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Abstract Automated segmentation of brain tissue into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) from magnetic resonance imaging (MRI) plays a crucial role in diagnosing 
neurological disorders such as Alzheimer’s disease, epilepsy, and multiple sclerosis. A key challenge in 
brain tissue segmentation (BTS) is accurately distinguishing boundaries between GM, WM, and CSF due 
to intensity overlaps and noise in the MRI image. To overcome these challenges, we propose a novel deep 
learning-based BRU-SOAT model for BTS using the BrainWeb dataset. Initially, brain MRI images are fed 
into skull stripping to remove skull regions, followed by preprocessing with a Contrast Stretching Adaptive 
Wiener (CSAW) filter to improve image quality and reduce noise. The pre-processed images are fed into 
ResEfficientNet for fine feature extraction. After extracting the features, the Sailfish Optimization (SFO) is 
employed to select the most related features while eliminating irrelevant features. A Dual Attention SegNet 
(DAS-Net) segments GM, CSF, and WM with high precision. The proposed BRU-SOAT model is assessed 
based on its precision, F1 score, specificity, recall, accuracy, Jaccard Index, and Dice Index. The proposed 
BRU-SOAT model achieved a segmentation accuracy of 99.17% for brain tissue segmentation. Moreover, 
the proposed DAS-Net outperformed fuzzy c-means clustering, fuzzy consensus clustering, and U-Net 
methods, achieving 98.50% (CSF), 98.63% (GM), and 99.15% (WM), indicating improved segmentation 
accuracy. In conclusion, the BRU-SOAT model provides a robust and highly accurate framework for 
automated brain tissue segmentation, supporting improved clinical diagnosis and neuroimaging analysis. 

 

Keywords Brain tissue segmentation, ResEfficientNet, Sailfish Optimization, Deep learning, Dual Attention 
SegNet. 

 

I.  Introduction 

Segmentation of brain images is a vital procedure in 
both clinical diagnosis and basic neuroscience 
research [1], [2]. Brain image segmentation involves 
estimating a labeled image that categorizes anatomical 
and structural regions based on MRI scans [3], [4]. In 
addition to providing a quantitative assessment of brain 
tissue volume, segmentation allows objective analysis 
and research, reducing reliance on visual inspection by 
experts [5]. MRI is a powerful tool for studying brain 
structures and functions, driving growing interest in 
assessing both child and adult brain development [6]. 
MRI provides multiple cross-sectional views of the 
brain with varying contrasts, enabling noninvasive and 
safe brain examination [7]. 

As a result of deep learning (DL), automatic 
segmentation methods are more accurate and faster 

than traditional methods [8], [9]. DL methods enable 
accurate extraction of regions of interest in the brain 
and differentiation from normal tissue, facilitating 
precise quantitative analysis [10]. Accurate 
segmentation of WM, GM, and CSF is crucial in clinical 
and neuroscience studies for analyzing brain 
structures, diagnosing neurological disorders, and 
monitoring disease progression [11], [12]. With DL-
based segmentation, anatomical structures can be 
visualized and analyzed, surgical planning can be 
facilitated, and image-guided interventions can be 
supported. In recent years, DL has gained popularity 
for segmenting medical images [13]. DL-based 
techniques have also made significant progress in 
segmenting brain tissueacross adults, infants, and 
fetuses [14]. Despite these advances, BTS still faces 
numerous difficulties due to intricacy and intensity 
fluctuations of brain MRI. It is now difficult to accurately 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.795
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0009-0005-2279-9022
https://orcid.org/0000-0002-6379-9804


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 330-340                                       e-ISSN: 2656-8632 

 
Manuscript received March 29, 2024; Revised August 10, 2025; Accepted September 5, 2025; date of publication September 8, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.795 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 2               

segment MR images in order to diagnose and treat 
patients more successfully [15]. 

Accurate MRI-based BTS remains challenging  due 
to complex image architecture, intensity variations, 
limited training data, and influencing factors such as 
imaging parameters, noise, and artifacts, which impact 
model generalizability and segmentation accuracy. To 
address these challenges, a novel DL-based model, 
BRU-SOAT, has been proposed for accurate brain 
tissue segmentation. The following are the BRU-SOAT 
model's primary contributions. 

1. Initially, the skull regions are removed from the 
brain MRI images through skull stripping, and 
a CSAW filter is applied for preprocesses the 
images to enhance image and reduce noise. 

2. A hybrid model combining EfficientNet 
compound scaling and ResNet residual 
connections is employed to extract complex 
features from MRI images. 

3. SFO is used to select the most relevant 
features while preserving critical information to 
enhance segmentation accuracy. 

4. The selected features are fed into the DAS-
Net, which employs an encoder-decoder 
structure to segment brain tissues (WM, GM, 
CSF) with high precision. 

The structure of the paper is planned as follows: 
Section-2 defines the literature survey; Section 3 
describes the proposed BRU-SOAT model ; Section 4 
and Section 5 report the performance analysis and 
experimental results , followed by a discussion. The 
work is concluded in Section 6.  

 

II.  Literature Survey 

Several studies have recently achieved BTS using DL 
approaches. The following section briefly discusses a 
few recent research papers. 

In 2023, Lee, J. et al. [16] suggested a framework 
for dividing the head-brain and fine-level stroke-
affected areas in both chronic stroke patients and 
normal controls. According to the experiment's 
findings, the suggested approach outperforms  
traditional DL-based segmentation model across 

assessment criteria. However, one limitation of the 

study is that the framework may not generalize well to 
diverse populations due to limited dataset variability. 
Lai, Z. et al. [17] proposed an automatic segmentation 
technique in 2022 to remove tissue artifacts. It 
evaluates segmentation masks using Grad-CAM and 

offers relevant explanations and insights. While 

effective, the method relies on Grad-CAM for 

interpretability, which may provide coarse and less 
precise localization of important features.   

