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ABSTRACT Software defects, also referred to as software bugs, are anomalies or flaws in computer program that cause 

software to behave unexpectedly or produce incorrect results. These defects can manifest in various forms, including coding 

errors, design flaws, and logic mistakes, this defect have the potential to emerge at any stage of the software development 

lifecycle. Traditional prediction models usually have lower prediction performance. To address this issue, this paper proposes 

a novel prediction model using Hybrid Grey Wolf Optimizer and Particle Swarm Optimization (HGWOPSO). This research 

aims to determine whether the Hybrid Grey Wolf and Particle Swarm Optimization model could potentially improve the 

effectiveness of software defect prediction compared to base PSO and GWO algorithms without hybridization. Furthermore, 

this study aims to determine the effectiveness of different Gradient Boosting Algorithm classification algorithms when 

combined with HGWOPSO feature selection in predicting software defects. The study utilizes 13 NASA MDP dataset. These 

dataset are divided into testing and training data using 10-fold cross-validation. After data is divided, SMOTE technique is 

employed in training data. This technique generates synthetic samples to balance the dataset, ensuring better performance of 

the predictive model.  Subsequently feature selection is conducted using HGWOPSO Algorithm. Each subset of the NASA 

MDP dataset will be processed by three boosting classification algorithms namely XGBoost, LightGBM, and CatBoost. 

Performance evaluation is based on the Area under the ROC Curve (AUC) value. Average AUC values yielded by HGWOPSO 

XGBoost, HGWOPSO LightGBM, and HGWOPSO CatBoost are 0.891, 0.881, and 0.894, respectively. Results of this study 

indicated that utilizing the HGWOPSO algorithm improved AUC performance compared to the base GWO and PSO 

algorithms. Specifically, HGWOPSO CatBoost achieved the highest AUC of 0.894. This represents a 6.5% increase in AUC 

with a significance value of 0.00552 compared to PSO CatBoost, and a 6.3% AUC increase with a significance value of 0.00148 

compared to GWO CatBoost. This study demonstrated that HGWOPSO significantly improves the performance of software 

defect prediction. The implication of this research is to enhance software defect prediction models by incorporating hybrid 

optimization techniques and combining them with gradient boosting algorithms, which can potentially identify and address 

defects more accurately. 

INDEX TERMS Boosting Algorithm, HGWOPSO, Machine Learning, Software Defect Prediction

I. INTRODUCTION 
A. BACKGROUND 

Software defect prediction is a crucial tasks in software 

engineering that can be utilized to maintain software quality 

[1]. Software defect is a bug, error, flaw, mistake, fault, or 

failure in a computer system that can cause unexpected or 

erroneous results or impair intended software performance [2]. 

To enhance the reliability of software, developers utilize 

software defect prediction techniques to identify potential 

bugs and various error [3]. Software defect prediction seeks to 

forecast defective software modules before they are identified 

[4]. Identifying software defects at an early stage can result in 

https://jeeemi.org/index.php/jeeemi/index
https://doi.org/10.35882/jeeemi.v6i2.388
https://creativecommons.org/licenses/by-sa/4.0/
mailto:rudy.herteno@ulm.ac.id
https://orcid.org/0000-0001-8544-8995
https://orcid.org/0000-0001-8544-8995
https://orcid.org/0009-0007-9250-7704
https://orcid.org/0000-0001-5798-1426
https://orcid.org/0000-0002-7385-5689


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 2, April 2024, pp: 169-181;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              170               

decreased development expenses, rework efforts, and more 

reliable software [5]. Identify defective software modules is 

important to continuously improve the quality of software [6]. 

 
B. PREVIOUS STUDIES 

Software defect prediction datasets often have noisy attribute 

properties, high dimensional, and imbalance classes. 

Specifically, in the NASA MDP dataset, several attributes 

exhibit a wide range of values, resulting in noisy attributes. 

Additionally, datasets such as JM1 and MC1 have very large 

dimensions, which can cause algorithms to consume 

significant time and resources. Moreover, high-dimensional 

data can lead algorithms to produce suboptimal results. 

Furthermore, the majority of the NASA MDP datasets exhibit 

an imbalanced class distribution between defects and non-

defects [7,8]. To overcome problems of imbalanced classes in 

software defect dataset, Rahardian et al [9] conducted an 

experiment to solve the imbalance class problem in the Nasa 

MDP dataset, they took several approaches, namely using 

Synthetic Minority Oversampling Technique (SMOTE), 

Tomek Links (TL), One-Sided Selection (OSS), Random 

Oversampling (ROS),  and Random Undersampling (RUS). 

The results show that the highest AUC value obtained is 

achieved by using the SMOTE approach, with an AUC value 

of 0.7277. This research demonstrates that SMOTE is an 

effective method for addressing imbalanced classes in the 

NASA MDP dataset. However, this study did not incorporate 

feature selection into the predictive models. Feature selection 

involves selecting attributes that have a significant impact on 

predicting the class. This technique can reduce the number of 

input features to a classifier and enhance prediction 

performance. Consequently, predicting software defects 

without feature selection may yield suboptimal results [10]. To 

address this issue, a feature selection method is employed to 

reduce the number of features and improve prediction 

performance. 

Futhermore a study conducted by [11] employed an 

experiment to handle noisy attributes. They utilized two 

approaches using Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA) for feature selection. The researchers 

conducted several experiments using different classifiers, 

namely Neural Network, Nearest Neighbor, Support Vector 

Machine (SVM), Statistical Classifier, and Decision Tree on 

the NASA MDP dataset. The results showed that significant 

values were obtained when using the SVM Classifier. The 

Average AUC result of PSO-SVM is 0.695, while the Average 

AUC of GA-SVM is 0.631. This research proved that PSO and 

GA are effective optimization algorithm for handling noisy 

attributes. However, in this study, data balancing methods 

were not utilized, the problem of imbalanced classes still 

exists. Consequently, this leads to poor performance produced 

by the algorithm. 

