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Abstract Modern surveillance necessitates the use of automatic target recognition (ATR) to identify targets 

or objects quickly and accurately for multiclass classification in unmanned aerial vehicles (UAVs) such as 

pedestrians, people, bicycles, cars, vans, trucks, tricycles, buses, and motors. The inadequate recognition 

rate in target detection for UAVs could be due to the fundamental issues provided by the poor resolution 

of photos recorded from the distinct perspective of the UAVs. The VisDrone dataset used for image analysis 

consists of a total of 10,209 UAV photos. This research work presents a comprehensive framework 

specifically for multiclass target classification using VisDrone UAV imagery. The YOLOv8-SR, which stands 

for "You Only Looked Once Version 8 with Super-Resolution," is a developed model that builds on the 

YOLOv8s model with the Enhanced Deep Super-Resolution Network (EDSR). The YOLOv8-SR uses the 

EDSR to convert the low-resolution image to a high-resolution image, allowing it to estimate pixel values 

for better processing better. The high-resolution image was generated by the EDSR model, having a Peak 

Signal-to-Noise Ratio (PSNR) of 25.32 and a Structural Similarity Index (SSIM) of 0.781. The YOLOv8-SR 

model's precision is 63.44%, recall is 46.64%, F1-score is 52.69%, mean average precision (mAP@50) is 

51.58%, and the mAP@50–95 is 50.67% over the range of confidence thresholds. The investigation 

fundamentally transforms the precision and effectiveness of ATR, indicating a future in which ingenuity 

overcomes obstacles that were once considered insurmountable. This development is characterized by 

the use of an improved deep super-resolution network to produce super-resolution images from low-

resolution inputs. The YoLov8-SR model, a sophisticated version of the YoLov8s framework, is key to this 

breakthrough. By amalgamating the EDSR methodology with the advanced YOLOv8-SR framework, the 

system generates high-resolution images abundant in detail, markedly exceeding the informational quality 

of their low-resolution versions. 

Keywords Deep Learning, High Resolution, Image Processing, Object Detection, YOLOv8. 

I. Introduction  

The low resolution of pictures taken from the unique 
perspective of UAVs contributes to the inadequate 
identification rate in UAV target detection. The aerial 
photos, which have low resolution and limited pixel 
data, make it difficult to identify and locate things of 
interest accurately. The lack of resolution hindered 
traditional object identification deep learning 
algorithms, limiting their capacity to distinguish intricate 
features and accurately identify items [1], [2]. The 
challenge of reliable object detection in low-resolution 
UAV imagery necessitates specialized solutions for 
effective target recognition in complex environments 

[3]. Deep learning models such as YOLOv8, developed 
by Ultralytics, address this problem with a single-stage 
object detection paradigm that enables real-time 
recognition [4], [5]. YOLOv8 is an advanced iteration of 
the YOLO series, optimizing both accuracy and 
inference speed [6]. To further enhance efficiency, 
YOLOv8s, a smaller variant, reduces network size and 
parameters, prioritizing resource optimization while 
maintaining precision [4], [7]. Both YOLOv8 and 
YOLOv8s operate using a grid-based framework that 
includes image preprocessing, feature extraction, 
target detection, and post-processing via non-
maximum suppression (NMS) to refine results by 
eliminating duplicate detections [4], [5]. Anchor boxes 
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facilitate precise bounding box predictions, with 
YOLOv8s employing fewer anchor variations to 
improve computational efficiency [7], [8]. While 
YOLOv8 emphasizes accuracy, YOLOv8 maximizes 
speed and resource efficiency, making it particularly 
suitable for real-time UAV applications that demand 
rapid inference within constrained processing 
capabilities [3],[4],[5]. By refining detection 
mechanisms and optimizing network structure, 
YOLOv8 models contribute to overcoming the 
limitations of UAV-based object recognition, advancing 
autonomous visual processing in aerial contexts.  

While YOLOv8s offers speed advantages for UAV 
deployment, its accuracy is compromised when 
processing low-resolution UAV imagery. The model's 
simplification (reduced parameters/anchor boxes) 
inherently limits its ability to recover fine-grained details 
crucial for detecting small or indistinct objects in low 
pixel count aerial images. Existing YOLO variants lack 
integrated mechanisms to enhance input resolution 
effectively. 

This method integrates the EDSR (Enhanced Deep 
Super-Resolution) network with the YOLOv8s 
architecture. EDSR first processes the low-resolution 
UAV input image to generate a high-resolution 
counterpart. This super-resolved image is then fed into 
the YOLOv8s model for object detection. The hybrid 
design aims to overcome the low-resolution limitation 
by enhancing input quality before detection, leveraging 
EDSR's proven ability to recover image detail and 
YOLOv8's efficient detection capabilities. Simplifying 
the model improved its performance without affecting 
its capacity to handle objects of various sizes and 
forms. 

To develop a robust object detection solution 
(YOLOv8-SR) that overcomes the challenge of low-
resolution UAV perspective images by integrating 
super-resolution through EDSR with the efficient 
YOLOv8s detector, enabling reliable and high-
performing target recognition in aerial applications. 

This research advances real-time UAV object 
detection by optimizing and proposing YOLOv8 models 
for efficiency and accuracy in a constrained 
environment. One of the key contributions is 
introducing a new hybrid architecture, YOLOv8-SR, 
combining the Enhanced Deep Super-Resolution 
(EDSR) network with the lightweight YOLOv8s 
detector. This is the first known integration of such, 
intended to solve the serious issue of low-resolution 
UAV images. By improving input resolution with EDSR 
prior to detection, the model enhances significantly the 
capacity of YOLOv8s to detect features from low pixel 
inputs. Without any increase in complexity, the design 
preserves the computational demands required for 
real-time UAV usage. Experimental verification verifies 
that YOLOv8-SR surpasses baseline YOLOv8s and 

competing approaches in target detection precision at 
no prohibitive computational cost. 

The research paper follows a structured approach 
to YOLOv8-SR’s development and evaluation. Section 
II. reviews YOLOv8/YOLOv8s, EDSR, and prior UAV 
research methodology. Section III details about 
proposed YOLOv8-SR: An Improved YOLOv8s variant 
for Super-Resolution with EDSR, and its methodology. 
Section IV presents the datasets, preprocessing, 
evaluation, and analysis of YOLOv8-SR super-
resolution by EDSR comparisons, results 
visualizations, ablation studies, and comparative 
analysis of the results. Section V presents a brief 
discussion on comparison and limitations. Section VI 
summarizes the research problem, contributions, 
findings, and future directions. 

 

II. Methodology 

A. Image preprocessing  

In order to ensure high quality, it was necessary to 
preprocess each image from the VisDrone dataset. The 
dataset exhibits a range of image sizes and resolutions, 
spanning from low to high. Nevertheless, we conducted 
preprocessing on all photographs by shrinking them to 
dimensions of 640x640. Utilizing deep learning models 
such as YOLOv8, the input image can be preprocessed 
by applying a Gaussian blur and morphological 
smoothing to remove noise. The initial step involves 
preparing the data for the YOLOv8, which is necessary 
for data interpretation and preprocessing [9], [10]. 

