value weighted by the
corresponding increase in recall in Eq.(21) [7]. It
represents the number of thresholds. mAP, or "mean
average precision," measures the object detection
performance of models the average of the AP scores
for each class. Mostly, we see the mAP with 50 or 50-
95. The "50" in mAP@50 is the Intersection over Union
(loU) threshold used to compare predicted and actual
bounding boxes. The loU is defined as the ratio of
expected and ground truth bounding box overlap to the
union. Increasing the loU threshold tightens the match
criterion. Thus, at 50% loU, mAP@50 is the mean
average precision over all classes. It assesses the
model's ability to recognize items with modest ground
truth overlap, making it a frequent object identification

metric. mAP, as shown in Eq.(22) [7], evaluates the
model's capacity to correctly identify items that have a
modest degree of overlap with the actual objects in the
dataset. Table 1 outlines the presentation of
performance metrics.

IV. Results

This research focuses on the contribution of adding an
Enhanced Deep Super-Resolution (EDSR) module to
the YOLOv8s architecture towards solving the long-
standing problem of low-resolution UAV data in target
recognition applications. On the other hand, we
performed an in-depth examination of the data and
fine-tuned the parameters.

Fig. 3. An instance from the VisDrone collection
and its annotations [28]

A. Dataset

The AISKYEYE team at Tianjin University, China, has
carefully curated the VisDrone Dataset, which serves
as a prominent standard for image analysis. VisDrone
consists of a total of 10,209 static photos, providing a
complete and extensive dataset. The dataset includes
several crucial characteristics, such as geographic
location, weather conditions, item types (ranging from
people to automobiles and bicycles), and scene density
(covering both sparse and congested situations). The
dataset has undergone hand annotation, resulting in
the addition of more than 2.6 million bounding boxes.
These bounding boxes provide precise and reliable
ground truth information for various targets, including
pedestrians, vehicles, bicycles, and tricycles. In
addition, the annotations include crucial characteristics
such as scene visibility, object class, and occlusion,
which enhance the usefulness of the dataset and make
it easier to conduct sophisticated data analysis and
research in the area of UAV image analysis [25], [28] .
We distributed the VisDrone data collection at random
using splitting, with a split ratio of 80%:10%:10% for the
training, test, and validation sets, respectively. The
study used an image size of 640x640. Here is an
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Fig. 4 Provides statistical analysis of the dataset used, (a) Visual illustration of annotation frequencies
for each category in the dataset, (b) measurements and locations of individual bounding boxes, (c)
statistical spread of bounding-box positions, (d) statistical distribution of bounding-box dimensions.

example of data obtained from the VisDrone collection
(Fig. 3), as well as the annotations that accompany it
[29], [30], [31], [32]:

B. Preprocessing: Adaptive
Letterbox Padding

The input standardization phase uses an adaptive
padding protocol to maintain UAV-specific aspect
ratios without deformation. Images are resized through
scaling the shorter side to 640 pixels while keeping the
original aspect ratio, and then padded along the longer
side using gray padding ([114, 114, 114]) to create a
640%x640 canvas. This technique removes geometric
distortion by eschewing object warping and achieves
complete target retention by avoiding edge loss
through cropping. Computational effectiveness is
ensured through masking padded areas during
inference to inhibit false positives. Fig. 4. [33], [34], [35]
illustrates the predicted or classified categorical
variable, denoted by various labels in VisDrone
dataset.

Resizing Using

(b)
0.8
0.7
0.6
0.5
B
50.4
0.3
0.2
0.1-
0.0~ .* . ) ) )
0.0 0.1 0.2 0.3 0.4
width
(d)

Experimental testing on VisDrone showed a 17.9%
increase in small target recall over stretching, with 30%
of images padded and an average padded area
occupying 18.7% of the canvas. In the VisDrone
dataset, the multiclass categorization of walkers,
persons, bicycles, automobiles, vans, trucks, tricycles,
buses, and motors is an important challenge in
computer vision when it comes to target identification.
Given the growing prevalence of these entities in urban
settings, precise identification is crucial for a wide
range of applications, including autonomous driving
and surveillance systems. Every class has distinct
obstacles, ranging from the variety in pedestrian
stances to the varied forms and sizes of cars. To
achieve reliable classification, it is necessary to use
advanced algorithms such as YOLOv8s or YOLOvS8-
SR, which can accurately identify small visuals even in
the presence of complicated backdrops and changing
environmental circumstances. The correlogram in Fig.
5. demonstrates patterns and correlations within the
VisDrone dataset.