Another research was conducted by [12]. In this study, they 

conducted several experiments to enhance GA performance 

by employing hyperparameter tuning and SMOTE in the 

NASA MDP dataset. They utilized several approaches, 

namely Grid search, Random search, Optuna, Bayesian 

search, Hyperband, Tree-structured Parzen Estimator (TPE), 

and Nevergrad. The highest average AUC obtained was 0.806 

using Hyperband and 0.805 using Optuna. Another research 

utilizing PSO as feature selection was conducted by [13] and 

[14]. In the study conducted by [13], they employed RUS, 

PSO, and Naïve Bayes to predict software defects in the 

NASA MDP dataset, with the best AUC obtained being 0.801. 

Meanwhile, a study conducted by [14] attempted a different 

balancing method, namely using Bootstrap Aggregating 

(Bagging) to address the issue of class imbalance. In this 

research, they utilized PSO for feature selection and Logistic 

Regression as the classification algorithm. The highest AUC 

result they obtained was 0.794. The results of the three 

previous studies have shown that it is possible to address noisy 

attributes and imbalanced classes by implementing balancing 

methods and then utilizing PSO or GA as feature selection. 

However, PSO and GA also have weaknesses, especially in 

high-dimensional datasets. These algorithms tend to generate 

suboptimal solutions within the search space without 

achieving better solutions. As a result feature selection yield 

suboptimal performance in the model, consume valuable time, 

and getting traped in local optima [15,16].  

Feature Selection, especially PSO tends to have low 

performance without optimization. Generally, the best results 

can be obtained when parameter tuning is performed or when 

various PSO techniques are utilized [15]. According to [17], 

there are several techniques to enhance the PSO method, 

including hybridization, improved strategies such as fuzzy 

logic and mutation, and the utilization of different PSO 

variants such as binary and chaotic. These techniques can 

improve the performance of the PSO algorithm. Furthermore 

research was conducted by [18], who attempted to enhance the 

PSO technique by using a variant of PSO. They employed 

Binary PSO as feature selection with Artificial Neural 

Network (ANN) as classification. This method was used to 

predict software defects in four NASA MDP datasets: JM1, 

KC1, KC3, and PC1. They generated AUC values of 0.739, 

0.8487, 0.882, and 0.9297, respectively, achieving an average 

AUC value of 0.84985. However, in this research, premature 

convergence occurred, leading to PSO being trapped in local 

optima. This issue can result in PSO yielding suboptimal 

results. To address this issue, our study combines PSO with 

algorithms that have good exploration capabilities for 

hybridization to prevent PSO from getting trapped in local 

optima in the software defect prediction model. 

Based on this background, we proposed a model to 

optimize the PSO algorithm by hybridizing with the GWO 

algorithm, as previously mentioned by [17], doing a hybrid on 

PSO allows this algorithm to get more optimal results. We 

used PSO over GA because particle swarm optimization 

algorithms are easier to use, require fewer adjustable 

parameters, and are simpler to comprehend compared to other 

bionic algorithms like genetic algorithms [15]. According to 

[19] the right classifier is needed to be able to reduce high 

dimensional data and to get better performance. Research 
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conducted by [20] found that the Gradient Boosting Algorithm 

can handle High Dimensional Data. Therefore, we propose a 

new prediction model using HGWOPSO as feature selection 

and popular Gradient Boosting Algorithm as classification for 

predicting software defect in NASA MDP Dataset. Gradient 

Boosting used in this study are XGBoost, LightGBM, and 

CatBoost. 

 
C. OBJECTIVE 

The objective of this study is to improving performance 

results in software defect prediction using HGWOPSO as 

feature selection for XGBoost, LightGBM, and CatBoost as 

Classifier which measured with Area Under the ROC Curve 

(AUC).  

 
II. METHOD 

This section describes the dataset used, Synthetic Minority 

Oversampling Technique (SMOTE), Particle Swarm 

Optimization (PSO), Grey Wolf Optimizer (GWO), Hybrid 

Grey Wolf Optimizer and Particle Swarm Optimizaion 

(HGWOPSO), 10 Fold cross validation, Extreme Gradient 

Boosting (XGBoost), Light Gradient Boosting Machine 

(LightGBM), Categorial Boosting (CatBoost), Area under 

the ROC Curve (AUC) and T-Test. The research flow of this 

research can be seen in FIGURE 1.  

 

 

FIGURE 1. Research Flow using proposed Feature Selection and 
Classification Models 

 

FIGURE 1 shows a flowchart that we used in this study. The 

first step is collecting the NASA MDP dataset, followed by 

dividing the data using cross validation. In this study we use 

10-fold cross validation for the validation technique. Each 

NASA MDP dataset is divided into 10 sections, with 8 

sections allocated for training data while the remaining 2 

section are used as test data. After the data is divided, 

SMOTE is performed on the training data to balance the 

dataset, followed by feature selection and classification 

executed with three scenarios. Feature selection executed via 

PSO, GWO, and HGWOPSO. After the feature selection is 

executed, classification is performed using 3 different 

algorithms which are Xgboost, Lightgbm, and Catboost. 

Research evaluation uses the average AUC value. This 

Experiments was carried out using Jupyter Notebook. 