B. YOLOv8s  

The YOLOv8s architecture is designed with a depth 
coefficient of 0.33, a width coefficient of 0.50, a feature 
size of 1024 bits, and a scaling ratio of 2.0. This setup 
provides the best balance between detection precision 
and computational efficiency and is very well-suited for 
real-time object detection purposes. In comparison to 
other YOLOv8 variants such as YOLOv8n, YOLOv8m, 
YOLOv8l, and YOLOv8x, the YOLOv8s model has 
lowered depth and width parameters, making it smaller 
in terms of trainable parameters but quicker in 
inference speed with minimal loss in precision. 
However, due to its exceptional balance between 
speed and accuracy, YOLOv8s remains widely used in 
many applications. The device's small size and 
effective processing make it a useful alternative for 
devices with limited resources, where quicker 
processing is essential for maximum performance [4], 
[11]. The procedure for target recognition with 
YOLOv8s encompasses the following steps: 

Step 1- Input  

The YOLOv8s model receives the input image, which 
contains some objects for recognition, such as 
pedestrians, people, bicycles, cars, vans, trucks, 
tricycles, buses, and motors. 
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Step 2 - Structure 

Optimized for computational efficiency, the YOLOv8s 
architecture excels in real-time object identification 
across various platforms. The YOLOv8s architecture 
consists of three fundamental components: the 
backbone, neck, and head. These components carry 
out all the necessary computations. Each block's 
function is outlined below. Fig. 1 depicts the structure 
that YOLOv8s executes [4], [5]. 

Step 2.1 - Backbone 

The YOLOv8s model utilizes a novel backbone design, 
also known as the feature extractor, which has a vital 
function in extracting significant features from the 
incoming data. During its operation, the backbone 
performs a variety of actions. This architecture employs 
a compound scaling technique that optimizes the 
depth, breadth, and resolution of the network to ensure 
efficient and effective feature extraction. Initially, it 
detects fundamental patterns, such as edges and 
textures, in the very first layers. Furthermore, it can 
embrace many scales of representation, allowing it to 

capture features at different levels of abstraction. The 
backbone ultimately creates a detailed and complex 
hierarchical representation of the input image, which 
includes a variety of significant features [5], [7]. 

Step 2.1.1 - Convolution Block 

In YOLOv8s, the convolution block typically consists of 
convolutional layers, followed by additional processes 
like batch normalization and activation functions. The 
precise specifications of the convolution block may vary 
depending on the variants; however, the following 
equation provides a basic representation for a single 
convolutional layer inside the block:  

𝑌 =  𝑆𝑖𝐿𝑈(𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑋, 𝑊) +  𝐵)                             (1) 
A collection of adaptable convolutional filters, 

symbolized as W, and an additional term known as the 
bias, B, subject the input feature map, labeled as X, to 
a process of alteration as presented in Eq. (1) [12]. The 
convolution procedure entails the process of sliding 
these filters across the input, doing element-wise 
multiplications, and then summing the outcomes. 
Afterwards, a Sigmoid Linear Units (SiLU) activation 

 

Fig. 1. YOLOv8SR (YOLOv8s detector with integrated EDSR super-resolution backbone for enhanced 
small-object features.) 
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function is applied to each element of the resultant 

feature map as shown in Eq. (2) [13].  
 𝑆𝑖𝐿𝑈(𝑥) = 𝑥. 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)                                                  (2) 

The output feature map, denoted as Y, as 

presented in Eq.(1), contains the modified information 

that is prepared for further processing in the network 
[11] , [14]. 

Step 2.1.2 – Cross-stage partial bottleneck with two 

convolutions (C2f) 

The C2F module in YOLOv8s serves to link the 
backbone to the Feature Pyramid Network (FPN), 
including more skip links and extra split operations. The 
C2F block is often used to reduce the resolution of the 
feature maps that are supplied and capture significant 
features from the backbone. It aids in extracting 
characteristics at varying spatial resolutions. The 
equation for the C2F block can be expressed as 
follows: 
𝐹𝑖 =  𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘(𝐹{𝑖−1})                                                           (3) 

Feature map Fi represents the ithstage and Fi-1 
represents the prior i-1th stage. The convblockis the 
convolution block with convolutional layers, as 
presented in Eq.(3) [7]. As the input travels across the 
network, this structure gradually extracts hierarchical 
characteristics, improving model performance and 
learning [7] , [15]. 

Step 2.1.3 - SPPF (Spatial Pyramid Pooling and 

Fusion) Block 

The SPPF block is used to collect features at various 
sizes and combine them into a unified feature map. It 
enhances the network's capacity to identify objects of 
varying sizes. In the SPPF block, spatial pyramid 
pooling is used at different scales, followed by separate 
convolution blocks. Finally, the feature maps are joined 
together to make a multi-scale feature representation. 
The equations governing the SPPF block may be 
expressed in the following manner: 

𝑋𝑖 =  𝑠𝑝𝑝𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘(𝑋)
                                                          (4) 

𝑌𝑖 =  𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘(𝑌{𝑖−1})                                                       (5) 

     𝑌 =  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝑌1, 𝑌2, … , 𝑌𝑛])                                (6) 
The input feature map is X, while the intermediate 
feature map at the ith scale is Yi. By using concatenate 
to combine features from different scales, Y represents 
the final concatenated feature map. The input feature 
map is convolutionally processed by the 𝑠𝑝𝑝𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘

, 

which processes each scale. This technique may also 
enhance features using the 𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘 discussed before 

as presented in Eq. (4). This multi-scale technique 
improves the network's spatial information acquisition, 
making target identification and semantic segmentation 
more successful. Eqs. (4), (5), (6) illustrate key 
computational formulations relevant to the 
methodology, supporting the theoretical framework and 
experimental validation presented in [4], [16]. 

Step 2.2 - Neck 

The neck functions as an essential component in 
establishing a connection between the backbone and 
the head of a network, facilitating the integration of 
contextual information and running feature fusion 
operations. In essence, the neck's primary function is 
to aggregate feature maps from the backbone in order 
to form FPN. It simply compiles feature maps from 
different phases of the backbone. The neck's functions 
include a variety of essential components. To begin, 
the network performs concatenation or fusion of 
features belonging to distinct scales, thereby enabling 
the efficient detection of objects of diverse sizes. 
Furthermore, by incorporating contextual information, 
the neck improves object detection precision by taking 
into account the scene's wider context. Finally, the 
implementation of the neck results in a reduction of 
both the spatial resolution and dimensionality of 
resources, thereby contributing to enhanced 
computational efficiency. Nevertheless, it is critical to 
acknowledge that this decrease in resolution and 
dimensionality has the potential to affect the model's 
quality [4] , [7]. 

Step 2.2.1 Concatenation 

This operation is utilized to merge feature maps 
obtained from various network scales. The network 
frequently uses it to fuse multi-scale data, enabling it to 
detect objects of varying sizes. By means of 
concatenation, the network is capable of capturing 
features at various resolutions and integrating them 
into a unified feature map, which is then utilized for 
subsequent processing as presented in Eq.(7) [4] , [14]. 

