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ABSTRACT Down syndrome (DS) is a chromosomal disorder linked to intellectual impairment and developmental delays in 

babies. The primary prenatal indicator for detecting DS during the initial stages of gestation is the thickness of nuchal 

translucency (NT). This paper introduces a GoogLeNet model based on convolutional neural networks (CNN) for the semantic 

segmentation of the NT region from ultrasound fetal images, facilitating rapid and cost-effective diagnosis in the early stages 

of the gestational period. A transfer learning methodology with AlexNet is employed to train the NT regions for the detection 

of DS. The Inception module of GoogLeNet enables the model to simultaneously capture characteristics at various sizes of 

images. The capacity to extract both intricate and broad characteristics can improve the model’s performance in precisely 

identifying the NT area. This will function as an exceptional tool for physicians in screening of DS, enhancing the detection 

rate and providing a substantial opinion for early diagnosis. The proposed deep learning approach attained an accuracy of 

96.18% and Jaccard index of 0.967 for NT region segmentation utilizing GoogLeNet. A confusion matrix was used to evaluate 

the image classification by AlexNet model's effectiveness, and the results showed an overall accuracy of 97.84%, ROC-AUC 

of 98.45%, recall of 99.64%, precision of 96.04%, and F1 score of 97.80%. The proposed deep learning method produced 

remarkable outcomes and can be applied to the identification of DS in medical field. This method identifies individuals at 

increased risk for this condition and enables termination in the early stages of pregnancy. 

INDEX TERMS Down syndrome; Nuchal translucency, Ultrasound.  

I. INTRODUCTION 

Nuchal translucency (NT) sonography signifies a significant 

advancement in the screening for Down syndrome (DS). 

Trisomy 21, characterized by supernumerary chromosome 21, 

leads to a constellation of clinical manifestations referred to as 

DS [1]. It is one of the most genetically intricate disorders that 

may sustain human life beyond term, and it is the most 

prevalent survivable autosomal aneuploidy. DS is the most 

prevalent genetic cause of intellectual disability and the 

primary contributor to certain congenital anomalies and 

medical disorders. Over the past century, conventional 

epidemiological investigations have been undertaken to 

ascertain the frequency, etiology, and clinical relevance of the 

illness. DS is predicted to occur in around 1 in 732 newborns 

in the United States, while research suggests variations in 

incidence estimates across different racial and cultural groups 

[2]. Ultrasonography is employed for the identification and 

evaluation of fetuses because to its non-invasive 

characteristics, cost-effectiveness, and continuous 

improvement in picture quality [3]. DS can be detected 

prenatally or postnatally. Prenatal screening comprises 

biochemical serum analysis and ultrasound examination [4]. 

In order to find DS, intrusive diagnostic tests like 

amniocentesis and chorionic villus sampling might cause fetal 
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damage and miscarriage. DS is likely to be linked to a blood 

test, with signs such as NT and nasal bone (NB) observable in 

ultrasound scans throughout the first and second trimesters of 

pregnancy [5]. The integration of maternal age, biochemical 

serum markers, and sonographic indicators such as NT and 

NB enhance detection rates [6].  

The measurement of NT thickness is a critical prenatal 

indicator for screening trisomy 13, 18, and 21 [7], [8]. The NT 

refers to the subcutaneous fluid located beneath the skin, 

specifically situated behind the neck of the fetus [9]. The 

epidermis has a white (echogenic) appearance, whereas the 

NT fluid under the skin looks black (anechogenic). It is 

assessed between 11th and 14th weeks of gestation during 

pregnancy. Typically, NT resolves at 14th weeks of gestation . 

[10, p. 24].. The NT computation necessitates the crown-rump 

length of the fetus, which should range from 45 to 84 mm [11]. 

Enlarged NT with a thickness above 3 mm can elevate the risk 

of heart anomalies and may result in a genetic disorder [12]. 

The fetus’s position must be in the mid-sagittal view to test 

NT effectively. The physician personally assesses the 

thickness of NT with the electronic caliper [13]. The 

calibration is performed by positioning the caliper between 

two echogenic lines seen on the screen. The NT thickness must 

be meticulously measured since it falls within a few 

millimetres; even a minor inaccuracy by the sonographer 

might result in inaccurate readings. Consequently, automated 

approaches can enhance the determination of NT thickness 

and resolve the complications associated with manual 

measurements.  

