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ABSTRACT Authenticating gelatin sources is crucial for consumers, particularly those with dietary restrictions or religious 

concerns, such as avoiding pork-derived ingredients. Porcine gelatin, widely used in food and pharmaceuticals products, poses 

considerable challenges for authentication due to its prevalence and the difficulty in detecting it, particularly in processed 

products. As the demand for rapid and reliable food authentication methods grows, the need for efficient and scalable 

technologies becomes increasingly critical. Notably, the integration of advanced tools, such as deep learning (DL) can enhance 

the accuracy and efficiency of detecting and classifying gelatin sources. This study developed and evaluated an integrated 

electronic nose (e-nose) system with a Recurrent Neural Network (RNN) to detect and classify gelatin types based on their 

sources. The e-nose system utilized an array of gas sensors to capture the unique volatile organic compounds (VOCs) associated 

with each gelatin type, which were subsequently classified by the RNN. The e-nose system incorporates seven gas sensor 

modules designed to identify the unique chemical signatures of porcine, bovine, and fish gelatin. The classification performance 

of the integrated 7-module e-nose system showed promising results based on time points after sample preparation, with 

accuracy, sensitivity, and AUC of 96.3%, 96.6%, and 98.2% at the 0-hour point, respectively, rising to 99.1% for all three 

metrics at 2-hour point. The sensitivity of the system also showed an increase over time for single gelatin samples, from 100%, 

97.8%, and 91.9% to 98.6%, 99.3%, and 99.3% for pig-derived, cow-derived, and fish gelatin, respectively. For mixed gelatin 

samples, the system maintained high accuracy, sensitivity, and AUC at 98.2%, 97.9%, and 98.1%, respectively.  The results 

demonstrate that the integrated e-nose system effectively differentiates between gelatin types with high performance in both 

single and mixed samples. This highlights its potential as a robust tool for gelatin authentication which pave the way to more 

efficient and reliable methods for ensuring halal compliance. 

INDEX TERMS e-nose, halal authentication, integrated e-nose, porcine gelatin detection, RNN 

I. INTRODUCTION 

The exponential growth of the global halal market reached 

$2.1 trillion in 2020 and is projected to surge to $9.17 trillion 

by 2025 [1]. The diverse range of food and beverage 

products available in the market—characterized by different 

compositions, forms, flavors, and preparation methods—

poses challenges for consumer to ascertain a product's halal 

status, especially in the absence of clear authentication on the 

packaging or similar indicators [2]. This complexity is 

further exacerbated by the potential presence of pork-derived 

ingredients, such as porcine gelatin, which may undergo 

extensive processing in their composition or methodologies 

which further make detection difficult. In accordance with 

certain religious beliefs, it is strictly prohibited to consume 

pork-derived ingredients in various food products, even in 

the smallest portion [3], [4]. This underscores the critical 

importance of supporting halal authentication efforts, 

including rigorously research-based testing methodologies.  
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Gelatin is a colorless protein derived from collagen found in 

the connective tissues of animal bones and skins [5]. It is 

widely used across various industries, including the food 

industry as a thickener, emulsifier, plasticizer and in the 

pharmaceutical industry as sugar-coating tablets and pills, 

and vitamins encapsulating [6], [7], [8]. Despite its 

widespread applications, gelatin remains a controversial 

ingredient, particularly in the context of Halal food 

production [9]. The majority of gelatin is derived from pig 

and cattle bones and hides [10]. Although fish-derived 

gelatin is available, it represents only a small ratio compared 

to that sourced from pigs and cattle. It is found that in 

Europe, approximately 80% of gelatin is sourced from 

porcine sources [11], while only 1.5% is derived from fish 

[12] and the remaining gelatin is sourced from cattle. 

Animal-derived components such as gelatin can be identified 

through their lipid, protein, or DNA profiles, with various 

analytical techniques employed for this purpose. Among the 

prominent techniques are protein-based assays, DNA-based 

methods, chromatography, spectroscopy, and SDS-PAGE. 

Each of these methods has distinct strengths and weaknesses; 

for instance, while protein-based methods offer specificity in 

detecting pork proteins, they may not be as sensitive as 

DNA-based techniques, which can detect even minute 

quantities of genetic material [13]. Chromatography and 

spectroscopy provide robust quantitative analyses but often 

require complex instrumentation and extensive sample 

preparation [14].  

Despite advancements in detection methodologies, a 

trade-off remains between accuracy and practicality. High-

accuracy detection techniques often necessitate sophisticated 

instrumentation and meticulous preparation which results in 

extended processing times and heightened costs. In contrast, 

simpler methods, while rapid and less reliant on advanced 

equipment, frequently yield lower accuracy [15]. Thus, the 

imperative for a balance between accuracy, cost, equipment 

complexity, and processing time underscores the urgent need 

for innovative methodological approaches that effectively 

address these challenges.  