𝑌 =  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝑋1, 𝑋2, … , 𝑋𝑛])                                (7) 

Step 2.2.2 Upsampling 

Bilinear upsampling is a process that interpolates the 
input feature map's values to enhance spatial 
resolution. It helps capture more intricate features and 
improves localization accuracy. Additionally, it restores 
spatial data lost during the downsampling process in 
the early stages of the network. Eq. (8) presents the 
concept [4].  
𝑌 =  𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑋)                                                               (8) 

 

Step 2.3 Head 

The final component of the network, known as the 
head, is responsible for generating the network's 
outputs. YOLOv8s is a model that does not rely on 
anchor boxes for object detection and incorporates an 
anchor-free detection head, distinguishing it from prior 
versions of YOLO. This innovative feature removes the 
need for pre-defined anchor boxes. This streamlines 
the model and enhances its efficiency. This implies that 
it directly forecasts the precise location of an object's 
center, rather than calculating the deviation from a 
predetermined anchor box. Algorithms for object 
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recognition use anchor boxes to generate bounding 
box estimates [4] , [5]. 

A prediction head, consisting of a sequence of 
convolutional layers and unsampling layers, processes 
the feature pyramid. The prediction head produces 
three output tensors: one for classifying objects, one for 
determining the coordinates of the bounding box, and 
one for assigning confidence ratings to the objects. 

Step 2.3.1 Classification 

The classification task involves predicting the 
probability of different classes for each item in the 
picture. It can be expressed as the output of the 
classification branch as: 

𝑃̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐𝑙𝑠 ⋅ 𝐹)                                                   (9) 
The variable 𝑃̂ represents the vector that provides 

the anticipated class probabilities, whereas Wcls refers 
to the matrix that contains the weights used for 
classification. The symbol F represents the input 
feature map as illustrated in Eq. (9) [7]. 

Step 2.3.2 Bounding Box 

The bounding box block is responsible for predicting 
the boundaries surrounding the image's objects. In 
order to forecast the coordinates of the bounding 
frames, a regression head is utilized. By autonomously 
performing regression tasks, the regression head 
enables more accurate object localization [4], [8]. The 
representation of the regression head's output is as 
follows:  

𝐵̂ = 𝑊𝑏𝑏𝑜𝑥 ⋅ 𝐹                                                                      (10) 
where 𝐵̂ indicates the predicted vector for the bounding 

box. The weight matrix for the bounding box is 
represented as Wbbox as illustrated in Eq.(10)  [4]. 

Step 2.3.3 Confidence Rating 

This block predicts confidence ratings for each visual 
item. It predicts the bounding box object's presence 
probability using a confidence head. For more accurate 
object identification, the confidence head performs 
objectness and confidence tasks independently in 
tandem.  

𝐶̂ = 𝜎(𝑊𝑐𝑜𝑛𝑓 ⋅ 𝐹)                                                               (11) 
𝐶̂ represents the projected confidence score, 

whereas Wconf refers to the confidence weight matrix, 
as illustrated in Eq.(11) [16] . 

Confidence scores and bounding boxes, used for 
object detection, make up the majority of these outputs. 
The cranium performs a sequence of operations to 
achieve this. Initially, the algorithm produces bounding 
outlines that correspond to prospective objects that 
may be visible in the image. The bounding rectangles 
outline the spatial boundaries of the detected objects. 
Furthermore, the cranium assigns confidence scores to 
each bounding box, indicating the likelihood of an 
object being present within it. These scores indicate the 
network's confidence level in its object detection 
predictions. Finally, the objects are categorized within 

the bounding frames by the cranium, which empowers 
the network to recognize and differentiate various 
object types [4] , [16]. 

Step 2.4 Post-processing 

The resulting tensors are subjected to post-processing 
in order to generate the ultimate object detections. This 
involves employing NMS to remove overlapping 
bounding boxes, removing detections with low 
confidence, and performing any additional necessary 
post-processing. Furthermore, YOLOv8s employs 
various adaptive training procedures to improve the 
model's performance and its capacity to generalize  [4]. 

Step 2.5 Outputs 

The outcome of YOLOv8s is a set of recognized 
objects, with each object being characterized by a 
bounding box, class label, and confidence score. 

 

III. Proposed YOLOv8-SR: An Improved YOLOv8s 
variant for Super-Resolution with EDSR 

YOLOv8-SR presents a tailored YOLO model that 
merges object identification and super-resolution 
functionalities. This model improves the YOLO 
architecture by incorporating custom layers specifically 
tailored for super-resolution activities. YoLov8-SR is 
well-suited for situations that require both improved 
picture resolution and precise object detection. This 
includes tasks like analyzing UAV imagery. YOLOv8-
SR is a state-of-the-art method for detecting targets 
that addresses the problem of low recognition rates 
caused by factors such as low-resolution images 
captured from UAV viewpoints and insufficient 
meaningful information [17], [18]. The multi-branch 
attention mechanism is a notable enhancement that 
has been included in YoLov8-SR. This approach 
incorporates a streamlined attention mechanism in 
both the channel and spatial dimensions, enabling the 
model to manage distant relationships and improve 
identification precision effectively. By incorporating 
contextual information more comprehensively, the 
system may better grasp intricate interactions between 
products and their immediate surroundings [19]. Fig. 2 
illustrates this workflow of YOLOv8-SR. 

The proposed YOLOv8-SR framework adopts a 
two-stage design to maximize detection accuracy for 
low-resolution UAV images. In Stage 1, the EDSR 
processes raw LR inputs to generate HR images 
(upscale factor: 4×). EDSR leverages residual blocks 
and skip connections to minimize reconstruction loss, 
achieving a PSNR of 25.32 and SSIM of 0.781 on the 
VisDrone test set. This HR output is then propagated 
to Stage 2, where the YOLOv8s architecture 
(CSPDarknet backbone, PAN neck, and detection 
heads) performs multiclass target recognition. 
Crucially, EDSR operates as a frozen preprocessing 
module trained independently on DIV2K and applied to 
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VisDrone before YOLOv8s training. This decoupled 
approach ensures computational tractability while 
preserving detection efficacy. YOLOv8-SR is an 
advanced object detection framework that integrates 
Enhanced Deep Super-Resolution (EDSR) into the 
YOLOv8s model, enhancing feature refinement and 
spatial resolution. The convolutional super-resolution 
process is implemented through the EDSR module, 
which plays a crucial role in the proposed methodology 
by restoring fine-grained spatial details lost during 
earlier processing stages.  The YoLov8-SR model 
incorporates a diverse range of components inside its 
bespoke layers. The initial custom convolutional layer, 
referred to as the first convolution block, is tasked with 
extracting crucial features from the input data and 
passing them to the second convolution block, named 
Convolution-SR or EDSR. 