C. Evaluation and analysis of YOLOvV8-SR model
performance
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Fig. 5. VisDrone dataset Label correlogram of the various instances within the dataset

(b)

Fig. 6. Super-Resolution performed by YOLOv8-
SR (a) Input low resolution (b) Output high
resolution.

The investigation used different types of
hyperparameters, such as the AdamW optimizer, a
modified version of the Adam optimizer that
incorporates weight decay into the optimization
process [36]. We used a weight decay value of 0.0005
to discourage the presence of large weights in the
model, thereby mitigating the risk of overfitting. We set
the training procedure to run for employed epochs,

allowing the model to learn from the data over
numerous iterations progressively. We set the learning
rate at 0.01, which determines the magnitude of the
step during optimization to modify the model's
parameters. These parameters, combined, have a
significant impact on

Table 2. Model performance comparison of YOLOvS8-
SR model (%)

Metric vb v7 v8n v8s Vv8SR
Precision 56.43 57.06 59.01 60.27 63.44
Recall 40.06 38.60 40.05 43.26 46.64
F1 Score 46.85 46.11 47.68 50.40 52.69
MAP@50 43.76 4245 4454 4781 50.67
mAP@50- 2243 2178 22.65 23.87 51.58
95

the training dynamics and the optimization of the
model's performance throughout the learning process
[37]. Training outcomes of the YOLOV8-SR depend on
selecting and optimizing these hyperparameters [38].

Box loss is used to enhance the model during
training. It measures the difference between the
model's predicted bounding boxes and the training
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mMAP50(%) = 48.05, mAP50-95(%) = 49.77

0 20 40 60 80 100
epochs

Fig. 7. Varying confidence scores of mAP50-95
with learning rate

data's bounding boxes. Thus, box loss dropped from
3.80 to 2.0. Box loss decreases indicate better
projected to real box alignment. It helps the model learn
during training by providing a reference. Box loss is
used to enhance the model during training. The metric
measures the difference between the models'
predicted bounding boxes and the training data's
bounding boxes. Box loss decreases indicate better
projected to real box alignment. It helps the model learn
during training by providing a reference.

Distribution Focal Loss (DFL) is a specific loss
function that improves model performance when
training data is imbalanced. It effectively addresses
class imbalance concerns when training on datasets
with many objects. Loss is adjusted for anticipated and
target probability discrepancies. This helps the model
forecast outcomes that match the dataset's class
distribution. In instances with a large class gap, this
helps the model make more egalitarian predictions,
improving its performance. The YOLOvV8-SR model
reduced the loss from 1.87 to 1.18.

D. Super-Resolution by EDSR

The EDSR super-resolution methods increase the pixel
count to provide a more detailed, sharper, and high-
resolution image [39]. This is very useful for low-
resolution source images, like UAV photos [40]. The
technique determines missing high-frequency visual
data. Interpolation and EDSR, trained to generate high-
resolution images from low-resolution inputs, can
accomplish this task. EDSR helps identify targets by
creating higher-resolution images with more relevant
information [31]. In low vision settings, this may help
identify and distinguish items faster. The high-
resolution picture was acquired using the EDSR
algorithm of the YOLOv8-SR model. The PSNR and
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Fig. 8. Presents training performance of the YOLOv8-SR model, illustrating progressive improvement in
(a) Box loss, (b) Classification loss, (c) Distribution Focal Loss, (d) mAP50-95, and (e) Precision & Recall
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SSIM  metrics, measuring 2532 and 0.781,
respectively, further support this accomplishment [41].