NT examination is an essential phase of computer-aided 

diagnosis for the early identification of DS. Conventional 

segmentation approaches encounter many challenges in 

recovering the NT area, including ambiguous edges, uniform 

intensity, prolonged processing time, and a heightened 

likelihood of mistake  [14] . Automated identification of DS 

would eliminate these obstacles and lead to a more rapid and 

precise diagnosis of the fetus. The segmentation of NT from 

ultrasound pictures is a challenging task. There exists a 

significant overlap between the intensity distributions of NT 

area clusters and the adjacent background regions. 

Furthermore, the anatomy of the NT area varies significantly 

as the fetus rotates. The intrinsic variability in ultrasonic 

intensity among institutions, scanners, and operators 

complicates the segmentation process [14]. 

Numerous studies in the literature address the measurement 

of NT, notably Bernardino et al. [13], which is among the 

initial efforts to automate the method. Their approach is semi-

automatic since the user must manually identify the 

membranes around the translucency; they serve as the initial 

points to be traced along the margins using Sobel and Canny 

filters. Lee et al. [3] utilized a non-linear anisotropic filter to 

mitigate potential speckle noise. This approach generally 

underestimates the thickness of the NT compared to the 

ground truth established by a doctor. The procedure’s 

application is restricted to photos where the fetus is positioned 

horizontally. Catanzariti et al. [15] enhanced the cost function 

for segmenting the edges that define translucency without 

necessitating beginning parameters. Nirmala et al. [16] first 

pre-processed sonography images using a median filter to 

eliminate speckle noise. Then, they identified regions 

containing the NT and applied the mean shift method to 

segment that region. Subsequently, the Canny operator is 

employed on the segmented pictures to delineate the edges that 

define the NT. They proposed blob analysis to quantify the 

thickness of translucency. Finally, they have presented a 

quantitative comparison of the mean thickness values for 

normal and abnormal translucency. Deng et al. [17] presented 

a semi-automatic approach wherein images undergo 

morphological filtering for noise reduction, followed by 

applying an empirically determined threshold. They 

designated two initial locations, and the edges are determined 

from these points using a gradient vector flow snake 

methodology; the resulting edges are further refined by a 

dynamic programming process to get the thickness and area of 

the NT. They presented a comparison of the outcomes 

obtained from actual and synthetic data. In another study, 

Deng et al. [18] offered a hierarchical approach for the 

automated identification of the nuchal area, utilizing three 

support vector machine (SVM) classifiers to delineate the 

head, neck region, and body of the fetus. Deng et al. [19] 

revisited the same strategy by incorporating an additional tier 

of the hierarchical model to depict the fetal profile, resulting 

in enhanced performance. Moratalla et al. [7] introduced 

SonoNT architecture, which is integrated and marketed in 

some ultrasound instruments. This tool enables semi-

automatic assessment of NT, requiring the user to delineate a 

box that encompasses the maximal thickness of the NT. This 

tool monitors the upper and lower edges by utilizing gradient 

and brightness data within the box, ultimately determining the 

maximum vertical distance between these edges. Supriyanto 

et al. [20] employed a multilayer neural network to identify the 

region containing NT by processing sub-samples of the image 

and determining the degree of association with the NT class. 

Upon identifying the sites with a greater likelihood of being 

part of the NT zone, the approach employed an automated 

algorithm for edge detection based on intensity measurements. 

This method depends on an initial manual categorization of 

the mid-sagittal portions, with the ultimate outcomes 

determined by a correlation index between the average 

observations from a physician and their respective automatic 

measures. Park et al. [21] utilized Dijkstra’s method to identify 

the inner and outer boundaries of the two components that 

define the translucency. They selected seed points inside these 

areas, and the segmentation graph cut procedure is 

implemented. Then, the diameter of the NT is assessed. 

