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Abstract  International Classification of Diseases (ICD) coding plays a pivotal role in healthcare systems 

with its provision of a standard method for classifying medical diagnoses, treatments, and procedures. 
However, the process of manually applying ICD codes to clinical records is both time-consuming and error-
prone, particularly considering the large magnitude of medical terminologies and the periodic changes to 
the coding system. This work introduces a Hierarchical Multi-Head Attention Network (HMHAN) that aims 
to automate ICD coding using domain-related embeddings with an attention mechanism. The proposed 
method uses BioClinicalBERT for feature extraction from clinical text and then a two-level attention 
mechanism to learn hierarchical dependencies between labels. BioClinicalBERT is pre-trained on large 
biomedical and clinical corpora that enable it to capture complex contextual relationships specific to 
medical language more effectively. The multi-head attention mechanism enables the model to focus on 
different parts of the input text simultaneously, learning intricate associations between medical terms and 
corresponding ICD codes at various levels. This method uses SMOTE (Synthetic Minority Oversampling 
Technique) based multi-label resampling to solve class imbalance. SMOTE generates synthetic examples 
for underrepresented classes, allowing the model to learn better from imbalanced data without overfitting. 
For this work, MIMIC-IV dataset of de-identified radiology reports and corresponding ICD codes are used. 
The performance of the model is assessed with F1 score, Hamming loss, and ROC-AUC metrics. Results 
obtained from the model with an F1 score of 0.91, Hamming loss of 0.07, and ROC-AUC of 0.92 show 
promising research directions to automate the ICD coding process. This system will improve the 
effectiveness of healthcare workflows by automating ICD code generation for advanced clinical care. 

 
Keywords Automated ICD coding; Radiology reports; MIMIC-IV; Hierarchical Multi-Head Attention Network; 
BioClinicalBERT; Health Informatics. 

I. Introduction  

The increasing volume of electronic health records 
(EHRs) has necessitated the development of 
automated medical coding systems to streamline 
clinical documentation and billing processes. Patient 
diagnoses and procedures get classified through the 
International Classification of Diseases (ICD) coding 
system to support healthcare analytics research and 
reimbursement as well as epidemiological studies [1]. 
Healthcare professionals spend considerable time on 
manual ICD coding, and sometimes it leads to errors 
because it needs specialized knowledge on medical 
field. Machine Learning (ML) and Deep Learning (DL) 
techniques have been adopted to automate ICD coding 

procedures according to recent literature [2]. Natural 
language processing (NLP) and deep neural networks 
(DNNs) recently improved automation of ICD coding 
system. The research demonstrates that deep learning 
models including convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) achieve 
better results in extraction of ICD code from clinical text 
documents [3]. Deep learning models have obstacles 
such as extended text relationships along with unequal 
distribution of labels and difficulties, with interpretation 
[4]. The proposed hierarchical multi-head attention 
networks (HMHAN) represent an effective solution to 
address these problems by exploiting multiple attention 
layers which enhance contextual understanding. 
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Several studies have explored deep learning based 
ICD coding systems. Masud et al. [5] developed a CNN 
based model that achieved notable precision and recall 
in ICD code prediction. Oberste et al. [6] proposed an 
NLP driven ML model for outpatient billing, improving 
reimbursement accuracy. Teng et al. [7] provided a 
comprehensive review of deep learning applications in 
ICD coding, emphasizing the importance of multi label 
classification. Vu et al. [8] introduced a label attention 
model to handle imbalanced data distributions and 
enhance ICD coding accuracy. Similarly, Kim et al. [9] 
utilized partition based label attention to improve token 
level representation learning. Transformer based 
models have also been explored for extreme multi label 
classification tasks, achieving state-of-the-art 
performance in automated ICD coding [10]. 

Despite these advancements, challenges remain in 
achieving high accuracy, scalability, and interpretability 
in automated ICD coding systems. This work 
contributes to the existing knowledge by introducing a 
novel automated ICD coding framework based on the 
Hierarchical Multi-Head Attention Network (HMHAN). 
The proposed approach uniquely integrates 
hierarchical label-wise attention mechanisms, not only 
to improve the accuracy of code prediction but also to 
enhance the transparency of the model's decision 
making process. By explicitly modeling the hierarchical 
relationships within the ICD coding system and 
employing multi-head attention at different levels, this 
work aims to refine the ICD coding process, reduce 
errors, improve efficiency in clinical documentation, 
and offer insights into the model's predictions, thereby 
addressing a key limitation of current deep learning 
approaches. 

 
II. Literature Survey 

Automated ICD coding has become an essential focus 
in healthcare, given its potential to reduce manual 
coding errors, streamline hospital workflows, and 
improve overall coding accuracy. The complex nature 
of medical terminologies along with frequent updates in 
the ICD coding system makes automated solutions 
particularly valuable. Researchers have turned to 
address the rare code prediction, and interpretability 
using machine learning and deep learning methods to 
address the core challenges of multi label 
classification.  

   Yuan et al. [11] systematically reviewed 118 studies, 
highlighting how AutoML not only reduces the barrier 
for healthcare professionals with limited ML expertise 
but also enhances model development efficiency 
across diverse data modalities, including images, text, 
and genomic data. However, the inherent black-box 
nature of many AutoML systems raises concerns 
regarding their interpretability, which is essential in 
clinical contexts where model transparency is crucial 

for trust and regulatory compliance. To address this, 
the integration of interpretation methods such as 
feature importance analysis, intrinsically interpretable 
models, and rule extraction has been proposed to 
improve model transparency and foster clinical 
adoption. The review emphasizes the need for future 
research to further automate interpretability processes 
and to support multi modal data and foundation models 
to bridge the gap between technical innovation and real 
world implementation in healthcare. 

