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ABSTRACT Diagnostic complications arise from pneumonia, characterized by lung inflammation caused by alveolar fluid 
accumulation, particularly in regions with limited radiologists. To tackle this issue, a new method utilizes the VGG16 
methodology for categorization, bolstered by genetic algorithms. In addition, Deep Convolutional Generative Adversarial 
Networks (DCGANs) improve the dataset by adding fake X-rays of pneumonia. Genetic algorithms are used to optimize 
hyperparameters in classification tasks. In contrast, DCGANs are employed to increase data augmentation techniques, 
boosting models' accuracy in identifying and categorizing pneumonia cases. The study partitioned a dataset into training, 
testing, and validation sets for pneumonia X-ray pictures. The training of GANs entails utilizing both generators and 
discriminators to produce increasingly realistic pictures gradually. The genetic algorithm enhances the hyperparameter tuning 
process, resulting in a substantial increase in accuracy. Initially, VGG16 achieved a success rate of 89.50% and a fitness 
score of 87.50%. Post-optimization and DCGAN augmentation, accuracy climbed to 95.50%, and F1-Score improved to 
94.75%. This study combines genetic algorithms and DCGANs to create a model that can produce genuine pneumonia X-
ray pictures and enhance categorization accuracy. 

INDEX TERMS Pneumonia, Deep Learning, VGG16, Genetic Algorithm, Deep Convolutional Generative Adversarial 
Network,

I. INTRODUCTION 
A bacterial, viral, or fungal infection is usually the cause of 
pneumonia, commonly referred to as a lung infection. 
Pneumonia is an inflammatory disease affecting one or both 
lungs [1]. The disease irritates the lungs, especially the air 
sacs, which might hold liquid or discharge and cause hacking 
and breathing troubles [2]. Fever, coughing, and sputum 
production are common symptoms [3], comparable to other 
non-infectious respiratory disorders. A case of pneumonia 
may be minor or fatal. Thus, it is imperative to identify and 
treat pneumonia promptly to reduce the high fatality rate, 
particularly in children [4]. 

The most common infectious cause of mortality for children 
globally is pneumonia. Its effects were evident in 2019 when 
740,180 fatalities in kids younger than five happened, making 
up around 14% of all deaths in that age group. Twenty-two 
percent of all pediatric fatalities between the ages of one and 
five were due to pneumonia. Fortunately, with medications 

such as antibiotics and antivirals, pneumonia may be 
controlled [5]. As a result, prompt identification of pneumonia 
is crucial for the efficient administration of the proper care [6]. 

Prevention of complications that may result in mortality 
largely depends on early detection and treatment of 
pneumonia [1]. For seasoned radiologists [1], diagnosing 
pneumonia from such images remains challenging due to the 
significant role of deep learning, mainly through artificial 
neural networks (JST) or convolutional neural networks 
(CNN) [7]. Conventional methods, such as X-ray 
examination, have become the standard worldwide for 
detecting pneumonia. 

Pneumonia frequently presents unclearly on X-rays, is 
easily misdiagnosed, and resembles a wide range of other 
benign conditions [2]. Although several research studies have 
been conducted recently, pneumonia detection remains 
difficult. Islam S.'s research on compressed sensing with deep 
learning for identification resulted in a remarkable accuracy of 
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96.48%. [8]. Rachna Jain and colleagues also used VGG-16 
and artificial neural networks to detect pneumonia from chest 
X-rays, achieving an accuracy of 92.31% [4]. Similarly, Sumit 
Gupta, Harsh Sharma, and colleagues employed a CNN for the 
90% accuracy and thresholding approach for pneumonia 
discovery from chest X-beam pictures utilizing highlight 
extraction and arrangement [2]. 

Technological innovations like generative adversarial 
networks (GANs) have helped overcome the limitations of 
small sample sizes and have progressed pneumonia detection 
studies [7]. Previous research utilizing diverse techniques 
provides valuable insights for enhancing the accuracy of 
pneumonia diagnosis. In this regard, a novel strategy that 
combines genetic algorithms with GANs seeks to increase the 
precision and dependability of illness identification and 
categorization procedures. 

Recent studies have explored advanced techniques, such as 
SVM, CNN, and deep learning, to enhance pneumonia 
diagnosis accuracy [8]. The challenging nature of pneumonia 
detection, particularly on X-rays, has prompted the 
investigation of novel strategies. In this context, optimizing 
algorithms using genetic algorithms (GA) in conjunction with 
generative adversarial networks (GANs) has shown promise. 

Previous investigations have also employed VGG16 as a 
classification approach in their research. For instance, a study 
[9] leverages VGG16 as an attribute extractor and employs 
transfer learning as its primary classification technique. 
Furthermore, a study [10] alters and adapts the VGG16 model 
to yield high accuracy. In [11], the authors employed VGG16 
to categorize COVID-19 pneumonia automatically. 

Research spanning diverse domains, from mosquito larvae 
categorization and image enhancement to multi-objective 
evolutionary algorithms [12], demonstrates the versatility of 
GAs. The fusion of GAs with GANs has proven effective in 
generating artificial human genomes [13] and detecting 
COVID-19 in medical images [14]. GAs also show promise in 
enhancing the stability and performance of GANs [15], fine-
tuning parameters for image categorization, and optimizing 
medical image segmentation. 

Recent efforts extend the application of GAs to optimize 
models for X-ray image COVID-19 detection, resulting in 
notable improvements in accuracy [16]. These studies 
underscore the potential of GAs in tandem with GANs or 
image-processing techniques to enhance performance across 
diverse applications [17]. This research aims to contribute to 
this evolving field by introducing a novel strategy combining 
genetic algorithms with GANs to improve the precision and 
reliability of pneumonia identification and categorization. 
Based on the research objectives, the contributions made in 
this research include the following: 

a. Dataset development and preprocessing using the 
normalization approach. 

b. Development of training data on the system using the 
DCGAN training data model. 

c. Creating a genetic algorithm hyperparameter tuning. 

d. Integrating the VGG16 classification model with GA. 
 