Also in 2022, Rao, V.M. et al., [18]  proposed a 
CNN–Transformer hybrid architecture that leverages 

the enhanced performance and generalization 
capabilities of Transformers for 3D medical picture 
segmentation applications to enhance BTS. And it 
demonstrates the model's dependability using test-
retest scans conducted at various times. One limitation 
is that domain variability may degrade the model's 
performance when applied to medical images from 
different scanners or institutions. An adaptation 
strategy for improving brain tissues to separate WM, 
GM, and CSF tissues was proposed by Veluchamy, M. 
et al. in 2021 [19]. Experiment results show that the 
suggested approach strikes a decent balance between 
noise and intensity inhomogeneity. The method may 
struggle with accurate tissue separation in regions with 
severe intensity overlap or low contrast between 
tissues. By developing a membership function derived 
from a voting schema, Aruna Kumar, S.V. et al. [20] 
proposed a fuzzy consensus clustering technique in 
2022 to cluster the pixels. It uses a number of 
segmentation algorithms based on intuitionistic and 
conventional fuzzy sets. The method may suffer from 
increased computational complexity due to the 
integration of multiple fuzzy-based segmentation 
algorithms 

The WM, GM, and CSF were separated from 
newborn MR images using a subject-specific atlas-
based approach proposed by Mhlanga, S.T. et al. in 
2023 [21]. BTS is done by the expectation 
maximization Markov random field approach, atlas 
selection is done, and subject-specific atlases are 
created using the random forest (RF) classifier. The 
accuracy of this segmentation heavily depends on the 
quality and representativeness of the subject-specific 
atlases. A multi-branch CNN with attention modulation 
was proposed by Fan, X. et al. in 2022 [22] for the 
purpose of segmenting neonatal brain tissue. The 
proposed network features multiple attention modules 
in the decoding path and multi-scale convolutions in the 
encoding path. The proposed method has increased 
computational complexity due to multiple attention 
modules and multi-scale convolutions. Wu, C. et al. [23] 
proposed a GNN-SEG-based method for BTS in 2022. 
GNN-SEG uses GNNs to learn the topology of brain 
tissues using super pixels as basic processing units. 
GNN-SEG's performance may be limited by its reliance 
on accurate superpixel generation, which can affect 
segmentation quality in complex brain structures. From 
this literature, the existing technique works exhibit 
several limitations on BTS using different ML and DL 
models. A major challenge in BTS is ensuring model 
adaptability to variations in MRI scanners, acquisition 
protocols, and patient populations, which can 
significantly impact accuracy and reliability in clinical 
applications. 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.795
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 330-340                                       e-ISSN: 2656-8632 

 
Manuscript received March 29, 2024; Revised August 10, 2025; Accepted September 5, 2025; date of publication September 8, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.795 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 3               

Another key challenge in BTS is accurately 
distinguishing boundaries between GM, WM, and CSF 
due to intensity overlaps and noise in the MRI image. 
To overcome these problems, a novel BRU-SOAT was 
introduced for the accurate segmentation of brain 
tissues. 

 

III.  Proposed BRU-SOAT Methodology 

In this research, BRU-SOAT is proposed for BTS using 
MRI images. The CSAW filter preprocesses the input 
images to enhance tissue contrast and reduce noise. 
ResEfficientNet extracts the complex features, and 
SFO is applied for feature selection to select the most 
related features. A DAS-Net is used to segment the 
brain tissues with high precision. Fig. 1 displays the 
proposed BRU-SOAT methodology. 

A. Dataset Description 

Brain MRI scans were sourced from the BrainWeb 
dataset [24]. The popular synthetic MRI dataset 
BrainWeb provides controlled situations with different 
intensity non-uniformities and noise levels. The dataset 
includes varying noise levels and RF inhomogeneity 
levels to simulate intensity non-uniformities and 
enhance model robustness. There are 36 images in a 
training set from all noise levels and RF levels, 12 in a 
validation set, and 57 in a test set. 

B. Pre-Processing 

In the pre-processing phase, initially, skull stripping is 
performed. The skull stripping process involves 
thresholding, morphological operations, and mask 

application. This process increases the signal-to-noise 
ratio and reduces feature ambiguity for downstream 
learning models. After stripping the skull from the input 
MRI image then the images are pre-processed by 
CSAWF is combined by two filters, namely Contrast 
Stretching (CS) and Adaptive Wiener (AW) filter. CS is 
used to improve the image quality, and AW is used to 
preserve edges and fine structures while reducing 

noise and artifacts. 

1. Contrast Stretching: In this denoising phase, every 
original intensity value is replaced, and the comparison 
of histograms is conducted through a locally modified 
contrast-stretching adjustment. A flexible transfer 
function, based on the input image characteristics, is 
used to assign a new level to each pixel Eq (1) [25]. 

 
Fig. 1. Proposed BRU-SOAT methodology  
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𝑅𝑎𝑛𝑔𝑒 = |𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛|                                            (1) 

Where, 𝑋𝑘is the new intensity value assigned to the 
pixel at position k after processing, 𝑄𝑁is the current 

pixel intensity value in the input image and 𝜎𝑁 is the 

scaling factor applied to smooth the intensity 
transitions. Here 𝑄𝑚𝑎𝑥  and 𝑄𝑚𝑖𝑛 are the input image's 

maximum and minimum values for the new intensity. 
Currently, each pixel equation is given an additional 
intensity by Eq (2), Eq (3) [25], 

𝑋𝑘 = {
𝑄𝑁−𝜎𝑁      , 𝑖𝑓 𝑄𝑁 = 𝑄𝑚𝑎𝑥

 𝑄𝑁+𝜎𝑁     , 𝑖𝑓 𝑄𝑁 =  𝑄𝑚𝑖𝑛   
                   (2) 

𝑟𝑛 = 𝑀 − √(𝑟𝑎𝑛𝑔𝑒 − 𝑀)2                   (3) 

Here, 𝑟𝑛 is the normalized range factor. Every pixel 

value is altered using the previously given formulas, 
where M is the Intensity range normalization Falls 
between 0.01 and 0.02. 

