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ABSTRACT Elderly individuals experience fall accidents due to tripping because recognizing foot clearance during walking 

is difficult for them. To prevent fall accidents, foot clearance should be measured and informed in daily life. Foot clearance is 

commonly measured using vision-based systems, such as optical motion capture systems. However, problem of these vision-

based systems is that these systems cannot measure foot clearance in daily life because they have limitations due to obstacles 

and field of view. Based on this problem, we developed a wearable fall prevention system using smart devices, such as 

smartphones and smartwatches. This study aimed to evaluate the proposed prediction method for foot clearance using sensor 

data obtained from wearable smart devices which can be used in daily life. The proposed method will contribute to measure 

foot clearance in daily life. This method predicts foot clearance from wrist acceleration and gait speed using a machine learning-

based regression model. The proposed method was tested in a computational simulation with a public gait dataset obtained 

using an optical motion capture system. The results showed that the correlations between the predicted and actual foot clearance 

were at least 0.65. In conclusion, this study indicates the possibility that the proposed method can be used to measure foot 

clearance and thus can be used in wearable fall prevention systems.  

INDEX TERMS Foot Clearance, Wrist Acceleration, Fall Prevention, Machine Learning 

I. INTRODUCTION 
A. BACKGROUND 

Fall accidents among elderly individuals often cause serious 

injuries, such as hip fractures [1]. Furthermore, studies have 

reported that elderly individuals who experienced fall 

accidents had reduced quality of life because of the fear of 

falling [2,3]. This background indicates the necessity of fall 

prevention in daily life for these individuals. 

Tripping is considered important for fall prevention 

because a study reported that tripping caused 21% of falls in 

elderly individuals [4]. The risk of tripping depends on foot 

clearance, which is the vertical distance between the foot and 

ground [5]. In particular, decreases and changes in foot 

clearance increase the risk of tripping [5,6]. If elderly 

individuals recognize changes in their foot distance, they can 

avoid fall accidents due to tripping. However, knowing the 

foot position is difficult for elderly individuals because of their 

low proprioceptive sensation [7,8]. These studies have shown 

that fall prevention systems that measure and inform foot 

clearance are necessary for daily walking. 

 
B. PREVIOUS STUDIES 

Foot clearance is commonly measured using accurate vision-

based systems, such as optical motion capture systems [9,10]. 

However, these vision-based systems cannot be applied to fall 

prevention in daily life because these systems have limitations 

due to obstacles and field of view. Electromagnetic tracking 

systems are also used to accurately measure foot clearance [6]. 

However, these systems are difficult to use in daily life 

because environmental preparations are necessary to avoid 

errors due to electromagnetic field distortions [11]. 

To overcome these limitations, studies have developed 

ubiquitous systems for measuring foot clearance using 

wearable sensors [12–16]. Arami et al. developed a shoe-type 

measurement system equipped with an infrared distance 
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sensor and an inertial measurement unit (IMU) [12]. 

Furthermore, Jacob et al. developed a shoe-type measurement 

system that uses laser time-of-flight sensors [13]. Moreover, 

several studies have measured foot clearance using IMUs 

installed in shoes [14–16]. These shoe-type measurement 

systems can measure foot clearance in various fields. However, 

they require sensors attached to the user’s shoes. Changes in 

the size or shape of the shoes due to sensor instrumentation 

might decrease gait performance, such as balance [17–19]. 

Thus, other areas where the sensors are attached other than the 

foot should be considered for users with low gait performances. 

The wrist is a recommended sensor attachment area. 

According to a previous investigation, the wrist is the most 

preferred sensor position for users [20]. Wrist-mounted 

devices, such as smartwatches, are preferred by users because 

they can be carried comfortably in daily life [21]. However, 

fall prevention systems using wrist-mounted sensors require 

gait prediction methods because wrist-mounted sensors cannot 

directly measure foot trajectory [21]. 