II. MATERIAL AND METHODS 
The system of classification of pneumonia disease has stages 
that will be passed based on FIGURE 1. These stages start 
with dataset assortment, information preprocessing, making 
another picture from the DCGAN generator results, genetic 
algorithm hyperparameter tuning, and arrangement utilizing 
VGG16. Then, it will be evaluated with a confusion matrix to 
discover its precision and accuracy.  

The dataset will be divided into two distinct sets: one for 
training the model phase and another for testing its 
performance. Following the training phase, the subsequent 
classification phase will be carried out with the help of 
VGG16. DCGAN [18] will be used for data preprocessing and 
modeling functions during the training phase. In the 
subsequent phase, which is the testing phase, preprocessing 
will apply. Additionally, the act of standardizing data and 
altering the dimensions of the data so that they are in alignment 
with the layers that are utilized in the classification process is 
included in the preprocessing itself.  

 

 
 

FIGURE 1. Research process system 
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A. DATASET 
This study utilized data collection from Kaggle, a site 
renowned for offering diverse datasets for research and 
development endeavors. This data set focuses on pneumonia-
related X-ray images, as depicted in FIGURE 2. A specialized 
medical facility in Guangzhou, focusing on healthcare for 
women and children [19], has provided the dataset under a 
license arrangement. The classifier will partition the acquired 
data into multiple segments-related X-ray images, as depicted 
in FIGURE 2. 

A specialized medical facility in Guangzhou, focusing on 
healthcare for women and children [19], has provided the 
dataset under a license arrangement. The classifier will 
partition the acquired data into multiple segments. Then, the 
training dataset comprises 3875 images indicative of infected 
lungs and 1341 images depicting normal lung conditions. 
Similarly, the testing dataset includes 390 pneumonia-related 
X-ray images and 234 images portraying normal lung 
conditions. Lastly, the validation dataset comprises 8 X-ray 
images representing normal lung conditions and eight images 
depicting pneumonia.  

As a result of this segmentation, the model constructed 
with this dataset's help will be going through training, testing, 
and validation. The research on pneumonia identification 
using X-ray pictures is anticipated to benefit from this dataset, 
which was obtained under license from a reputable medical 
institution. It is expected that this dataset will provide 
authenticity and reliability.   

 
 
 

B. PREPROCESSING 
This research involves preprocessing pneumonia X-ray 
pictures to set up the dataset before it is engaged in the model 
preparation process. The initial dataset has an original image 
with dimensions of 150x150 pixels. We implemented a 
sequential application of various transformations for each X-
ray image to align with the model requirements. 

To reduce computational complexity and speed up the 
training process without sacrificing important information in 
the image, we resized the initial dimension of the X-ray image 
from 150x150 pixels to 64x64 pixels using the Resize 
transformation. Next, we apply the center crop transformation 
to the image, cropping it at its center to achieve a final size of 
64x64 pixels. We apply this cropping to ensure the 
preservation and focus of relevant areas of the image, such as 
the lungs and surrounding areas. 

From that point onward, tensor change changes the picture 
into a tensor portrayal. This transformation simplifies the 
image representation and facilitates the computational 
process. The model uses the normalized transformation to 
standardize the pixel values within the interval of [-1, 1]. This 
normalization aims to improve stability and convergence 
speed during model training. 

The normalization approach is reported to have two 
primary purposes, as stated in several studies [20]. The 
primary goal is to provide standardized transportation methods 
for the same tissue type inside and among patients. The second 
aim is to establish a uniform interpretation of intensities across 
various locations within a given tissue.  

 

FIGURE 2. (a) Normal chest person 1, (b) Normal chest person 2, (c) Normal chest person 3, (d) Pneumonia 
chest person 1, (e) Pneumonia chest person 2, (f) Pneumonia chest person 3. 

 

   (a)          (b)            (c) 

   (d)          (e)            (f) 
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C. DEEP CONVOLUTIONAL GENERATIVE 
ADVERSARIAL NETWORKS 

DCGAN, a variant of GAN, incorporates convolution layers 
in the discriminator and generator [21]. DCGAN stands out 
from traditional GANs by leveraging convolutional neural 
networks (CNNs) instead of connected layers in its 
discriminator and generator, rendering it especially adept at 
image generation tasks [22]. FIGURE 3 depicts the 
architectural details of DCGAN, delineating two discernible 
networks: the discriminator and the generator. 

 
FIGURE 3. Generator and discriminator standard layer 

Discriminators and generators in DCGAN inherently 
possess identical attributes, employing convolution layers 
within neural networks. FIGURE 3 depicts the architecture, 
where the generator distributes 100 dimensions within the 
network and inputs them into the convolution layer. There 
are four separate sequences of convolutional layers that have 
the potential to recover the depth of the image. Furthermore, 
it is imperative to note that if the final layer within the 
generator possesses dimensions of 64x64, it is essential for 
the initial layer within the discriminator to exhibit the exact 
dimensions of 64x64. This is because the discriminator 
cannot categorize or juxtapose generated images with the 
original photos in the dataset. Furthermore, the discriminator 
employs fully connected layers in its final layer. 

The generator in Deep Convolutional Generative 
Adversarial Networks consists of many layers, as shown in . 

 
TABLE 1. These layers collaborate to generate artificial 

graphics using the latent data provided. The primary 
convolution transpose layer transforms the latent data into a 
higher dimension as the initial step. This layer utilizes a 4x4 
kernel with an 8-multiplier added to the number-generating 
feature. 

To enhance stability and accelerate convergence, the 
model incorporates a normalization layer and ReLU 
activation after this layer. The repetitive process persists with 
the following layers, wherein each convolution transpose 
layer increases the spatial dimension of the picture while 
decreasing its feature count. This entails expanding the 
features by a predetermined coefficient and applying 
normalization and ReLU activation functions. 

The last layer creates an output picture with pixel values 
ranging from −1 to 1, based on the desired image attributes, 

using the Tangent Hyperbolic (Tanh) activation function. As 
the training continues, this DCGAN generator uses the 
convolution transpose layer layers to expand and generate 
progressively higher-quality artificial pictures. 