2. Adaptive Wiener filter: In order to decrease the 
mean square error between the original and restored 
images, it adapts the filter output to the local variance 
of the image. This approach is especially effective in 
preserving edges and high-frequency regions, offering 
a more powerful filtering effect compared to other 
techniques.  On the one hand, it employs a large 
number of window settings to manage different 
situations and automatically choose the best one.   To 
lessen subjectively annoying singularities, the center 
sample in the moving window was ignored in smooth 
sections but used correctly in rough ones. The problem 
with filtering signal-intendent noise-contaminated 
images could be shown Eq (4) [26]: 

𝑦(𝑖, 𝑗) = 𝑥(𝑖, 𝑗) + 𝑛(𝑖, 𝑗)                                                        (4) 

The objective is to denoise y (i, j), where n (i, j) 
represents the additive noise and x (i, j) is the original 
noise-free image. To achieve this, multiple window 
sizes (3 + 2i)2, with i = 0, 1, 2, 3 … are evaluated based 
on the pixel's mean and variance, and the window with 
the highest average value is selected for final 
processing. The region can be used to adaptively 
choose the filter template.   Efficiency is increased 
while preserving borders and texture elements by using 
a big window filter in the smooth area and a tiny window 
filter in the detail section. The pixels are processed 
using the Eq (5), Eq (6), Eq (7) [26] formula to produce 
the desired outcome. 

𝑟(𝑖, 𝑗) = 𝜇 + (1 − 𝑞 + ∆) ∗ (𝑠(𝑖, 𝑗) − 𝜇                                 (5) 

𝑞 =
𝜎𝑎𝑣𝑔

𝜎𝑣𝑎𝑟+1
                                                     (6) 

∆=
𝜎𝑣𝑎𝑟

𝜎𝑎𝑣𝑔+𝜎𝑚𝑎𝑥+1
                                                             (7) 

In The symbols s (i, j) represent the original pixel, r 
(i, j) the output pixel, q represents the scaling factor 
based on local and average variance, ∆ represents the 

modulation factor calculated from variances. σvar 
defines the current pixel, 𝜇 denotes the Mean intensity 

of the local window centered at (i,j), σmax for the image's 

highest variance over all pixels, and 𝜎𝑎𝑣𝑔  represents the 

average of the variance values computed across all 
pixels within the selected window. These steps 
enhance tissue contrast, suppress noise and artifacts, 
and preserve spatial detail, thereby refining the 
accuracy and efficiency of subsequent feature 

extraction. 

Fig. 2 illustrates the MRI image pre-processing 
pipeline. It includes skull stripping using thresholding, 
morphological operations, and mask application, 
followed by CSAW filtering for noise removal and tissue 
contrast enhancement. 

Data augmentation techniques like rotations, flips, 
intensity variations, and zoom scaling improve model 
generalization by addressing orientation, contrast, and 
anatomical size differences, making them essential for 
learning robust features from the limited BrainWeb 
dataset. 
C. Feature Extraction 
ResEfficientNet is a hybrid architecture that combines 
the ResNet [27] and EfficientNet [28] to extract complex 
features from MRI images. It typically merges the 
residual connections of ResNet with the MBConv 
blocks and compound scaling of EfficientNet. 
ResEfficientNet enables efficient, deep, and multi-
scale feature extraction with low computational cost, 
improved gradient flow, and strong generalization 

across diverse MRI datasets. Fig. 3 shows the 

ResEfficientNet architecture. A CNN with 101 layers is 

 
Fig. 2. Flowchart of the proposed BRU-SOAT 
model for MRI Image Pre-processing 
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called a residual network (ResNet-101V2). The 
vanishing gradient issue is intended to be resolved by 
ResNet-101V2 [29]. ResNet-101V2 introduces the 
concepts of residual blocks and skip connections. By 
omitting a few layers in the center, the skip connection 
links layers with other levels. If a layer causes 
performance degradation, it can be skipped using the 
skip connection. The residual blocks are combined to 
create ResNet. This model is well-known for its residual 
connections and deep architecture, which aid in the 
multi-layer learning of complicated characteristics. 
ResNet-101V2 is beneficial for recognizing texture 
variations in high-intensity images since it is especially 

good at maintaining features across many levels and 
identifying small details. Using a set of predefined 
coefficients, the compound scaling technique 
EfficientNet adjusts the network's breadth, length, and 
resolution. Each layer's feature maps are increased by 
scaling the width. The network's layers rise as scaling 
depth increases. The resolution of input images is 
increased through scaling. EfficientNetB0 is highly 
suited for the task of feature extraction due to its 
compound scaling technique, which aids in capturing 
both large-scale and fine-grained information relating to 
shape and texture. 

D. Feature Selection 

For feature selection, the SFO [30] algorithm is used. It 
mimics the hunting strategy of sailfish and sardines, 
balancing exploration and exploitation through 
population dynamics. In this study, the fitness function 
used by the SFO algorithm was defined as the 
classification accuracy achieved on a validation set 
after applying the selected features to the DAS-Net 
segmentation model. The goal was to maximize 
segmentation accuracy while minimizing the number of 
selected features, thereby preserving only the most 
informative features for downstream processing. In the 
algorithm, the sailfish and sardine population are 
generated randomly as follows Eq (8) [30]: 

𝐴𝑃 = 𝐴𝑃𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟 ×
𝐴𝑃𝑚𝑎𝑥−𝐴𝑃𝑚𝑖𝑛

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
                                         (8) 

Where AP is Attack Power parameter, 𝑖𝑡𝑒𝑟 is the 

current iteration, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the iterations of maximum 
number and 𝐴𝑃𝑚𝑎𝑥 , 𝐴𝑃𝑚𝑖𝑛 are predefined limits. Fitness 

values of each sailfish and sardine are calculated and 
stored in matrices. The best sailfish and sardine are 

known as elite sailfish and injured sardine, respectively 
Eq (9) [30]: 