Graphical representations of qualitative evaluations for edge 

extraction and translucency thickness are presented, 

highlighting the five best and worst scenarios. Sonia et al. [22] 

categorized the thickness of both normal and pathological NT 

with a SVM. Feature extraction is executed by the use of a 

discrete wavelet transform. This method having limitations 

such as NT thickness is not quantitatively assessed, the edges 
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are not delineated, and the maximum diameter is not 

evaluated. Anzalone et al. [23] provide a study focused on the 

automated identification of the sagittal median and NT 

measurement. The process has two stages: the first detects the 

medial sagittal sections, while the second examines the nuchal 

area and quantifies the NT thickness. Thomas et al. [24] 

utilized a CNN-based SegNet model incorporating a Visual 

Geometry Group (VGG-16) for the semantic segmentation of 

the NT area from US fetal pictures. Chaudhari et al. [25] 

developed an automated method for NT detection utilizing 

scale-invariant feature transform (SIFT) key points and a 

General Regression Neural Network (GRNN) for evaluating 

NT thickness. Rajesh et al. [26] proposed AdaBoost method 

for NT region segmentation. Liu et al. [27] developed a CNN 

incorporating fully connected layers to directly identify the NT 

area. Additionally, they used U-Net with a tailored 

architecture and loss function to achieve accurate NT 

segmentation.  

A variety of screening programs utilizing NT sonography 

are expected to gain popularity for general population 

screening. Nonetheless, certain practical implementation 

challenges must be addressed prior to the endorsement of 

broad employment of this approach. The assessment of the NT 

necessitates advanced sonographer expertise, and the Fetal 

Medicine Foundation (FMF) has established a methodology 

outlining these prerequisites to guarantee accurate 

measurement [28]. This article aims to introduce an effective 

tool for facilitating early diagnosis through the automatic 

measurement of NT. 

Deep learning algorithms are highly successful for the 

classification of many biomedical engineering problems [29], 

[30],[31]. This paper introduces a GoogLeNet [32] model 

based on convolutional neural networks (CNN) for the 

semantic segmentation of the NT region from ultrasound fetal 

images, facilitating rapid and cost-effective diagnosis in the 

early stages of the gestational period. A transfer learning 

methodology with AlexNet [33] is employed to train the NT 

regions for the detection of DS. GoogLeNet’s Inception 

module allows the model to capture features at multiple scales 

simultaneously. This is crucial for NT measurement, as 

ultrasound images may vary in quality and resolution. The 

ability to extract both fine and coarse features can enhance the 

model’s ability to identify the NT region accurately. In fetal 

diagnostics, the precise measurement of NT thickness is 

essential for identifying chromosomal abnormalities such as 

DS. Conventional manual techniques for assessing NT 

thickness in prenatal ultrasound pictures may be subjective 

and protracted, resulting in variability in outcomes.  

GoogLeNet, a deep convolutional neural network, provides 

an effective solution through its capacity to learn and extract 

hierarchical characteristics from intricate pictures. The 

application of GoogLeNet for NT measurement in fetal 

ultrasound images could revolutionize prenatal screening for 

DS by improving accuracy, reducing human error, and 

facilitating early detection. This advancement would benefit 

both clinicians and patients, particularly in settings where 

access to specialized expertise is limited. Therefore, we have 

considered the hypothesis that GoogLeNet can automate and 

refine the accuracy of NT thickness measurements, 

minimizing human error and enhancing early identification 

rates of DS, hence improving clinical results. 

This study employed the GoogLeNet deep learning 

architecture for the automated assessment of NT in prenatal 

ultrasound images to facilitate the early identification of DS. 

Utilizing the sophisticated feature extraction capabilities of 

GoogLeNet, we created a model proficient at properly 

recognizing and segmenting the NT area in real-time 

ultrasound pictures. Our methodology markedly improves the 

accuracy of NT region detection, a crucial indicator in prenatal 

screening for chromosomal anomalies. The incorporation of 

this deep learning model into the diagnostic procedure 

provides a non-invasive, dependable, and efficient approach 

for detecting DS, enhancing prenatal care results. The 

AlexNet, pre-trained on vast datasets like ImageNet, has 

already learned to extract hierarchical features that can be 

leveraged for new tasks, such as NT detection. By applying 

transfer learning, the model can quickly adapt to identifying 

features specific to NT with limited training data, common in 

medical imaging tasks. Additionally, this approach reduces 

training time and computational resources while improving 

accuracy, as it builds on the powerful feature extraction 

capabilities of AlexNet. This may be useful for medical image 

analysis, where high accuracy is critical for early and reliable 

DS detection. The main contributions of this study are as 

follows: 

1. A proposal for a novel GoogLeNet-based method for 

segmentation of the NT region from fetal ultrasound 

images 

2. Segmentation of NT region in fetal ultrasound images 

using GoogLeNet. 