 
TABLE 1  

Generator Layer Summary 

Layer Name Output Shape Parameter 

ConvTranspose2d Layer  
Batch Normalization Layer 
ReLU Activation Layer 
ConvTranspose2d Layer 
Batch Normalization Layer 
ReLU Activation Layer 
ConvTranspose2d Layer 
Batch Normalization Layer  
ReLU Activation Layer 
ConvTranspose2d Layer 
Batch Normalization Layer 
ReLU Activation Layer 
ConvTranspose2d Layer 
Tangen Hyperbolic Layer 

(None, 4, 4, 512) 
(None, 4, 4, 512) 
(None, 4, 4, 512) 
(None, 8, 8, 256) 
(None, 8, 8, 256) 
(None, 8, 8, 256) 
(None, 16, 16, 128) 
(None, 16, 16, 128) 
(None, 16, 16, 128) 
(None, 32, 32, 64) 
(None, 32, 32, 64) 
(None, 32, 32, 64) 
(None, 64, 64, 3) 
(None, 64, 64, 3) 

819200 
2048 
0 
2097152 
1024 
0 
524288 
512 
0 
131072 
256 
0 
3072 
0 

 
 TABLE 1 illustrates the inclusion of 2D convolution 

transposition layers, which enhance sampling or augment the 
resolution of data representation. Following each 
ConvTranspose2d layer, a batch normalization layer is 
employed to enhance stability and accelerate the training 
process. Every ConvTranspose2d and batch normalization 
layer is then accompanied by an implemented ReLU 
activation layer to integrate non-linear attributes into the 
model. The ultimate convolution transposition layer of the 
generator employs a hyperbolic tangent activation function 
(Tanh) to generate an output inside the interval of -1 to 1, 
adhering to the customary methodology in generative 
models.  

Each generator layer exhibits an identical pattern to the 
discriminator's and adheres to the same equation within each 
layer. The generator and discriminator layers can be 
considered reflective surfaces, where the dimensions of the 
generator output, such as 64x64, correspond to the 
dimensions of the discriminator input. Likewise, the 
discriminator can employ the computational formula utilized 
by the generator. 

Furthermore, the architecture of DCGAN incorporates an 
additional component known as the discriminator. The 
discriminator's primary function is to differentiate between 
authentic pneumonia and artificially generated images. 
During the initial training phase, the discriminator receives 
the original pneumonia image and the image produced by the 
preceding generator. Subsequently, an adversarial 
comparison will take place. Throughout the comparison 
process, the generator will consistently enhance the quality 
of the fabricated data. Simultaneously, the discriminator will 
enhance its cognitive abilities in discerning the images by 
utilizing backpropagation. This process persists until it 
achieves a state of equilibrium, wherein the generator 
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generates very persuasive data, posing a challenge for the 
discriminator to differentiate it. As indicated in TABLE 2, 
the discriminator comprises numerous convolution layers 
that constitute its architecture. Furthermore, the convolution 
layers employed are self-organizing convolution layers. 

TABLE 2  
Discriminator Layer Summary 

Layer Name Output Shape Parameter 

ConvTranspose2d Layer  
ReLU Activation Layer 
ConvTranspose2d Layer 
Batch Normalization Layer 
ReLU Activation Layer 
ConvTranspose2d Layer 
Batch Normalization Layer  
ReLU Activation Layer 
ConvTranspose2d Layer 
Batch Normalization Layer 
ReLU Activation Layer 
ConvTranspose2d Layer 
Sigmoid Activation Layer 

(None, None, None, 64) 
(None, None, None, 64) 
(None, None, None, 128) 
(None, None, None, 128) 
(None, None, None, 128) 
(None, None, None, 256) 
(None, None, None, 256) 
(None, None, None, 256) 
(None, None, None, 512) 
(None, None, None, 512) 
(None, None, None, 512) 
(None, None, None, 1) 
(None, None, None, 1) 

3072 
0 
131072 
512 
0 
524288 
1024 
0 
2097152 
2048 
0 
8192 
0 

 
During the initial phase of training the discriminator, it is 

necessary to assign random weights. Arbitrary weights are 
vital in introducing early variability to the training model. 
After setting these arbitrary weights, the discriminator begins 
its initial training phase by employing the convolution layer. 
The primary function of this layer is to alter the proportions 
of the incoming image. After the modification of dimensions, 
the Rectified Linear Unit (ReLU) is implemented. 

Implementing the Rectified Linear Unit (ReLU) layer 
requires making essential choices about constructing the 
neural network. The ReLU activation function operates on 
real numbers using the formula 𝜎(𝑥) 	= 	𝑚𝑎𝑥(𝑥, 0). Neural 
networks possess a multitude of layers, which constitute their 
architecture. This structure includes a concealed layer with a 
corresponding input dimension referred to as p₀. The input 
dimension is obtained from the width vector function, 
denoted as 𝑝	 = 	 (𝑝₀, . . . , 𝑝(𝐿	 + 	1)). Another approach 
entails the utilization of a modified activation function that is 
applied to individual elements within the y vector. The shift 
is applied to every aspect that is not utilized in the activation 
of the ReLU layer. The vectors 𝑦	 = 	 (𝑦₁, . . . , 𝑦ᵣ)	𝑎𝑛𝑑	𝑣	 =
	(𝑣₁, . . . , 𝑣ᵣ) belong to the set of real numbers, ℝᵣ. The shifted 
activation function 𝜎ᵥ	(𝑦) is obtained by taking the transpose 
of the vector ((𝜎(𝑦₁	 − 	𝑣₁), . . . , 𝜎(𝑦ᵣ	 − 	𝑣ᵣ))) where each 
shifted element is converted into an accurate value in the set 
of real numbers, ℝᵣ. The neural network is then represented 
as a function of the Eq. (2)[23] 

 
𝑓(𝒙) = 𝑊=>? 	∘ 	𝜎𝑣𝐿 ∘		.		.		.		∘ 	𝑊2 ∘ 	𝜎𝑣1 ∘ 	𝑊1	𝒙,						𝒙	 ∈ 	𝑅 (2) 

In Eq. (2), the multilayer neural network, denoted as 𝑓(𝑥), 
takes an input 𝑥. Each layer in the network is represented by 
a weight matrix 𝑊ℓ and an activation function vector 𝑉ℓ. 