𝐸𝑙𝑖𝑡𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝑓(𝑋𝑖),    𝐼𝑛𝑗𝑢𝑟𝑒𝑑 = arg 𝑚𝑎𝑥𝑗𝑓(𝑋𝑗)      (9) 

Where 𝑋𝑖 denotes the position of the ith sailfish in 

the population, 𝑋𝑗 represents the position of the jth 

sailfish in the population, f(X) denotes the fitness 
function, 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝑓(𝑋𝑖) represents the index i of the 
sailfish whose position 𝑋𝑖  has the minimum fitness 

value, arg 𝑚𝑎𝑥𝑗𝑓(𝑋𝑗)  represents the index j of the 

sailfish whose position 𝑌𝑖  has the maximum fitness 

value, elite denotes the best individual in the 
population, and Injured refers to the worst individual in 
the population. Sailfishes replace their position based 
on both the elite one and the injured sardine Eq (10) 
[30]: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝐴𝑃 × (𝐸𝑙𝑖𝑡𝑒 − 𝑋𝑖) + (1 − 𝐴𝑃)(𝐼𝑛𝑗𝑢𝑟𝑒𝑑𝑋𝑖) 

(10) 

Where, 𝑋𝑖
𝑛𝑒𝑤 denotes the revised location of the ith 

candidate solution in the search space for the next 

 
Fig. 3. ResEfficientNet architecture 
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iteration. 𝐴𝑃 × (𝐸𝑙𝑖𝑡𝑒 − 𝑋𝑖) directs the sailfish towards 

the elite sailfish, exploiting the best solution found so 
far, and (1 − 𝐴𝑃) × (𝐼𝑛𝑗𝑢𝑟𝑒𝑑 − 𝑋𝑖) incorporates 

exploration by considering the injured sardine, helping 
to maintain diversity and avoid optima. Sardine update 
their positions based on the attack power of the sailfish. 
All sardines modify their positions if attack power is 
greater than 0.5; otherwise, the number of sardines that 
are proportional to attack power just redirect their 
position Eq (11) [30].  

 𝑋𝑗
𝑛𝑒𝑤 = {

𝑋𝑗 + 𝐴𝑃 × (𝐸𝑙𝑖𝑡𝑒 − 𝑋𝑗), 𝐴𝑃 > 0.5

𝑋𝑗 + 𝑟𝑎𝑛𝑑() × (𝐸𝑙𝑖𝑡𝑒 − 𝑋𝑗), 𝐴𝑃 ≤ 0.5
           (11) 

Where, 𝑋𝑗
𝑛𝑒𝑤 denotes updated position of the jth 

sardine (individual) in the population after position 
adjustment, 𝑋𝑗 represents the current position of the jth 

sardine, rand() defines the random number between 0 
and 1, and 𝐴𝑃 denotes the attack power parameter. 

When, AP> 0.5 all sardines move towards the elite 

sailfish, ensuring a stronger convergence towards 
optimal solutions. When, AP≤ 0.5 only a fraction of the 

sardines adjust their positions, helping in exploration by 
maintaining diversity in the search space. Furthermore, 
in each iteration, elite sailfish and injured sardine are 
updated if a better one is observed. The position of a 
final elite sailfish is returned from the sailfish matrix and 
concludes the algorithm. The optimal number of 
features was determined by evaluating the trade-off 
between performance and feature count, using the 
elbow method on the performance curve. The SFO 
parameters were tuned experimentally and set as 
follows: population size = 30, maximum iterations = 50, 
and attack power threshold = 0.5. These values were 
chosen using a grid search strategy based on 
segmentation accuracy on the validation dataset. The 
final output of the SFO is the position of the elite 
sailfish, which corresponds to the most effective subset 
of features for BTS. 

E. Segmentation 

Using the DAS-Net model, the suggested approach 
accomplishes end-to-end pixel segmentation.  For 
scene understanding applications that require efficient 
memory and processing time during inference, this 
semantic segmentation network was created.  The 
three primary parts of SegNet [31] are a pixel-wise 
classification layer, a matching decoder block, and an 
encoder block. Similar to the VGG16 architecture, the 
SegNet generates a set of feature maps using a 13-
convolutional-layer encoder. A 13-layer decoder 
network is produced by matching decoder layers for 
each encoder layer. Conversely, the decoder creates 
sparse feature maps by up-sampling feature maps that 
are sent into it. High-resolution feature maps can be 
preserved by the encoder by removing fully connected 
layers.  A softmax classifier receives the final decoder 
output and uses rich feature representations to classify 

pixels. SegNet is therefore more time- and memory-
efficient than other semantic segmentation designs 
since it has fewer trainable parameters. When the 
VGG16 model is initially constructed using pre-trained 
weights, the top levels, that is, the completely 
connected layers, are excluded. 

1. Dual-attention module 

Attention mechanisms are applied at different scales or 
levels of the SegNet architecture. This attention is 
applied to intermediate feature maps to emphasize 
important spatial locations during the segmentation 
process. The proposed method incorporates two 
attention mechanisms: spatial attention block (SAB) 
and channel attention block (CAB). SAB minimizes 
channel size by performing two convolutional layers 
and then sigmoid (SI) activation for each spatial pixel. 
In order to create a CAB, spatial size is decreased by 
means of global average pooling (GAP), then the SI is 
activated. The SAB and CAB are then multiplied point-
wise with feature maps. 

Spatial attention block (SAB). This includes improved 
focus on relevant spatial information, enhanced feature 
learning, and the ability to adaptively attend to different 
parts of the input data for better task performance. As 
a result of spatial attention, a spatial weight map (Wm) 
is learned based on correlations between spatial 
positions, which is then multiplied by the equivalent 
spatial locations to capture additional characteristic 
features. GAP and global max pooling (GMP) are 
performed at every spatial position to efficiently learn 
spatial weight connections, producing two feature 
descriptors. Concatenate these feature descriptors and 
manage them through a 7 × 7 convolution to crop the 
final spatial attention map in Eq. (12) [32]. 