Based on this background, we developed a prediction 

method for gait parameters, such as foot clearance and step 

length, using wearable smart devices attached to the wrist [22–

24]. We developed a gait classification method using inertial 

data on the wrist; however, this method could not provide 

quantitative information on gait parameters [22]. Furthermore, 

we developed a prediction method for quantitative step length 

using wrist acceleration although foot clearance could not be 

predicted [23]. Furthermore, our recent study proposed a 

prediction method for quantitative foot clearance using the 

wrist position. However, this method might be difficult to use 

in daily life because it requires accurate three-dimensional 

wrist position, which cannot be directly measured using smart 

devices [24]. To implement wearable fall prevention systems, 

developing prediction methods for foot clearance is necessary 

using acceleration that can be obtained from the inertial 

sensors in smart devices on the wrist. 

 
C. OBJECTIVE 

The objective of this study is to propose and evaluate a 

prediction method for quantitative foot clearance using only 

wrist acceleration, which can be measured using a wearable 

smart device. 

II. PROPOSED METHOD 

FIGURE 1 shows an overview of the proposed method. The 

proposed system predicts foot clearance using a machine 

learning-based regression model. 

Wrist acceleration is considered to be useful information 

for predicting foot clearance because several studies have 

shown that wrist acceleration is affected by foot trajectory 

[25–27]. However, wrist acceleration is also affected by 

several other walking parameters, such as gait speed [28–30]. 

Thus, gait speed has also been used as a feature in the proposed 

method. Kindly note that a method for measuring gait speed 

using a smart device has already been proposed and that using 

this method in practice is possible [31,32]. 

Several review articles have indicated that machine 

learning-based regression models are useful for predicting 

kinematic values in gait analysis [33–36]. The k-nearest 

neighbor algorithm is selected as the machine learning 

algorithm for regression of the proposed method because this 

algorithm has shown great accuracy for gait analysis in 

previous studies [37–39]. 

The k-nearest neighbor algorithm of the proposed method 

is based on previous studies [40–42]. The k-nearest neighbor 

algorithm stores the entire training data consisting of actual 

foot clearance, wrist acceleration, and gait speed. As 

previously mentioned, Wrist acceleration and gait speed are 

used as features of prediction. Foot clearance is the target of 

prediction. The k-nearest neighbor algorithm finds data points 

in the training data that are most like the data point. 

The k-nearest neighbor algorithm calculated foot 

clearance by the sum in responses for k neighbors. Note that 

the proposed method calculates only one response for each 

prediction because k value is set as 1 in this study. These 

responses are calculated as inversely proportional values to the 

Euclidean distance from the input data. The Euclidean 

distance is calculated by the following equation (1) [40]. 

 

𝐸𝐷 = ∑(𝑥𝑖 − 𝑝𝑖)
2

𝑁

𝑖

                            (1) 

 

where, ED is the Euclidian distance, xi is a query point, pi is a 

case from the set of examples, and N is the number of data 

samples. The distance between the data point and its 

neighbor’s data point in the training dataset is calculated using 

the Euclidean distance. 

In this study, we evaluated whether the proposed method 

could predict foot clearance via wrist acceleration. 

Furthermore, we evaluated whether gait speed could improve 

the accuracy of the proposed method. 

III. EXPERIMENT 
A. DATASET 

In this study, we used a public gait dataset [43] using an optical 

motion capture system to evaluate the proposed method with 

various characteristics (i.e., age, sex, weight, height, and gait 

speed) of the users. Simulated wrist acceleration data were 

calculated from the wrist trajectory obtained from the optical 

motion capture system (OQUS4, Qualisys, Sweden) [43]. 

Three-dimensional trajectory of wrist and foot were recorded 

by 10 cameras and reflective markers by 100 Hz sampling rate 

[43]. Kindly note that the proposed method will be 

implemented using a wearable accelerometer in a future study. 