Another method for detecting the presence of animal-

derived components is through the analysis of their volatile 

organic compounds (VOCs) [16]. VOCs, including 

aldehydes, hydrocarbons, organic acids, and alcohols, and 

others play a significant role in determining the aroma of a 

substance [17]. The presence of these compounds, which can 

be emitted from both single animal types and mixtures, is 

crucial for identification and analysis. The electronic nose (e-

nose) has emerged as a promising alternative for detecting 

and differentiating odor patterns, particularly in food 

authentication and adulteration [18], [19]. The e-nose is an 

odor analyzer that consists of a gas sensor array designed to 

mimic an artificial olfactory system, enabling the analysis of 

odors from both individual compounds and mixtures. It can 

be applied to various samples, including foods with distinct 

odors [20]. One of e-nose primary strengths is the ability to 

provide rapid and real-time analysis that enables immediate 

results [21]. This is particularly valuable in high-throughput 

settings where quick decision-making is essential. Compared 

to the aforementioned methods, which often entail lengthy 

preparation and processing times, the e-nose offers a more 

efficient alternative by detecting a wide array of volatile 

compounds emitted by gelatin products [22]. This enables 

effective identification of specific sources—fish, bovine, or 

porcine—by analyzing their unique olfactory signatures. 

Moreover, e-nose is generally more cost-effective, as it 

requires less sophisticated laboratory infrastructure 

compared to methods like chromatography, which 

necessitate expensive equipment and trained personnel [21].  

While the e-nose offers significant advantages in detecting 

and classifying volatile compounds, it is not without 

limitations. A primary concern is its sensitivity where the e-

nose's ability to detect subtle variations in compound 

concentrations can lead to inconsistent results if not properly 

managed. Moreover, the data generated by e-noses require 

advanced processing techniques for accurate interpretation 

of complex signal patterns. To address this challenge, the e-

nose needs suitable learning algorithms to extract and 

interpret the intricate patterns detected by its sensors, which 

is essential for effectively classifying or differentiating 

between various gelatin sources. Integrating signal data from 

multiple e-nose systems with machine learning (ML) and 

deep learning (DL) techniques offers significant potential to 

enhance the capabilities of detection systems. For instance, 

as demonstrated in [23], the use of four different supervised 

learning methods to detect the origin of meat floss revealed 

that e-nose systems show promising results in food 

authenticity testing. Similarly, [24] employed seven ML 

models integrated with an e-nose to detect honey 

adulteration, successfully developing a methodology capable 

of identifying adulterated honey, thereby proving its 

potential application in honey quality control. Compared to 

traditional ML models, DL can automatically learn complex 

features from raw data, handle non-linear relationships, and 

adapt to diverse data patterns [25]. This makes DL 

particularly well-suited for tasks involving intricate VOC 

profiles generated by e-nose systems. Therefore, 

investigating the effectiveness of DL in this context is crucial 

to fully leveraging its capabilities for advancing e-nose-

based detection systems. Among DL models, RNNs are 

particularly well-suited for processing sequential data, as 

they can effectively track temporal dependencies in the 

signals collected from the e-nose [26]. This integration not 

only improves detection performance but also addresses the 

critical need for Halal authentication in food products which 

ensures compliance with dietary regulations. 

In this study, we integrated multiple e-nose modules with a 

DL model to detect the presence of porcine gelatin and classify 

various gelatin sources. The model's performance was 

evaluated for distinguishing between porcine, bovine, and fish 

gelatin. To comprehensively assess the model, we also 

examined the effectiveness of each module and the impact of 

two time points: immediately after preparation (0 hours) and 2 

hours post-preparation. The gelatins analyzed in this study 

included both pure and mixed gelatin with designated 

concentrations. 

II. RELATED WORKS 
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This section presents an analysis of prior research on gelatin 

authentication methods, highlighting the limitations of these 

techniques. Additionally, it explores the application of e-

nose-based food authentication methods across a wide range 

of food types. Furthermore, the use of Recurrent Neural 

Networks (RNN) and the specific evaluation metrics 

employed in this study are discussed in detail. 

A. GELATIN AUTHENTICATION TECHNIQUES 

To date, numerous methods for gelatin authentication have 

been developed, including immunological techniques such 

as enzyme-linked immunosorbent assay (ELISA) [27], [28], 

DNA-based methods like Polymerase Chain Reaction (PCR) 

[29], PCR-Restriction Fragment Length Polymorphism 

(PCR-RFLP) [30], and real-time PCR (qPCR) [31]. 

Additionally, sensor-based and spectroscopic techniques 

have also been utilized [32], [33]. These methods offer high 

sensitivity and specificity, enabling precise detection of 

adulterants like porcine gelatin in food products.  

However, each of these techniques comes with its 

limitations. Immunological methods such as ELISA, while 

effective, require extensive sample preparation and can be 

time-consuming. DNA-based methods like PCR and qPCR, 

though highly accurate, often demand sophisticated 

equipment and trained personnel, limiting their accessibility 

for routine food testing. Sensor-based and spectroscopic 

techniques, while faster and non-destructive, generally offer 

lower sensitivity and specificity compared to their 

immunological and DNA-based counterparts. These 

limitations underscore the need for more integrated and 

versatile approaches to improve the efficiency and accuracy 

of food authentication processes. 

In this regard, the e-nose presents itself as a promising 

alternative, offering a novel approach to improving detection 

methodologies. The primary strengths include the ability to 

provide rapid and real-time analysis that enables immediate 

results. Moreover, the e-nose is generally more cost-

effective, as it requires less sophisticated laboratory 

infrastructure compared to methods like chromatography, 

which necessitate expensive equipment and trained 

personnel. TABLE 1 summarizes the application of the E-

nose in food authenticity evaluation in recent years. 