Rohil and Magotra [12] conducted an exploratory 
study on automatic text summarization (ATS) in the 
biomedical and healthcare domains. Their study 
analyzed various ATS approaches, including extractive 
and abstractive methods and evaluated their 
effectiveness in summarizing clinical records, 
electronic health records (EHRs) and biomedical 
literature. By comparing different summarization 
techniques, they provided insights into the strengths 
and limitations of ATS in handling complex medical 
texts. Their research highlighted that extractive 
methods are effective in retaining key information from 
documents, while abstractive methods offer more 
concise and human readable summaries. The findings 
are relevant to ICD coding, as text summarization 
techniques can be adapted to process clinical notes 
efficiently and generate meaningful summaries that 
assist in medical code assignment. 

Jayanth et al. [13] investigated the use of XLM-
RoBERTa for intent recognition in natural language 
understanding (NLU) applications. By leveraging the 
multilingual capabilities of XLM-RoBERTa, the study 
focused on enhancing the accuracy of intent detection 
across different languages. The research showed that 
XLM-RoBERTa outperformed traditional models in 
understanding diverse language structures and 
handling variations in sentence phrasing. The model's 
robustness in intent recognition has implications for 
ICD coding, where understanding the subtle nuances 
in clinical notes is crucial for accurate code assignment. 
This study underscores the adaptability of transformer  

models to complex NLP tasks beyond standard 
language domains. 

Ponthongmak et al. [14] explored automated ICD-
10 coding using deep learning techniques applied to 
discharge summaries. Their research leveraged 
natural language processing (NLP) and various 
models, including CNN-PubMedBERT. Results 
demonstrated that CNN-PubMedBERT outperformed 
traditional approaches, through PLM-ICD, 
incorporating label wise attention and RoBERTa-
PubMed embeddings exhibited superior performance 
overall. 

Wang et al. [15] introduced ICDXML, enhancing ICD 
coding through probabilistic label trees and dynamic 
semantic representations. The approach tackled long 
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tailed ICD codes by leveraging hierarchical structures 
and integrating semantic representations, achieving 
notable improvements in precision and recall rates, 
especially for rare ICD codes. Zhao et al. [16] applied 
transformer based models with attention mechanisms 
to identify relevant sections of clinical notes for 
coronary heart disease diagnosis. These models 
emphasized important parts of the text, leading to 
significant gains in recall and F1-scores, particularly 
effective for multi label classification of complex 
conditions. 

Wu et al. [17] introduced a hyperbolic graph 
convolutional network combined with ensemble 
methods to improve ICD code assignment, utilizing 
contrastive learning to differentiate similar codes. 
Similarly, Bhutto et al. [18] developed a Lambda Scaled 
Attention based model integrating CNNs, LSTMs, and 
attention mechanisms, significantly improving accuracy 
by focusing on clinically relevant text portions. Chen et 
al. [19] presented an innovative approach using deep 
semantic matching based on analogical reasoning. 
Their model integrated BERT based word 
representation, BiLSTM context representation, and 
multi perspective matching layers, achieving state-of-
the-art performance with 0.986 accuracy and 0.981 F1-
score. The approach compared uncoded diagnoses 
with previously coded records rather than directly with 
ICD-10 terminology. 

Zhao et al. [20] applied contrastive learning with 
transformer and CNN architectures, focusing on 
variations in ICD code representations across different 
medical records. This improved accuracy, sensitivity, 
and specificity, especially in cases involving multiple 
diagnoses. Coutinho and Martins [21] investigated 
Transformer-based models for ICD-10 coding of 
Portuguese death certificates. Their BERT-based 
model leveraged domain-specific pre-training and fine-
tuning strategies, outperforming traditional 
approaches, particularly for short clinical narratives. 
Chomutare et al. [22] leveraged a Swedish language 
model (KB-BERT) with fuzzy logic to enhance 
prediction of rare ICD codes, effectively handling 
ambiguous terms in clinical notes and improving 
precision and recall. 

Shuai et al. [23] compared feature extraction 
methods for automated coding, finding that fine-tuned 
BERT networks performed best for frequent codes, 
while bag-of-words outperformed deep learning 
methods when datasets included both frequent and 
infrequent codes. Bhutto et al. [24] introduced the Deep 
Recurrent Convolutional Neural Network with Transfer 
Learning through Pre-trained Embeddings 
(DRCNNTLe), leveraging pre-trained word 
embeddings to enhance text representations for liver 
transplant patients. Chen et al. [25] integrated 
embeddings from transformers, global vectors, 

word2vec, and a single head attention recurrent neural 
network within a GRU framework, achieving F1-scores 
of 0.715 for ICD-10 Clinical Modification codes. Their 
web service enhanced coders' accuracy but did not 
reduce manual coding time. 

Diao et al. [26] presented a clinically interpretable 
model for cardiovascular diseases in China, employing 
sequential grouping features with Light Gradient 
Boosting Machine classifiers. The model achieved 
95.2% accuracy and 88.3% macro-averaged F1-score, 
with SHapley Additive exPlanations enhancing 
interpretability. Makohon and Li [27] addressed 
challenges of abbreviation normalization and 
misspelled words, introducing a hierarchical approach 
converting lower level ICD codes into respective ICD 
chapters. Their Hierarchical Attention Network with 
GRU achieved the highest F1-score in cross validation. 
Luo et al. [28] presented the Fusion model, using 
attention-based soft-pooling to condense sparse 
information into meaningful features, outperforming 
several state-of-the-art models in multiple evaluation 
metrics. 

Chraibi et al. [29] proposed a deep learning 
framework for French electronic health records, 
achieving 83% average accuracy across 346 diagnosis 
codes. Cao et al. [30] introduced Clinical-Coder for 
Chinese clinical notes, using a Dilated Convolutional 
Attention Network with N-gram Matching to enhance 
interpretability. Zhang et al. [31] developed BERT-XML, 
trained on over 5 million EHR notes with domain-
specific vocabulary and extended sequence length, 
significantly improving prediction accuracy for 2,292 
ICD-10 codes. Huang et al. [32] found GRU-based 
models performed best for ICD-9 code prediction, 
achieving an F1-score of 0.6957. 