Gait data for 10 participants, including elderly individuals, 

were extracted, and used in this study. The participants are 

described in Table 1. Schreiber and Moissenet mentioned that 

recording this dataset was approved by the Medical Ethics 

Committee of their institution [43]. 

 
B. DATA PROCESSING 
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This public dataset provides three-dimensional positions of 

full-body markers during a 10-metre straight walk at different 

gait speeds [43]. As mentioned previously, these position data 

were measured using the optical motion capture system with a 

sampling rate of 100 Hz [43]. 

We calculated three-axis linear acceleration as wrist 

acceleration data for the proposed method from the marker 

trajectory of the left radius styloid process coordinate. 

Furthermore, the vertical position of the left second metatarsal 

head coordinates was used as the foot clearance in this 

simulation. These foot clearance data were normalized using 

the body height of each participant (unit: %height). 

Normalized foot clearance data were used for the ground truth 

training and testing of machine learning. Three constant gait 

speeds (i.e., C1, C2, and C3) were used in this simulation, 

which were labeled using the public dataset [43]. The 

participants were instructed to perform each gait speed using 

a metronome. These three labels were used as a feature of the 

proposed method. The applied gait speeds are shown in 

TABLE 2. Note that the number of trials for each gait speed 

was different in several participants because of dataset 

differences. The number of trials for each participant is shown 

in TABLE 2. As presented in TABLE 2, all participants 

performed at least 3 walking trials for each gait speed. Note 

that specific features and sliding window techniques were not 

applied for the proposed method. 

 
C. EVALUATION 

The k-nearest neighbor algorithm for the proposed method 

was implemented using WEKA 3 [41,42]. Two feature 

patterns (“only wrist acceleration” and “wrist acceleration and 

gait speed”) were applied and compared to evaluate whether 

gait speed could improve the accuracy of the proposed method. 

Pearson’s correlations and root mean squared error 

(RMSE) values between the ground truth and that predicted 

from the regression model were calculated as the accuracy of 

the proposed method. Correlation and RMSE values were 

calculated by the following equation (2) and (3). 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑(𝑃𝑖 − 𝑃𝑎𝑣𝑒)(𝐺𝑇𝑖 − 𝐺𝑇𝑎𝑣𝑒)

√∑(𝑃𝑖 − 𝑃𝑎𝑣𝑒)2 ∑(𝐺𝑇𝑖 − 𝐺𝑇𝑎𝑣𝑒)2
         (2) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃𝑖 − 𝐺𝑇𝑖)2

𝑁

𝑖=1

                      (3) 

 

where, Pi is a predicted foot clearance, GTi is a ground truth of 

foot clearance, GTave is average of ground truth of foot 

clearance, and N is the number of data samples. These values 

were calculated for each participant and each feature pattern. 

The training and testing for this evaluation were performed via 

a 10-fold cross-validation. 

Spearman’s rank correlations (significant level: p < 0.05) 

between the RMSE and the specification of the participants 

(age, weight, and height) were calculated to investigate the 

relationship between accuracy and the specification of the 

users. These statistical tests were performed using the EZR 

software [46]. 

 

 

FIGURE 1. Overview of the proposed method. 

 
TABLE 1 

Extracted data on the participants from a public dataset 

Participant Sex Age [years] Weight [kg] Height [m] 

A Male 31 67.0 1.66 

B Female 28 50.0 1.56 

C Male 67 98.0 1.83 

D Female 62 60.7 1.70 

E Male 21 74.0 1.78 

F Female 22 67.0 1.58 

G Male 57 86.0 1.88 

H Female 63 60.2 1.66 

I Male 48 89.4 1.90 

J 

Mean ± S.D. 