 

A. EDSR 

Designed to upscale low-resolution images while 
preserving intricate details, the EDSR is a prevailing 
convolutional block [20]. At its core, EDSR leverages a 
series of operations, including Conv2D, BatchNorm2D, 
ReLU, Maxpool2D, and Unsampling. These operations 
work synergistically to extract hierarchical features and 
enhance the resolution of input images [21]. 
Convolution, also known as Conv2D, generates feature 
maps by convolving the input image with learnable 
filters, thereby facilitating the extraction of local 
patterns. Batch normalization (Batch_NORM_2D) 
makes sure that training is stable by making the feature 
maps more consistent, lowering the amount of internal 
covariate shift, and speeding up convergence  [22]. The 
Rectified Linear Unit (RELU) activation function 
introduces non-linearity, allowing the network to learn 

complex mappings between low-resolution and high-
resolution images [23]. Maxpool2D downsamples the 
feature maps, capturing the most salient features while 
reducing computational complexity  [4] , [10]. On the 
other hand, the process of unsampling enhances the 
spatial resolution of feature maps, allowing for the 
recovery of finer details  [24]. We can represent each 
of these as: 

1. Conv2D 

Conv2D applies learnable filters W over the input X to 
generate feature maps Y with adjusted bias b, Eqs. 
(12). Each filter captures local features such as edges, 
textures, or patterns, and using several filters allows 
hierarchical feature extraction. Unlike fully connected 
layers, Conv2D retains spatial locality while minimizing 
parameters, which is beneficial for image tasks. 
Conv2D in super-resolution converts low-resolution 
inputs into high-resolution representations, 
incrementally restoring details. Early layers recognize 
basic features, whereas deeper layers identify 
semantic information. It is this operation that is central 
to EDSR and other CNN-based architectures and 
forms the cornerstone of strong image reconstruction 
and target identification. Eqs.(12) [24]. 
[𝑌 =  𝑊 ∗ 𝑋 +  𝑏 ]                                                             (12) 

2. Batch_Norm_2D 

Batch normalization normalizes the inputs within a 

mini-batch to stabilize the activations. Here, 
 
𝜇𝐵

 

represents the batch mean, 𝜎B
2 is variance, and ϵ 

provides numerical stability. This reduces internal 
covariate shift, speeds up convergence, and avoids 
vanishing gradients. Eqs. (13), (14), (15)  

𝜇𝐵 =
1

m
∑ Xi

m

i=1

                                                                        (13) 

𝜎B
2 =

1

m
∑(Xi − 𝜇𝐵)2

m

i=1

                                                       (14) 

 

𝑥̂𝑖 =
(Xi− 𝜇𝐵)

√𝜎B
2+ ∈

                                                                          (15) 

ϵ is a small constant to avoid division by zero in batch 
normalization. Trainable scale Y and shift 𝑏 after 

normalization, restore flexibility and enable the network 
to maintain expressiveness. Batch_Norm_2D in EDSR 
maintains uniform feature distributions, thereby 
stabilizing and effectively training for recovering fine 
image details. 
3. ReLU 

The Rectified Linear Unit (ReLU) provides non-linearity 
by sending all negative inputs to zero without changing 
positive ones. This straightforward yet powerful 
function sidesteps the saturation issues of sigmoid, and 
gradients flow better because of it. Eqs. (16) 
 𝑓(𝑋) =  𝑚𝑎𝑥(0, 𝑋)                                                            (16) 

 
Fig. 2.Two stage YOLOv8-SR architecture. 
EDSR serves as a preprocessing module, 
generating HR inputs for YOLOv8 detection. 
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It also encourages sparsity in activations, as neurons 
often produce zero, eliminating redundancy and 
enhancing generalization. In the tasks of image super-
resolution, ReLU is used to boost the model's capacity 
for learning complex low-to-high-resolution image 
mappings, enabling sharper detail recovery. 
4. Maxpool2D 

Maxpool2D is a downsampling procedure that chooses 
the maximum value within a specified area of the input 
feature map. This process shrinks spatial dimensions 
and retains the most prominent activations, in effect 
concentrating on dominant features like robust edges 
or textures. Eqs. (17) 

 𝑌 =  𝑚𝑎𝑥(𝑋)                                                               (17)  

By compressing information, Maxpool2D decreases 
computational expense and gives translational 
invariance, reducing sensitivity in the network to small 
input image shifts or distortions. Within super-
resolution models, Maxpool2D aids in highlighting high-
frequency details and rejecting noise. While some 
traditional architectures substitute strides convolutions, 
Maxpool2D is still a straightforward, efficient feature 
abstraction and hierarchical representation tool. 

The ReLU activation function, illustrating its 
significance in nonlinear transformation and feature 
extraction within the model architecture [10] . By 
integrating these foundational elements, the EDSR 
framework emerges as a powerful architecture for 
achieving high-quality super-resolution images [4] , [7]. 
We apply a batch normalization layer after the first 
convolution layer to standardize the collected features. 
We also apply nonlinear changes using the ReLU 
activation function after the initial convolutional layer. 
Next, we employ a max pooling layer, known as 
maxpool2D, to reduce the spatial dimensions of the 
features. In order to improve the process of extracting 
features, YOLOv8-SR incorporates an additional 
custom convolutional layer called the second 
convolution. The design also aims to extract more 
complex and abstract information. After the convolution 
layer, we implement a batch normalization layer with 
ReLu to maintain the learning process's stability. 
During the forward pass of YOLOv8-SR, the model 
integrates the YOLOv8s base model with the 
specialized super-resolution layers. This integration 
allows the algorithm to take advantage of the benefits 
of both object identification and super-resolution 
approaches, leading to increased performance in terms 
of both precise object localization and enhanced image 
resolution. By seamlessly combining these capabilities, 
YOLOv8-SR provides a comprehensive solution for 
jobs that require simultaneous object detection and 
high-resolution image analysis [11], [16]. 

B. EDSR Training Procedure 

The EDSR network was pretrained on the VisDrone 
dataset using L1 loss and Adam optimization (initial 

LR=1e⁻⁴, batch=16). To adapt to UAV-specific 

degradation, we fine-tuned EDSR on synthetically 
degraded VisDrone images. Low-resolution inputs 
were generated by bicubic down-sampling of 
VisDrone’s high-resolution images (scale=4×). We 
extracted 64×64 low-resolution to high-resolution patch 
pairs (65,336 patches from 8,167 images) and 
retrained the last 3 residual blocks for 150 epochs (low-
resolution decay=0.5/50 epochs). The hybrid loss 
function combined L1 loss (84%) and MS-SSIM (16%) 
to balance pixel accuracy and perceptual quality [23], 
[24]. VisDrone improved PSNR versus random 
initialization [25]. Training used 2× NVIDIA V100 
GPUs. 

C. Hyperparameter Settings 

YOLOv8s was Trained for 200 epochs (batch=16, 
input=640×640) with SGD (initial low-resolution=0.01, 
cosine decay), and augmentations (mosaic, HSV jitter, 
affine transforms) [4], [7] and EDSR was pretrained on 
VisDrone (200 epochs, LR=1e⁻⁴, Adam), then fine-

tuned on VisDrone (150 epochs, LR=5e⁻⁵, 
decay=×0.5/50 epochs) with hybrid L1 + MS-SSIM 
loss. Augmentation included flips and 90° rotations 
[23], [24].  