𝑊𝑚(𝐶) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐7×7([𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐶); 𝑀𝑎𝑥𝑝𝑜𝑜𝑙 (𝐶)]))          

                                                                                (12) 

Where, 𝑊𝑚(𝐶) represents the resulting spatial 

attention map that highlights the importance of each 
spatial location in the feature map c, c denotes the Input 
feature map, sigmoid denotes the sigmoid activation 
function normalizes the output values between 0 and 1, 
Avgpool(C) represents an average pooling operation 

applied spatially on C, producing a summary of 
average activations at each spatial location, 
𝑀𝑎𝑥𝑝𝑜𝑜𝑙 (𝐶)denotes max pooling operation applied 
spatially on C, capturing the strongest activations at 
each spatial location. where 𝑐7×7 signifies a convolution 

operation with 7 × 7 kernel size. This module generates 
a spatial attention map by considering the importance 
of each spatial location within the feature maps. The 
spatial attention mechanism is illustrated as Eq (13) 
[32], 

𝑀𝑠(𝑓) = 𝜎(𝑓 (𝑓𝑗(𝑓𝑎𝑣𝑔 + 𝑓𝑚𝑎𝑥)))                                          (13) 
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Where 𝑀𝑠(𝑓) is the resulting spatial attention map, 

which is of shape 1×𝐻×𝑊. This is applied element-wise 

to the input feature map to emphasize or suppress 
spatial locations. f is the input feature map and 𝑓𝑗 is the 

join operation. By averaging the channel dimension 
and max pooling the kernel, a feature representation of 
size 2 × H × W is produced.  𝑓𝑎𝑣𝑔 is the average pooling 

and 𝑓𝑚𝑎𝑥  is max pooling. 𝜎 is the sigmoid activation 

function, used to normalize the attention weights 
between 0 and 1. The following is the derivation of the 
entire computation process, Eq (14) [32]. 

𝑓𝐴 = 𝑀𝑠(𝑓)𝑓′ 𝑤ℎ𝑒𝑟𝑒 𝑓′ = 𝑀𝑐(𝑓)𝑓                                    (14) 

Where 𝑓′  is the channel-attended feature, obtained 

by applying a channel attention map 𝑀𝑐(𝑓) to the input 

feature map f. 𝑀𝑠(𝑓) represents the spatial attention 

map derived from 𝑓𝐴 denotes the final attended 

feature map. The up-sampling block of VNet is 

inserted after the attention module, allowing this 
module to eliminate redundant features in both channel 
and spatial dimensions and concentrate on crucial 
features. 

Channel attention block (CAB). A multichannel feature 

map 𝐶 = 𝑋𝑐ℎ×ℎ𝑡×𝑤𝑡 was created from a high-resolution 

image from remote sensing after it had passed through 
multiple convolutional layers, where ℎ𝑡, 𝑐ℎ, and 𝑤𝑡 
specify the number the height, channels, and width of 
the feature. Every channel's feature map expresses 
information differently. The goal of channel attention is 

to multiply a 1D weight 𝑊𝑐ℎ ∈  𝑋𝑐ℎ×1×1 to the 

appropriate channel by using the relationships among 
each channel in the feature map. It was concentrated 
more on the semantic nuances pertinent to the current 
task to this strategy. To produce two feature descriptors 
per channel, GAP and GMP are first applied to the 
spatial dimensions. These descriptors are then utilized 
to learn an effective weight representation. To generate 
more representative feature vectors, both descriptors 
are fed through a shared multilayer perceptron (MLP) 
with a single hidden layer that contains C/8 units. The 
information in the resultant vectors is then 
concatenated by summing them element-by-element. 
Finally, an SI activation function is useful to obtain the 
CAB in Eq (15) [33]. 

𝑊𝑐ℎ(𝐶) =
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑀𝐿𝑃([𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐶)) 𝑀𝐿𝑃(𝑀𝑎𝑥𝑝𝑜𝑜𝑙 (𝐶)])) (15) 

where 𝑊𝑐ℎ(𝐶) Channel attention weights for the input 

𝐶, same number of channels as input, values between 

0 and 1. sigmoid is the Nonlinear activation function, 
MLP denotes the Multi-layer perceptron, AvgPool 
denotes the average pooling operation applied across 
the spatial dimensions of C, MaxPool refers to the max 
pooling operation applied similarly, capturing the 
strongest activations per channel. In order to learn the 
residual and enable faster convergence, a skip link is 

introduced straight from input to output, leaving the 
input and output channels unchanged. This module 
effectively captures and highlights important channel-
wise information, enabling the model to adaptively 
focus on the related features. The final channel 
attention mechanism is illustrated as Eq (16) [33]: 

𝑃𝑐(𝑓) = 𝜎((𝑤1𝑤0)𝑓𝑎𝑣𝑔 + (𝑤1𝑤0)𝑓𝑚𝑎𝑥)                              (16) 

where 𝑃𝑐(𝑓) denotes the output of the function after 

applying weighted pooling and nonlinear activation on 
the input feature map f. 𝑤𝑖 is the weight of layer i, 𝜎 is 

the nonlinear activation function, 𝑓 is the input feature 
map, and 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑎𝑥are the results of the input 𝑓 

after the average pooling and kernel maximum pooling, 
respectively. 