Female 

- 

48 

44 ± 17 

59.8 

71.2 ± 14.6 

1.71 

1.73 ± 0.112 
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TABLE 2 
Gait speed of participants 

Participant 

Trial for each gait speed 

(10-m straight walking for each trial) 

C1 [m/s] 

0 < C1 < 0.4 

C2 [m/s] 

0.4≤C2 < 0.8  

C3 [m/s] 

0.8≤C3 < 1.2  

A 5 5 5 

B 5 5 3 

C 5 4 5 

D 5 3 5 

E 5 5 4 

F 5 5 4 

G 5 4 5 

H 5 4 5 

I 5 5 5 

J 5 5 4 

IV. RESULTS 
A. ACCURACY OF THE PROPOSED METHOD 

TABLES 3 and TABLE 4 show the correlation and RMSE 

between the ground truth and predicted values of foot 

clearance. The results showed that the proposed method using 

both wrist acceleration and gait speed provided greater 

correlation and smaller RMSE in all participants. 

 The results of Pearson’s correlation showed that the 

proposed method using both wrist acceleration and gait speed 

could predict foot clearance with >0.65 correlation (0.669–

0.868), with the ground truth being obtained from an optical 

motion capture system in case of all participants (TABLE 3). 

Furthermore, the RMSE values between the proposed method 

(using both wrist acceleration and gait speed) and ground truth 

were <1.1 %height (0.518–1.09 %height) in all participants, 

including both elderly and young individuals (TABLE 4). 

 
B. RELATIONSHIP BETWEEN ACCURACY AND 
SPECIFICATION 

The scatter plots and Spearman’s correlation are shown in 

FIGURE 2, FIGURE 3, and FIGURE 4. The results of the 

statistical tests showed no significant correlation between the 

RMSE and the specification of the participants (i.e., age, 

weight, and height) (p > 0.05). These results indicate that the 

specification of the participants did not affect the accuracy of 

the proposed method. 

 
C. EFFECT OF GAIT SPEED 

The box plots of wrist acceleration in three gait speeds 

(participant D) are shown in FIGURE 5, FIGURE 6, and 

FIGURE 7. These results showed that wrist acceleration 

during faster gait speeds had a larger variation. These trends 

indicate that wrist acceleration was affected by not only foot 

clearance but also gait speed. Thus, predicting foot clearance 

using only wrist acceleration is difficult; however, we 

considered that the method of using both wrist acceleration 

and gait speed is more effective for prediction purposes.  

 

 

 

 

 

 

  
TABLE 3 

Correlation between predicted and ground truth 

Participant 

Correlation for foot clearance 

(Predicted vs. ground Truth) 

Only wrist 

acceleration 

Wrist acceleration  

and gait speed 

A 0.610  0.713  

B 0.705  0.754  

C 0.751  0.807  

D 0.812  0.868  

E 0.780  0.852  

F 0.564  0.716  

G 0.793  0.826  

H 0.529  0.669  

I 0.682  0.773  

J 

Mean ± S.D. 

0.744  

0.697 ± 0.0941 

0.796  

0.777 ± 0.0613 

 
TABLE 4 

RMSE between Predicted and Ground Truth 

Participant 

RMSE for foot clearance [%height] 

(Predicted vs. ground truth) 

Only wrist 

acceleration 

Wrist acceleration  

and gait speed 

A 1.27 1.09 

B 0.719 0.662 

C 0.861 0.757 

D 0.633 0.532 

E 0.628 0.518 

F 1.04 0.847 

G 0.686 0.629 

H 1.00 0.839 

I 0.773 0.654 

J 

Mean ± S.D. 

0.688 

0.831 ± 0.202 

0.614 

0.714 ± 0.165 

 

FIGURE 2. Relationship between RMSE and age of the participants. 

 

FIGURE 3. Relationship between RMSE and weight of the participants. 
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FIGURE 4. Relationship between RMSE and height of the participants. 

 

 

FIGURE 5. X-axis wrist acceleration in three gait speeds (participant D). 

 

 

FIGURE 6. Y-axis wrist acceleration in three gait speeds (participant D). 

 

 

FIGURE 7. Z-axis wrist acceleration in three gait speeds (participant D). 