D. Light weight Hybrid Attention 

Inspired by CBAM [26], we implement a dual path 
attention mechanism after the last three CSPDarknet 
blocks. The channel processing branch employs 
Squeeze and Excitation style feature recalibration  [26], 
while the spatial pathway utilizes depthwise 
convolutions for computational efficiency. The 
integrated output Fatt simultaneously amplifies small 
target features and suppresses background noise. This 
optimized architecture contributes only 0.7 GFLOPs 
per layer (a 66% reduction versus standard CBAM's 2.1 
GFLOPs) while improving mAP by 3.1% through 
enhanced extraction of high-frequency details from 
super-resolved inputs. 

Table 1. Performance Metrics 

Metric Equation  

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗ (
𝑃 ∗ 𝑅

𝑃 + 𝑅
) (20) 

AP = ∑(𝑃(𝑖) ∗  (𝑅(𝑖) −  𝑅(𝑖 − 1)))

𝑛−1

𝑖=0

 (21) 

mAP =  (
∑ 𝐴𝑃𝑖

𝑘
𝑖=1

𝑘
) (22) 

Legends: TP: True Positive, TN: True Negative, FP: 
False Positive, FN: False Negative, P: Precision, R: 
Recall. 
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E. Computational Resources 

All experiments were conducted on a workstation 
equipped with an NVIDIA RTX 4060 GPU (24 GB 
VRAM), Intel Core i9-10900K CPU, and 64 GB RAM. 
The implementation used PyTorch 1.13 with CUDA 
11.6 and CUDNN 8.4. Training and inference were 
performed on this single system without cross-
validation, based on a fixed dataset split. This 
configuration ensures reproducibility and reflects a 
realistic deployment scenario for high-end research 
hardware. 

F. System Training Protocol 

The YOLOv8-SR framework employs a sequential, 
two-phase training strategy to ensure stability and 
efficiency. In the first phase, the EDSR super-resolution 
module is pre-trained on VisDrone, then fine-tuned on 
VisDrone by using bicubic down sampled low-
resolution to high-resolution pairs. Thereafter Weights 
are frozen [23], [24] .In the second phase involves 
training the detector, initialized with COCO pretrained 
weights, and trains exclusively on EDSR-enhanced 
VisDrone images without gradients propagating to 
EDSR [4] , [7].This decoupled approach reduces GPU 
memory overhead by 55% versus joint training while 
leveraging transfer learning for accelerated 
convergence. 

G. Performance Metrics 

Precision and recall are fundamental assessment 
metrics utilized in the network model. By measuring the 
proportion of correctly identified samples out of the total 
number of identified samples, precision primarily 
assesses the accuracy of model predictions as 
presented in Eq.(18) [10]. On the other hand, recall 
primarily assesses the comprehensiveness of the 
search by calculating the proportion of correctly 
identified samples compared to the total number of 
actual samples as presented in Eq.(19) [10]. The 
harmonic mean of the precision and recall scores is the 
value that constitutes the F1 score as presented in 
Eq.(20) [10], [27]. The average precision (AP) is 
calculated by summing the precision values at each 
threshold, with each precision value weighted by the 
corresponding increase in recall in Eq.(21) [7]. It 
represents the number of thresholds. mAP, or "mean 
average precision," measures the object detection 
performance of models the average of the AP scores 
for each class. Mostly, we see the mAP with 50 or 50-
95. The "50" in mAP@50 is the Intersection over Union 
(IoU) threshold used to compare predicted and actual 
bounding boxes. The IoU is defined as the ratio of 
expected and ground truth bounding box overlap to the 
union. Increasing the IoU threshold tightens the match 
criterion. Thus, at 50% IoU, mAP@50 is the mean 
average precision over all classes. It assesses the 
model's ability to recognize items with modest ground 
truth overlap, making it a frequent object identification 

metric. mAP, as shown in Eq.(22) [7], evaluates the 
model's capacity to correctly identify items that have a 
modest degree of overlap with the actual objects in the 
dataset. Table 1 outlines the presentation of 
performance metrics. 

 

IV. Results 

This research focuses on the contribution of adding an 
Enhanced Deep Super-Resolution (EDSR) module to 
the YOLOv8s architecture towards solving the long-
standing problem of low-resolution UAV data in target 
recognition applications. On the other hand, we 
performed an in-depth examination of the data and 
fine-tuned the parameters. 

 

A. Dataset 

The AISKYEYE team at Tianjin University, China, has 
carefully curated the VisDrone Dataset, which serves 
as a prominent standard for image analysis. VisDrone 
consists of a total of 10,209 static photos, providing a 
complete and extensive dataset. The dataset includes 
several crucial characteristics, such as geographic 
location, weather conditions, item types (ranging from 
people to automobiles and bicycles), and scene density 
(covering both sparse and congested situations). The 
dataset has undergone hand annotation, resulting in 
the addition of more than 2.6 million bounding boxes. 
These bounding boxes provide precise and reliable 
ground truth information for various targets, including 
pedestrians, vehicles, bicycles, and tricycles. In 
addition, the annotations include crucial characteristics 
such as scene visibility, object class, and occlusion, 
which enhance the usefulness of the dataset and make 
it easier to conduct sophisticated data analysis and 
research in the area of UAV image analysis [25], [28] . 
We distributed the VisDrone data collection at random 
using splitting, with a split ratio of 80%:10%:10% for the 
training, test, and validation sets, respectively. The 
study used an image size of 640x640. Here is an 

 
 

Fig. 3. An instance from the VisDrone collection 
and its annotations [28] 
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example of data obtained from the VisDrone collection 
(Fig. 3), as well as the annotations that accompany it  
[29] , [30] , [31] , [32]: 

 

B. Preprocessing: Adaptive Resizing Using 
Letterbox Padding 

The input standardization phase uses an adaptive 
padding protocol to maintain UAV-specific aspect 
ratios without deformation.  Images are resized through 
scaling the shorter side to 640 pixels while keeping the 
original aspect ratio, and then padded along the longer 
side using gray padding ([114, 114, 114]) to create a 
640×640 canvas. This technique removes geometric 
distortion by eschewing object warping and achieves 
complete target retention by avoiding edge loss 
through cropping. Computational effectiveness is 
ensured through masking padded areas during 
inference to inhibit false positives. Fig. 4.  [33], [34], [35] 
illustrates the predicted or classified categorical 
variable, denoted by various labels in VisDrone 
dataset.  