Neurons in the ℓ − 𝑡ℎ layer are labeled as 𝑃ℓ, while those in 
the ℓ-1st layer are labeled as 𝑃ℓ − 1. The length of the 
activation function vector 𝑉ℓ is Pℓ. Applying the activation 
function sigma to elements at the middle value requires the 
ℓ minus t h  layer's output. Specialized networks designed for 
regression tasks predict a single continuous value (𝑃ℓ	 +
	1	 = 	1). The overall expression succinctly combines the 
weight matrix, activation function, and input 𝑥. 

During the subsequent step of this process, 
supplementary characteristics are included in every layer 
including a batch normalization layer. This stratum performs 
a pivotal function in augmenting the stability and speeding 
the convergence of the model. The quantity of characteristics 
increases in correlation with the profundity of the 
framework, and the expression employed to designate this 
tally is the Number Discriminator Feature (NDF). 

The scale (𝛾) and shift (𝛽) enable the network to acquire 
the most suitable scale and shift for each feature through 
learning. The normalization layer reduces internal covariate 
shifts, stabilizing and accelerating the training process. Then, 
the batch normalization algorithm was explained in Eq. (3) 
[24]. We explain the dimensions and offset of the 
transformation as follows. 

 𝛾K = 	𝛾𝑥LK 	+ 	𝛽 (3) 
 

After comprehending the method for determining the 
transformation using dimensions and offset values, the 
subsequent step entails computing a fresh value within this 
formula. Eq. (4) [24] calculates the specific value from 
standardized data, defined as normalized data (𝑥M𝑖). 

 𝑥LK = 	
𝑥K − µ
√𝜎Q−∈

 (4) 

The ith data point in the dataset is denoted as 𝑥K. 
representing its starting value. It has the potential to represent 
several types of data, such as measurements or observations 
that are relevant to the variable being studied. Subsequently, 
we employ the symbol µ. to represent the arithmetic, mean 
or average of all the values in the dataset. Next, we examine 
the variance of the dataset by dividing it by a scaled estimate 
of the data's dispersion. Prior to computing the normalized 
data value (𝑥LK), it is necessary to obtain the variance. Eq. (5) 
[24] shown below specifies the computation of the variance:  

 𝜎Q = 	
1
𝑚	R(𝑥K − µ)Q

S

KT?

 (5) 

To unravel the intricacies of variance (𝜎Q), we embark on 
a journey of statistical exploration. Picture it as a quest where 
each data point (𝑥K) plays a unique role, engaging in a dance 
with the mean (μ). Our mission is to decipher the rhythm of 
these deviations by squaring their every move. This entails a 
grand summation, symbolized by the mighty ∑	KT?S , 
encompassing the squared differences for each data point. 
Then, the moment of reckoning arrives, as we divide this 
collective spectacle by the total number of data points (𝑚), 
signified by the mystical 1m1. These squared differences, 
akin to both positive and negative departures from the mean, 
unveil the tale of variability within the sample. 
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Subsequently, utilizing the variance 𝜎Q approach, we must 
calculate the mean value of the batch data, denoted as (µ), as 
expressed in Eq. (6) [24]. A batch input value, represented as 
𝑥?	~	𝑥S, consists of an m sample. 

 
µ = 	

1
𝑚	R𝑥K

S

KT?

 (6) 

 To utilize the variance (𝜎Q) technique in the provided 
context, it is necessary to calculate the sum of the mean 
value. The value will be calculated by taking the sum of all 
data points and dividing it by the total number of data points 
(𝑚). The act of aggregating the various data points (∑	KT?S 𝑥K) 
and subsequently dividing by 𝑚 yields a representative value 
that effectively represents the central trend. 

Using a convolution layer with a single output channel, 
the final layer creates a confidence score indicating whether 
the provided picture is accurate or false. The outcome of this 
layer is then processed by a sigmoid activation function 
designed to produce a scalar value confined within the range 
of 0 to 1. This scalar value is a decisive metric, denoting the 
probability or likelihood that the input image is genuine. In 
essence, this final layer acts as the discriminator's verdict, 
assigning a quantitative measure to the authenticity of the 
presented visual data.  

Besides that, when training the DCGANs model, there 
will be a Loss Discriminator and Loss Generator Eq. (8)[25]. 
The loss functions for both main layers are constructed using 
the min-max function, a fundamental approach within the 
Generative Adversarial Networks (GANs). The min-max 
function will assess and record the adversarial nature of the 
DCGAN training process. The Generator minimizes the loss 
obtained from training in forming the synthetic image in this 
function. At the same time, the discriminator will maximize 
the loss obtained when validating the synthetic image. 

  
𝑚𝑖𝑛W𝑚𝑎𝑥X𝑉(𝐷, 𝐺)
= 𝐸\~]^_`_(a)[𝑙𝑜𝑔𝐷(𝑥)]𝐸\~]^_`_(a)[log j1 − 𝐷k𝐺(𝑧)mn] (8) 

 
𝐷(𝑥) signifies the likelihood of discriminator networks 

D distinguishing 𝑥 as an authentic sample. In addition, 𝐺(𝑧) 
refers to a sample produced by the generator network G using 
noise 𝑧, and 𝐷(𝐺(𝑧)) measures the likelihood of the 
discriminator network D correctly identifying 𝐺(𝑧) as a valid 
sample. The generator minimizes loss by providing synthetic 
data that closely mimics actual samples. The discriminator 
will maximize the loss when validating the images. This 
dynamic interplay establishes an equilibrium where the 
generator is driven to create realistic data that poses a 
substantial challenge for the discriminator. This formulation 
creates a balance where the generator generates realistic data 
that challenges the discriminator.  

D. GENETIC ALGORITHM 

One of the suitable algorithms for handling complicated 
optimization issues that are challenging to resolve using 
traditional techniques is the genetic algorithm [17] [21]. The 
heuristic approach is a strategy based on empirical criteria or 

intuition to discover a better solution than the already found 
[17]. Employing this heuristic approach effectively tackles 
optimization issues related to container management [20].  

This research employs a genetic algorithm (GA) [15] to 
optimize the hyperparameters of a VGG16 model that is 
trained on a dataset for pneumonia detection. Consequently, 
identifying the best hyperparameters entails following the 
stages stated in FIGURE . The technique starts by initializing 
a population of various sets of hyperparameters, such as 
learning rate, maximum depth, batch size, etc., representing 
viable solutions. 