Table 1 demonstrates the parameters of the DAS-
Net. A batch size of 16 and 100 training epochs, 
utilizing categorical cross-entropy loss and the Adam 
optimizer, are important hyperparameters for the DAS-
Net model. It employs 3×3 convolutional filters and 
ReLU activation across 13 encoder-decoder layers. 
The attention modules use a 7×7 kernel in SAB and a 
C/8 hidden unit MLP in CAB to enhance spatial and 
channel-wise feature learning. Table 2 provides a 
hyperparameter of the proposed BRU-SOAT model 
components, including preprocessing with CSAW 
filtering, feature extraction using ResEfficientNet, 
feature selection via SFO, and segmentation with DAS-

Table 1. Training Parameters of DAS-Net 

Hyperparameter Value 

Input image size 256 × 256 

Number of convolutional 
layers 

13 (VGG16-
based) 

Filter size (Conv layers) 3×3 

Batch size 16 

Loss function Categorical  

Cross-Entropy 

Stride 1 

Pooling type Max-pooling 

Activation function ReLU 

Number of epochs 100 

Optimizer Adam 

Attention kernel size 
(SAB) 

7×7 

MLP hidden units (CAB) C/8 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.795
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 330-340                                       e-ISSN: 2656-8632 

 
Manuscript received March 29, 2024; Revised August 10, 2025; Accepted September 5, 2025; date of publication September 8, 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.795 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  
 8               

Net. Each stage is optimized with specific 
hyperparameters such as learning rates, filter sizes, 
and population sizes selected through experimental 
tuning and grid search strategies. These configurations 
ensure enhanced noise reduction, effective feature 
extraction, optimal feature selection, and precise 
segmentation of brain tissues. The fine-tuned 
parameters significantly contribute to the proposed 
model's high accuracy and robustness in MRI BTS. Fig. 
4 presents the workflow of the proposed BRU-SOAT 
model for BTS. The input MRI image undergoes skull 
stripping, contrast enhancement using a CS filter, and 
noise removal via an AW filter. ResNet and EfficientNet 
extract detailed and multi-scale features, respectively. 
SFO selects the most relevant features for accurate 
segmentation. Finally, DAS-Net segments brain 
tissues using spatial and channel attention 
mechanisms, producing the final segmented MRI 

image. A proposed BRU-SOAT model was assessed 

based on F1, RE, PR, SP, AC, DI, and JI. SP evaluates 
the model's accuracy in identifying negative situations.   
It is computed by separating the total number of 
negatives by the number of correctly predicted 
negatives. It is illustrated as Eq (17) [34]: 

𝑆𝑃 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
                                                             (17) 

PR calculates the percentage of optimistic forecasts 
that come true. It emphasizes the model’s ability to 
minimize false positives, which is illustrated as Eq (18) 
[35]: 

𝑃𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
                                                                 (18) 

RE evaluates the model's capacity to accurately 
detect every real positive case. It is the ratio of correctly 
predicted positive observations to all actual positives it 
is illustrated as Eq (19) [34]: 

Table 2. Hyperparameters of BRU-SOAT model 

Component Hyperparameters Values Tuning Process 

Pre-processing 
(CSAW Filter) 

CS Range, AW Filter Window 
Size 

0.01 - 0.02, multi-
window sizes (3+2i)2 

Experimentally selected 
based on noise reduction and 
contrast enhancement results 

Feature 
Extraction 

(ResEfficientNet) 

Input Image Size, Number of 
Layers, Optimizer, Learning 

Rate 

256×256, 101 Layers 
(ResNet-101V2), 

Adam, 0.001 

Selected based on compound 
scaling and residual 
connections for deep features 

Feature 
Selection 

 (SFO) 

Population Size, Max Iterations, 
Attack Power Threshold 

30, 50, 0.5 
Grid search strategy on 
validation set for best 
segmentation accuracy 

Segmentation  

(DAS-Net) 

Input Image Size, Convolutional 
Layers, Activation Function, 

Learning Rate, Batch Size, Loss 
Function, Attention Kernel Size 

(SAB), MLP Hidden Units (CAB) 

256×256, 13 
(VGG16-based), 
ReLU, 0.001, 16, 
Categorical Cross-
Entropy, 7×7, C/8 

Parameters were fine-tuned 
based on segmentation 
accuracy and stability over 
training epochs 

 
 

 
Fig. 4. Flowchart of the proposed BRU-SOAT 
model for BTS 
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𝑅𝐸 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                                          (19) 

AC calculates how accurate the model's predictions 
are overall.  It is computed as the proportion of 
accurately predicted samples to all samples, it is 
illustrated as Eq (20) [34]: 

𝐴𝐶 =
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                    (20) 

F1 represents the harmonic mean of PR and RE, 
offering a balanced measure. When there is an uneven 
class distribution, it is illustrated as Eq (21) [35]: 

𝐹1 = 2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)                                              (21) 

The DI is a similarity measure used to gauge the 
overlap between two sets, often used in image 
segmentation to compare the segmentation with the 
ground truth. It is illustrated as Eq (22) [34]:  

𝐷𝐼 =
2𝑇𝑝𝑜𝑠

𝐹𝑝𝑜𝑠+2𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                                    (22) 

The JI measures the similarity among two sets by 

comparing the intersection over the union of the sets it 
is illustrated as Eq (23) [34]:  

𝐽𝐼 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
                                                       (23) 

where 𝑇𝑛𝑒𝑔 and 𝑇𝑝𝑜𝑠 specifies true negatives and true 

positives of the sample images, 𝐹𝑛𝑒𝑔  and 𝐹𝑝𝑜𝑠  requires 

false negatives and false positives of the sample 
images. 