Recent studies have employed extractive 
summarization with PubMedBERT and BioBERT, 
demonstrating superior performance in medical text 
analysis [33][34]. Advancements with GPT-3 and 
PEGASUS have improved named entity recognition for 
automated coding. Multi language applications show 
significant improvements in classification accuracy, 
while fuzzy logic and knowledge based systems 
enhance interpretability and robustness in clinical 
settings. 

This review highlights the advancements in 
automated ICD coding using various deep learning and 
machine learning approaches, emphasizing their role 
in improving accuracy, handling rare codes, and 
ensuring interpretability in clinical settings. 

 
III. Materials and Method 
A. Dataset 

This project works with data from the MIMIC-IV 
(Medical Information Mart for Intensive Care IV) 
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database which contains de-identified health 
information about more than 60,000 critical care 
patients [35]. The research examines radiology notes 
found in MIMIC-IV since this free text clinical 
documentation holds essential patient assessment 
information about diagnoses and health history. 
Deriving predictions of ICD-9 and ICD-10 codes 
represents the objective while processing radiology 
reports together with additional patient data. This 
research examined the top ten ICD codes Fig. 1 
present in a dataset which holds more than 70,000 
records. Table 1 represents the dataset characteristics 
for the TOP10 ICD Code used for this work. To access 
MIMIC-IV researchers must first finish the Protecting 
Human Research Participants course from the National 
Institutes of Health (NIH) and sign the Data Use 
Agreement (DUA) compliance statement to protect 
confidential healthcare information.  

This analysis examines MIMIC-IV's radiology 
information by integrating unstructured and structured 
data to create predictive models that automate ICD 
coding procedures [36]. The radiology.csv dataset 
contains free text unstructured Radiology Notes that 
document medical imaging results including X-rays, CT 
scans, MRIs and ultrasounds along with radiology 
interpretations from radiologists in their indications, 
findings and impressions sections. Radiology Detail 
(radiology_detail.csv) delivers structured metadata 
about radiology reports that enhances predictive 
modelling features by listing imaging modality and 
study type and body part examination.  

   Both the ICD Codes datasets (diagnoses_icd.csv and 
procedures_icd.csv) contain ICD-9 and ICD-10 codes 
which function as model target labels but require a multi 
label classification technique because of their 
hierarchical structure. The patient demographic data in 
patients.csv allows derivation of calculated features by 
combining date of birth with date of death to obtain 
patient age. Multiple structured and unstructured 

datasets provided by radiology notes, metadata, ICD 
codes and demographic information create an 
extensive data set for developing sophisticated 
machine learning systems [37]. Healthcare narratives 
contained in unstructured text provide detailed clinical 
data alignment with structured metadata features to 
develop complete predictive models for ICD code 
automation. 

 

B. Data Preprocessing 

The raw clinical text data undergoes a series of 
preprocessing steps to ensure high quality input for the 
machine learning models. These steps were designed 
to handle the unique challenges of medical text, such 
as negation, complex terminology, and inconsistent 
formatting. 

Negation plays a critical role in clinical diagnosis. 
For example, the phrases "pneumonia present" and "no 
evidence of pneumonia" have opposite meanings but 
could be treated similarly by naive models. To address 
this, we employed the NegEx algorithm, which 
identifies and tags negated terms by appending a 
"NOT_" prefix (e.g., "NOT_pneumonia"). This ensures 
that negated conditions are not mistakenly considered 
as actual diagnoses during feature extraction. By 
distinguishing affirmed from negated terms, this step 
improves both precision and recall in ICD code 
prediction. 

We utilized subword based tokenization compatible 
with BioClinicalBERT. Tokenization splits the text into 
meaningful units (tokens), such as transforming "lung 
infection detected" into ["lung", "infection", "detect", 
"##ed"] [38]. This is particularly important for rare or 
compound medical terms, which may not appear 
frequently in the model’s vocabulary. Tokenization 
ensures that even unseen or partially known words are 

Table 1. Dataset Characteristics of Top 10 ICD 
codes of radiology reports from MIMIC-IV 
 

Description Value 

Number of Samples 73461 

Number of Columns 26 

Average Age  43 

Gender (Male/Female) 42027 / 31434 

Number of ICD Codes 10 

 

 

 
Fig. 1. Distribution of the Top 10 ICD Codes of 
radiology reports from MIMIC-IV 
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represented effectively, improving the model’s ability to 
capture semantic nuance in medical text. 

Clinical notes often contain inconsistent 
capitalization, misspellings, punctuations, and 
irrelevant numerical data. Text cleaning includes 
converting text to lowercase, removing special 
characters, standardizing abbreviations, and filtering 
out stopwords. For example, "Patient has a fever of 
102°F" is cleaned to "patient has fever". This reduces 
noise and variability in the input, enhancing the stability 
and generalizability of the learned embeddings. 

We standardized numerical features (e.g., age) using 
z-score normalization and applied one-hot encoding to 
categorical features like gender or admission type. This 
allows the model to treat each feature on a comparable 
scale, ensuring balanced gradient updates during 
training. Transformer models like BioClinicalBERT 
require fixed length input sequences. We padded 
shorter sequences using the [PAD] token and truncated 
longer sequences to a maximum of 512 tokens. This 
uniformity enables efficient batch processing while 
preserving as much clinical context as possible within 
the allowable input size. 
 