 

 
FIGURE 4. Common genetic algorithm flows 

A group of individuals is formed, encompassing the 
variables slated for optimization called chromosomes. The 
population is explicitly characterized in Eq. (9) [26], where 
the row vector represents the solution vector in a singular 
iteration. The matrix 𝑋 consolidates all individuals engaged 
in the optimization procedure. 

 𝑝𝑜𝑝 = 	

⎣
⎢
⎢
⎢
⎡
𝑝𝑜𝑝?
𝑝𝑜𝑝Q
𝑝𝑜𝑝s
⋮

𝑝𝑜𝑝u⎦
⎥
⎥
⎥
⎤
 (9) 

 
By understanding the formula mentioned above, it is 

possible to determine the total population for each 
generation, represented by n-population. Eq. (10) [26] 
depicts the total population throughout the execution, with n 
denoting the number of iterations and m indicating the 
number of chromosomes. 

 

𝑋 = y

𝑥?,? 𝑥?,Q 𝑥?,s ⋯ 𝑥?,S
𝑥Q,? 𝑥Q,Q 𝑥Q,s ⋯ 𝑥Q,S
⋮ ⋮ ⋮ ⋱ ⋮
𝑥u,? 𝑥u,Q 𝑥u,s ⋯ 𝑥u,S

|																					(10) 

 
In addition, let us represent the percentage of the 

population comprised of parents who have demonstrated 
better fitness values by the letter P. When the percentage P 
is set at 30%, the fitness-based uppermost 30% of the 
population is deemed eligible to participate in the selection 
process linked to recombination or crossover. A progenitor 
is designated, which denotes as 𝑥Ku, which denotes specific 
generation and individual, if its fitness level is among the 
highest 30%. Failure to meet these criteria disqualifies the 
individual from the selection process. 

In the context of Eq. (11) [26], the total population is 
denoted as 𝑥ⁿ, and the variable t represents the number of 
iterations. Within this population, parents are identified at a 
specific iteration, organized in an array denoted as 𝑥K~�����u (t). 
Additionally, another array represents parents from the 
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preceding iteration, labeled as 𝑥K~�����u  (𝑡	 − 	1). A specific 
notation indicates an individual's position in the population, 
namely [𝑥K~�����u  (𝑡	 − 	1), 𝑥ⁱⁿ], where 𝑥ⁱⁿ refers to the 
individual at the nth position. This notation implies that the 
individual at the nth position, 𝑥ⁱⁿ, is combined with the 
preceding parent. This process helps keep track of 
individuals and their positions in the evolving population 
across iterations. 
 

𝑥K~�����u (𝑡) = 
 

�
[𝑥K~�����u (𝑡 − 1), 𝑥Ku]			𝑖𝑓	𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥Ku)	𝜖	(	𝑃	 × 𝑥u	)

𝑥K~�����u (𝑡 − 1)				𝑖𝑓	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (11) 

 
 

The F1 score, computed using the validation set, 
quantifies the performance of our model. We employ 
hyperparameter tuning to assess parameter configurations 
and achieve optimal discrimination between pneumonia and 
regular patients in our model. The optimal fitness value for 
future use can be determined by referring to Eq. (12)[27]. 
The fitness value is derived from multiple training sessions 
on a generation and population. 

 
 

𝑓𝑡 = R𝑅~	/	𝑀
�

�T?

 (12) 

 
Variable 𝑠 represents the inclusion of S

�
 in the summation 

term, and specific parameters are targeted for enhancement. 
In this scenario, 𝑅~ signifies the rule selected, and M denotes 
the total regulations count. The fitness value selected rules 
determine 𝑓 sub 𝑡	for each chromosome. Each chromosome 
undergoes evaluation against the fitness function. Only those 
solutions that meet the criteria of the fitness function are 
chosen to engage in the reproductive process, involving 
either crossover or mutation. 

By evaluating their F1 scores, the genetic operations 
include finding the most intelligent people and using the 
uniform crossover to create a new group of possible 
solutions. To introduce variability within the population, we 
implement mutation by making random alterations to a 
subset of hyperparameters [28]. The mutation process is 
shown in FIGURE . The mutation prevents every solution in 
the population from falling into the local optimum of the 
solved issue. Offspring are the consequence of crossing and 
are subject to random mutation. We can randomly choose 
bits in binary encoding to change them from 0 to 1 or 1 to 0.  

 

 
 

FIGURE 5. How mutation works. 

The genetic algorithm incorporates the identified ideal 
parameters into the classification technique. The 
characteristics utilized are the ones of significance. The 
batch size controls the amount of memory utilized and 
determines the speed at which the model learns. 
Furthermore, the model utilizes other parameters to 
incrementally adapt to the current parameters. Epochs 
represent the frequency at which the model processes the 
complete dataset. These parameters aim to attain optimal 
precision and fitness value in the classification procedure. 

E. VGG16 ARCHITECTURE  

The VGG16 architecture will be utilized for classification to 
predict pneumonia versus X-rays[29]. One of the deep 
learning architectures frequently employed in classification 
is VGG16 [30]. The global average pooling, two thick layers 
for classification, and multiple blocks of convolutional and 
max-pooling layers (blocks 1 through 5) [31] make up the 
VGG16 architecture model, for the specific layer will be 
retrieved on  
 
TABLE 3. Each convolutional block aims to extract 
hierarchical characteristics from the input picture by 
combining several convolutional and max-pooling layers 
[30]. 

After the layer Convolutional block, VGG16 has layer 
Global average pooling, producing an average representation 
of the features across the spatial data. The last two thick 
layers are answerable for grouping, with the layer having 
convolution and ReLU activation[32]. In contrast, the last 
layer has one sigmoid activation unit suitable for binary 
classification tasks. The model has 20,090,177 parameters, 
65,793 trainable parameters, and 20,024,384 untrainable 
parameters. This diversity of parameters reflects the model’s 
high capacity to handle complex datasets.  