3. Detection of DS from segmented NT regions using the 

AlexNet.  

This paper is structured as follows: Section 2 explains the 

proposed framework for NT region segmentation and DS 

identification. The results derived from the proposed 

framework and the discussion of these results are given in 

Section 3. The investigation’s conclusions are detailed in 

Section 4. 

 
II.  PROPOSED METHOD 

In this study, we utilize a GoogLeNet model for the semantic 

segmentation of the NT region from ultrasound fetal images. 

Subsequently, we train the segmented images of the NT 

regions using a transfer learning methodology with  AlexNet 

to detect DS. 
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FIGURE 1. The proposed framework for NT region segmentation and DS detection. 

 

   The proposed method for detecting DS is shown in FIGURE 

1. In this study, we utilize a GoogLeNet model for the 

semantic segmentation of the NT region from ultrasound fetal 

images. Subsequently, we train the segmented images of the 

NT regions using a transfer learning methodology with 

AlexNet to detect DS. The proposed methodology consists of 

the following stages: pre-processing of images, applying pre-

processed images to GoogLeNet to get segmented NT regions, 

training of the AlexNet model to get the prediction of DS. 

 
A.  DATASET 

The dataset utilized in this study was gathered from 

sonographic centers in Ahmednagar, Maharashtra, India. In 

this study, we have collected 250 ultrasound images from the 

first trimester of gestation. A total of 250 ultrasound images 

have been obtained for this study. Out of these, 50 cases where 

trisomy 21 (DS) was proven in the first trimester. The results 

are categorized based on nuchal translucency markers. The 

dataset is compiled from women aged 25 to 40 years.  The 

annotations were conducted by two experienced radiologists 

possessing more than 12 years of experience in 

fetal ultrasound imaging. In cases of discrepancies, a third 

senior radiologist reviewed the annotations to reach a 

consensus.  

   To guarantee quality and clinical relevance, the dataset was 

assembled using precise inclusion and exclusion criteria. A 

gestational age between 11 and 14 weeks, when NT measures 

are most significant clear visibility of the nuchal translucency 

(NT) area in ultrasound pictures, as well as the availability of 

associated clinical data verifying the presence or absence of 

Down syndrome, were prerequisites for inclusion. Low-

quality photos with a lot of noise or occlusion, cases with 

known prenatal abnormalities unrelated to Down syndrome, 

and records with insufficient clinical details were all excluded. 

   We have performed 5-fold cross-validation to generate 

results. The model is trained on four folds and tested on the 

remaining one, repeating this process five times, each time 

using a different fold for testing. The final performance is 

averaged across all five iterations to provide a more reliable 

estimate of the model’s accuracy. This helps reduce overfitting 

and improves generalization. 

 
B. PRE-PROCESSING 

The fetal picture obtained from sonography is affected by 

noise distortion, which compromises the clarity of local 

characteristics. Denoising is the preliminary process used to 

photographs to eliminate noise while preserving background 

details. The proposed approach employs an anisotropic 

diffusion filter (ADF) to reduce picture noise [34]. The ADF 

was selected for ultrasound fetal images due to its efficacy in 

reducing speckle noise while retaining critical edge details. In 

contrast to conventional smoothing filters, ADF selectively 

smooths homogeneous areas while preserving sharp 

boundaries, essential for maintaining fetal structures. This 

improves image clarity, facilitating enhanced segmentation 

and diagnosis. Furthermore, its iterative approach enables 

precise noise suppression without significant blurring. 

Anisotropic diffusion is a partial differential equation (PDE)-

based technique that reduces image noise without removing 

significant parts of the image content, especially edges. The 

anisotropic diffusion filter is modelled as shown in Eq. (1)  

 
𝜕𝐼(𝑥,𝑦,𝑡)

𝜕𝑡
=  div[𝑐(𝑥, 𝑦, 𝑡)∇𝐼(𝑥, 𝑦, 𝑡)]                                      (1) 

 

where I(x,y,t) is the image intensity at position (x,y) and time 

t;  ∇I(x,y) is the gradient of the image at position (x,y), 

c(∇I(x,y)) is the conductance function, which is a function of 

the gradient magnitude (i.e., it controls the diffusion rate based 

on image gradients). It typically decreases as the gradient 

magnitude increases, meaning diffusion is reduced at edges, 

div represents the divergence operator, which computes how 

much the vector field (the gradient-weighted image) is 

spreading out at each point. 