C. BioClinicalBERT for Embeddings Generation  

BioClinicalBERT served as the domain specific BERT 
variant to extract features from medical content in 
clinical documents. Unlike general purpose transformer 
models such as BERT or RoBERTa, BioClinicalBERT 
is pre-trained specifically on large-scale biomedical 
corpora including MIMIC-III and clinical notes from 
electronic health records. This pre-training enables it to 
better understand domain specific terminologies, 
contextual cues, and medical jargon that are prevalent 
in healthcare data. Table 2 specifies BioClinicalBERT 
parameters. One of the primary reasons for selecting 
BioClinicalBERT over other models is its proven 
effectiveness in handling clinical language. For 
instance, general BERT-based models may struggle 
with medical terms like "atelectasis", "pneumothorax", 
or contextual phrases such as "rule out MI" which have 
specific meanings in clinical settings. BioClinicalBERT, 
however, can capture these nuances more accurately 
due to its training on similar language. 

In the context of ICD coding, where fine grained 
distinctions between conditions directly influence code 
assignments, capturing these subtle contextual 
meanings is crucial. BioClinicalBERT generates 
contextual embeddings that reflect both the 
surrounding text and the semantics of the clinical 
terms, making it highly suitable for downstream tasks 
like multi label classification of ICD codes. Moreover, 
compared to other biomedical models like BioBERT or 
ClinicalBERT individually, BioClinicalBERT combines 
the strengths of both biomedical and clinical corpora, 
offering a broader understanding of both general 

biomedical literature and patient centric records. Its 
architecture and vocabulary are fine-tuned for clinical 
reasoning tasks, which contributes to improved 
performance in extracting meaningful patterns from 
unstructured radiology reports. The embeddings 
generated by BioClinicalBERT serve as input features 
to the Hierarchical Multi-Head Attention Network 
(HMHAN). These embeddings capture the rich 
linguistic and semantic information present in clinical 
narratives, enabling the HMHAN to leverage deep 
contextual understanding for accurate multi label 
classification. By utilizing BioClinicalBERT, the model 
can effectively process unstructured clinical text, such 
as radiology reports, and extract meaningful features 
that align with the hierarchical structure of ICD codes. 

 

D. Handling Class Imbalance 

A major challenge exists for automated ICD coding 
because a small number of ICD codes appears 
frequently in the data and many ICD codes remain rare. 
The Synthetic Minority Over Sampling Technique 
(SMOTE) was modified to work with multi label data to 
solve this matter [39][40]. SMOTE creates new 
representative examples through the process of 
interpolation between current minority class 
observations thus achieving class balance between 
common and uncommon ICD codes. By using this 
technique, the model avoids indiscriminate preference 
for dominant codes allowing it to detect both infrequent 
and important medical classification codes better. 
Table 3 represents the impact of SMOTE in this work. 
The training process used additional weight calculated 
losses which included focal loss functioning with binary 
cross entropy to enhance emphasis on ‘hard to find’ 

diagnosis codes. These methods build stronger model 
capabilities which extend to predict ICD codes across 
all possible categories. 

Table 2. BioClinicalBERT Parameters 

Parameter Value 

Model Type BioClinicalBERT 

Number of Layers 12 

Hidden Size 768 

Number of Attention Heads 12 

Max Sequence Length 512 tokens 

Total Parameters ~110 million 

Activation Function GELU 

Pre-training Dataset MIMIC-III 
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The combination of SMOTE with class weighted 
loss functions served to remedy the problems from 
class imbalance in the data. Binary cross-entropy with 
focal loss function was implemented for training to 
boost the emphasis on underreported codes. With focal 
loss a model can regulate the loss value from correctly 
predicted cases by applying a gamma parameter which 
lets the model focus on harder minority class samples. 

When SMOTE combines with focal loss it prevents the 
model from excessively weighting dominant classes to 
become more successful at identifying rare and crucial 
ICD codes. The technique validations were completed 
through intensive experimental testing. The model 
delivers impressive advancements of recall and F1-
score metrics regarding rare ICD codes by using label 
balancing techniques together with underrepresented 
code prioritization. The enhanced predictive model 
demonstrates better performance in practice settings 
because it effectively handles rare medical diagnostic 
codes that represent complex or urgent clinical 
situations. 

 

E. Comparative Evaluation with Progressive 

Baselines 

To evaluate the performance and significance of the 
proposed Hierarchical Multi-Head Attention Network 
(HMHAN), a series of progressively complex baseline 
models were implemented and benchmarked under 
identical experimental conditions. These comparative 
baselines allow for a transparent analysis of the 
architectural improvements introduced in this study. 
The three models BioClinicalBERT without attention, 
BioClinicalBERT [41] with a custom attention 
mechanism, and HMHAN represent an evolutionary 
trajectory in model design aimed at improving 
automated ICD code prediction. 

 
1. BioClinicalBERT without Attention Mechanism 

Table 3. Impact of SMOTE in dataset 

Aspect 
Without 
SMOTE 

With SMOTE 

Class 
Distribution 

Imbalanced 
(Few samples 
for rare classes) 

Balanced 
(Synthetic 
samples for rare 
classes) 

Impact on 
Model 

Biases toward 
frequent classes 

Provides fairer 
learning across 
all classes 

Rare Class 
Detection 

Poor (Rare 
cases often 
misclassified) 

Improved (Better 
representation of 
rare classes) 

Overfitting 
Risk 

Lower (Trains 
only on real 
data) 

Moderate 
(Synthetic 
samples may 
introduce noise) 

Accuracy 
vs. Recall 

Higher accuracy 
but low recall for 
minority classes 

Balanced 
accuracy and 
improved recall 

 

 

 
 

Fig 2. Architecture of BioClinicalBERT without Attention. 
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As an initial baseline, BioClinicalBERT was utilized 
purely as a contextual feature extractor. The token level 
embeddings generated by the model were passed 
directly through fully connected layers to perform multi 
label classification without any intermediate attention 
mechanism. Despite achieving high precision (0.82), 
this configuration suffered from poor recall (0.28), 
indicating a tendency to under predict relevant codes. 
The F1-score of 0.42 reflected the model's imbalance 
in capturing both true positives and false negatives 
effectively. The lack of an attention mechanism limited 
the model's ability to dynamically emphasize important 
features from the clinical text. The architecture of this 

baseline is illustrated in Fig. 2,where BioClinicalBERT 
embeddings flow directly into dense layers, 
emphasizing its simplicity and lack of contextual focus 
enhancement. 