Han et al. proposed a cost-effective electronic nose (e-nose) 

technology that integrates colorimetric sensors with Fourier 

Transform Near-Infrared (FT-NIR) spectroscopy [34]. Their 

research demonstrated the successful application of the 

Extreme Learning Machine (ELM) model in identifying beef 

adulteration with duck meat and predicting the extent of this 

adulteration. Chen et al. and Oates et al. utilized a Metal 

Oxide Semiconductor (MOS) e-nose in conjunction with 

other detection methods to analyze various non-mixed meat 

products [35], [36]. Their approach involved evaluating 

response data from analytical instruments to assess meat 

authenticity and differentiate between distinct types of meat. 

Roy et al. employed e-nose technology to detect adulteration 

in liquid foods, specifically focusing on olive oil [37]. 

Zarezadeh et al. introduced a novel fusion detection method 

that combines e-nose technology with an ultrasonic detection 

system to evaluate the authenticity of extra virgin olive oil 

[38]. Their findings indicated that the characterization 

capabilities of certain ultrasound data may surpass those of 

olfactory data; however, the integration of both 

methodologies could yield superior evaluation results. It is 

noteworthy that both the transmitted signal and residual 

vibration can interfere with the echo signal, potentially 

distorting ultrasound data. Therefore, further investigation is 

warranted to ascertain the feasibility and effectiveness of 

combining e-nose technology with ultrasonic detection in the 

food sector. 
TABLE 1 

E-nose applications in food authentication 

Sample Application Analysis 

method 

Ref. 

Duck 

and Beef 

Qualitative and quantitative 

detection of beef adulterated with 
duck. 

SNV, 

MSC, 
PCA, 

ELM 

[34] 

Chicken  Quality evaluation and adulteration 

identification of beijing-you 

chicken. 

CDA [35] 

Multiple 

types of 

meat 

Detection of different foodstuffs. PCA, DA, 

RF 

[36] 

Soybean 

Oil 

Detection of soybean oil 

adulteration in cow ghee (clarified 
milk fat) 

 

PCA, 

SIMCA, 
DFA 

[37] 

Olive 

Oil 

Olive oil classification and fraud 

detection using e-nose and 
ultrasonic system 

PCA, 

GBC, 
SVM, 

ANN 

[38] 

Raw 

milk 

Rapid detection of acid neutralizers 

adulteration in raw milk 

PCA, 

PLS-DA, 

RF, MLP 

[39] 

Pure/ind

ustrial 

fruit 

juice 

Preliminary study non-destructive 

sorting techniques for pepper 

(capsicum annuum l.) using odor 

parameter 

PCR, 

ANN 

[40] 

 

In the context of dairy product adulteration detection, 

Tian et al. conducted three authenticity evaluation studies 

wherein they simulated adulteration by introducing 

neutralizing acid dopants (e.g., NaOH, NaSCN) and 

vegetable oils (e.g., corn oil, palm oil) into raw milk [39]. 

The adulterated samples were subsequently analyzed using 

the Hercules II e-nose. Rasekh et al. executed two separate 

studies, successfully combining e-nose detection technology 

with artificial neural network algorithms to identify natural 

and industrial fruit juices, thereby facilitating the detection 

of adulteration in these products [40]. 

Overall, e-noses have consistently demonstrated their 

effectiveness as reliable tools for assessing food authenticity. 

Their capacity to analyze and detect specific volatile 

compounds allows for the identification of adulteration and 

contamination in a variety of food products. Moreover, by 

improving the accuracy and speed of authenticity 

assessments, e-noses contribute significantly to the 

credibility and reputation of the food industry. As the 

demand for transparency and quality in food production 

increases, the use of e-nose technology represents a crucial 

advancement in upholding industry standards and fostering 

consumer trust.  
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However, despite its widespread application, the e-nose still 

has limitations, particularly in accurately processing 

complex data patterns over time and differentiating between 

closely related compounds, as it produces dynamic signal 

data that can vary with environmental conditions. Although 

Recurrent Neural Networks (RNNs) are well-suited to model 

sequential data and capture temporal dependencies, their 

application in e-nose technology remains limited and 

underexplored. Therefore, integrating the e-nose with RNNs 

has potential to enhance the system’s ability to handle 

fluctuating and complex VOC signals which can improve 

performance in VOC classification.  

B. RECURRENT NEURAL NETWORK (RNN) 

Recurrent Neural Networks (RNNs) have become a key tool 

in handling sequential data and have become particularly 

suitable for applications involving sensor-based data. Unlike 

traditional feedforward neural networks, which assume that 

inputs are independent of each other, RNNs introduce 

recurrent connections that allow the network to retain 

information from previous time steps as shown in FIGURE 

1.  

 
FIGURE 1. RNN architecture 
 

The model's output activity or neuronal activity 𝑜𝑡 at time-t 

is determinde by the recurrent connections 𝑉𝑟and the input 

𝑥𝑡through the connections 𝑉𝑥. The output of the system is 

extracted through the connections represented by 𝑉𝑦 defined 

as follows (Eq. (1) to Eq. (4)): 

𝑐𝑡 = 𝑉𝑟𝑜𝑡−1 + 𝑉𝑥𝑥𝑡 + 𝑎𝑜,    (1) 

𝑜𝑡 = 𝑓(𝑐𝑡),    (2) 

𝑦𝑡 = 𝑉𝑦𝑜𝑡 + 𝑎𝑦 .    (3) 

Output activity of 𝑜𝑡, can be expanded in time as follows. 

