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ABSTRACT Coronary artery disease, a prevalent type of cardiovascular disease, is a significant contributor to premature 

mortality globally. Employing the classification of coronary artery disease as an early detection measure can have a substantial 

impact on reducing death rates caused by this ailment. To investigate this, the Z-Alizadeh dataset, consisting of clinical data 

from patients afflicted with coronary artery disease, was utilized, encompassing a total of 303 data points that comprise 55 

predictive attribute features and 1 target attribute feature. For classification, the Gradient Boosting Decision Tree (GBDT) 

algorithm was chosen, and in addition, a metaheuristic algorithm called monarch butterfly optimization (MBO) was 

implemented to diminish the number of features. The objective of this study is to compare the performance of GBDT before 

and after the application of MBO for feature selection. The evaluation of the study's findings involved the utilization of a 

confusion matrix and the calculation of the area under the curve (AUC). The outcomes demonstrated that GBDT initially 

attained an accuracy rate of 87.46%, a precision of 83.85%, a recall of 70.37%, and an AUC of 82.09%. After the 

implementation of MBO, the performance of GBDT improved to an accuracy of 90.26%, a precision of 86.82%, a recall of 

80.79%, and an AUC of 87.33% with the selection of 31 features. This improvement in performance leads to the conclusion 

that MBO effectively addresses the feature selection issue within this particular context. 

INDEX TERMS Coronary Artery Disease, Classification, GBDT, Feature Selection, MBO. 

I. INTRODUCTION 

Coronary artery disease (CAD) is the prevailing form of 

cardiovascular disease, as per the World Health Organization's 

(WHO) assessment. It is noteworthy that cardiovascular 

disease is the primary cause of untimely deaths globally, 

accounting for 19.9 million fatalities every year, or roughly 

31% of total global mortalities. In Indonesia, coronary artery 

disease stands as the foremost cause of death, ranking second 

only to stroke at a rate of 26.9% [1]. Moreover, by the year 

2030, it is anticipated that coronary artery disease will 

contribute to over 23 million deaths, constituting 

approximately 30.5% of worldwide cases [2]. The timely 

identification of this condition holds great significance in 

curbing the mortality rate associated with it. Hence, one of the 

key strategies in achieving early detection is through the 

implementation of classification techniques. 

Classification is a widely utilized technique in the field of 

data mining. It encompasses various methods, one of which is 

the Gradient Boosting Decision Tree, abbreviated as GBDT. 

GBDT is an algorithm that employs boosting and is based on 

the decision tree proposed by [3]. The selection of the GBDT 

algorithm was based on its inherent stability and ability to 

handle class imbalance, rendering it an appropriate option for 

this particular dataset on coronary artery disease[4]. 
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Furthermore, this particular algorithm utilizes a gradient 

approach, thereby mitigating the issue of overfitting 

commonly encountered in conventional decision trees. 

Consequently, it yields more precise and accurate 

classifications [5]. According to a study conducted by[6], a 

comparison was made among various machine learning 

models, including GBDT, Random Forest, Logic Regression, 

Support Vector Machine (SVM), Decision Tree, K-Nearest 

Neighbor (KNN), Neural Network, and XGBoost. The results 

indicated that GBDT demonstrated superior performance 

compared to the other models, achieving an AUC value of 

0.946 and a precision of 0.778. Moreover, another study 

conducted by [5] compared GBDT with SVM in the context 

of recognizing Electroencephalography (EEG) epilepsy. The 

performance results demonstrated that GBDT surpassed SVM 

with an accuracy difference of 8%. 

The performance of a model is affected by various factors, 

with data quality being one of the primary determinants. In the 

field of data mining, the datasets typically collected are 

characterized by high dimensionality or a large volume of 

data. However, not all features within these datasets have a 

significant impact on the classification outcomes. As stated in 

[7], the selection of relevant features can contribute to the 

enhancement of classification algorithms' performance. For 

this study, the Z-Alizadeh Sani dataset obtained from the UCI 

Machine Learning Repository was utilized, which comprises 

56 features. Consequently, it becomes imperative to undertake 

feature selection in order to eliminate irrelevant features. 