 
A. DATA COLLECTION 

In this study we use a software defect dataset called NASA 

MDP, These datasets are sourced from the NASA corpus, 

which encompasses real software projects across diverse 

domains and programming languages namely C, C++, and 

Java. The dataset exhibits considerable variations in code 

size, complexity, and functionality, offering a 

comprehensive representation of software development 

challenges. It comprises numerous software metrics, 

including lines of code, cyclomatic complexity, and code 

churn. These metrics provide valuable insights into the 

characteristics and attributes of software components. The 

primary purpose of this dataset is to facilitate the evaluation 

and development of predictive models aimed at identifying 

potentially defective software components early in the 

development lifecycle. In the data preprocessing phase, 

attributes containing categorical values are converted to 

nominal values, specifically 0 and 1. In the NASA MDP 

dataset, the Defective attribute represent Y and will 

converted to 1 while Non-Defective represent N and will be 

converted to 0. The dataset is available for download at the 

following link: 

https://github.com/klainfo/NASADefectDataset/tree/master 

TABLE 1 is shows, which contains information and some 

general statistics about each of the datasets used. 

  
B. 10 K-FOLD CROSS VALIDATION 

 To reduce the tendency or systematic error in estimating the 

performance of a model, random sampling in datasets is 

performed by implementing cross validation [21]. Cross-

validation is a statistical method for evaluating the 

performance of an algorithm. The capability of cross-

validation lies in its ability to divide the data into training and 

testing sets. Cross-validation is a computational method that 

requires information partitioning using subsets. [22]. Cross 

validation is also resampling data to prevent overfitting [23]. 

One part of the data is ultilazed to validate the model while  

the remaining part is utilized for training the classifier [24] 

At this phase, the dataset is divided into training and test data 

using cross-validation with a value of k = 10. The data will 

be split into ten subsets, each containing instances from the 

same class [25].  

 
C. Synthetic Minority Oversampling Technique 

SMOTE is a resampling technique that generates some 

samples in order to increase the number of the minority class 

by selecting a random point from the line segment. SMOTE 

linking a sample and its closest neighbor to generates a new 

sample [10]. The SMOTE method uses oversampling to 

rebalance the original training set. Instead of simply 

replicating minority class instances, the primary concept of 

SMOTE is to offer synthetic samples [26]. The idea using 

SMOTE in software defect prediction is to balance the 

defective and non-defective instances, which can increase 

the detection performance [27]. SMOTE can be 

mathematically modeled in the following equation (1) [28]. 
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  𝑥𝑛𝑒𝑤 = 𝑥 + 𝑟𝑎𝑛𝑑(0,1) × (𝑦[𝑖] − 𝑥)  (1) 

 

Consider a minority class sample x and one of its k-nearest 

neighbors y[i]. The equation generates a new synthetic 

sample 𝑥𝑛𝑒𝑤 by linearly interpolating between x and y[i], 

with the extent of interpolation controlled by a random  

factor. The random factor, denoted by rand (0,1), scales the 

difference between x and y[i], allowing for variability in the 

synthetic sample generation process. By repeating this 

process for each sample in the minority class and selecting 

appropriate nearest neighbors, SMOTE effectively balancing 

the dataset, creating new synthetic samples that reflect the 

underlying distribution of the minority class. This method 

helps to rebalance the class distribution, enabling classifiers 

to learn more effectively from the data and improving their 

ability to generalize to minority class instances [28]. TABLE 

2 shows before and after SMOTE. 

 
TABLE 2 

SMOTE process 
Dataset Before After 

CM1 327 570 

JM1 7782 12220 

KC1 1186 1736 

KC3 194 316 

KC4 191 194 

MC1 1988 3884 

MC2 125 162 

MW1 253 452 

PC1 705 1288 

PC2 745 1458 

PC3 1077 1886 

PC4 1287 2220 

PC5 1711 2480 

 
D. FEATURE SELECTION 
1. PSO FEATURE SELECTION 

Particle swarm optimization (PSO) is a remarkably effective 

metaheuristic approach that has been effeciently employed 

to acquire an optimal subset of features containing crucial 

information within a feasible time [29]. PSO begins by 

generating a set of random solutions and iteratively seeks for 

the optimal solution [15]. The PSO algorithm's concept and 

development were inspired by the social behaviors of fish 

schools and flocks of birds. In the wild, a swarm of birds flies 

across an area, following the leader who has closest position 

to the food. Birds social behavior can be translated into 

mathematical procedures, such as PSO, to solve optimization  

 

issues. In this approach, the swarm of birds is viewed as a  

swarm of particles, with each particle representing a 

candidate solution. [30]. A swarm of particles updates their 

relative positions from iteration to effectively conduct the 

search process. In order to obtain the optimum solution, each 

particle moves towards its prior personal best position 

(Pbest) and the global best position (Gbest) inside the swarm 

[17]. In order to produce the optimal feature subset, PSO will 

ends when the requirements are satisfied. PSO position and 

velocity variations are derived from basic formulas (2) and 

(3) [31]. 

 

xi
(t+1)

 =  xi
t  +  vi

(t+1)    (2) 

 

vi
(t+1)

 =  vi
t  +  c1r1(Pbesti

t − xi
t) + c2r2(Gbestt − xi

t) 

(3) 
 

The first formula illustrates how the position (𝑥𝑖) of a 

particle (𝑖) at time step (𝑡 + 1) is updated from its previous 

position at time (𝑡), taking into account the particle's velocity 

(𝑣𝑖). Here  xi
(t+1)

 represents the updated position of particle. 