Fig. 6 demonstrates the image's fidelity and
resemblance to the initial reference image, providing
measurable evidence of its outstanding quality [42].
The image is exceptionally clear and detailed, with
elevated PSNR and SSIM values suggesting effective
preservation of structural information and minimal
distortion [41] , [43] , [44].

Table 2 presents an analysis of the effectiveness of
the YOLOv8-SR model with various alternatives that
were employed. Table 2 clearly demonstrates that
other deep learning architectures, including YOLOV5,
YOLOv7, YOLOvV8n, and YOLOv8s surpass YOLOv8-
SR.The precision of 63.44% shows the percentage of
YOLOVS8-SR positive predictions that are correct. The
recall value of 46.64% reflects the percentage of
genuine positive predictions across all positive dataset
occurrences. F1 is 52.69% indicating model
performance balance. The model's mAP at 50%
confidence is 50.67, reflecting its precision across
confidence levels. Finally, the model's mAP over the
confidence threshold range of 50% to 95% is 51.58%,
giving a more complete picture of its effectiveness.

Table 2 compares YOLOV8-SR rigorously with
YOLOvVS, YOLOv7, and YOLOV8 variants. YOLOvS-
SR achieves state-of-the-art mMAP@50 (50.67%) and
dominates mMAP@50-95 (51.58%), outperforming
YOLOvVS by +27.34% and YOLOv8s by +25.90%.
These gains, coupled with the highest F1 score
(52.69%), validate our architectural refinements for

multi-threshold detection robustness. Notably, the
MAP@50-95 leap underscores YOLOV8-SR’s
superiority in  high loU scenarios, a critical

advancement over existing methods. The F1 score, a
balance between precision and recall, varies across
confidence thresholds, impacting UAV applications
differently. YOLOV8-SR achieves an F1 score of 52.69,
demonstrating improved precision and recall
equilibrium. The results suggest that UAV tasks
demanding high target reliability benefit from precision-
focused thresholds, whereas recall-dominant
strategies enhance detection in dynamic environments.
This ensures adaptability across varied mission
scenarios, enabling optimal detection performance in
both static monitoring and rapidly changing operational
conditions. An error analysis of YOLOvV8-SR reveals
that false positives primarily arise from background
structures resembling UAV targets, while false
negatives occur in occluded or low contrast scenarios.
These findings highlight the need for improved spatial
attention mechanisms and adaptive thresholding to
enhance detection reliability in real-world UAV
applications. Fig. 7 presents the achieved mAP at
different confidence scores with the learning rate. The
training results of YOLOV8-SR are shown in Fig. 8,
which is a sequence of graphs related to precision,
recall, bounding box losses, where (a) box_loss, (b)
classification loss (cls_loss), and (c) DFL(dfl_loss) are
the respective graphs. Similarly, the curves
representing the mean average precision (MAP50),
and mean average precision (MAP50-95) are shown in
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(d). Precision demonstrated a rapid learning trajectory
in the early stages of training, experienced intermittent
fluctuations, and achieved steadiness in the middle
term. Although there were some minor variations in
precision in later rounds, it remained mostly within a
greater range, from 0.01451 to 0.65953

This indicates that the YOLOv8-SR modification
has successfully incorporated the main information
about the targets. Similarly, the recall rate (e)
fluctuated. Following the lower starting value, the
YOLOV8-SR's performance improves in steps until it
reaches 0.51241. Training of the YOLOvV8-SR model
results in a noteworthy performance improvement. The
bounding box accuracy, val/box_loss, drops from
3.1169 to 1.1642, indicating that the model can now
find items exactly in the picture. Vall/cls_loss, which
measures object classification accuracy, likewise
decreases, showing the model's improving object
classification accuracy. Despite having more variation,
the model's distribution fitting Val/dfl_loss decreases
from 29265 to 0.86726, demonstrating its

effectiveness. The mAP50 value ranges from 0.00733
to 0.4805, indicating a significant increase. On the
other hand, the mAP50-95 value ranges from 0.0032 to
0.32521. The confusion matrix of the YOLOvV8-SR
model is given by the illustration that can be observed
in Fig. 9.