 
TABLE 3 

VGG16 Architecture Layer Summary 

Layer Block Layer Name Output Shape 
 Input Layer 

Convolution transpose layer  
None, None, None, 3 
None, None, None, 64 

Block 1 Convolution transpose layer  
MaxPooling2D Layer 

None, None, None, 64 
None, None, None, 64 

Block 2 Convolution transpose layer 
Convolution transpose layer  
MaxPooling2D Layer 

None, None, None, 128  
None, None, None, 128 
None, None, None, 128 

Block 3 Convolution transpose layer 
Convolution transpose layer 
Convolution transpose layer 
Convolution transpose layer 
MaxPooling2D Layer 

None, None, None, 256 
None, None, None, 256 
None, None, None, 256 
None, None, None, 256 
None, None, None, 256 

Block 4 Convolution transpose layer 
Convolution transpose layer 
Convolution transpose layer 
Convolution transpose layer 
MaxPooling2D Layer 

None, None, None, 512 
None, None, None, 512 
None, None, None, 512 
None, None, None, 512 
None, None, None, 512 

Block 5 Convolution transpose layer 
Convolution transpose layer 
Convolution transpose layer 
Convolution transpose layer 
MaxPooling2D Layer 

None, None, None, 512 
None, None, None, 512 
None, None, None, 512 
None, None, None, 512 
None, None, None, 512 

 GlobalAveragePooling2D Layer 
Dense Layer 
Dense Layer 

None, 512 
None, 128 
None, 1 
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III. RESULT 
The section will display the accuracy difference between 
VGG16 with and without genetic algorithms and DCGAN 
augmentation data. The data's preprocessing is necessary 
before its utilization in the categorization procedure. In 
addition, it will demonstrate the categorization analytics and 
DCGAN modeling of fresh false picture data. 

A. MODELING RESULT USING DCGANs 

In modeling and training using DCGANs, it is essential to 
have both a generator and a discriminator. This is because 
both components are necessary ingredients. The generator 
will produce and mold an original picture, which will then be 
converted into a forged image. After the synthetic image has 
been produced, the discriminator will proceed with a 
classification. The generator will then create a new image 
that displays greater authenticity once the discriminator 
identifies the picture being examined as fake [33]. 

The training approach of the adversarial network model 
will involve integrating a random perturbation that 
influences the discriminator's final prediction for the 
produced image. The generative model includes random 
noise, which pertains to a vector or distribution that follows 
a stochastic process. The transformation process plays a 
crucial role in data generation [34]. The produced data is 
characterized by variance and an element of surprise. 

 
FIGURE 6. DCGANs modeling result 

 
Comprehending the operation of the generator and 
identifying the suitable uproar vector to generate the required 
category by altering the noise vector is a simple process. 
Nevertheless, in this specific scenario, we utilize 100 noise 
vectors. The normalization layer uses a tiny batch size of 64 
to train the model. The weights are assigned initially using a 
distribution with a median equal to the data and a deviation 
from the mean of 0.0002. 

Both the discriminator and generator each comprise five 
layers in total. The generator consists of one deconvolution 
layer with Tanh activation on the final layer and four 

deconvolution levels with ReLU activation. The 
discriminator layer consists of four convolutional layers 
responsible for spatially processing the image. Following the 
processing of the picture in the preceding layer, the ReLU 
layer will function as the activator. Subsequently, the 
discriminator incorporates an extra layer known as the 
sigmoid layer. 

During the training phase, the discriminator encounters 
both authentic and synthesized data. After several training 
epochs, the generator produces highly authentic pictures for 
further training [35]. The adequacy of the Superior DCGAN 
model was assessed using 100 generated images for each 
lung lesion category. The FIGURE 6 graphic below shows 
the results of modeling with DCGANs. 

B.  Discriminator and Generator Loss 

In generative adversarial networks (GANs), a widely adopted 
loss function for training is the twofold cross-entropy loss. 
FIGURE 6 vividly illustrates this pivotal aspect of model 
training, providing a graphical depiction of the model 
training output. Here, the intricacies of generator and 
discriminator loss during training are visually presented, 
offering valuable insights into the dynamics of the training 
process. This graphic explicitly depicts the subtle details 
detected following the conclusion of 10 epochs, or 450 
iterations, offering a comprehensive overview of the model's 
evolving performance throughout its training phase. Based 
on the chosen epochs, FIGURE 7 presents the training loss 
history derived from the observations. 

 
FIGURE 7. Generator and discriminator training loss history 
 

In the first iteration, LD is relatively high (1.53) because 
the generator still produces unclear and unrealistic images, 
and the discriminator attempts to recognize the genuine 
image (𝐷(𝑥)) and that produced by the generator (𝐷(𝐺(𝑧)). 
The resulting LG also displays a value of 3.03. 𝐷(𝑥) and 
𝐷(𝐺(𝑧)) display different values, indicating that the 
discriminator has not been effective in distinguishing 
between real and fake images. As the training progresses, 
there is a significant decrease in LD, reaching low values 
such as 0.01 at epoch 1, indicating that the discriminator is 
getting better at distinguishing. 

At the same time, the LG increases sharply from iteration 
to iteration, reaching 8.42 at iteration 25. This indicates that 
the generator successfully improves its ability to create 
pictures nearer to the first picture. With a high LG, the 
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generator feels the squeeze to deliver an image that can 
"trick" the discriminator. 

In addition, the values of 𝐷(𝑥) and 𝐷(𝐺(𝑧)) give an idea 
of the extent to which the discriminator can tell the difference 
between real and fake images. A high 𝐷(𝑥) value indicates 
the discriminator's ability to recognize the actual image, 
while a low 𝐷(𝐺(𝑧)) value indicates that the generator has 
successfully fooled the discriminator. Overall, the training 
results show positive progress, with the discriminator 
becoming more accurate and the generator becoming more 
effective in producing realistic images as epochs pass. 
Further evaluation can be done by considering other metrics, 
such as BAS, to validate the quality of the pictures created 
by the generator. 

C.  IMPROVING IMAGE CLASSIFICATION ACCURACY 
GENETIC ALGORITHM 

Combining Deep Convolutional Generative Adversarial 
Networks (DCGANs) with Genetic Algorithms (GAs) is a 
promising way to improve image classification accuracy. 
DCGANs generate synthetic pneumonia X-ray images, 
enhancing the classification model's performance. 
Concurrently, genetic algorithms (GAs) are utilized to fine-
tune parameters during classification system training. 