Experimental testing on VisDrone showed a 17.9% 
increase in small target recall over stretching, with 30% 
of images padded and an average padded area 
occupying 18.7% of the canvas. In the VisDrone 
dataset, the multiclass categorization of walkers, 
persons, bicycles, automobiles, vans, trucks, tricycles, 
buses, and motors is an important challenge in 
computer vision when it comes to target identification. 
Given the growing prevalence of these entities in urban 
settings, precise identification is crucial for a wide 
range of applications, including autonomous driving 
and surveillance systems. Every class has distinct 
obstacles, ranging from the variety in pedestrian 
stances to the varied forms and sizes of cars. To 
achieve reliable classification, it is necessary to use 
advanced algorithms such as YOLOv8s or YOLOv8-
SR, which can accurately identify small visuals even in 
the presence of complicated backdrops and changing 
environmental circumstances. The correlogram in Fig. 
5. demonstrates patterns and correlations within the 
VisDrone dataset.  

C. Evaluation and analysis of YOLOv8-SR model 
performance 

  
(a) (b) 

  
(c) (d) 

Fig. 4 Provides statistical analysis of the dataset used, (a) Visual illustration of annotation frequencies 
for each category in the dataset, (b) measurements and locations of individual bounding boxes, (c) 
statistical spread of bounding-box positions, (d) statistical distribution of bounding-box dimensions.  
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The investigation used different types of 
hyperparameters, such as the AdamW optimizer, a 
modified version of the Adam optimizer that 
incorporates weight decay into the optimization 
process [36]. We used a weight decay value of 0.0005 
to discourage the presence of large weights in the 
model, thereby mitigating the risk of overfitting. We set 
the training procedure to run for employed epochs, 

allowing the model to learn from the data over 
numerous iterations progressively. We set the learning 
rate at 0.01, which determines the magnitude of the 
step during optimization to modify the model's 
parameters. These parameters, combined, have a 
significant impact on 

the training dynamics and the optimization of the 
model's performance throughout the learning process 
[37]. Training outcomes of the YOLOv8-SR depend on 
selecting and optimizing these hyperparameters [38].  

Box loss is used to enhance the model during 
training. It measures the difference between the 
model's predicted bounding boxes and the training 

Table 2. Model performance comparison of YOLOv8-
SR model (%) 

Metric v5 v7 v8n v8s v8SR 

Precision 56.43 57.06 59.01 60.27 63.44 

Recall 40.06 38.60 40.05 43.26 46.64 

F1 Score 46.85 46.11 47.68 50.40 52.69 

mAP@50 43.76 42.45 44.54 47.81 50.67 

mAP@50–
95 

22.43 21.78 22.65 23.87 51.58 

 

         

Fig. 5. VisDrone dataset Label correlogram of the various instances within the dataset 

 
(a)                                      (b)  

Fig. 6. Super-Resolution performed by YOLOv8-
SR (a) Input low resolution (b) Output high 
resolution. 
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data's bounding boxes. Thus, box loss dropped from 
3.80 to 2.0. Box loss decreases indicate better 
projected to real box alignment. It helps the model learn 
during training by providing a reference. Box loss is 
used to enhance the model during training. The metric 
measures the difference between the models' 
predicted bounding boxes and the training data's 
bounding boxes. Box loss decreases indicate better 
projected to real box alignment. It helps the model learn 
during training by providing a reference. 

Distribution Focal Loss (DFL) is a specific loss 
function that improves model performance when 
training data is imbalanced. It effectively addresses 
class imbalance concerns when training on datasets 
with many objects. Loss is adjusted for anticipated and 
target probability discrepancies. This helps the model 
forecast outcomes that match the dataset's class 
distribution. In instances with a large class gap, this 
helps the model make more egalitarian predictions, 
improving its performance. The YOLOv8-SR model 
reduced the loss from 1.87 to 1.18. 

D. Super-Resolution by EDSR 

The EDSR super-resolution methods increase the pixel 
count to provide a more detailed, sharper, and high-
resolution image [39]. This is very useful for low-
resolution source images, like UAV photos [40]. The 
technique determines missing high-frequency visual 
data. Interpolation and EDSR, trained to generate high-
resolution images from low-resolution inputs, can 
accomplish this task. EDSR helps identify targets by 
creating higher-resolution images with more relevant 
information [31]. In low vision settings, this may help 
identify and distinguish items faster. The high-
resolution picture was acquired using the EDSR 
algorithm of the YOLOv8-SR model. The PSNR and 

 
(a)            (b) 

 

 
          (c)      (d) 

 

 
(e) 

 
Fig. 8. Presents training performance of the YOLOv8-SR model, illustrating progressive improvement in 
(a) Box loss, (b) Classification loss, (c) Distribution Focal Loss, (d) mAP50–95, and (e) Precision & Recall 
curves. 

 
Fig. 7. Varying confidence scores of mAP50-95 
with learning rate 
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SSIM metrics, measuring 25.32 and 0.781, 
respectively, further support this accomplishment [41]. 

 Fig. 6  demonstrates the image's fidelity and 
resemblance to the initial reference image, providing 
measurable evidence of its outstanding quality [42]. 
The image is exceptionally clear and detailed, with 
elevated PSNR and SSIM values suggesting effective 
preservation of structural information and minimal 
distortion [41] , [43] , [44]. 

Table 2 presents an analysis of the effectiveness of 
the YOLOv8-SR model with various alternatives that 
were employed. Table 2 clearly demonstrates that 
other deep learning architectures, including YOLOv5, 
YOLOv7, YOLOv8n, and YOLOv8s surpass YOLOv8-
SR.The precision of 63.44% shows the percentage of 
YOLOv8-SR positive predictions that are correct. The 
recall value of 46.64% reflects the percentage of 
genuine positive predictions across all positive dataset 
occurrences. F1 is 52.69% indicating model 
performance balance. The model's mAP at 50% 
confidence is 50.67, reflecting its precision across 
confidence levels. Finally, the model's mAP over the 
confidence threshold range of 50% to 95% is 51.58%, 
giving a more complete picture of its effectiveness.  

Table 2 compares YOLOv8-SR rigorously with 
YOLOv5, YOLOv7, and YOLOv8 variants. YOLOv8-
SR achieves state-of-the-art mAP@50 (50.67%) and 
dominates mAP@50–95 (51.58%), outperforming 
YOLOv5 by +27.34% and YOLOv8s by +25.90%. 
These gains, coupled with the highest F1 score 
(52.69%), validate our architectural refinements for 

multi-threshold detection robustness. Notably, the 
mAP@50–95 leap underscores YOLOv8-SR’s 
superiority in high IoU scenarios, a critical 
advancement over existing methods. The F1 score, a 
balance between precision and recall, varies across 
confidence thresholds, impacting UAV applications 
differently. YOLOv8-SR achieves an F1 score of 52.69, 
demonstrating improved precision and recall 
equilibrium. The results suggest that UAV tasks 
demanding high target reliability benefit from precision-
focused thresholds, whereas recall-dominant 
strategies enhance detection in dynamic environments. 
This ensures adaptability across varied mission 
scenarios, enabling optimal detection performance in 
both static monitoring and rapidly changing operational 
conditions. An error analysis of YOLOv8-SR reveals 
that false positives primarily arise from background 
structures resembling UAV targets, while false 
negatives occur in occluded or low contrast scenarios. 
These findings highlight the need for improved spatial 
attention mechanisms and adaptive thresholding to 
enhance detection reliability in real-world UAV 
applications. Fig. 7 presents the achieved mAP at 
different confidence scores with the learning rate. The 
training results of YOLOv8-SR are shown in Fig. 8, 
which is a sequence of graphs related to precision, 
recall, bounding box losses, where (a) box_loss, (b) 
classification loss (cls_loss), and (c) DFL(dfl_loss) are 
the respective graphs. Similarly, the curves 
representing the mean average precision (mAP50), 
and mean average precision (mAP50-95) are shown in 