On the other hand, the second formula explains how the 

velocity of the particle at time step is updated by considering 

the contributions from the personal best position (Pbest) and 

the global best position (Gbest) that the particle itself and the 

entire population have achieved respectively [31]. The PSO 

algorithm's performance is optimized for optimal problem 

solving by the adjustment of coefficients (c1 and c2) and 

randomization (r1 and r2) [32]. In this studies we used 

Cognitive Coefficient (c1) = 0.5, Social Coefficient (c2) = 

0.3, Inertia weight (w) = 0.9, iteration = 50 and population 

TABLE 1 
Specification NASA MDP dataset 

Dataset Attribute Instance Defects Non-Defects Defects% Non-Defects% Programming 

language 

CM1 38 327 42 285 12.8 87.2 C 

JM1 22 7782 1672 6110 21.5 78.5 Java 

KC1 22 1186 299 887 25.2 74.8 C++ 

KC3 40 194 36 158 18.6 81.4 Java 

KC4 42 191 77 114 40.3 59.7 Java 

MC1 39 1988 46 1942 2.3 97.7 C 

MC2 40 125 44 81 35.2 64.8 Python 

MW1 38 253 27 226 10.7 89.3 Java 

PC1 38 705 61 644 8.7 91.3 C 

PC2 37 745 16 729 2.1 97.9 Java 

PC3 38 1077 134 943 12.4 87.6 Python 

PC4 38 1287 177 1110 13.8 86.2 Python 

PC5 39 1711 471 1240 27.5 72.5 Java 

 

https://jeeemi.org/index.php/jeeemi/index


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 2, April 2024, pp: 169-181;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                              173               

size = 5. TABLE 3 shown the outcome of PSO feature 

selection. 
TABLE 3 

Feature selection with PSO 
Dataset Features Feature Selected 

CM1 37 19 
JM1 21 12 
KC1 21 10 
KC3 39 20 
KC4 41 22 
MC1 38 18 
MC2 39 19 
MW1 37 18 
PC1 37 17 
PC2 36 18 
PC3 37 18 
PC4 37 20 
PC5 38 19 

 
2. GWO FEATURE SELECTION 

Grey Wolf Optimizer is metaheuristic swarm-based 

algorithm that mimics the social leadership and hunting 

behavior of grey wolves in nature [33]. The algorithm 

mimics how grey wolves behave in their natural 

environment, including their leadership structure and pursuit 

style [34]. Within the leadership structure of grey wolves, 

there exist four distinct type: alpha, beta, delta, and omega 

wolves. Alpha wolves symbolize the solution with the most 

optimal results, while beta and delta wolves denote the 

second and third best solutions within the population, the rest 

of nominated solutions are omega [35]. Hunting behavior of 

grey wolves consists of the following three primary parts. 

First part is tracking, chasing, and approaching the prey. 

After that the wolfs Pursuing, encircling, and harassing the 

prey till it stops moving. Last part is the wolves attacking the 

prey [36]. Grey wolf algorithm can be mathematically 

modeled in the following equations (4) and (5) [33]: 

 

  𝐷 = | 𝐶 × 𝑋𝑝 (𝑡) − 𝑋(𝑡)|    (4) 

 

  𝑋(𝑡 + 1) =  𝑋𝑝(𝑡) − 𝐴 × 𝐷                     (5) 

 

In these equations the variable t represents the number of 

iterations, Xp denotes the prey position, X represent the grey 

wolves location, while The variables A and C serve as 

coefficients for the vectors. their values are determined 

through equations (6) and (7) [36]: 

 

   𝐴 = 𝑎 × (2 ×  𝑟1 − 1)    (6) 

 

    𝐶 = 2 × 𝑟2     (7) 

 

Here, the quantity of a exhibits a linear decrease from 2 to 0, 

inversely correlating with the decreasing number of 

iterations. r1 and r2 represent uniformly selected random 

numbers between [0,1]. 

Alpha wolves lead grey wolves to locate prey. 

Occasionally, beta and delta wolves assist the alpha wolf. 

These algorithm prioritizes alpha wolves as the optimal 

option, followed by beta and delta wolves. As a result, the 

positions of these three wolves influence the movement of 

the rest of the population [35].  

 

 

 

The mathematical formulas are shown in equation (8) [35]: 

 

𝐷𝛼 = |𝐶1  ×  𝑋𝛼 − 𝑋(𝑡)|, 

    𝐷𝛽 = |𝐶3  ×  𝑋𝛽 − 𝑋(𝑡)|,   (8) 

𝐷𝛿 = |𝐶3  ×  𝑋𝛼𝛿 − 𝑋(𝑡)|. 
 

The values 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 represent the best three wolves in 

each iteration, respectively as shown in equations (9) and 

(10) [36]. 

 

𝑋1 = |𝑋𝛼 −  𝑎1𝐷𝛼|, 

        𝑋2 = |𝑋𝛼𝛽 −  𝑎2𝐷𝛽|,    (9) 

𝑋3 = |𝑋𝛿 −  𝑎2𝐷𝛿|, 
 

         𝑋𝑝 (𝑡 + 1) =  
𝑋1+𝑋2+𝑋3

3
                (10) 

 

Here, 𝑋𝑝(t + 1) representing the new position of the prey, 

which signifies the average of the positions of the top three 

wolves within the group. This algorithm will finish the hunt 

if Grey wolves attacking the prey [36]. In this study we 

utilized step size (a) = 2, Alfa (A) = 0.5, Convergence 

Control (C) = 0.3, population size = 5, and iteration = 50. 

TABLE 4 shows average feature selected by GWO. 

 
TABLE 4 

FEATURE SELECTION WITH GWO 
Dataset Features Feature Selected 

CM1 37 19 
JM1 21 11 
KC1 21 8 
KC3 39 16 
KC4 41 19 
MC1 38 16 
MC2 39 18 
MW1 37 17 
PC1 37 17 
PC2 36 15 
PC3 37 16 
PC4 37 18 
PC5 38 17 

 
3. HGWOPSO FEATURE SELECTION 

Hybrid Grey Wolf Optimizer - Particle Swarm Optimization 

is developed without altering the fundamental operation of 

GWO and PSO. The PSO algorithm can successfully solve 

most real-world issues [17]. However, a solution is needed 

to prevent PSO from becoming stuck in a local minimum. 