IV.  Results 

This section uses MATLAB 2019 b to implement the 
proposed model efficiency, a DL toolbox. The BRU-
SOAT is assessed by various measures like accuracy 
(AC), specificity (SP), precision (P), recall (RE), 
Jaccard Index (JI), Dice Index (DI), and F1 score (F1). 
Benchmarks include the BRU-SOAT method's overall 
accuracy rates, performance explicitly specified and 
assessed. Fig. 5 demonstrates the simulation results of 
the proposed brain MRI processing pipeline using 

 
 

    

 
 

    

 
 

    

 
 

    

     
(a) (b) (c) (d) (e) 

Fig. 5. Experimental result of the proposed BRU-SOAT (a) input image, (b) skull stripped image, (c) 
pre-processed image, (d) feature extracted image, (e) segmented image 
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different input samples. Column 1 presents the original 
brain MRI scans, while Column 2 displays the Skull 
Stripping MRI images to remove non-brain tissues. 
Column 3 illustrates the pre-processed MRI scans, 
improving contrast and normalization for better feature 
extraction. Column 4 represents extracted feature 
maps highlighting significant patterns in the brain 
structure. Column 5 shows the final segmented 
outputs, and Table 3 displays the classification 
performance attained by the proposed BRU-SOAT 
model for BTS. A total accuracy of 99.17% is achieved 
by the proposed BRU-SOAT model on the dataset. The 
proposed BRU-SOAT model also achieves 98.32%, 
96.79%, 97.80%, and 97.09% overall precision (PR), f1 
score (F1), specificity (SP), and recall (RE). Fig. 6 a) 
and b) show the accuracy and loss graph of the 
suggested BRU-SOAT model. The accuracy curve is 
shown in Fig. 6a), where AC and epochs are positioned 
on opposite axes. The model's AC rises as the number 
of epochs grows. The epoch versus loss curve is 
shown in Fig. 6b), where the model's loss decreases as 
the number of epochs rises. The proposed BRU-SOAT 
model achieves an accuracy of 99.17%. The 
performance of the proposed BRU-SOAT was 
evaluated using 3-fold and 5-fold cross-validation to 
ensure the robustness and reliability of the BRU-SOAT 
framework. The dataset was split into respective folds, 

and the results were averaged across all runs with two 
different cross-validation methods, as illustrated in 
Table 4. Table 4 displays the cross-validation results of 
the BRU-SOAT model utilizing 3-fold and 5-fold cross-

validation techniques. There are three subsets of the 
data in the 3-fold cross-validation. where 40% is used 
for training in each fold, and the remaining 20% is used 
for testing. The data is separated into five subgroups 
for the 5-fold cross-validation, with 20% of each subset 
being utilized for testing and 20% for training. 

In this section, the experimental fallouts of the 

suggested BRU-SOAT are discussed by focusing on a 

comparison of its performance with other segmentation 

Table 3. Performance assessment of the BRU-SOAT model 

Types AC PR RE SP F1 

CSF 99.04 98.62 97.10 98.03 95.72 

GM 98.63 97.84 96.72 98.66 98.14 

WM 99.85 98.51 97.46 96.72 96.53 

 

 

a)                                                           b) 

Fig. 6. Performance evaluation of the proposed DAS-Net (a) accuracy graph and (b) loss graph 
 

Table 4. Cross-validation results of the 
proposed model 

Metric 3-Fold Cross-
Validation 

5-Fold Cross-
Validation 

AC 98.12% 98.21% 

PR 97.83% 96.01% 

RE 96.26% 96.09% 

F1 98.05% 97.55% 

SP 97.84% 96.10% 
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methods. The segmentation metrics, such as the JI and 

DI, are used to assess the efficiency of each algorithm. 

These metrics help in understanding the precision and 

accuracy of the segmentation techniques in various 

scenarios. Table 5 illustrates the comparison of various 

segmentation algorithms with the DAS-Net based on DI 

and JI metrics. The proposed DAS-Net increases the 

overall DI by 8.9%, 5.56%, and 3.34 for Graphcut, 

SegNet, and U-Net, respectively.  According to the 

Table.5, DAS-Net has the highest DI (98.76) and JI 

(97.91) scores among Graphcut, SegNet, and U-Net 

algorithms. From this analysis, the proposed DAS-Net 

indicates the best segmentation performance. Fig. 7 

compares different methods for BTS in MRI images. 

The columns show the brain MRI, results from 

Graphcut, SegNet, U-Net, and DAS-Net. Graphcut 

produces noisy segmentations with boundary 

distortions, resulting in an estimated 35-40% loss in 

segmentation accuracy due to misclassified regions. 

SegNet and U-Net improve the results by reducing 

noise and better capturing structures, but they still 

show 15-20% inconsistencies in tissue differentiation 

compared to the ground truth. The DAS-Net achieves 

the best segmentation, preserving fine structural details 

with over 90% boundary accuracy, making it 10-15% 

better than U-Net and SegNet. This highlights the 

effectiveness of attention mechanisms in improving 

BTS quality. 

The proposed ResEfficientNet with four DL 
classifiers, AlexNet [39], RegNet [40], GoogleNet [41], 
and MobileNet [42] were evaluated for competence. 
The accuracy accomplished by the suggested 
ResEfficientNet is 99.17%, which is better than the 
traditional DL networks. The proposed ResEfficientNet 
is higher than that of classic networks like AlexNet, 
RegNet, GoogleNet, and MobileNet. ResEfficientNet 
maintains a 99.17% high accuracy range. The 
proposed ResEfficientNet improves its accuracy by 
5.89%, 2.04%, 1.15% and 5.04% better than AlexNet, 
RegNet, GoogleNet, and MobileNet, respectively.  
Table 6 compares the existing models with the 
proposed BRU-SOAT. The fuzzy c-means clustering 
method achieved the lowest DI values with 40.1% 
(CSF), 82.8% (GM), and 89.9% (WM). The fuzzy 
consensus clustering approach showed significant 
improvement, reaching 93.64% (CSF), 94.71% (GM), 
and 93.17% (WM). U-Net further improved 
segmentation with DI values of 91.2% (CSF), 94.5% 
(GM), and 94.7% (WM). The proposed BRU-SOAT 
outperformed all previous methods, achieving98.50% 

     

     

     

(a) (b) (c) (d) (e) 

Fig. 7. Visualization results of different segmentation technique (a) input image, (b) Graphcut, (c) 
SegNet,  (e) U-Net, and (e) DAS-Net. 