2. BioClinicalBERT with Custom Attention Mechanism 

To improve upon the limitations observed in the 
previous model, a custom attention layer was added 
atop the BioClinicalBERT embeddings. This layer was 
designed to assign greater weight to clinically relevant 
words and phrases within the radiology reports, thereby 
enhancing the model's focus on informative regions. 
The inclusion of attention resulted in an improved recall 
(0.50), but came with a reduction in precision (0.30) 
due to increased false positive predictions. The overall 
F1-score decreased to 0.37, suggesting that while 
sensitivity improved, specificity was compromised. The 
architecture is depicted in Fig. 3, showcasing how the 

attention mechanism selectively amplifies key token 
embeddings before classification, offering a more 
dynamic and interpretable learning pipeline. 

3. Proposed Model: Hierarchical Multi-Head Attention 
Network (HMHAN) 

To further balance the trade off between precision and 
recall and address the hierarchical nature of ICD 
codes, the Hierarchical Multi-Head Attention Network 
(HMHAN) was introduced. This architecture employs 
dual level attention that works by first capturing global 
dependencies at the ICD category level, followed by 
fine grained focus at the subcategory level. 
Additionally, it leverages the BioClinicalBERT 
embeddings and incorporates strategies for class 
imbalance handling, including multi label SMOTE and 
focal loss. The HMHAN architecture, as detailed in Fig. 
4, demonstrates a sophisticated flow where 
hierarchical label dependencies are exploited through 
structured attention, leading to precision of 0.95, recall 
of 0.88, F1-score of 0.91, and a Hamming Loss of just 
0.07which is the best among all tested models. 

The comparative performance metrics, as 
presented in Table 4, reflect the incremental 
improvements achieved through successive 
architectural enhancements. The progression from 
BioClinicalBERT without attention to a fully hierarchical 
attention based model clearly demonstrates how each 
added  component addressed specific performance 
bottlenecks. In particular, HMHAN's dual attention 
framework offers a compelling solution to the limitations 
of both precision-heavy and recall-heavy designs, 

 
Fig 3. Architecture of BioClinicalBERT with Attention. 
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achieving robust performance across all key evaluation 
metrics. 

F. HMHAN Architecture 

The proposed method introduces Hierarchical Multi-
Head Attention Network (HMHAN) as a new deep 
learning model which effectively detects hierarchical 
relationships between different ICD codes. The 
Hierarchical Multi-Head Attention Network (HMHAN) is 
designed particularly for multi label classification in 
automated ICD coding because it utilizes ICD category 
and subcategory hierarchical relationships. 
BioClinicalBERT embeddings process domain specific 
information from clinical texts while numerical data is 
standardized through categorical features that are 
encoded with one-hot encoding. The framework 

unfolds multiple features into one consolidated tensor 
which presents an entire representation of the data 
before further processing occurs.  

The defining feature of HMHAN Fig. 4 consists of a 
two-layer attention system that detects connections 
between different levels within the complex ICD code 
system. The mechanism operates through dual 
attention levels: first at the broad ICD category level 
(ex:"Circulatory System") then at the specific diagnosis 
level (ex:"Hypertensive Heart Disease"). Two attention 
layers work together within the model to maintain the 
hierarchical code organization thereby it achieves 
accurate dual level predictions between broad 
categories and specific terms. 

The hierarchical attention output is given as input to 
fully connected layers that enhance feature 
representations toward multi label classification. The 
model implements dropout functions together with layer 
normalization techniques to establish stable training 
and stops overfitting. Layer sequences with fully 
connected architecture stepwise decrease the 
dimensionality of data features, so the model can 
detect elaborate data patterns. The output layer 
performs multi label classification through the use of 
sigmoid activation to calculate probabilities for every 
ICD code. The sigmoid activation enables independent 
output probabilities which suits the model for 
overlapping and hierarchical label prediction. Algorithm 
for generating ICD code is presented in Algorithm 1. 

Algorithm 1. ICD Code Generation 

Step Description 

1 Start 
2 Load MIMIC-IV Dataset 
3 Preprocess Clinical Text Data: 
4 Handle negations using rules or tools like 

NegEx 
5 Perform tokenization 
6 Clean text (remove stop words, special 

characters, etc.) 
7 Apply feature scaling to numerical values if 

required 
8 Encode categorical variables 

 
Fig. 4. Proposed Architecture: BioClinicalBERT with Hierarchical Multi-Head Attention Network 
(HMHAN) 
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9 Generate contextual embeddings using 
BioClinicalBERT 

10 Apply SMOTE for multi label class balancing 
11 Train the Hierarchical Multi-Head Attention 

Network (HMHAN) 
12 Evaluate model using F1-score, Hamming 

Loss, and ROC-AUC 
13 Generate ICD code prediction probabilities 

using LIME for interpretability 
14 End 

 

G. Evaluation Metrices 

The model evaluation included a complete set of 
assessment metrics which measured both its predictive 
accuracy along with its robustness and its handling 
capabilities for multi label classification tasks. The 
metrics deliver complete understanding about the 
model's functionality alongside its boundaries mostly in 
situations with imbalanced datasets alongside 
hierarchical coding systems of ICD.  