The GWO algorithm is used to assist the PSO in minimizing 

the risk of getting trapped in a local minimum. Rather than 

sending certain particles to random locations, the exploration 

ability of the GWO can be used to partially improve some of 

the particle positions, which decreases the risks entailed. 
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Because the GWO algorithm is used in addition to the PSO 

algorithm, the running duration of the code is increased [37], 

[38]. FIGURE 2 show the flowchart of HGWOPSO method.  

 

FIGURE 2. Flowchart of HGWOPSO Feature Selection[32] 

 

In this study, we used the same parameters for both PSO and 

GWO algorithm, TABLE 5 shows average feature selected 

by HGWOPSO. 

 
TABLE 5 

FEATURE SELECTION WITH HGWOPSO 
Dataset Features Feature Selected 

CM1 37 23 
JM1 21 18 
KC1 21 12 
KC3 39 18 
KC4 41 17 
MC1 38 13 
MC2 39 21 
MW1 37 16 
PC1 37 21 
PC2 36 18 
PC3 37 20 
PC4 37 23 
PC5 38 25 

 
E. CLASSIFICATION 
1. XGBOOST CLASSIFICATION 

Extreme Gradient Boosting is a supervised machine learning 

technique that combines the predictions of multiple weaker 

or low-performing models. This approach involves utilizing 

an ensemble of decision trees within the gradient boosting 

framework [39]. XGBoost utilizes gradient boosting as its 

core. However, unlike the traditional gradient boosting 

algorithm, XGBoost does not add weak learners 

sequentially. Instead, XGBoost adopts a multi-threaded 

approach by optimizing CPU core utilization in machines 

[40]. XGBoost is known for its speed and efficiency due to 

its implementation of parallel processing [41]. The Xgboost 

approach utilizes the shrinkage technique to combine 

multiple weak learners and reduce the possibility of model 

overfitting. The combination of trees can be mathematically 

modeled in equation (11) [42]. 

 

 𝐹𝑚(𝑋) =  𝐹𝑚−1(𝑋) + 𝑛𝑓𝑚(𝑋), 0 < 𝑛 < 1             (11) 

 

Where, fm(X) denotes the m-th step in constructing the weak 

learner, and Fm(X) represents the m-th step in building the 

integrated learner. As there exists a substantial negative 

relationship between the parameter n and the number of 

iterations, the model's generalization properties are 

frequently improved when n assumes a lesser value [43]. 

𝑓𝑡(𝑥𝑖) represents the newly constructed tree model, with t 

indicating the total count of base tree models. The 

computational process of XGBoost is shown in a schematic 

diagram illustrated in FIGURE 3. 

 

 

FIGURE 3. A schematic diagram of XGBoost algorithm [44] 

 

2. LIGHTGBM CLASSIFICATION 

Light Gradient Boosting Machine is a gradient boosting 

framework that uses tree-based learning algorithms. 

LightGBM is mainly featured by the decision tree algorithm 

based on gradient-based one-side sampling (GOSS), 

exclusive feature bundling (EFB), a histogram and leaf-wise 

growth strategy with a depth limit [45]. GOSS removes a 

considerable fraction of data instances with small gradients 

and only utilizes the remainder to estimate information gain. 

Because data records with bigger gradients play an important 

part in the computation of information gain, GOSS can 

produce a reasonably accurate estimate of information gain 

with a considerably smaller dataset. EFB reduces the amount 

of features by bundling mutually exclusive characteristics 

[46]. One unique aspect of the LightGBM algorithm 

compared to other gradient boosting tree algorithms is in 

spilting tree. When another boosting algorithms split the tree 

depthwise or levelwise, LightGBM growing the tree leafwise 

on the same leaf [47]. FIGURE 4 shows how LighGBM 

spliting the tree while FIGURE 5 shows how another 

algorithm such as XGBoost splitting the tree. 

 

 
FIGURE 4. Leaf-wise tree growth in LightGBM [47] 

 

 
FIGURE 5. Level-wise tree growth in XGBoost [47] 
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LightGBM can be mathematically modeled in the following 

equation (12) [45] 

    𝒚𝒊 =  ∑   𝒇𝒌(𝒙𝒊)
𝑲
𝒌            (12) 

Here, 𝒚𝒊 denotes the prediction generated by the model for 

the 𝒊-th data sample. This prediction stems from the 

combination of predictions from each decision tree 𝒇𝒌, 

where 𝒌 represents the number of trees within the model. 

Consequently, if there are 𝑲 trees in the model, the final 

prediction is the summation of predictions yielded by each 

individual tree. This illustrates the concept of ensemble 

learning, wherein the combination of multiple weak models 

can yield a stronger one. By employing this approach, 

LightGBM enables the modeling of complex relationships 

between input features and target outputs by integrating the 

results from several decision trees [45-47]. 

 
3. CATBOOST CLASSIFICATION 

Categorical Boosting is a new gradient boosting tree that can 

hadle categorical data. It does not use binary substitution of 

categorical values, instead it performs a random permutation 

of the dataset and calculates the average label value [48]. 

Catboost use decision tree as base predictor [49]. When 

constructing a new split for the tree, CatBoost uses a greedy 

way to consider the combinations. CatBoost combines all 

combinations preset with all categorical features in the 

dataset [50]. FIGURE 6 shows how CatBoost constructing a 

tree. 