 
C. SEGMENTATION OF NT REGION USING GoogLeNet 

GoogLeNet [32] is a well-recognized pre-trained deep CNN 

architecture including 22 layers, designed to surpass previous 

CNN designs. It demonstrated superiority in accurately 

interpreting visual patterns directly from the source and won 

the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) competition in 2014. The significant increase in 

performance is attributed to the inception modules. In this 

study, we utilize a GoogLeNet model for the semantic 

segmentation of the NT region from ultrasound fetal images. 

The GoogLeNet architecture employed for NT region 

segmentation is as shown in FIGURE 2.  
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The inception modules used in GoogLeNet architecture is 

depicted in FIGURE 3. The inception module enables 

simultaneous execution of numerous convolutions with 

various kernels and max pooling inside a single layer, ensuring 

effective weight training and the selection of more pertinent 

features by the network. Each inception layer has variable-

sized convolutional kernels, namely 1×1, 3×3, and 5×5, 

together with a further 3×3 max pooling operation to extract 

more specific features from the input received from the 

preceding layer. The 1×1 filters, in conjunction with the max 

pooling layer, execute the twin functions of reducing 

dimension and content summarization from the preceding 

layer within the inception modules. 

An Inception module applies multiple convolutions in 

parallel with different filter sizes (1×1, 3×3, 5×5) and pooling, 

then concatenates their outputs. The inception operation on 

input tensor (X) is given by Eq. (2)  

 

Inception(X):Concat(𝑓1×1(𝑋), 𝑓3×3(𝑋), 𝑓5×5(𝑋), 𝑓𝑝𝑜𝑜𝑙(𝑋) (2) 

Where 𝑓1×1(𝑋), 𝑓3×3(𝑋), 𝑓5×5(𝑋), 𝑓𝑝𝑜𝑜𝑙(𝑋) is feature maps 

from different branches. The nine inception modules of the 

GoogLeNet reliably extract the most discriminative 

characteristics from the original picture. The pre-processed 

images are applied to the GoogLeNet to get the segmented NT 

regions.  We have used learning rate of 0.001, batch size of 16 

during training. We have trained model up to 50 epochs with 

Adam optimizer and cross-entropy loss function. The 

segmented images are then applied to the AlexNet to 

categorize them into healthy and DS classes.  

 
D.  PREDICTION OF DS USING AlexNet 

Among several CNN architectures, AlexNet is one of the most 

effective frameworks commonly utilized for image 

classification challenges. AlexNet was introduced by 

Krizhevsky et al. and secured victory in the ImageNet 

competition in 2012. It has more than twice the accuracy of  

FIGURE 2. GoogLeNet architecture for NT region segmentation 

FIGURE 3. Inception module of GoogLeNet 
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ImageNet and possesses distinct benefits in recognizing 

images. It is the fundamental model in the field of image 

processing [33]. AlexNet comprises a total of eight layers in 

its design, consisting of five convolutional layers and three 

fully linked layers. Training the network with extensive data 

enables the achievement of up to 1000 categories of image 

categorization. The input picture size for the network is 227 x 

227 x 3, where 227 denotes the width and height, and 3 

signifies the RGB channels. A basic convolutional operation 

on an image is given by Eq. (3) as follows: 

𝑂𝑖,𝑗
(𝑘)

= ∑  ∑  𝑁
𝑛=1

𝑀
𝑚=1 𝐼𝑖+𝑚,𝑗+𝑛 .𝑊𝑚,𝑛

(𝑘)
+ 𝑏(𝑘)                       (3) 

where 𝑂𝑘is output feature map for kernel k, i is input feature 

map, 𝑊(𝑘)is weights of Kernel k, 𝑏(𝑘)is bias term M*N: 

kernel size. 