When analyzing imbalanced datasets containing 
rare ICD codes one needs to use the F1-Score metric 
for accurate classification performance evaluation. The 
F1-Score represents the harmonic relationship 
between precision and recall since it finds equilibrium 
between successful detection of positives (recall) and 
precision which minimizes incorrect predictions. The 
F1-Score evaluation method determines micro or 
macro F1-Scores by computing individual label F1-
Scores before performing averaging between them. 
The F1-Score provides a valuable metric because it 
demonstrates how precisely and thoroughly a model 
predicts results thus supporting automated ICD coding 
system evaluation. The F1-Score is calculated as 
shown in Eq. (1)[42]. 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
             (1) 

Where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑃 is True Positives, 𝐹𝑃 is False Positives, and 𝐹𝑁 is 

False Negatives.Hamming Loss determines the extent 
of mislabeled assignments which occur in multi label 
classification tasks. The measure determines accuracy 
by dividing wrong predictions from total label counts to 
present models' performance quality. Hamming Loss 
serves as a strong evaluation metric for models which 
assigns multiple labels to instances because it detects 
both false positive and negative errors simultaneously 
in multi label classification scenarios. A lower score in 
Hamming Loss measurement represents superior 
model performance since it demonstrates fewer 
mistakes when predicting the proper ICD codes set. 

The Hamming Loss is calculated as shown in Eq. 
(2)[43]. 

Hamming Loss =
1

𝑁𝑀
∑ ∑ 𝟙(𝑌𝑖�̂� ≠ 𝑌𝑖𝑗)             (2)

𝑀

𝑗=1

𝑁

𝑖=1

 

where, 𝑦𝑖𝑗  is the true label for the 𝑖 -th sample and the 

𝑗-th label.�̂�𝑖𝑗 is the predicted label for the 𝑖-th sample 

and the 𝑗-th label. The Receiver Operating 

Characteristic - Area Under the Curve (ROC-AUC) 
evaluation method measures how well the model 
differentiates essential ICD codes from those 
considered irrelevant. The ROC curve examines 
various threshold levels by showing the TPR against 
FPR values and the AUC defines the curve area. A 
ROC-AUC value that rises indicates superior 
discrimination of classes indicating that the model 
successfully sorts important ICD codes from 
unnecessary positives. The ROC-AUC metric enables 
a comprehensive model performance evaluation 
because it works across different threshold values to 
ensure reliable operation in real world settings where 
optimal thresholds can change. The ROC-AUC is 
calculated as shown in Eq. (3)[44]. 

AUC = ∫ TPR
1

0

 𝑑(FPR)                           (3) 

where, TPR: True Positive Rate (also known as Recall 
or Sensitivity)FPR: False Positive RateThe integral ∫₀¹ 
TPR d(FPR) represents the area under the ROC curve 
by integrating the True Positive Rate with respect to the 
False Positive Rate over the interval [0, 1]. In addition 
to the primary metrics, the model’s performance was 
also evaluated using precision, recall, and accuracy to 
provide a more granular understanding of its predictive 
capabilities. Precision measures the proportion of 
correctly predicted positive cases out of all predicted 
positives, while recall measures the proportion of 
correctly predicted positive cases out of all actual 
positives. Accuracy, though less informative for 
imbalanced datasets, provides a general measure of 
the model’s overall correctness. These metrics, 
combined with F1-Score, Hamming Loss, and ROC-
AUC, offer a comprehensive evaluation framework for 
assessing the effectiveness of the proposed HMHAN in 
automated ICD coding. 
 
H. Model Interpretability 

To enhance the transparency and trustworthiness of 
the Hierarchical Multi-Head Attention Network 
(HMHAN), interpretability techniques were employed, 
with a focus on LIME (Local Interpretable Model 
agnostic Explanations). LIME serves as an 
interpretability post-hoc method that approximates 
predictions in localized areas around individual 
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examples to explain model decision making processes. 
The technique stands valuable in healthcare because 
healthcare professionals need to understand reasoning 
behind predictions for clinical trust and acceptance. 
LIME generates locally interpretable models by 
approximating the model's predictions in a small region 
around a specific data instance. For each instance 𝑥, 

LIME fits a simple interpretable model 𝑔 (e.g., linear 

regression) that approximates the behavior of the 
complex model 𝑓 around 𝑥 as shown in Eq. (4)[45]. 

𝑓(𝑥) ≈ 𝑔(𝑥)                             (4) 

where, f:original model,x:instance being explained, 
g:interpreted model fitted on a smallneighbourhood 
around x. This approximation helps understand which 
features contributed the most to the prediction for that 
specific instance. 

IV. Results 
A. Experimental Setup 

The proposed Hierarchical Multi-Head Attention 
Network (HMHAN) model was evaluated on the MIMIC-
IV radiology dataset containing 73,461 clinical reports 
with corresponding ICD codes. The dataset was 
preprocessed using BioClinicalBERT tokenization (512 
max length) and split into 70% training, 15% validation, 
and 15% test sets while preserving label distributions. 
For comprehensive comparison, we implemented three 
models: (1) a baseline BioClinicalBERT model without 
attention mechanisms, (2) a BioClinicalBERT model 
with single head attention, and (3) the proposed 
HMHAN featuring hierarchical dual-level attention (4 
attention heads each for category and subcategory 
levels). To address class imbalance, we applied 
SMOTE resampling and employed a combined loss 
function of focal loss (γ=2, α=0.25) and class weighted 

binary cross-entropy. All models were trained on an 
NVIDIA RTX 4070 GPU using PyTorch, with the 
AdamW optimizer (learning rate=5e-5, weight 
decay=1e-4), batch size of 32, and early stopping 
based on validation F1 score (patience=5 epochs). The 
evaluation metrics included micro-averaged precision, 
recall, F1-score, ROC-AUC, and Hamming loss, with 
statistical significance verified through paired t-tests 
(p<0.01) across multiple runs. Model interpretability 
was assessed using LIME explanations and attention 
weight visualizations to ensure clinical relevance of 
predictions. This rigorous experimental design enabled 
fair comparison while demonstrating HMHAN's 
superior performance in automated ICD coding. Output 
of LIME is represented in Fig. 5. 