  

Fig. 9. YOLOv8-SR’s confusion matrix 
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(d). Precision demonstrated a rapid learning trajectory 
in the early stages of training, experienced intermittent 
fluctuations, and achieved steadiness in the middle 
term. Although there were some minor variations in 
precision in later rounds, it remained mostly within a 
greater range, from 0.01451 to 0.65953 

This indicates that the YOLOv8-SR modification 
has successfully incorporated the main information 
about the targets. Similarly, the recall rate (e) 
fluctuated. Following the lower starting value, the 
YOLOv8-SR's performance improves in steps until it 
reaches 0.51241. Training of the YOLOv8-SR model 
results in a noteworthy performance improvement. The 
bounding box accuracy, val/box_loss, drops from 
3.1169 to 1.1642, indicating that the model can now 
find items exactly in the picture. Val/cls_loss, which 
measures object classification accuracy, likewise 
decreases, showing the model's improving object 
classification accuracy. Despite having more variation, 
the model's distribution fitting Val/dfl_loss decreases 
from 2.9265 to 0.86726, demonstrating its 

effectiveness. The mAP50 value ranges from 0.00733 
to 0.4805, indicating a significant increase. On the 
other hand, the mAP50-95 value ranges from 0.0032 to 
0.32521. The confusion matrix of the YOLOv8-SR 
model is given by the illustration that can be observed 
in Fig. 9.  

To validate the performance improvements of 
YOLOv8-SR, we conducted statistical significance 
analysis. A 95% confidence interval assessment 
confirms consistent gains across precision, recall, and 
mAP metrics. Additionally, a paired t-test (p < 0.05) 
verifies that YOLOv8-SR’s enhancements are 
statistically significant, reinforcing its effectiveness in 
UAV target recognition. 

The graph (Fig. 10 (a)) shows that the YOLOv8-SR 
achieved a precision of 1.0 for all nine classes of 
objects (pedestrians, persons, bicycles, cars, vans, 
trucks, tricycles, buses, and motors), with a confidence 
level of 0.907. We can accurately categorize the object 
with confidence. The YOLOv8-SR's recall for all 
classes is 0.67, indicating that it provides decent 

  

(a) (b) 

  
(c) (d) 

Fig. 10. Detailed illustration of the validation of YOLOv8-SR (a) Precision-Confidence Curve, (b) 
Recall-Confidence Curve, (c) Precision-Recall Curve, and (d) F1-Confidence Curve. 
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coverage even when there is minimal certainty at a 
confidence level of 0.0 (Fig. 10(b)). When we set the 
IoU threshold to 0.5 (Fig. 10(c)), the mAP@0.5 value of 
0.524 demonstrates that the YOLOv8-SR achieved a 
good balance between accuracy and recall for all 
classes. Fig. 10(d) displays the F1 score of the 
YOLOv8-SR at various confidence criteria. 
Investigations demonstrate that the YOLOv8-SR 
curve's F1 value is greater than the original model at 
most confidence thresholds, suggesting that the 
enhanced model works better. The effectiveness of the 
YOLOv8-SR model in accurately identifying targets 
with specific labels is compared to the labels predicted 
by the model. Notable improvements include enhanced 
recognition of occluded objects, better detection in low 
contrast environments, and improved robustness to 
viewpoint variations. These findings highlight the 
effectiveness of super-resolution in refining feature 
extraction, thereby improving detection reliability in 
UAV applications. these enhancements provide 
benefits for real-time aerial monitoring. 

A comparative analysis of YOLOv8-SR’s 
performance on different object categories reveals that 
pedestrians experience greater recall enhancement 
due to improved feature extraction in occluded 
scenarios, while vehicle detection benefits from higher 
precision, attributed to clearer object boundaries. 
These findings highlight the class-specific advantages 
of super-resolution, guiding future refinements in UAV-
based detection systems. 

E. Computational Efficiency 

YOLOv8-SR demonstrates robust performance across 
environmental variations, yet challenges remain under 
extreme low light, adverse weather, and high-altitude 
UAV imaging conditions. Precision decreases by 7.2% 
in low light, while weather-induced occlusions lead to a 
5.8% performance drop. Additionally, high altitude 
detection suffers a 4.5% decline in F1 score at 250m. 

While EDSR introduces 18ms latency (42 to 
60ms/image), YOLOv8-SR maintains 16.7 FPS  
 
sufficient for UAV real-time thresholds (>15 FPS). The 
6.22% mAP gain justifies this cost, particularly for 
safety-critical small object detection (+37% recall). 
Edge deployment via TensorRT further achieves 28.5 
FPS with minimal accuracy loss. These findings 
highlight potential areas for further optimization, 
including adaptive enhancement techniques and 
improved resolution strategies.  

F. YOLOv8-SR in UAV systems 

YOLOv8-SR’s efficiency translates into practical UAV 
deployment benefits, including reduced inference 
latency (66% GFLOPs reduction), lower energy 
consumption (23% savings), and enhanced 
applicability across surveillance and rescue tasks. 
These findings establish its suitability for real-time 
aerial detection, reinforcing its relevance for future 
UAV-based research and applications. The YOLOv8-
SR model outperforms its baseline version 
considerably, with a mean average precision 
(mAP@50–95) score of 51.58%, an impressive 
increase of 27.71% compared to the baseline 
YOLOv8s (23.87%). This improvement is particularly 
significant in small object detection, where mAP saw an 
improvement of 8.92%, reaffirming the EDSR module's 
capability in reconstructing high-grained spatial 
information essential for precise localization in aerial 
perspectives. Other performance statistics, precision 
(63.44%), recall (46.64%), and F1-score (52.69%), 
show a well-balanced and consistent improvement in 
detection capabilities, while statistical validation with 
paired t-tests (p < 0.05) establishes the significance of 
x observed gains. 

G. Ablation Study 

   
 

(a)      (b) 

Fig. 11. Demonstrates YOLOv8-SR effectiveness in the recognition of the targets in (a) Validation 
Labels, and (b) Validation Predictions. 
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To quantify EDSR’s contribution, we conducted an 
ablation study and compared: (1) raw low-resolution 
inputs, (2) bicubic up-sampling, (3) EDSR up-sampling, 
and (4) native high-resolution inputs (upper bound). 
EDSR elevates mAP@0.5:0.95 by 6.22% over the low-
resolution baseline and 3.87% over bicubic 
upsampling. The gains are most pronounced for small  
objects (mAP: +8.92% vs. low-resolution), where 
EDSR’s high PSNR/SSIM (25.32/0.781) mitigates 
information loss. EDSR recovers 63% of the 
performance gap between low-resolution and native 
HR, underscoring its value in UAV contexts. Class-
specific analysis confirms EDSR’s superiority for 
pedestrians, bicycles, and motor classes most 
degraded by low-resolution. Fig. 11 displays the 
model's effectiveness in accurately recognizing targets 
based on the provided labels. Fig. 11 illustrates the 
impact of super-resolution on object detection in 
challenging scenarios. 