 In the conventional AlexNet architecture, the ReLU 

activation function is incorporated following the first layer, 

while the maximum pooling layer and normalization are 

applied after the second layer. The third

FIGURE 4. AlexNet Architecture for DS detection using segmented NT regions 

  
(a) (b) 

  
(c) (d) 

FIGURE 5. Ultrasound fetal image with various condition (a) Healthy Fetal, (b) Fetal with DS,  (c) Segmented NT contour of healthy Fetal by GoogLeNet, 

(d) Segmented NT contour of Fetal with DS  by GoogLeNet. 
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layer only employs a convolutional layer with a ReLU 

activation function, whereas the fifth layer resembles the first 

layer without normalization. The sixth to eighth layers include 

the fully linked layers, while the final layer use the softmax 

classifier to categorize the pictures into 1000 classes. 

Furthermore, Dropout is employed in this study to effectively 

eliminate parameters in order to mitigate model overfitting. 

FIGURE 4 shows the AlexNet architecture for DS detection 

using segmented NT regions. The segmented NT images were 

utilized to train the AlexNet model for differentiating between 

the DS and healthy fetus.  

   The initial four convolutional layers were frozen to retain the 

low-level feature extraction capabilities learned from 

ImageNet. The later layers were fine-tuned to learn domain-

specific features for NT segmentation. The final classification 

layer was replaced with a new fully connected layer tailored 

to our dataset, followed by a softmax activation function. To 

improve model generalization and mitigate overfitting due to 

the limited dataset size, extensive data augmentation was 

applied, including rotation, scaling, and flipping. The network 

was trained using the Adam optimizer. 

 
III. RESULTS 

This work presents a Deep Learning-based method for the 

automated segmentation of the NT area. A semantic 

segmentation network utilizing the GoogLeNet framework 

was developed to segment the NT area. The network’s 

performance was evaluated on DS and healthy fetuses. The 

GoogLeNet model demonstrated outstanding performance, 

with an accuracy of 96.18% and a Jaccard index of 0.967. The 

segmented NT pictures were subsequently trained using the 

AlexNet model to differentiate between DS and healthy 

fetuses. Ultrasound fetal images and NT contour segmented 

by GoogLeNet are shown in FIGURE 5(a)-(d). FIGURE 5(a) 

and FIGURE 5(b) show the ultrasound images of healthy fetal 

and fetal with DS. The respective segmented regions of these 

images by GoogLeNet are shown in FIGURE 5(c) and 

FIGURE 5(d). The efficacy of the image classification model 

was assessed via a confusion matrix, resulting in an overall 

accuracy of 97.84%, ROC-AUC of 98.45%, recall of 99.64%, 

and precision of 96.04%, and F1 score of 97.80% as presented 

in TABLE 1. The proposed strategy might be advantageous 

for physicians in the categorization of DS. 

 

IV. DISCUSSION  

To automate the process of NT area segmentation, we 

presented a deep learning-based method in this research. The 

NT area was segmented using a semantic segmentation 

network that was trained on the GoogLeNet model. To further 

train the segmented NT images to differentiate between the 

healthy fetus and the one with DS, the AlexNet model was 

used. The efficacy of proposed deep learning method is 

analysed by comparing the performance of the proposed 

method with the state-of-the-art methods as shown in TABLE 

2.  

 

 
TABLE 1 

Confusion Matrix of AlexNet to Differentiate between DS and Healthy 
Fetuses 

 Predicted Class 

Actual Class Healthy Down Syndrome 

Healthy 

Down Syndrome 

99.64 

3.96 

0.36 

96.04 

Accuracy 97.84 

 
TABLE 2 

The performance evaluation of the proposed framework with the existing 
methods. 

Research work  % Accuracy 

Advanced SegNet [24]  91.70 

SIFT+GRNN [25]  97.40 

AdaBoost [26]  98.60 

Cascade ML [27] 95.05 

Proposed Deep Learning technique 

GoogLeNet+AlexNet 
97.84 

    

Thomas et al. [24] introduced a SegNet model based on a 

Convolutional Neural Network (CNN) utilizing a Visual 

Geometry Group (VGG-16) for the semantic segmentation of 

the NT region from US fetal pictures, facilitating rapid and 

cost-effective diagnosis in the early stages of gestation. A 

transfer learning methodology with AlexNet is employed to 

train the NT divided regions for the identification of DS. They 

have achieved accuracy of 91.70% for the semantic 

segmentation of the NT area from US fetal pictures.  