 

 
 

FIGURE 6. Depth-wise tree growth in CatBoost [50] 
 

Due to CatBoost unique way of building trees, CatBoost has 

two main components in performing optimization, namely 

Loss Component, and Regularization component [49]. Loss 

component is the part that measures how well the model 

predicts the actual target from the training samples, Loss 

Component can be modeled into mathematical form in the 

following equation (13) [49] 

 

   𝐿(𝜃) =
1

𝑁
∑ 𝑙(𝑦𝑖 , 𝐹(𝑥𝑖))𝑁

𝑖=1            (13) 

 

Here  𝜃 is parameter model, N signifies the total number of 

samples within the dataset, representing the extent of the 

training data utilized to construct the CatBoost model. 

𝑙(𝑦𝑖 , 𝐹(𝑥𝑖)) represents the loss function, which quantifies the 

discrepancy between the true target value 𝑦𝑖 and the 

predicted value 𝐹(𝑥𝑖) for the i-th sample. After the Loss 

component results are obtained, the results of the loss 

component are summed with the regularization component. 

Regularization Component can be modeled into 

mathematical form in the following equation (14) [49] 

    𝛺(𝜃) = 𝛾 ∑
𝜃𝑗

2

2

𝑀
𝑗=1            (14) 

 

The values M represents the total number of parameters in 

the model, and 𝛾 is a hyperparameter controlling the 

regularization strength. The regularization component aims 

to curb the weight of parameters, preventing them from 

growing excessively large, which could lead to overfitting.  

Meanwhile, 𝑗 serves as an index used to iterate through each 

parameter in the model [49]. 
 

F. AREA UNDER THE ROC CURVE 

The area under the Receiver Operating Characteristics curve, 

or simply AUC is a metric used to measure the performance 

of classification models. It represents the measure of 

separability between the models true positive rate and false 

positive rate across various threshold values. AUC ranges 

from 0 to 1, where a higher AUC indicates better model 

performance [51]. AUC includes False Negative (FN), False 

Positive (FP), True Negative (TN), and True Positive (TP). 

AUC can be mathematically modeled in the following 

equations (15) [52]  

        𝐴𝑈𝐶 =  
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
)×(

𝑇𝑁

𝑇𝑁+𝐹𝑃
)

2
           (15) 

  

Moreover, interpreting the AUC value provides insights into 

the models capacity to differentiate between positive and 

negative classes. Additionally, AUC serves as a useful tool 

for model selection and comparison, allowing practitioners 

to assess the relative effectiveness of different classifiers 

[53]. TABLE 6 presents a list of several AUC values for 

categorization [54]. 

 
TABLE 6 

Category of classification result based on AUC values 

AUC Values Category 

0.90 – 1.00 Excellent 

0.80 –  0.90 Good 

0.70 – 0.80 Fair 

0.60 –  0.70 Poor 

0.50 – 0.60 Failure 

 
G. T-TEST 

The t-test is a statistical test employed to determine if there 

is a significant difference between the means of two groups. 

It is commonly employed in scientific research to assess 

whether the means of two populations are statistically 

different from each other [55]. The t-test calculates the t-

value, which signifies the difference between the means of 

the two groups relative to the variation within each group, 

factoring in sample sizes and standard deviations. 

Subsequently, this t-value is compared against a critical 

value derived from the t-distribution to determine the 

statistical significance of the observed difference [56] If the 

t-test value is less than 0.05, then the results of both 

comparisons can be considered significant [57]. T-test can be 

calculated uses equations (16) below [56]. 

    𝑇 =  
𝑦1−𝑦2

√𝑠𝑝
2( 

1

𝑛1
+

1

𝑛𝑞2
)
           (16) 
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Here 𝑦1 and 𝑦2 are the mean values from groups 1 and 2, 𝑠𝑝 

is an estimate of the pooled s of the measurements, and n1 

and n2 are the number of observations for each group [56].  

 

 
III. RESULT 

TABLE 7 and FIGURE 7 shows the performance of each 

model on NASA MDP dataset.  In this research, we observed 

that our proposed method of hybridizing the PSO algorithm 

with the GWO algorithm maximizes the results of the PSO 

algorithm. TABLE 7 and FIGURE 7 show that The 

HGWOPSO feature selection outperforms both the PSO and 

GWO algorithms across all 13 NASA MDP datasets. The 

average results for these three feature selection methods are 

presented in TABLE 8, While TABLE 9 shows increase 

value of each methods. 