 
B. Performance Evaluation 

The proposed HMHAN model demonstrated superior 
performance across all evaluation metrics when 
compared to baseline approaches. As shown in 
Table.4, as well as in Fig. 6,HMHAN achieved an 
impressive F1-score of 0.91, significantly 
outperforming both the baseline BioClinicalBERT 
without attention (F1=0.42) and BioClinicalBERT with 
custom attention (F1=0.37). This substantial 
improvement highlights the effectiveness of the 
hierarchical attention mechanism in capturing both 
broad diagnostic categories and specific subcategories 
within clinical text.  

The model's high precision (0.95) indicates minimal 
false positives, while its strong recall (0.88) suggests 
excellent coverage of relevant ICD codes, addressing 
a critical challenge in medical coding where missing 

 
Fig.5. LIME Prediction Probability for ICD Code 
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diagnoses can have significant clinical and financial 
implications. 

A key strength of HMHAN was its ability to maintain 
balanced performance across both frequent and rare 
ICD codes, as evidenced by the ROC-AUC score of 
0.92. This demonstrates robust discriminative power in 
distinguishing between relevant and irrelevant codes. 
The low Hamming Loss of 0.07 further confirms 
HMHAN's accuracy in multi label prediction, with fewer 
incorrect label assignments per clinical report 
compared to baselines (0.09 and 0.16 respectively). 
These results are particularly noteworthy given the 
complexity of the MIMIC-IV radiology dataset, which 
contains substantial class imbalance and hierarchical 

relationships between codes. 

The performance gains can be attributed to several 
innovative aspects of HMHAN's architecture. The dual 
level attention mechanism effectively captured 
hierarchical dependencies between ICD categories 
and subcategories, while the SMOTE based 
resampling ensured adequate representation of rare 

codes during training. Additionally, the combination of 
focal loss and class weighted BCE helped the model 
focus on challenging cases without being overwhelmed 
by frequent codes. These technical innovations 
collectively enabled HMHAN to achieve state-of-the-art 
performance while maintaining computational 
efficiency, requiring only 14ms per report for inference 
on an RTX 4070 GPU. The model's strong performance 
across all metrics suggests it is both clinically relevant 
and technically robust for real world deployment in 
healthcare systems. 

V. Discussion 

The results highlight the progressive improvements 
achieved through architectural modifications in 
automated ICD coding. Initially, BioClinicalBERT 
demonstrated a precision value of 0.82 at the beginning 
when it operated without attention mechanics yet it 
successfully identified positive cases. The recall 
performance at 0.28 proved to be weak because the 
model identified only a small fraction of necessary ICD 

Table. 4. Results of HMHAN with Baseline Models using various evaluation metrices 

Model Precision Recall F1-Score ROC-AUC Hamming Loss 

BERT without attention 
mechanism 

0.82 0.28 0.42 0.64 0.09 

BERT with custom attention 
mechanism 

0.30 0.50 0.37 0.68 0.16 

HMHAN (Proposed) 0.95 0.88 0.91 0.92 0.07 

 

 
Fig.6. Performance Comparison of HMHAN with Baseline Models 
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codes which generated an F1-score of only 0.42. The 
overall discrimination power of the model between 
relevant and irrelevant codes was restricted by a ROC-
AUC score of 0.64. The Hamming Loss of 0.09 
suggested moderate misclassification, with a tendency 
toward conservative predictions. A customized 
attention method was combined with BioClinicalBERT 
to improve its recall performance while addressing the 
original low recall. The improved approach performed 
well for recall enhancement (0.50) because it enabled 
the model to detect suitable ICD codes. When the 
model achieved improved true positive identification, its 
precision dropped to 0.30 because this achievement 
was accompanied by an increase in false positives. 
ROC-AUC increased to 0.68 as a result of which 

predictions received better ranking while the F1-score 
fell to 0.37. With the modified technique the Hamming 
Loss reached 0.16 thus demonstrating more 
misidentified labels. 

The implementation of Hierarchical Multi-Head 
Attention Network (HMHAN) brought substantial 
improvements to all performance metrics. The highest 
precision value of 0.95 and recall 0.88 in the model 
generated an F1-score of 0.91. The hierarchical multi-
head attention method succeeded in identifying 
relationships between codes at various levels which 
produced better prediction results. The ROC-AUC 
score of 0.92 proved the model's excellent ability to 
perform classifications. The HMHAN model presented 
the lowest Hamming Loss rate of 0.07 which reflects 

 
(a) 

 
 

(b) 
 

Fig. 7. Training and Validation of HMHAN model (a) loss, (b) accuracy  
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excellent performance in reducing incorrect 
classifications among multiple labels. Training and 
validation loss and accuracy of HMHAN is presented in 
Fig. 7(a) and 7(b).  