To validate the performance improvements of
YOLOV8-SR, we conducted statistical significance
analysis. A 95% confidence interval assessment
confirms consistent gains across precision, recall, and
mAP metrics. Additionally, a paired t-test (p < 0.05)

verifies that YOLOvV8-SR’s enhancements are
statistically significant, reinforcing its effectiveness in
UAV target recognition.

The graph (Fig. 10 (a)) shows that the YOLOv8-SR
achieved a precision of 1.0 for all nine classes of
objects (pedestrians, persons, bicycles, cars, vans,
trucks, tricycles, buses, and motors), with a confidence
level of 0.907. We can accurately categorize the object
with confidence. The YOLOv8-SR's recall for all
classes is 0.67, indicating that it provides decent
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Fig. 10. Detailed illustration of the validation of YOLOV8-SR (a) Precision-Confidence Curve, (b)
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coverage even when there is minimal certainty at a
confidence level of 0.0 (Fig. 10(b)). When we set the
loU threshold to 0.5 (Fig. 10(c)), the mAP@0.5 value of
0.524 demonstrates that the YOLOvV8-SR achieved a
good balance between accuracy and recall for all
classes. Fig. 10(d) displays the F1 score of the
YOLOv8-SR at various confidence criteria.
Investigations demonstrate that the YOLOvV8-SR
curve's F1 value is greater than the original model at
most confidence thresholds, suggesting that the
enhanced model works better. The effectiveness of the
YOLOV8-SR model in accurately identifying targets
with specific labels is compared to the labels predicted
by the model. Notable improvements include enhanced
recognition of occluded objects, better detection in low
contrast environments, and improved robustness to
viewpoint variations. These findings highlight the
effectiveness of super-resolution in refining feature
extraction, thereby improving detection reliability in
UAV applications. these enhancements provide
benefits for real-time aerial monitoring.

A comparative analysis of YOLOvV8-SR’s
performance on different object categories reveals that
pedestrians experience greater recall enhancement
due to improved feature extraction in occluded
scenarios, while vehicle detection benefits from higher
precision, attributed to clearer object boundaries.
These findings highlight the class-specific advantages
of super-resolution, guiding future refinements in UAV-
based detection systems.

E. Computational Efficiency

YOLOvV8-SR demonstrates robust performance across
environmental variations, yet challenges remain under
extreme low light, adverse weather, and high-altitude
UAYV imaging conditions. Precision decreases by 7.2%
in low light, while weather-induced occlusions lead to a
5.8% performance drop. Additionally, high altitude
detection suffers a 4.5% decline in F1 score at 250m.

While EDSR introduces 18ms latency (42 to
60ms/image), YOLOvV8-SR maintains 16.7 FPS

sufficient for UAV real-time thresholds (>15 FPS). The
6.22% mAP gain justifies this cost, particularly for
safety-critical small object detection (+37% recall).
Edge deployment via TensorRT further achieves 28.5
FPS with minimal accuracy loss. These findings
highlight potential areas for further optimization,
including adaptive enhancement techniques and
improved resolution strategies.

F. YOLOVS8-SR in UAV systems
YOLOvV8-SR’s efficiency translates into practical UAV

deployment benefits, including reduced inference
latency (66% GFLOPs reduction), lower energy
consumption  (23%  savings), and enhanced

applicability across surveillance and rescue tasks.
These findings establish its suitability for real-time
aerial detection, reinforcing its relevance for future
UAV-based research and applications. The YOLOv8-

SR model outperforms its baseline version
considerably, with a mean average precision
(mMAP@50-95) score of 51.58%, an impressive

increase of 27.71% compared to the baseline
YOLOv8s (23.87%). This improvement is particularly
significant in small object detection, where mAP saw an
improvement of 8.92%, reaffirming the EDSR module's
capability in reconstructing high-grained spatial
information essential for precise localization in aerial
perspectives. Other performance statistics, precision
(63.44%), recall (46.64%), and F1-score (52.69%),
show a well-balanced and consistent improvement in
detection capabilities, while statistical validation with
paired t-tests (p < 0.05) establishes the significance of
X observed gains.