To bolster the training of the classification model, we 
introduce pneumonia X-ray images as a supplement to the 
primary dataset. This augmentation increases the quantity of 
available data and enriches its diversity, ultimately 
enhancing the overall robustness of the model. Here, 
DCGAN functions as a supportive tool, effectively elevating 
the classification model's performance by generating and 
integrating additional data. The utilization of DCGAN 
proves instrumental in fortifying the capabilities of the 
classification model, ensuring a more comprehensive and 
effective training process. 

To determine optimal parameters for the classification 
model, a genetic algorithm (GA) is employed. The Genetic 
Algorithm (GA) utilizes natural selection as inspiration to 
identify the optimal hyperparameter values, guided by the 
principle of "survival of the fittest." The specific parameters 
under consideration are the learning rate, epoch, and batch 
size. 

Numerous layers make up the generator in Deep 
Convolutional Generative Adversarial Networks. These 
layers work together to construct fake visuals from the 
supplied latent data. First, the first convolution transpose 
layer is responsible for converting the latent data into a larger 
dimension. This layer has a 4x4 kernel with an 8-multiplier 
applied to the number generator feature. 

During the recombination stage, the selected parents 
combine their parameters to produce offspring that inherit 
traits from each parent. Additionally, mutation introduces 
changes to some parameter values, preserving genetic 
diversity and averting premature convergence to suboptimal 
solutions. The outcome is a new generation comprising both 
surviving parents and their offspring. GA evolutionarily 
optimizes parameter values by retaining the best parents, 
significantly improving pneumonia X-ray image 
classification accuracy. TABLE 4 provides a detailed 

account of the changes in F1-Score during the discovery of 
the optimal parameters for classification. 

 

TABLE 4  
Fitness score changes history 

 Generation 1 Generation 2 Generation 3 Generation 4 
Parent 1 81.25% 62.50% 77.85% 75.00% 
Parent 2 81.25% 92.55% 90.35% 75.00% 
Parent 3  75.00% 90.23% 87.95% 81.25% 
Parent 4 68.75% 77.32% 88.00% 82.25% 
Parent 5 68.75% 87.00% 88.00% 72.75% 
Parent 6 93.75% 87.00% 85.25% 72.75% 
Parent 7 93.75% 94.75% 80.25% 83.85% 
Parent 8 75.00% 82.50% 85.55% 80.75% 

D.  CLASSIFICATION USING VGG16 ARCHITECTURE 

The VGG16 architecture, a convolutional neural network 
(CNN)-derived architecture, will be employed for data 
classification. To enhance the classification process, we have 
implemented a variety of parameters derived from the 
Optimization Using Genetic Algorithm. The outcomes of 
generating novel pictures by DCGAN will also be 
incorporated into the training data. To achieve optimal 
categorization and enhance data distribution, it is imperative 
to implement effective strategies. 

The models will receive performance testing using the 
testing data, while the training data will be utilized to create 
the DCGAN and classification models. The DCGAN model 
will be added to the training set to extend it. For training, the 
classification model will use the more extensive dataset. 

Once the model has been trained and compiled, the 
categories will be determined utilizing the pre-built layers. 
Ten epochs of training were conducted using the validation 
data extracted from the provided dataset to validate the 
model. The validation data in this dataset has been verified 
to ensure that it accurately represents the presence of 
pneumonia. The training process employs the learning rate 
supplied by TensorFlow to mitigate the risk of the model 
achieving excessive precision. In addition, the training 
process incorporates the Reduce LR on Plateau recall. 

The determination of batch size and learning rate is 
predicated on the outcomes of a genetic algorithm 
optimization in which the optimal learning rate and batch 
size are chosen to optimize the model's performance. At each 
epoch of the training procedure, performance indicators, 
including loss and accuracy, were observed. The training 
process results indicated that the model attained a train loss 
of 0.26 and an accuracy rate of 89% on the train data. 

 Predefined test data was utilized to assess the model. The 
model's performance on the test data is assessed, revealing 
an accuracy of 84% during the evaluation process and a loss 
of 0.35. The obtained outcomes demonstrate that the model 
possesses commendable generalizability and can accurately 
classify novel data. This research contributes to advancing 
deep learning-based X-ray pneumonia disease detection 
systems. 
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By applying a genetic algorithm to optimize the 
hyperparameters, the optimal learning rate and batch size 
were determined to be 0.02 and 256, respectively, with an 
accuracy of 95% and an F1-Score of 94%. When comparing 
the manual approach with and without the optimal learning 
rate and batch size, it is evident that the latter achieved 89% 
accuracy and an 88% F1-Score for testing data, a 0.02 
learning rate, and a 128-batch size, respectively. The 
comparison between the utilization and non-utilization of a 
genetic algorithm is presented in  

TABLE 5. Classification performance is significantly 
enhanced when the optimal hyperparameter is determined 
using a genetic algorithm; this suggests that parameter 
optimization by this technique may yield superior outcomes 
compared to the manual approach.  

TABLE 5  
Comparison Genetic Algorithm 

 With GA Without GA 
Accuracy 

95.50% 89.50% 

F1-Score 94.75% 87.50% 

 
Furthermore, another conventional experiment assesses 

various learning rates and batch sizes by incorporating them 
into a classification model. The model yields varying 
outputs, with a learning rate of 0.2 and a batch size 32. These 
inputs result in an accuracy of 81.50% and a fitness score of 
78.25%. Furthermore, an experiment was conducted utilizing 
a rate of learning of 0.002 and a size batch of 256, yielding a 
distinct outcome compared to the prior test. Using these 
characteristics yields an accuracy of 90.75% and a fitness 
score of 89.50%. Additional experiments have been 
conducted, and TABLE 6 has been created using these testing 
results. One can observe varying learning rates and batch 
sizes upon examining the table. 

TABLE 6  
Testing with different hyperparameters. 