𝑜𝑡 = 𝑓(𝑉𝑟𝑜𝑡−1 + 𝑉𝑥𝑥𝑡 + 𝑎𝑜), 𝑡 = 1,… , 𝑛 (4) 

From Eq. (4), it is evident that the neuron at time-t (denoted 

as 𝑜𝑡) receives inputs from the previous layer’s 𝑜𝑡−1 at time 

(𝑡 − 1), along with an additional input from outside the 

recurrent network, 𝑥𝑡. This system enables the network to 

learn temporal dependencies, which are crucial in tasks 

involving sequential data such as signals from electronic 

noses (e-noses). This model generates sequences of sensor 

readings that reflect the properties of volatile compounds 

therefore ideal for classification problems like gelatin 

detection.  

Previous studies have demonstrated the effectiveness of 

RNNs in tasks related to food safety and quality control. For 

instance, Nagamalla et al. used RNNs to classify time-series 

data from food samples and achieved high accuracy in 

detecting adulterated products. Similarly, RNNs are 

employed to model sensor data from e-nose achieving 

promising results [41]. However, these works primarily 

focus on general food safety applications and do not 

specifically address the challenges of detecting porcine 

gelatin or pig derivatives using sensor-based modules. In the 

context of this study, the RNN is used to classify gelatin 

samples based on signals collected from sensor-based 

modules. These signals are numerical data that represent the 

presence of various compounds, including pig-derived or 

porcine gelatin. The recurrent nature of the RNN allows it to 

model the temporal structure of the signals, which is crucial 

for detecting subtle differences in the sensor readings over 

time. 

C. EVALUATION METRICS 

In this study, the performance of the Recurrent Neural 

Network (RNN) in detecting porcine gelatin for halal 

authentication is evaluated using three key metrics: 

accuracy, sensitivity, and AUC. These metrics are critical 

due to the significant implications of misclassification for 

Halal food compliance. 

Accuracy as formulated in Eq. (5) measures the 

proportion of correct predictions (true positives and true 

negatives) out of all predictions, serving as an indicator of 

the model's effectiveness in classifying samples from 

different sources. High accuracy is essential for reliably 

identifying all gelatin sources and supporting halal 

authentication. Sensitivity (or recall) as formulated in Eq. (6) 

reflects the model’s ability to correctly identify true positives 

which makes it vital for minimizing false negatives—

instances where porcine gelatin is present but incorrectly 

classified as absent. High sensitivity is crucial to prevent the 

unintended consumption of non-halal substances and to 

enhance consumer safety. The two metrics discussed are 

confusion matrix-based metrics, directly derived from the 

confusion matrix presented in TABLE 2 and are calculated 

as follows. 

 
TABLE 2 

Confusion matrix 

 Predicted as Positive Predicted as Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (6) 

 

AUC (Area Under the ROC Curve) quantifies the model's 

ability to differentiate between classes, providing insight into 

overall performance across thresholds. A higher AUC 

indicates better discrimination capability for identifying 

Halal versus non-Halal gelatin sources, which is essential for 

ensuring compliance with Halal standards. 

III. SYSTEM MODEL AND METHODS 

A. ANALYTE PREPARATION 

The primary analytes of interest are porcine (pig-derived), 

bovine (cow-derived), and fish gelatin, each sourced as 

commercially available pure product. The gelatin samples 

used in this study were prepared in solution form, with 

precise concentrations measured as a percentage by weight. 
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For the analysis, a 1% gelatin solution was prepared based 

on the assumption that higher concentrations would be more 

easily detectable. To create a 1% gelatin solution, 1 gram of 

gelatin was dissolved in 99 grams of deionized water. This 

mixture was then heated at 60°C and stirred at 200 

revolutions per minute (rpm) for 7 minutes using a hotplate 

and magnetic stirrer to ensure complete dissolution and 

homogeneity of the solution. The objective of this study is to 

demonstrate the ability of a specifically configured gas 

sensor array to detect the presence of these gelatin analytes. 

The sensor array is designed to capture the distinct signals 

emitted by each gelatin type, based on the unique chemical 

properties of the porcine, bovine, and fish gelatin 

compounds.  

B. DATA PREPARATION AND COLLECTION 

The gas sensor configuration used in this research consists of 

seven sensor modules, each with selective sensitivity to 

ethanol, methane, propane, butane, ammonia, hydrogen 

sulfide, sulfur, and other organic solvent vapors. As shown 

in FIGURE 2, these seven modules are integrated within a 

sensor housing connected to an 8-bit microcontroller. To 

enhance the resolution of the analog sensor readings, a 16-

bit ADC (Analog-to-Digital Converter) is employed. 

 

 
FIGURE 2. The configuration of the 7 gas sensor modules is integrated as a gelatin 

detection system. 

 

The gas sensor modules operate by detecting changes in 

atomic, molecular, and ionic structures on the sensor 

surfaces, which are then converted into electrical signals. 