 
TABLE 8 

AVERAGE AUC OF ALL METHOD 

Method Average AUC 

PSO - XGBoost 0.846391 

PSO - LightGBM 0.8427418 

PSO - CatBoost 0.829189 

GWO - XGBoost 0.8336846 

GWO - LightGBM 0.83550285 

TABLE 7 
AUC results in NASA MDP dataset 

Dataset 
Method 

PSO 

XGB 

PSO 

LGBM 

PSO 

CAT 

GWO 

XGB 

GWO 

LGBM 

GWO 

CAT 

HGWOPSO 

XGB 

HGWOPSO 

LGBM 

HGWOPSO 

CAT 

CM1 0.816736 0.8289104 0.731449 0.8315148 0.86271552 0.782981 0.878109606 0.845849754 0.896231527 

JM1 0.685194 0.6857372 0.670386 0.6730202 0.69608008 0.67958 0.717293548 0.700623141 0.68144923 

KC1 0.782656 0.7839955 0.660456 0.7923177 0.81152083 0.857281 0.824322917 0.808244048 0.865983796 

KC3 0.836911 0.8116299 0.823056 0.8860417 0.85041667 0.856639 0.943489583 0.858854167 0.93125 

KC4 0.878191 0.8537245 0.827231 0.8460952 0.82255556 0.857222 0.927469136 0.920634921 0.94047619 

MC1 0.907869 0.9387123 0.937868 0.8231137 0.84708664 0.863512 0.964251916 0.966330459 0.934996696 

MC2 0.889444 0.8296714 0.843356 0.8946875 0.89569444 0.761694 0.942142857 0.919374999 0.929375 

MW1 0.808141 0.8272518 0.911699 0.8712121 0.86238472 0.923913 0.885902503 0.908285756 0.951119895 

PC1 0.913314 0.8930403 0.906566 0.8827094 0.87596448 0.866934 0.930438416 0.937964744 0.934698375 

PC2 0.900036 0.9228108 0.871235 0.8187508 0.7929395 0.819145 0.930793379 0.949570861 0.973287671 

PC3 0.840378 0.8385834 0.839678 0.8106041 0.8238258 0.817827 0.864275316 0.870578184 0.858522144 

PC4 0.944723 0.9393189 0.948541 0.9291876 0.93476135 0.934573 0.958888300 0.95693046 0.953285639 

PC5 0.799486 0.8022568 0.807941 0.7786452 0.78559151 0.787343 0.822342570 0.819245453 0.782796056 

 

 

 
Figure 7. AUC RESULTS IN NASA MDP DATASET 
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GWO - CatBoost 0.831434 

HGWOPSO - XGBoost 0.891516927 

HGWOPSO - LightGBM 0.881729765 

HGWOPSO - CatBoost 0.894882478 

 

 
TABLE 9 

AVERAGE INCREASE AUC VALUE OF ALL METHOD 

Method Comparison Increase Value 

HGWPSO XG – PSO XG 0.04512 

HGWOPSO LGBM – PSO LGBM 0.03898 

HGWOPSO CAT – PSO CAT 0.06569 

HGWOPSO XG – GWO XG 0.05783 

HGWOPSO LGBM – GWO LGBM 0.04622 

HGWOPSO CAT –GWO CAT 0.06344 

 

After the average AUC results were obtained, we conducted 

a significance test using T-test to see if our proposed method 

was significant to the model before hybridization. T-test 

result can be seen in TABLE 10. 

 
TABLE 10 

T-TEST RESULT FOR EVERY METHOD 

Method Comparison T-test Value  

(𝛼 = 0.05) 

Significance 

HGWPSO XG –  

PSO XG 

0.00004 Significant 

HGWOPSO LGBM –  

PSO LGBM 

0.00013 Significant 

HGWOPSO CAT – 

PSO CAT 

0.00552 Significant 

HGWOPSO XG –  

GWO XG 

0.00006 Significant 

HGWOPSO LGBM –  

GWO LGBM 

0.00678 Significant 

HGWOPSO CAT – 

GWO CAT 

0.00148 Significant 

 

Here in the TABLE 8, TABLE 9, and TABLE 10, is evident 

that there is a significant improvement between the 

HGWOPSO algorithm and the GWO or PSO algorithms. 

The results indicate that the highest outcome is achieved by 

HGWOPSO CatBoost with an Average AUC of 0.894. This 

represents an increase of 6.5% compared to PSO CatBoost, 

with a significance value of 0.005, and an increase of 6.3% 

compared to GWO CatBoost, with a significance value of 

0.001. This test proved that our proposed method stands out 

by demonstrating a consistently higher level of significance 

compared to traditional PSO or GWO algorithms that do not 

utilize hybridization. 

 
IV. DISCUSSION 

The results showed that our proposed method could enchane 

software defect prediction using HGWOPSO as feature 

selection and gradient boosted tree as classifier such as 

XGBoost, LightGBM and CatBoost. As we can see in 

TABLE 10, We conducted a two-tailed t-test between 

HGWOPSO and PSO, and GWO individually. The results of 

all t-tests showed values smaller than 0.05. This means there 

is a significant difference between HGWPSO and PSO, as 

well as between HGWOPSO and GWO. 

 From the result above, our method has proven 

successfully in optimizing software defect prediction. This is 

evidenced that our method is superior compared to prior 

study, TABLE 11 shown the comparasion between our 

proposed method and other PSO method. 

 
TABLE 11 

COMPARASION OF AUC RESULT WITH PREVIOUS PSO STUDIES 

Researcher Method AUC 

[11] PSO -SVM 0.695 

[13] PSO -NB 0.805 

[14] PSO -LR 0.794 

[18] 

 

BPSO(BCO) -ANN 0.849 

Our Research 

HGWOPSO - XGB 0.891 

HGWOPSO –LGBM 0.881 

HGWOPSO - CAT 0.894 

  

With the significance of the results we obtained, compared 

to previous PSO research in NASA MDP dataset, where the 

highest AUC result is 0.849 using binary cross-entropy PSO 

and ANN, we obtained a higher result of 0.894, representing 

an increase value of 0.045. This demonstrates that our PSO 

model outperforms previous research. The increase in AUC 

from the previous result indicates that the optimization we 

conducted on the PSO algorithm successfully generated a 

superior model for software defect prediction.  

 In previous research on software defect prediction, 

especially in the NASA MDP dataset, various models were 

employed. Researchers employ different approaches to 

achieve optimal results, such as parameter tuning, combining 

multiple learning models, and seeking effective 

combinations between different methods. Because of that, 

we also strive to compare our research findings with different 

methodologies. TABLE 12 shown the comparasion between 

our proposed method and various methodologies. 