 
 

Table 5. Comparison of Segmentation 
approaches 

Methods AC JI DI 

Graphcut [36] 95.86 93.67 90.67 

SegNet [37] 93.15 91.76 93.55 

U-Net [38] 98.75 94.79 95.56 

DAS-Net 99.17 97.91 98.76 
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(CSF), 98.63% (GM), and 99.15% (WM), 
demonstrating superior segmentation accuracy. 

V. Discussion 

The BRU-SOAT model demonstrates a significant 
advancement in automated BTS by effectively tackling 
critical challenges such as intensity overlap, anatomical 
complexity, and MRI noise. The inclusion of CSAW 
filtering enhances image contrast and suppresses 
noise artifacts. ResEfficientNet, as the feature 
extraction backbone, enables the capture of fine-
grained features for accurate segmentation. The 
application of the SFO algorithm ensures that only the 
most relevant features are retained, thereby minimizing 
computational burden and enhancing the model's 
ability to focus on important regions. Furthermore, the 
DAS-Net augmented with SAB and CAB directs the 
model’s attention toward critical anatomical 
boundaries, significantly improving tissue delineation 
and classification accuracy. Table 4 presents the cross-
validation results of the proposed model, showing 
consistent performance across both 3-fold and 5-fold 
validations. The model achieves a high accuracy of 
98.21% and an F1 score of 97.55%, indicating robust 
and reliable segmentation capability. The proposed 
DAS-Net increases the overall DI by 8.9%, 5.56%, and 
3.34% for Graphcut, SegNet, and U-Net Fig. 7.  

The proposed ResEfficientNet improves its 
accuracy by 5.89%, 2.04%, 1.15% and 5.04% better 
than AlexNet, RegNet, GoogleNet, and MobileNet. The 
proposed BRU-SOAT model achieves 98.32%, 
96.79%, 97.80%, and 97.09% overall precision, F1 
score, specificity, and recall (Table 3). These 
improvements collectively demonstrate the robustness 
and clinical relevance of the BRU-SOAT model for 
accurate and efficient BTS. When evaluated 
segmentation methods like U-Net [38], GraphCut [36] 
and SegNet [37], the proposed BRU-SOAT model 
exhibits superior performance. GraphCut is a traditional 
method based on energy minimization but is sensitive 
to noise.            

SegNet and U-Net are CNN-based models; among 
them, U-Net performs better due to the use of skip 
connections. The proposed DAS-Net uses attention 

mechanisms to focus on important tissue regions. 
DAS-Net achieves the highest accuracy and 
segmentation performance among all methods. 
GraphCut [36] achieves 95.86% accuracy and a DI of 
90.67%. SegNet [37] has 93.15% accuracy and a DI of 
93.55%. U-Net [38] performs better with 98.75% 
accuracy and a DI of 95.56%. The proposed DAS-Net 
outperforms all, achieving 99.17% accuracy and a DI 
of 98.76% (Table 5). It achieved an overall 
segmentation accuracy of 99.17%, with DI of 98.50% 
for CSF, 98.63% for GM, and 99.15% for WM 9 (Table 
6). In contrast, conventional U-Net-based models 
typically report DI between 94–96% for these tissue 
types. Additionally, ablation studies confirmed that 
ResEfficientNet surpasses traditional feature extraction 
networks such as AlexNet, RegNet, GoogleNet, and 
MobileNet, underscoring its effectiveness in extracting 
meaningful spatial and textural information. 

A limitation of this study lies in its reliance on the 
synthetic BrainWeb dataset, which does not fully 
replicate the variability, noise, and anatomical diversity 
present in real clinical MRI data. This may affect the 
model’s generalizability to practical clinical 
environments. Furthermore, performance on multi-
institutional, multi-modal data remains unexplored, 
which could impact robustness across imaging 
protocols and scanner types. Despite dataset-related 
limitations, the BRU-SOAT framework presents a 
robust and efficient solution for automated BTS. It sets 
a strong foundation for clinical-grade applications, 
offering potential benefits in early diagnosis and 
monitoring of neurodegenerative disorders, pre-
surgical planning, and longitudinal patient 
assessments. Future work should focus on validating 
the model using real-world clinical datasets and 
exploring integration with multi-modal MRI to enhance 
adaptability and clinical relevance. 

VI.  Conclusion 

Table 6. Comparison of existing methods vs proposed BRU-SOAT 

Authors Methods                     DI 

CSF GM WM 

Veluchamy, M. and Subramani, B., 
[19] (2021) 

fuzzy c-means clustering 
algorithm 

40.1% 82.8% 89.9% 

Aruna Kumar, S.V et al, [20] (2022) fuzzy consensus clustering 
algorithm 

93.64% 94.71% 93.17% 

Mhlanga, S.T. and Viriri, S., [21] 
(2023) 

U-Net 91.2% 94.5% 94.7% 

Proposed BRU-SOAT 98.50% 98.63% 99.15% 
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This study aimed to develop a DL-based BRU-SOAT 
model for BTS using MRI images from the BrainWeb 
dataset. The primary goal was to overcome challenges 
such as noise, intensity overlap, and boundary 
ambiguity by integrating advanced preprocessing, 
feature extraction, and attention-based segmentation 
techniques. The main finding of this research is that the 
proposed BRU-SOAT model achieved a segmentation 
accuracy of 99.17%, significantly outperforming 
traditional methods. Class-wise segmentation 
accuracy using DAS-Net was 98.50% for CSF, 98.63% 
for GM, and 99.15% for WM. Additionally, 
ResEfficientNet improved feature extraction 
performance by 5.89%, 1.94%, 0.62%, and 3.17% 
compared to AlexNet, RegNet, GoogleNet, and 
MobileNet, respectively, demonstrating its superior 
discriminative capability. An additional finding is the 
effectiveness of incorporating SFO for feature 
selection, which helped in reducing redundant 
information and improving segmentation accuracy. 
Moreover, the integration of spatial and channel 
attention mechanisms in DAS-Net enabled the model 
to better focus on relevant anatomical regions, 
enhancing segmentation precision.  
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