The e-nose developed in this study comprises seven metal-

oxide semiconductor (MOS) gas sensors, as listed in TABLE 

3. Data from each gas sensor module were collected to 

measure porcine, bovine, and fish gelatin analytes at two 

time points: immediately after preparation (0 hours) and two 

hours post-preparation 

The e-nose system consists of two chambers: a gas 

sampling chamber, where the tested samples are placed, and 

an electronic box chamber, which houses the sensors 

responsible for detecting various VOCs. Seven sensors (S1–

S7) are positioned within the electronic box chamber to 

interact with VOC molecules emitted from the gelatin 

samples at designed concentration levels. Data collection for 

each analyte was carried out over a 15-minute period, with 

the sensor operating in cycles of 60 seconds for data 

collection and 30 seconds for relaxation (purging). Over the 

15-minute measurement window, the sensors produced 

approximately 723 rows of data across the seven gas sensor 

modules. The resulting sensor data are dynamic in nature, 

consisting of both data collection and purging periods, and 

cannot be directly analyzed using standard statistical 

methods due to their sinusoidal behavior. To address this, 

numerical methods were applied to compute the area under 

the sinusoidal curves generated by the sensor data. Following 

this preprocessing step, the data were further analyzed using 

advanced classification algorithms, such as DL models, to 

uncover the classification patterns of the analytes. 

 
TABLE 3 

Specification of chemoresistive sensors used in the e-nose system 

Gas 
sensor 

Sensor 
Type 

Volatile compound 
target 

Measurenment 
Range 

S1[42] Tin 

Dioxide 

(SnO2) 

/MOS 

Alcohol, Benzene, 

Methane, Hexane, 

LPG and Carbon 

monoxide 
 

1MΩ- 8 MΩ 

(0.4mg/L alcohol) 

S2[43] Tin 

Dioxide 

(SnO2) 

/MOS 

LPG, Methane, 

Hydrogen CO, 

Ethanol 

10KΩ- 60KΩ 

(1000ppm CH4) 

S3[44] Tin 

Dioxide 

(SnO2) 

/MOS 

Butane, methane, 

propane, Carbon 

Monoxide and 

Alcohol 
 

10KΩ- 60KΩ 

(1000ppm LPG) 

S4[45] Tin 

Dioxide 

(SnO2) 

/MOS 

Methane, carbon 

monoxide, 

isobutane, n-

hexane, benzene, 
ethanol, acetone 

 

1 to 10 𝑘Ω in ethanol 

at 300 ppm/air 

S5[46] Tin 

Dioxide 

(SnO2) 
/MOS 

Ammonia, ethanol, 

hydrogen, and 

isobutane 

900KΩ-4900KΩ (in 

air) 

S6[47] Tin 

Dioxide 

(SnO2) 

/MOS 

Hydrogen Sulfide 

(H2S) 

30KΩ-200KΩ 

(10ppm H2S) 

S7[48] Tin 

Dioxide 

(SnO2) 

/MOS 

Ammonia (NH3), 

Nitrogen (NO2), 

alcohol, Benzene, 

smoke, CO2 

 

2KΩ to 20KΩ in 

100ppm CO 

 

IV. RESULT AND DISCUSSION 

A. PERFORMANCES OF EACH SINGLE MODULE ON TWO 

TIME POINT 

In this section we evaluate the performances of each e-nose 

sensor module—S1, S2, S3, S4, S5, S6, and S7—in detecting 

the presence of porcine gelatin before they’re integrated. The 

sensors' performances were compared across two time 

points: immediately after sample collection (0-hour) and 2 

hours later. The data underwent pre-processing steps such as 

normalization and imputation of missing values using the 

means of the two nearest data points to ensure the robustness 

of the analysis as seen in FIGURE 3.  
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FIGURE 3. Flowchart of Data analysis 

The metrics used to compare the performance were accuracy, 

sensitivity, and AUC for classification. Among the seven 

modules, S3 exhibited the highest accuracy of 87.6% at the 

0-hour point as shown in FIGURE 4. This demonstrates that 

S3 is the most effective module in achieving correct 

predictions immediately after the samples are prepared. 

 
FIGURE 4. Accuracy comparison of seven sensor modules (S1, S2, S3, S4, S5, S6, 

S7) at two different time points (0-hour and 2-hour) post-sample collection 

Sensitivity is especially crucial in the context of halal 

detection, where the primary concern is avoiding false 

negatives. In this scenario, a false negative occurs when a 

sample that contains pig derivatives (haram) is incorrectly 

classified as negative (halal). This kind of error is 

particularly problematic because it could lead to the 

unintended consumption of haram substances, which 

violates religious dietary restrictions. Given the sensitive 

nature of halal authentication, it is far more detrimental to 

incorrectly classify a contaminated sample as safe than the 

reverse. Hence, high sensitivity—like the 0.8790 achieved 

by S3 as shown in FIGURE 5—ensures that the module can 

reliably detect even small traces of pig derivatives, reducing 

the risk of false negatives and enhancing the trustworthiness 

of the detection system. By correctly identifying positive 

cases, the S3 minimizes the risk of certifying non-halal food 

products as permissible, which is essential for maintaining 

the integrity of halal food practices.  

 
FIGURE 5. Sensitivity comparison of seven sensor modules (S1, S2, S3, S4, S5, S6, 

S7) at two different time points (0-hour and 2-hour) post-sample collection 

The highest AUC is achieved by S3 module of 93.7% at 0-

hour point as shown in FIGURE. 6. This suggests that the S3 

module performs optimally at the initial time point, which 

has potential in offering a strong predictive capacity for the 

outcome being measured at the onset. The high AUC 

indicates excellent discrimination ability between the 

positive and negative classes. 