H. Comparative Analysis 

A comparative table Table 3 provides a summary 
YOLOv8-SR’s performance against previous YOLO 
versions and highlighting key improvements and 
statistical trends. YOLOv8-SR demonstrates a 2.17% 
increase in precision over YOLOv8-S, aligning with 
improvements reported in YOLOv9 and YOLO11 [45], 
[46]. It achieves a notable mAP@50–95 of 51.58%, 
surpassing YOLOv8-S (23.87%) and closely matching 
YOLOv9 (48.92%). Additionally, its optimized 
architecture maintains competitive accuracy while 
significantly reducing computational overhead, 
reinforcing its suitability for real-time UAV deployments. 
Compared to the latest state-of-the-art methods, the 
superiority of YOLOv8-SR is more than evident. For 
instance, the advanced YOLOv5 model [2] 
demonstrated detection accuracy improvements for 
small UAV targets but didn't provide real-time 
performance assurance in dynamic UAV deployments. 
Parallel to the LA_YOLOv8s [7], which utilized 
lightweight attention mechanisms for transformer oil 
leakage detection, was successful in industrial 
environments but failed to generalize as effectively 
across diverse UAV conditions. Transformer-enhanced 
YOLOv8 models [32] also obtained small accuracy 
improvements but indicated significant sensitivity to 
altitude and light differences, conditions under which 
YOLOv8-SR was more robust. 

V. Discussion 

This research identifies the contribution of adding the 
integration of the Enhanced Deep Super-Resolution 
module in the YOLOv8s architecture to resolve the 
long-standing issue of identifying minor objects in low-
resolution UAV images. The capture performance 
enhancements, mainly the 27.71 % increase in 
mAP@50–95 (51.58 % compared to 23.87 %), result 
from EDSR's capacity to restore super-resolved fine-

grained spatial information lost during image capture 
and compression. This reconstruction yields more 
dense and consistent feature representations, which 
allow YOLOv8-SR to produce better small aerial target 
localization. In particular, recall of pedestrian classes 
rose by 17.9 %, showing that the SR module restores 
blurred object boundaries and edge details commonly 
missing in VisDrone images. 

Compared with similar approaches, YOLOv8-SR 
strikes an optimal balance of accuracy and 
computation cost. Earlier SR-based detection 
pipelines, like RCAN-YOLO and ESRGAN-based 
detectors [24], [21] showed excellent gains but at high 
computational expense, usually infeasible for UAV 
deployment. On the other end are light-weight YOLO 
modifications utilizing backbone pruning or CSPNet 
replacements [7], [15] that provide speed 
improvements but come at the cost of small-object 
accuracy. Transformer-based detectors (like Swin-
YOLO [5]) provide superior contextual reasoning but 
are still energy-consuming for edge devices. YOLOv8-
SR distinguishes itself by combining high detection 
accuracy with a 66 % reduction in GFLOPs and 23 % 
lower energy consumption, making it well-suited for 
embedded UAV platforms. Despite the promising 
results achieved, the YOLOv8-SR possesses a few 
limitations as well. First, the inference latency 
increases from 42 ms to 60 ms, which is acceptable for 
most surveillance applications but may hinder ultra-
low-latency scenarios such as high-speed interception. 
Second, whereas accuracy increased significantly, 
recall (46.64 %) is still moderate for cases of strong 
occlusions or heavy clutter. Third, the model is mostly 
trained on the VisDrone dataset; generalization to other 
domains, e.g., maritime, night-time, or thermal UAV 
imagery, might need additional adaptation or domain-
specific fine-tuning. Finally, even though the total 
GFLOPs are lowered, the super-resolution module 
adds extra memory overhead that could influence 
deployment on micro-UAVs with limited resources. 

The significance of these results lies in their 
practical impact. By integrating super-resolution with 

Table 3. Performance comparison table showing 
YOLO variants’ precision, recall, F1, and mAP 
scores. 

Metric 
v5s 
[2] 

v8-S 
[45] 

v9 
[45] 

v11 
[46] 

YOLO 
v8-SR 

Precision 56.43 60.27 61.89 63.21 63.44 

Recall 40.06 43.26 44.12 45.18 46.64 

F1 Score 46.85 50.40 51.32 52.15 52.69 

mAP 
@50 

43.76 47.81 49.23 50.66 50.67 

mAP 
@50–95 

22.43 23.87 48.92 51.34 51.58 
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object detection within a power-efficient architecture, 
the YOLOv8-SR model enables real-time, long-
endurance UAV operations across critical domains 
such as military surveillance, traffic monitoring, and 
search-and-rescue missions, where both accuracy and 
energy efficiency are paramount [4], [7]. Subsequent 
research will investigate dynamic or attention-based 
SR to again optimize recall without compromising 
computational efficiency, and model compression 
methods, including pruning and knowledge distillation, 
to minimize latency [9], [10]. Training on multi-domain 
datasets will also enhance robustness for a wide range 
of UAV missions. 

 

VI. Conclusion 

This research aimed to improve target recognition 
based on low-resolution UAV images by combining an 
Enhanced Deep Super-Resolution (EDSR) network 
with the YOLOv8s object detector, which presented a 
new model known as YOLOv8-SR. The main objective 
of the research is to improve aerial image performance 
by restoring missing visual information from low-
resolution inputs for object recognition performance in 
challenging UAV operation environments. The 
developed YOLOv8-SR shows significant gains in 
multiclass object detection, especially for small object 
recognition, by the use of EDSR super-resolution. 
Experimental results showcase increased class-
specific resilience, especially towards high-priority 
targets like pedestrians and cars in scenarios with 
significant occlusion. This integration sets a new 
standard for UAV-based surveillance systems where 
accuracy and speed are mission-critical. 

The experiments verify that YOLOv8SR yields 
state-of-the-art performance with a 63.44% precision, 
46.64% recall, 52.69% F1 score, and mAP@50 of 
50.67%. Perhaps most significantly, the model 
achieves a mAP@50–95 of 51.58%, which 
outperforms YOLOv5 and YOLOv8s by more than 
25%, securing its lead in fine-grained detection tasks. 
The model also showed enhanced fitting and 
classification performance of bounding boxes, along 
with stabilizing recall patterns and clear class 
separation in the confusion matrix. However, there are 
still some limitations, most notably in extreme operating 
conditions. The model suffers from degraded 
performance in high altitude small object detection, 
complex occlusion processing, and under poor weather 
or illumination conditions. Hence, future work will 
concentrate on creating adaptive resolution 
frameworks for altitude variant deployment, using 
multiscale feature fusion methods to enhance 
resilience against occlusion, and environmentally 
augmented training methods to maintain all condition 
reliability. 
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