Batch Size Learning Rate Accuracy (%) 
 0.2 81.50 

32 0.02 81.75 
 0.002 80.95 
 0.2 83.45 

64 0.02 82.85 
 0.002 83.15 
 0.2 86.85 

128 0.02 89.50 
 0.002 88.50 
 0.2 92.75 

256 0.02 95.50 
 0.002 90.75 

 

 When training using a learning rate of 0.02 and a batch 
size of 128, the visible progression of loss and accuracy 
during model training in FIGURE 8 reveals the complex 
dynamics that crystallize over some time of ten epochs. 
During the initial epoch, the model demonstrated noteworthy 
performance, attaining an accuracy of 90.19% and a loss 
value of 0.2540. However, it is essential to note that the 
model's performance declined in the following epochs. 
Variations in the loss value and accuracy were observed from 
the second to sixth epochs. The loss value varied from 0.2425 
to 0.2756, while the accuracy fluctuated between 88.13% and 
89.44%. This indicates that the model is adjusting to the 
complexity of the data and may be responding to significant 
changes in the distribution of features. 

 

 
(a) 

 

(b) 
FIGURE 8. (a) Training accuracy evolution, (b) Training loss evolution. 
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The model stabilizes in subsequent epochs, maintaining 
loss and accuracy values of approximately 0.2571 and 
89.88%, respectively. Nevertheless, assessing this stability 
concerning the validation data is crucial, demonstrating a 
consistent accuracy of 81.25% and a loss value of 0.3694. 
The model experienced a decline in accuracy from 90.38% 
to 89.88% and a loss value of 0.2571 at the tenth and final 
epoch. 

Thus, the complexity of the evolution of loss and 
accuracy reflects the dynamics of model training and 
provides insight into the model's response to changes and 
complexity in the dataset and efforts to prevent overfitting 
through learning rate management strategies. Further 
evaluation of train and test data is required to better 
understand the model's generalization to previously unseen 
data. 

IV.  DISCUSSION  
This study's use of DCGAN (Deep Convolutional Generative 
Adversarial Network) and GA (Genetic Algorithm) 
significantly improves image classification results, especially 
when correctly identifying X-ray pneumonia. This study 
employs a hybrid approach of GA and DCGAN to enhance the 
classification model's performance by identifying the optimal 
parameters and augmenting the data. Throughout the training 
phase, the DCGAN model generates synthetic pneumonia X-
ray images, which serve as supplementary data. In addition, 
the genetic algorithm will seek the most optimal 
hyperparameters for the classification model. The 
hyperparameters encompass a model's learning rate, memory 
capacity, and number of iterations. 

DCGANs are employed to generate fake pictures to extend 
the classification data. While generating synthetic images, a 
preprocessing step is performed to resize the original image 
from a resolution of 150x150 pixels to 64x64 pixels. To 
enhance the clarity of the X-ray lung shape and minimize 
interference from noise, we employ a center crop technique 
after downsizing the original image from 150x150 to 64x64. 
Next, we will proceed with developing layer generators and 
discriminators in DCGAN. Both layers employ a 
convolutional layer as their primary component. The 
discriminator layer distinguishes between the original and 
synthetic images by incorporating a fully linked layer to carry 
out the comparison procedure. The generated image will serve 
as augmentation data in the training dataset. 

The application of genetic algorithms (GA) in 
categorization yielded exceptional outcomes. During the 
testing phase, utilizing a Genetic Algorithm (GA) resulted in 
a notable improvement in accuracy and fitness match scores. 
Specifically, the accuracy score reached an impressive 
95.50%, and the fitness match score reached 94.75% when GA 
was employed. In contrast, when GA was not utilized, the 
accuracy score was only approximately 89.50%, and the 
fitness match score was approximately 87.50%. This 
demonstrates that the implementation of genetic algorithms 
substantially positively impacts overall performance. Genetic 
Algorithm (GA) exhibits superior efficacy to conventional 

parameter search techniques. Nevertheless, the downside of 
genetic algorithms resides in the substantial computing 
expense associated with the exploration of hyperparameters. 
The procedure entails conducting experiments with several 
generations, each with a parent that embodies the 
categorization parameters. The parent with the highest 
performance was produced in the second generation, with a 
learning rate of 0.02 and a batch size 256. The researchers 
subsequently employed the most optimal progenitors in the 
process of categorization utilizing the VGG16 model, 
culminating in an accuracy rate of 95.50% and a fitness match 
score of 94.75%. 

Several studies have already researched the utilization of 
VGG16 as a classification method. The study [9] employs 
VGG16 as a feature extraction method in transfer learning and 
achieves an accuracy of 95.07%. According to research [10], 
the primary classification method used is VGG16, which 
achieves an accuracy of 89.1%. Research [11] has utilized 
VGG16 as a classification technique, yielding an accuracy of 
83.7%. Compared to the earlier studies, this study's model 
produces superior outcomes. 

This research has deficiencies. These limitations arise due 
to the high computational expenses and time-consuming 
nature despite the favorable specifications of the tools. The 
search for genetic algorithm hyperparameters involves 
computationally high charges due to the model and parameters 
involved. The genetic algorithm undergoes multiple iterations 
to choose the optimal parent. Despite its high accuracy and 
fitness score, this drawback is indisputable due to its time-
consuming nature. This research did not address the 
methodology for resolving the problem. Subsequent studies 
will explore this issue. 

V. CONCLUSION 
In conclusion, this research demonstrates the successful 
integration of Deep Convolutional Generative Adversarial 
Networks (DCGANs) and Genetic Algorithms (GAs) to 
improve the accuracy of pneumonia detection in X-ray 
images. The DCGAN effectively generates synthetic images, 
augmenting the dataset for training a classification model 
with VGG16 architecture. The iterative optimization process 
facilitated by GAs enhances the classification model's 
hyperparameters, resulting in a notable improvement in 
accuracy and F1-Score. The proposed methodology not only 
showcases the potential of synthetic data for training but also 
highlights the importance of optimizing model parameters 
through evolutionary algorithms, showcasing a 95.50% 
accuracy and 94.75% F1-Score with GAs, compared to 
89.50% accuracy and 87.50% F1-Score without GAs. 

This research enhances medical image analysis by 
providing a viable framework for utilizing generative models 
and optimization techniques. Integrating DCGANs and GAs 
addresses challenges in limited data scenarios, enhancing the 
robustness and accuracy of the image classification model. 
The substantial improvement in classification performance, 
as evidenced by the accuracy and F1-Score comparison, 
underscores the potential of this approach for enhancing the 



Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 6, No. 1, January 2024, pp: 11-22;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                            22 

diagnostic capabilities of deep learning models in medical 
imaging applications. 
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