 
Figure 6. AUC (area under ROC curve) comparison of seven sensor modules (S1, 

S2, S3, S4, S5, S6, S7) at two different time points (0-hour and 2-hour) post-

sample collection 

The time of data collection plays a crucial role in the 

performance of the sensors. The analysis reveals that the 

performance of most sensors tends to decline after 2 hours of 
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post preparation. For example, the S3 module shows a 

marked reduction in accuracy (-38.5%), sensitivity (-29.7%), 

and AUC (-36%) when comparing the 2-hour point to the 0-

hour point. This decline suggests that the sensor's ability to 

detect pig derivatives becomes less reliable as the samples 

age. A similar pattern was observed across most other sensor 

modules. 

The 0-hour point data collection consistently produced 

better results across almost all sensors. For instance, S1, 

which showed slight improvements in accuracy (+2.2%) at 2 

hours, experienced significant drops in sensitivity (-2.0%) 

and AUC (-28.9%), indicating that while it may still 

correctly classify a similar number of total samples, its 

ability to correctly identify true positive cases diminishes 

over time. In contrast, the S4 sensor also exhibited 

substantial performance drops after 2 hours, particularly in 

sensitivity (-24.2%), which further reinforces the 

recommendation to collect data as close to the sample 

collection time as possible. 

Among the seven sensor modules, S3 exhibited the 

highest overall performance in terms of all three metrics. It 

achieved an accuracy of 87.5%, a sensitivity of 87.9%, and 

an AUC of 93.7% at the 0-hour point. These results suggest 

that solely, S3 is the most reliable sensor for detecting pig-

derived gelatin when the data is collected shortly after the 

sample is taken. The high AUC indicates excellent model 

performance in distinguishing between the different classes, 

while the balanced accuracy and sensitivity imply that S3 is 

capable of both correctly identifying positive samples and 

minimizing false negatives. 

While S3 emerges as the top performer, other sensors 

exhibit unique trends. For instance, S1 showed only a minor 

improvement in accuracy after 2 hours, but this improvement 

was overshadowed by sharp declines in sensitivity and AUC. 

This result suggests that the accuracy metric alone may not 

provide a comprehensive view of sensor performance, and 

sensitivity and AUC should be considered in conjunction. 

Sensors like S5 and S7 also demonstrated similar declines 

across all metrics after the 2-hour point. It reinforces the 

finding that time delays negatively impact the sensors' ability 

to distinguish between classes effectively. 

 

B. SENSITIVITY OF EACH SINGLE MODULE FOR EACH 

GELATIN TYPE 

For a more comprehensive analysis, TABLE 4 presents a 

detailed breakdown of the sensitivity of each e-nose module 

for detecting different gelatin classes—porcine (pig-

derived), bovine (cow-derived), and fish. This comparative 

overview highlights the effectiveness of individual modules 

in accurately identifying specific gelatin sources. Based on 

the sensitivity data from each e-nose module (S1–S7) across 

two time points (0 and 2 hours), clear patterns emerge 

regarding the performance of each module in detecting pig-

derived, cow-derived, and fish gelatin.  

As shown in TABLE 4, sensors S1 and S3 demonstrated 

the highest sensitivity for pig-derived gelatin at the 0-hour 

point, with 95.7% and 90.6%, respectively, indicating their 

reliability for immediate detection. By the 2-hour point, S7's 

sensitivity increased to 0.882, showing its effectiveness in 

detecting porcine gelatin 2-hour post-preparation. In 

contrast, S6 75.2%) and S7 (72.7%) demonstrate the lowest 

sensitivity which indicates weaker performance in detecting 

pig-derived gelatin. For cow-derived gelatin, S3 (89.6%) 

performs exceptionally well, while S6 (42%) shows 

significantly lower performance. Fish gelatin detection at the 

0-hour point is led by S4 (87.2%) and S3 (83.5%), with S6 

demonstrating poor sensitivity (48.7%). 

 
TABLE 4 

Sensitivity performance of the modules across two time point on each 
class 

  0-hour (%) 2-hour (%) 

Modul Pig  cow fish pig cow fish 

S1 95.7 53.8 74.3 51.5 69.2 42.1 

S2 83.1 60.5 61.5 65.8 85.9 56.4 

S3 90.6 89.6 83.5 47.2 48.9 78.6 

S4 75.0 73.7 87.2 45.0 68.2 50.0 

S5 75.4 57.4 83.0 78.4 95.5 56.6 

S6 75.2 42.0 48.7 32.1 56.9 58.1 

S7 72.7 52.8 61.1 88.2 100.0 68.1 

 

At the 2-hour point, the performance of the modules shifts. 

S7 becomes the most sensitive for pig-derived gelatin 

detection, with a sensitivity of 88.2%, while S6 drops 

significantly to 32.1%, showing a marked decrease in 

detection capability over time. For cow-derived gelatin, S7 

reaches perfect sensitivity (100%), with S5 (95.5%) also 

performing well. In contrast, S3 (48.9%) and S4 (68.2%) 

show weaker performance at the 2-hour point. While for fish 

gelatin detection, S3 (78.6%) and S7 (68.1%) remain the top 

performers, and S1 (42.1%) and S4 (50%) show significantly 

reduced sensitivity after 2 hours. 