Chaudhari et al. [25] presented a fully automated approach for 

NT detection. Initially, deadly head detection was 

accomplished with scale-invariant feature transform (SIFT) 

properties. The fetal head was regarded as a crucial reference 

point for identifying the NT region. We subject the NT region 

to local refinement and then segment it.  They have obtained 

97.40% accuracy utilizing SIFT and a General Regression 

Neural Network (GRNN) for evaluating NT thickness. Rajesh 

et al. [26] propose a feed-forward artificial neural network 

utilizing a boosting strategy for the early diagnosis. A network 

was created with a single layer of concealed neurons and one 

output neuron. This method relies on facial recognition and the 

localization of the fetus's facial landmarks. This algorithm 

predicts the likelihood of DS by calculating the distance 

between these sites. During their experimentation, facial 

identification was conducted via AdaBoost, while neural 

network training was executed using MATLAB. Using this 

AdaBoost method for NT region segmentation they have  

achieved 98.60% accuracy. Liu et al. [27] developed a 

convolutional neural network incorporating fully linked layers 

to directly identify the NT area. They utilized U-Net with a 

tailored design and loss function to achieve accurate NT 

segmentation. Ultimately, NT thickness measurement was 

determined by principal component analysis. They obtained 

95.05 % accuracy NT segmentation using cascaded ML 
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techniques. Conversely, we have achieved accuracy of 

97.84% using proposed combination of GoogLeNet and 

AlexNet deep learning models. 

One of the major challenges in applying deep learning 

techniques, especially in medical imaging, is the restricted 

accessibility to large and diverse datasets. This limitation can 

hinder the performance and generalizability of deep learning 

models. In our study, we addressed this issue by employing 

transfer learning a method that allows a pre-trained neural 

network to leverage existing knowledge from a related task 

and adapt it to a new, but similar, problem. Despite training 

our model on a relatively small dataset, it still demonstrated 

outstanding performance in detecting DS. 

The implementation of automated DS identification 

through deep learning offers several important advantages. 

First, it effectively reduces variability in diagnosis, which 

often arises due to differences in interpretation between 

different clinicians (inter-observer variability) or even by the 

same clinician at different times (intra-observer variability). 

This automation ensures consistency and repeatability, critical 

in a clinical setting. Furthermore, the deep learning approach 

we used is not only technically straightforward but also time-

efficient, making it a practical solution for clinical use. By 

improving the accuracy and speed of detection, this technique 

can significantly support clinicians by automatically 

identifying the NT region in ultrasound images and classifying 

the presence of DS at an early developmental stage. 

Importantly, this process is entirely non-invasive, requiring no 

additional effort or procedures beyond standard ultrasound 

imaging. This both simplifies the task for healthcare operators 

and strengthens the reliability of the results. Overall, our 

automated system enhances early diagnosis capabilities by 

efficiently analyzing ultrasound images to detect and classify 

DS, providing clinicians with a powerful diagnostic aid. 

 

V. CONCLUSION 

The primary aim of this study was to develop a deep learning-

based approach for the early classification of Down Syndrome 

(DS) using first-trimester fetal ultrasound images, with a focus 

on semantically segmenting the nuchal translucency (NT) 

region to support early diagnosis and clinical decision-

making. The proposed method employed GoogLeNet for NT 

segmentation and AlexNet for classification. The proposed 

approach attained an accuracy of 96.18% and Jaccard index of 

0.967 for NT region segmentation using GoogLeNet  and  

AlexNet model gives overall accuracy of 97.84%, ROC-AUC 

of 98.45%, recall of 99.64%, precision of 96.04%, and F1 

score of 97.80% for DS detection. It demonstrated promising 

performance in detecting DS from pre-processed ultrasound 

images, despite being tested on a limited dataset. The approach 

achieved high classification accuracy (insert specific 

accuracy/metrics here if available), indicating its potential as 

a reliable screening tool for clinical use.  

   Future directions include expanding the dataset to improve 

generalization and robustness, integrating NT thickness 

measurements to standardize the diagnostic process, and 

exploring advanced deep learning architectures such as 

transformers or hybrid CNN models. Additionally, domain 

adaptation techniques will be investigated to enhance cross-

device generalization, and large-scale clinical validation will 

be pursued to ensure real-world applicability and reliability. 
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