V. DISCUSSION 

The results showed that the proposed method could accurately 

predict foot clearance using wrist acceleration and gait speed. 

Furthermore, the proposed method had significant correlations 

and small RMSE with the ground truth in both young and 

elderly participants. Furthermore, the results of the statistical 

tests showed no significant correlation between RMSE and the 

specification of the participants (i.e., age, weight, and height). 

These results indicate the possibility that the proposed method 

can be used to monitor foot clearance in various users. 

Comparison of feature patterns showed that the feature 

pattern using both wrist acceleration and gait speed was better 

than that using only wrist acceleration in all participants. 

These results suggest that gait speed is an effective feature for 

improving the accuracy of the proposed method. As 

mentioned previously, gait speed can be measured using smart 

devices and existing methods [31,32]. Therefore, the gait 

speed obtained from smart devices will be applied for the 

proposed method in future research. Previous wearable shoe-

type system using infrared sensor and inertial sensor could 

measure foot clearance [12]. In addition, Jacob et al. 

developed wearable shoe-type system using multiple infrared 

Time-of-Flight (ToF) sensors [13]. Furthermore, Benoussaad 

et al. developed prediction method for foot trajectory using 

only foot-mounted inertial sensor [15].  

These previous system could measure foot clearance with 

less than approximately 15 mm [12, 13, 15]. The error of the 

proposed method is larger than these previous studies. It is 

difficult to use the proposed method for accurate foot 

clearance measurement.  

On the other hand, there is possibility that comfortability 

of the proposed method is greater than previous study because 

the wrist is sensor placement of this method. Previous systems 

require sensors attached to the user’s shoes. Changes in the 

size or shape of the shoes due to sensor instrumentation might 
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decrease gait performance [17–19]. Furthermore, the wrist is 

known as the most preferred sensor position for users [20]. 

From these comparisons, it is considered that the proposed 

method is suitable for rough monitoring for foot clearance in 

daily life. 

A limitation of this study is that actual smart devices and 

inertial sensors were not used in the experiment. In future 

studies, wrist acceleration and gait speed obtained from actual 

smart devices will be used for evaluation. In the case using 

actual accelerometer, accuracy of the proposed method might 

be decreased from this simulation study since accelerometer 

has specific errors for dynamic measurement [47, 48]. 

The gait dataset of this evaluation was limited to only a 10-

meter straight walk by healthy participants. There are 

differences between healthy and Parkinson׳s disease people 

for gait parameters including foot clearance [49]–[51]. In 

addition, it is known that gait is affected by various factors 

such as slope, obstacle, and long-term [52]–[55]. Thus, future 

studies should consider these conditions, such as slope, 

obstacle, and long-term walking. 

As mentioned previously, accuracy of the proposed 

method is lower than previous wearable shoe-type systems. 

Thus, the accuracy of the proposed method should be 

improved. Siding window technique-based specific features 

such as average, median, variance, kurtosis, or skewness have 

possibility that improve accuracy of the proposed method 

[56]–[58]. In addition,  machine learning algorithm such as 

artificial neural network, support vector machine, logistic 

regression, decision tree, and long short-term memory should 

be compared for finding most suitable algorithm for the 

proposed method [36]. 

VI. CONCLUSION 

This study aimed to propose and evaluate the prediction 

method for foot clearance using sensor data obtained from 

wearable smart devices which can be used in daily life.  The 

proposed method using both wrist acceleration and gait speed 

could predict foot clearance with >0.65 correlation (0.669–

0.868), with the ground truth. Furthermore, the RMSE values 

between the proposed method and ground truth were <1.1 

%height (0.518–1.09 %height). These results indicate the 

possibility that the proposed method can be used to measure 

foot clearance and thus can be used in wearable fall prevention 

systems. In the future works, the proposed method will be 

evaluated for actual wearable sensor and various situations. In 

addition, accuracy of the proposed method might be improved 

by selecting feature extraction techniques and machine 

learning techniques. 
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