In summary, S3 and S7 emerge as the top performers 

across both time points. S3 excels at the 0-hour point, 

particularly for pig and cow-derived gelatin, but its 

performance declines after 2 hours. In contrast, S7 maintains 

strong and consistent sensitivity across both time points, 

making it the most reliable module for long-term detection, 

especially for cow-derived gelatin, where it achieves perfect 

sensitivity. 

A key observation is the general decline in sensitivity 

over time for most modules, particularly in pig-derived 

gelatin detection. For instance, S1 drops from 95.7% at the 

0-hour point to 51.5% at the 2-hour point. This highlights the 

importance of selecting the appropriate module based on the 

timing of sample collection. S7 proves to be the most robust 

module, demonstrating reliable sensitivity across all classes 

and time points, making it the most promising candidate for 

accurate detection of pig-derived gelatin, pig-derived 

gelatin, and fish gelatin. 

 

C. PERFORMANCE OF INTEGRATED MODULES ON 

SINGLE DATA BASED ON TWO TIME POINT 

This section aims to evaluate the performance of the 

integrated system comprising seven e-nose modules across 

three key metrics. The goal is to determine whether the 

integrated approach delivers superior results compared to the 
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performance of each individual module when used 

independently.  

 
(a) (b) 

Figure 7. PCA plot for the data at (a) 0-hour and (b) 2-hour point 

 
(a) (b) 

Figure 8. UMAP plot for the data at 0-hour (a) and 2-hour (b) point 

Based on the PCA and UMAP plots in FIGURE 7 and 

FIGURE 8, the time points do influence the performance of 

the methods, but the differences are more nuanced. At the 0-

hour time point, the classes appear to be well-separated, 

indicating that the samples can be more easily differentiated. 

This suggests that the signal data is more distinct shortly after 

collection, enabling more accurate classification of pig, cow, 

and fish gelatin. 

At the 2-hour time point, however, the separation 

between classes becomes less distinct, with some overlap 

observed between the classes. This could indicate that the 

signal data starts to lose some of its distinguishing features 

over time, making classification slightly more challenging. 

However, it’s important to note that the visual representation 

alone from PCA and UMAP plots cannot fully justify the 

model's performance. While the plots provide insight into 

how well the samples are separated, the actual performance 

metrics (accuracy, sensitivity, and AUC) should be carefully 

analyzed to validate the performance of this method in 

distinguishing sample from certain source. TABLE 5 

provides a detailed overview of the performance of the 

integrated 7-module system at different time points. The 

table highlights key metrics, including accuracy, sensitivity, 

and AUC, allowing for a comparative analysis of the 

system’s effectiveness in classifying gelatin types (pig, cow, 

fish) at the 0-hour and 2-hour point. 

 
TABLE 5 

Performances of integrated modules 

  Accuracy Sensitivity AUC Sensitivity for each class 

0hour 0.963 0.966 0.982 1.000 0.978 0.919 

2hour 0.991 0.991 0.991 0.986 0.993 0.993 

 

At the 0-hour point, the integrated system achieved strong 

overall performance, with an accuracy of 0.963, sensitivity 

of 0.966, and AUC of 0.982. Notably, the sensitivity for each 

class was high, with pig-derived gelatin detection at 1.000, 

cow-derived gelatin at 0.978, and fish gelatin at 0.919. These 

results demonstrate the system’s ability to effectively 

distinguish between classes, particularly at the early time 

point, which corresponds with the better separation of classes 

seen in the PCA and UMAP plots. 

At 2 hours, the performance of the integrated modules 

improved further, with an accuracy of 0.991, sensitivity of 

0.991, and AUC also reaching 0.991. The sensitivity for each 

class remained high, with pig-derived gelatin at 0.986, cow-

derived gelatin at 0.993, and fish gelatin also at 0.993. This 

suggests that the integrated system can still effectively 

distinguish between gelatin types even after 2 hours in 

comparison with individual module performance typically 

declined over time.  

Overall, the integrated e-nose system outperformed the 

individual modules at both time points, demonstrating more 

consistent and reliable detection across all gelatin types. This 

highlights the advantage of integration, as combining 

multiple sensors mitigates the weaknesses of individual 

modules and enhances overall accuracy, sensitivity, and 

AUC. 

 

D. PERFORMANCES OF INTEGRATED MODULE ON 

MIXED DATA 

The model was also applied to mixed gelatin samples (pig-

cow, pig-fish, and fish-cow) on one time point to assess 

whether the system could accurately detect the presence of 

porcine gelatin when mixed with other animal-based gelatin 

sources.  
TABLE 6 

Performance analysis of model applied to mixed gelatin 

 Min Max Median Mean 

Accuracy 0.970 0.993 0.981 0.982 

Sensitivity 0.967 0.995 0.980 0.979 

AUC 0.961 0.994 0.983 0.981 

 

The results in TABLE 6 shows high accuracy, ranging from 

0.970 to 0.993, with an average of 0.982. This high accuracy 

shows that the model is highly effective at identifying 

whether porcine gelatin is present in mixed samples. The 

tight range between the minimum and maximum accuracy 

suggests consistent performance across different mixtures. 

This consistency implies that the type of animal-based 

gelatin mixed with porcine gelatin doesn't affect the model's 

accuracy, which has potential for practical use. 