 
TABLE 12 

Comparasion of AUC result with other research method 

Researcher Method AUC 

[58] FGA -NB 0.856 

 BGA -LR 0.866 

[59] FLDA -MLP 0.866 

[60] MLP-MFFS ROS 0.817 

[61] FFeSSTri 0.834 

   

Our Research 

HGWOPSO - XGB 0.891 

HGWOPSO –LGBM 0.881 

HGWOPSO - CAT 0.894 

 
TABLE 13 

Detail comparison with other research method 

Researcher Method 
Dataset 

JM1 KC1 KC3 PC1 

[18] BPSO-ANN 0.739 0.848 0.882 0.929 

[58] BGA-LR 0.719 0.823 0.86 0.886 

Proposed HGWOPSO- 
0.681 0.865 0.931 0.934 

Research CAT 

 

TABLE 12 present a comprehensive analys compared to 

various methodologies. Compared to previous study where 

the highest AUC result is 0.866, We achieved a higher result 
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using HGWOPSO CatBoost with a percentage increase of 

0.028. It is clear that the result of this research outperform 

the methodology of previous studies. TABLE 13 and 

FIGURE 8 compares the performance of previous studies 

where the highest AUC was achieved, using the BPSO-ANN 

and BGA-LR methods. The study was conducted on the 

JM1, KC1, KC3, and PC1 datasets. 

 

 
FIGURE 8. Detail comparison with other research method 

 

Based on the data presented in TABLE 13 and FIGURE 8, a 

comparison is made between different methods for 

predicting software defects. The proposed method using 

HGWOPSO and CatBoost demonstrates the best 

performance in KC1, KC3, and PC1 datasets. HGWOPSO 

CatBoost achieves superior results compared to other 

methods because HGWOPSO optimizes the performance of 

PSO through the exploration capabilities inherited from the 

GWO algorithm. This enables HGWOPSO to select more 

relevant features and attain better results. Additionally, 

CatBoost's unique approach to constructing and splitting 

trees also plays a crucial role in classification. However, the 

method used in this study also has limitations. Specifically, 

the resulting model's performance fails to reach optimal 

levels in the JM1 dataset. HGWOPSO CatBoost yields an 

AUC of 0.681, as indicated in TABLE 6, which falls into the 

Poor Category. This is attributed to the excessively high-

dimensional data and class imbalance present in the JM1 

dataset, resulting in suboptimal results from the method we 

employed  

In this study, our findings in software defect prediction 

using HGWOPSO have significant implications both in 

industry and research. Industrially, the prediction model we 

developed can be implemented in software development 

companies to enhance the quality assurance process. By 

accurately predicting software defects, companies can 

allocate resources more efficiently, prioritize testing efforts, 

and ultimately deliver high-quality software products to their 

clients. Additionally, IT consultancy firms can leverage our 

prediction model to offer better risk assessment and 

mitigation strategies to their clients, helping businesses 

anticipate potential software defects and take proactive 

measures to minimize their impact on operations. On the 

research front, our contribution in developing the 

HGWOPSO approach as a novel method for defect 

prediction provides a substantial contribution to the field of 

software engineering. Our findings can serve as a foundation 

for future research in building more advanced defect 

prediction models and improved methodologies. 

Furthermore, the dataset and methodology we utilized can 

serve as a benchmark for future studies in software defect 

prediction, facilitating the evaluation and enhancement of 

prediction models in the field. Thus, our research not only 

advances knowledge in software defect prediction but also 

has practical implications for various industries and research 

domains. 

 
V. CONCLUSION 

Software defect prediction is a crucial task in software 

engineering that can be utilized to maintain software quality. 

Identifying software defects at an early stage can result in 

decreased development expenses, rework efforts, and more 

reliable software. Software defect prediction datasets, 

specifically the NASA MDP dataset, have noisy attribute 

properties, high dimensionality, and imbalanced classes. To 

overcome these issues, we propose a method using 

HGWOPSO as feature selection and gradient boosting trees 

for classification, namely XGBoost, LightGBM, and 

CatBoost. The proposed method, which utilizes HGWOPSO, 

has been found to enhance AUC performance compared to 

the previous PSO study. The average AUC values yielded by 

HGWOPSO XGBoost, HGWOPSO LightGBM, and 

HGWOPSO CatBoost are 0.891, 0.881, and 0.894, 

respectively. We also conducted a two-tailed t-test between 

HGWOPSO and PSO, as well as between HGWOPSO and 

GWO individually. The results of all t-tests showed values 

smaller than 0.05. This indicates a significant difference 

between HGWPSO and PSO, as well as between 

HGWOPSO and GWO. This is prove that our proposed 

method successfully maximizes the results of the PSO 

algorithm. The findings of the research shows that 

employing HGWOPSO feature selection with CatBoost 

classification results in superior performance compared to 

the method used in the previous study.  

This research still has several limitations. As we can see 

in TABLE 13, it is evident that the method we used yielded 

suboptimal performance compared to previous studies, 

spesifically in the JM1 dataset. Our best method, 

HGWOPSO CatBoost, resulted in an AUC of 0.681, falling 

into the 'poor' category. This could be attributed to the 

dataset's excessively large high-dimensional data and highly 

imbalanced classes. For future research, we recommend 

focusing on examining this dataset, given its excessively 

high-dimensional data and highly imbalanced classes. To 

mitigate the imbalanced classes, we suggest changing the 

sampling method used, such as RUS, ROS, TL, or OSS, This 

change aims to address class imbalance and improve model 

performance. Additionally, we recommend changing the 

classification method in order to select a more suitable 

approach. The objective is to address issues associated with 

high-dimensional data, This is evident when we change the 

classification yields beeter performance result, as shown in 

TABLE 7 and FIGURE 7, where the HGWOPSO - XGBoost 

method outperformed HGWOPSO - CatBoost with an AUC 

of 0.717. Furthermore, we suggest employing 
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hyperparameter tuning in future research the aim for this 

study is to achieve more optimal results in software defect 

prediction. 
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