When comparing the proposed HMHAN model with 
existing state-of-the-art approaches in automated ICD 
coding, its performance advantages become distinctly 
clear. Diao et al. [26] developed a clinically 
interpretable ICD-10 coding model using LightGBM 
with sequential and grouping features, achieving an 
accuracy of 95.2% and a Macro-F1 of 88.3% on 
cardiovascular-related diagnoses. While this model 
benefits from high interpretability via SHAP values and 
domain specific feature engineering, it primarily 
targeted single-label classification for primary 
diagnosis and was limited in scalability across broader, 
multi label scenarios. In contrast, the proposed model 
achieved an F1-score of 0.91 and a ROC-AUC of 0.92 
in a more complex multi label setting using radiology 
reports from MIMIC-IV. Chen et al. [25] presented a 
deep learning based ICD-10 auto-coding system 
incorporating attention-enhanced GRU networks and 
BERT embeddings. Although their system showed 
significant improvements in coder assistive training 
scenarios, the predictive performance on clinical text 
alone yielded F1-scores of 0.715 (diagnoses) and 
0.618 (procedures), reflecting limited accuracy in 
complex classification tasks compared to the results. 
Moreover, their model focused heavily on visualization 
and coder training rather than high stakes predictive 
coding performance. Zhao et al. [16] proposed BW_att, 
a deep learning model that integrates fine tuned BERT 
encoders, word2vec embeddings for ICD code titles, 
and a label attention mechanism tailored for coronary 
heart disease (CHD) coding. While BW_att reported a 
Macro-F1 of 96.2% and a Macro-AUC of 98.9% on the 
private Fuwai-CHD dataset, it demonstrated a 
substantial drop in performance (Macro-F1 of 40.5%) 
when applied to the publicly available MIMIC-III-CHD 
dataset. This indicates that although highly effective on 
narrow, disease-specific tasks, BW_att may face 
challenges in generalization across heterogeneous 
clinical narratives. 

The proposed model addresses more robustly by 
leveraging the generalizability of BioClinicalBERT 
embeddings and dual-level attention. Kim et al. [9] 
introduced the PAAT model with a partition-based label 
attention mechanism designed to extract both global 
and local textual cues from long clinical documents. 
Their approach improved upon traditional label 
attention by segmenting input text and applying 
attention at both the document and segment levels. 
Despite its architectural sophistication, PAAT achieved 
a precision of 0.86 and recall of 0.70 on the MIMIC-III 
dataset, which the proposed model outperforms with a 
precision of 0.95 and recall of 0.88, indicating better 

sensitivity and specificity in code prediction across 
varying frequency distributions. Finally, Vu et al. [8] 
proposed a label attention model tailored for multi label 
classification, which incorporated a hierarchical 
decoder to capture relationships among ICD codes. 
Although their model showed promising results and 
improved interpretability, it reported an F1-score of only 
0.73 on the MIMIC-III dataset. By comparison, the 
proposed HMHAN framework benefits from a 
hierarchical multi-head attention mechanism that not 
only models parent child relationships among ICD 
codes but also enhances feature learning through 
attention-weighted BioClinicalBERT embeddings and 
focal loss optimization. This led to substantial 
performance gains in both frequent and rare label 
prediction. Taken together, these comparisons 
highlight how the proposed model’s synergistic design, 
integrating domain-specific language modeling, 
hierarchical attention, and class imbalance mitigation 
that delivers superior accuracy, robustness, and 
interpretability across diverse ICD coding tasks. 

Despite its promising performance, the proposed 
model approach has certain limitations. First, the model 
was trained and evaluated on a subset of MIMIC-IV 
radiology reports, which may limit generalizability to 
other clinical departments or datasets. Second, while 
SMOTE was used to address class imbalance, rare 
ICD codes remain difficult to predict due to limited 
contextual data. Third, although attention weights and 
LIME explanations provide interpretability, clinical 
validation by domain experts is necessary to ensure the 
relevance and reliability of these interpretations. Lastly, 
real world deployment will require integration with 
hospital information systems and adherence to clinical 
data privacy regulations. 

The findings of this study have significant 
implications for automated medical coding and clinical 
decision support. By improving the efficiency and 
accuracy of ICD code assignment, the proposed model 
has the potential to reduce administrative burden, 
enhance reimbursement processes, and support 
secondary research through more structured data. The 
incorporation of attention-based interpretability 
mechanisms also addresses one of the primary 
concerns in medical AI, trust and transparency. The 
proposed model approach demonstrates that deep 
learning models can not only match or exceed 
traditional methods in performance but can also align 
with clinical requirements for accountability. 

VI. Conclusion 

In this study, we presented a deep learning-based 
framework for automated ICD code assignment using 
radiology reports, integrating BioClinicalBERT for 
domain-specific feature extraction and a Hierarchical 
Multi-Head Attention Network (HMHAN) for capturing 
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contextual relationships. The proposed model model 
achieved an F1-score of 0.83, ROC-AUC of 0.91, and 
a Hamming Loss of 0.18, outperforming existing 
baselines such as BioClinicalBERT without attention 
and standard transformer models. These results 
highlight the effectiveness of combining hierarchical 
attention mechanisms with domain-specific 
embeddings to enhance multi label classification 
performance in complex medical text. 

The performance improvements were particularly 
evident in the prediction of co-occurring and rare ICD 
codes, which are often underrepresented in 
imbalanced clinical datasets. The use of SMOTE 
helped address this imbalance, contributing to 
increased recall across minority classes. These results 
are promising for real-world implementation, where 
accurate and comprehensive ICD coding directly 
influences billing accuracy, epidemiological reporting, 
and healthcare analytics. 

Beyond the metrics, the clinical utility of the 
proposed model approach lies in its interpretability. By 
integrating LIME for model explanation, we enabled 
clinicians and coders to understand why specific codes 
were predicted, fostering trust in AI-assisted decision 
systems. However, limitations remain. The evaluation 
was limited to the MIMIC-IV dataset, which, while 
widely used, represents data from a single institution 
and may not generalize across diverse healthcare 
systems or specialties. 

Looking ahead, future research could extend this 
work by incorporating structured data (e.g., lab values, 
imaging metadata) to complement unstructured text. 
Evaluating the model across multi center datasets and 
languages would further validate its robustness. Real-
time integration into EHR platforms and longitudinal 
monitoring of its impact on coding efficiency and 
accuracy are also important directions. Overall, this 
research demonstrates a scalable and interpretable 
approach to ICD code generation that can meaningfully 
support clinical workflows and data standardization in 
healthcare. 
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