Sensitivity results are similarly strong, ranging from 

0.967 to 0.995, with an average of 0.979. High sensitivity 

means that the model is adept at detecting porcine gelatin 

when it’s present, with minimal probability of missing it. The 

small difference between the minimal and maximum 

sensitivity values (0.028) further highlights the model’s 

reliability in detecting the presence of porcine gelatin in a 

mixture. 

The AUC, which measures the model's ability to 

distinguish between samples with and without porcine 

gelatin, ranged from 0.961 to 0.994, with an average of 

0.981. This high AUC score means that the model can 

accurately detect porcine gelatin while keeping false 

positives low, which is important for maintaining specificity 

and avoiding incorrect identifications. 
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These results show that the system has potential for 

implementation in automated quality control systems, where 

rapid and accurate identification of porcine content in mixed-

gelatin products could provide both cost-effective and ethical 

solutions for industry compliance and consumer trust. 

Therefore, it can be concluded that this study contributes to 

and expands the existing literature on food authentication. 

Previous methods, such as spectroscopy, chromatography, 

and DNA-based assays, have been effective but often require 

extensive sample preparation, specialized equipment, and 

trained personnel. [34] and [49] demonstrated the potential 

of e-nose systems for meat authentication; however, their 

methods were limited to single-sample detection. Similarly, 

[50] focused on liquid food matrices, emphasizing 

adulteration detection in oils, while [38] explored ultrasonic-

e-nose fusion for olive oil authenticity. Unlike these studies, 

the integration of RNNs in this research provides enhanced 

classification capabilities, particularly for complex and 

mixed sample scenarios, filling a critical gap in the field.   

A deeper analysis reveals that the system’s performance 

benefits significantly from its modular gas sensor array and 

data processing via RNNs. The enhanced sensitivity to VOC 

profiles at different time points suggests that the system can 

reliably adapt to variations in sample aging. For example, the 

detection of pig gelatin, which is critical for halal 

authentication, consistently achieved high sensitivity and 

accuracy across all all time-dependent experimental 

conditions. This highlights the system's reliability in real-

world applications, such as industrial halal compliance 

monitoring or rapid on-site food safety inspections.    

However, several limitations in this study must be 

acknowledged. First, this study focuses exclusively on 

gelatin authentication, leaving its applicability to other food 

matrices unexplored. Computational demands of the RNN-

based signal processing also pose challenges for scalability, 

especially in resource-constrained environments. Future 

research should explore sensor optimization and lightweight 

ML and DL models to overcome these challenges.   

The implications of this study are multifaceted. From a 

halal compliance perspective, the system offers a 

transformative solution for ensuring food authenticity, 

addressing growing consumer demand for transparent 

labeling. Its ability to process both single and mixed samples 

efficiently positions it as a valuable tool for industries 

seeking cost-effective and rapid authentication methods. 

Furthermore, the system’s integration of RNN showcases the 

potential of DL in advancing sensor-based technologies, 

which pave the way for broader applications in food quality 

control, pharmaceutical product verification, and even 

environmental monitoring.   

This study sets a strong foundation for future work in 

food authentication. By addressing its limitations, such as 

expanding its application to other food matrices and 

optimizing the hardware for industrial scalability, the system 

can achieve even broader utility. Additionally, exploring 

hybrid methods that combine e-nose technology with 

spectroscopy or DNA-based techniques could further 

enhance its accuracy and applicability in more complex 

detection scenarios. 

V. CONCLUSIONS 

The aim of this study was to evaluate the efficacy of an 

integrated electronic nose (e-nose) system for the detection 

and classification of gelatin sources, addressing the critical 

requirement for Halal authentication in food products. 

Performance analysis indicated notable variations in 

accuracy, sensitivity, and AUC across different time points. 

At the initial 0-hour time point, the system achieved an 

accuracy of 96.3%, sensitivity of 96.6%, and an AUC of 

98.2%, with further improvements observed at the 2-hour 

mark, where all metrics reached 99.1%. Individual sensor 

modules displayed varying performance trends, with some 

demonstrating high initial effectiveness followed by a 

decline over time, while others exhibited incremental 

improvements. 

The integration of these modules yielded significant 

enhancements in overall performance, surpassing the metrics 

achieved by standalone modules. This integrated approach 

effectively addressed the limitations of standalone modules 

and ensured consistent detection accuracy for all gelatin 

types across both time points. Additionally, the integrated 

system demonstrated robust performance when applied to 

mixed gelatin samples, achieving sensitivity and AUC 

values consistently exceeding 97%, thereby underscoring its 

versatility and reliability in handling complex datasets. 

These findings underscore the potential of the integrated 

e-nose system as a practical and efficient tool for Halal 

authentication in food products, providing a reliable solution 

to meet the increasing demands of diverse consumers and the 

evolving food industry. Optimization of sensor selection and 

the timing of data collection were identified as critical factors 

for enhancing system performance and reliability. 

Future research should focus on refining the integration 

process by improving algorithmic efficiency and exploring 

sensor synergy to further enhance detection accuracy. 

Furthermore, expanding the scope of e-nose technology to 

broader applications, including food safety, quality 

assurance, and industrial monitoring, could unlock its 

potential as a transformative tool for rapid and accurate 

detection across various domains. 
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