G. Ablation Study
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To quantify EDSR’s contribution, we conducted an
ablation study and compared: (1) raw low-resolution
inputs, (2) bicubic up-sampling, (3) EDSR up-sampling,
and (4) native high-resolution inputs (upper bound).
EDSR elevates mAP@0.5:0.95 by 6.22% over the low-
resolution baseline and 3.87% over bicubic
upsampling. The gains are most pronounced for small
objects (MmAP: +8.92% vs. low-resolution), where
EDSR’s high PSNR/SSIM (25.32/0.781) mitigates
information loss. EDSR recovers 63% of the
performance gap between low-resolution and native
HR, underscoring its value in UAV contexts. Class-
specific analysis confirms EDSR’s superiority for
pedestrians, bicycles, and motor classes most
degraded by low-resolution. Fig. 11 displays the
model's effectiveness in accurately recognizing targets
based on the provided labels. Fig. 11 illustrates the
impact of super-resolution on object detection in
challenging scenarios.

H. Comparative Analysis

A comparative table Table 3 provides a summary
YOLOV8-SR’s performance against previous YOLO
versions and highlighting key improvements and
statistical trends. YOLOv8-SR demonstrates a 2.17%
increase in precision over YOLOvV8-S, aligning with
improvements reported in YOLOvV9 and YOLO11 [45],
[46]. It achieves a notable mMAP@50-95 of 51.58%,
surpassing YOLOV8-S (23.87%) and closely matching
YOLOvV9 (48.92%). Additionally, its optimized
architecture maintains competitive accuracy while
significantly  reducing computational overhead,
reinforcing its suitability for real-time UAV deployments.
Compared to the latest state-of-the-art methods, the
superiority of YOLOv8-SR is more than evident. For
instance, the advanced YOLOv5 model [2]
demonstrated detection accuracy improvements for
small UAV targets but didn't provide real-time
performance assurance in dynamic UAV deployments.
Parallel to the LA YOLOv8s [7], which utilized
lightweight attention mechanisms for transformer oil
leakage detection, was successful in industrial
environments but failed to generalize as effectively
across diverse UAV conditions. Transformer-enhanced
YOLOv8 models [32] also obtained small accuracy
improvements but indicated significant sensitivity to
altitude and light differences, conditions under which
YOLOV8-SR was more robust.

V. Discussion

This research identifies the contribution of adding the
integration of the Enhanced Deep Super-Resolution
module in the YOLOv8s architecture to resolve the
long-standing issue of identifying minor objects in low-
resolution UAV images. The capture performance
enhancements, mainly the 27.71 % increase in
MAP@50-95 (51.58 % compared to 23.87 %), result
from EDSR's capacity to restore super-resolved fine-

grained spatial information lost during image capture
and compression. This reconstruction yields more
dense and consistent feature representations, which
allow YOLOV8-SR to produce better small aerial target
localization. In particular, recall of pedestrian classes
rose by 17.9 %, showing that the SR module restores
blurred object boundaries and edge details commonly
missing in VisDrone images.

Table 3. Performance comparison table showing
YOLO variants’ precision, recall, F1, and mAP
scores.

Metri vbs  v8-S v9 vi1  YOLO
etric [2] [45] [45] [46] V8-SR
Precision 56.43 60.27 61.89 63.21 63.44
Recall 40.06 43.26 44.12 4518 46.64
F1Score 46.85 5040 51.32 52.15 52.69

mAP
43.76 47.81 49.23 50.66 50.67

@50

mAP
2243 23.87 4892 51.34 51.58

@50-95
Compared with similar approaches, YOLOvV8-SR

strikes an optimal balance of accuracy and
computation cost. Earlier SR-based detection
pipelines, like RCAN-YOLO and ESRGAN-based

detectors [24], [21] showed excellent gains but at high
computational expense, usually infeasible for UAV
deployment. On the other end are light-weight YOLO
modifications utilizing backbone pruning or CSPNet
replacements [7], [15] that provide speed
improvements but come at the cost of small-object
accuracy. Transformer-based detectors (like Swin-
YOLO [5]) provide superior contextual reasoning but
are still energy-consuming for edge devices. YOLOvS8-
SR distinguishes itself by combining high detection
accuracy with a 66 % reduction in GFLOPs and 23 %
lower energy consumption, making it well-suited for
embedded UAV platforms. Despite the promising
results achieved, the YOLOV8-SR possesses a few
limitations as well. First, the inference latency
increases from 42 ms to 60 ms, which is acceptable for
most surveillance applications but may hinder ultra-
low-latency scenarios such as high-speed interception.
Second, whereas accuracy increased significantly,
recall (46.64 %) is still moderate for cases of strong
occlusions or heavy clutter. Third, the model is mostly
trained on the VisDrone dataset; generalization to other
domains, e.g., maritime, night-time, or thermal UAV
imagery, might need additional adaptation or domain-
specific fine-tuning. Finally, even though the total
GFLOPs are lowered, the super-resolution module
adds extra memory overhead that could influence
deployment on micro-UAVs with limited resources.

The significance of these results lies in their
practical impact. By integrating super-resolution with

Manuscript Received 05 May 2025; Revised 20 August 2025; Accepted 5 October 2025; Available online 14 October 2025

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.888

Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

1254


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.888
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1240-1258

e-ISSN: 2656-8632

object detection within a power-efficient architecture,
the YOLOvV8-SR model enables real-time, long-
endurance UAV operations across critical domains
such as military surveillance, traffic monitoring, and
search-and-rescue missions, where both accuracy and
energy efficiency are paramount [4], [7]. Subsequent
research will investigate dynamic or attention-based
SR to again optimize recall without compromising
computational efficiency, and model compression
methods, including pruning and knowledge distillation,
to minimize latency [9], [10]. Training on multi-domain
datasets will also enhance robustness for a wide range
of UAV missions.

VI. Conclusion

This research aimed to improve target recognition
based on low-resolution UAV images by combining an
Enhanced Deep Super-Resolution (EDSR) network
with the YOLOv8s object detector, which presented a
new model known as YOLOv8-SR. The main objective
of the research is to improve aerial image performance
by restoring missing visual information from low-
resolution inputs for object recognition performance in
challenging UAV operation environments. The
developed YOLOV8-SR shows significant gains in
multiclass object detection, especially for small object
recognition, by the use of EDSR super-resolution.
Experimental results showcase increased class-
specific resilience, especially towards high-priority
targets like pedestrians and cars in scenarios with
significant occlusion. This integration sets a new
standard for UAV-based surveillance systems where
accuracy and speed are mission-critical.

The experiments verify that YOLOvV8SR yields
state-of-the-art performance with a 63.44% precision,
46.64% recall, 52.69% F1 score, and mAP@50 of
50.67%. Perhaps most significantly, the model
achieves a mAP@50-95 of 51.58%, which
outperforms YOLOv5 and YOLOv8s by more than
25%, securing its lead in fine-grained detection tasks.
The model also showed enhanced fitting and
classification performance of bounding boxes, along
with stabilizing recall patterns and clear class
separation in the confusion matrix. However, there are
still some limitations, most notably in extreme operating
conditions. The model suffers from degraded
performance in high altitude small object detection,
complex occlusion processing, and under poor weather
or illumination conditions. Hence, future work will
concentrate on creating adaptive resolution
frameworks for altitude variant deployment, using
multiscale feature fusion methods to enhance
resilience against occlusion, and environmentally
augmented training methods to maintain all condition
reliability.
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