Feature selection is a crucial stage in the preprocessing of 

data in order to identify a suitable subset of features. As stated 

by [8], the selection of such a subset can alleviate the 

computational burden and enhance overall performance. [9] 

has researched the Z-Alizadeh Sani dataset, wherein feature 

selection was also performed. The Genetic Algorithm (GA) 

was employed for feature selection, alongside the Genetic 

Support Vector Machine and Analysis of Variance (GSVMA) 

algorithm for classification. The most noteworthy outcome 

achieved was an accuracy of 89.45% utilizing a 10-fold cross-

validation technique, with the selection of 31 features. 

The Monarch Butterfly Optimization (MBO) algorithm is 

an additional metaheuristic algorithm that can be employed for 

feature selection. In a study conducted by [10], the 

implementation of MBO for feature selection demonstrated a 

considerably high level of classification accuracy when 

compared to other metaheuristic algorithms, namely the whale 

optimization algorithm with simulated annealing (WOASAT), 

the ant lion optimizer (ALO), the genetic algorithm (GA), and 

the particle swarm optimization (PSO). The average 

classification accuracy achieved with MBO was 93% across 

18 benchmark datasets. These datasets comprised 7 medical 

datasets and 11 non-medical datasets. Furthermore, research 

conducted by [11] also employed MBO for feature selection 

in conjunction with the Deep Belief Network (DBN) as a 

classifier, aiming to develop a movie recommendation system. 

The datasets used in this particular study were sourced from 

Facebook and Movielens. The evaluation of dataset features 

was conducted to ascertain the suitability of data with diverse 

attributes in generating appropriate recommendations. The 

proposed model yielded Mean Absolute Error (MAE) and 

Root-Mean-Square Error (RMSE) values of 0.716 and 0.915, 

respectively. Additionally, precision and recall were 

determined to be 97.35% and 96.60%, correspondingly. 

The authors of this investigation will undertake a research 

endeavor employing the Gradient Boosting Decision Tree 

(GBDT) algorithm in order to categorize coronary artery 

disease, while simultaneously employing the Monarch 

Butterfly Optimization (MBO) algorithm to diminish 

extraneous characteristics. The primary objective of this study 

is to compare the efficacy of the GBDT model both before and 

after the implementation of MBO feature selection. It is 

anticipated that the utilization of MBO will enhance the 

performance of the GBDT model. The contribution of this 

paper is 

1. Introduce the concept and application of GBDT 

classification technique and feature selection with MBO 

on medical datasets, especially in the context of coronary 

artery disease. 

2. Provide information on the level of accuracy achieved 

using the GBDT and MBO algorithms. 

3. Assist medical professionals in optimizing decision-

making based on data analysis. 

 

 
FIGURE 1. Research flowchart 

II. METHOD 

This section presents the methodology utilized in the study, 

outlining the data employed, the cross-validation technique 

employed for data sharing, the label encoding and min-max 

normalization methods employed for data preprocessing, the 

gradient boosting decision tree algorithm, the monarch 

butterfly optimization algorithm, and the evaluation of 

model performance through the utilization of the Confusion 
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Matrix and Area Under the Curve (AUC). The schematic 

representation of this research procedure can be visualized in 

FIGURE 1. 

A. DATA COLLECTION 

The Z-Alizadeh sani dataset, which is accessible at 

https://archive.ics.uci.edu/dataset/412/z+alizadeh+sani, was 

employed in this investigation. This particular dataset 

encompasses crucial clinical data associated with patients 

grappling with coronary artery disease. Precisely, the dataset 

encompasses 303 rows of information, with a total of 216 

patients diagnosed with coronary artery disease (CAD) and 86 

patients in a normal physiological state. The dataset boasts 55 

characteristics utilized for prediction purposes while 

possessing one feature designated as the target attribute. The 

target attribute denotes the patient's diagnostic outcome, 

divided into two distinct categories: CAD and normal. 

The attributes of this dataset are segmented into four distinct 

attribute categories: demographics, symptoms and 

examination, laboratory and echocardiography, and 

electrocardiogram (ECG). Supplementary details regarding 

the attributes of the Z-Alizadeh Sani dataset can be observed 

in TABLE 1. 
TABLE 1 

Features of Alizadeh Sani dataset 

Category Feature Name Range 

Demographics 

Age 30 – 86 

Sex Male, Female 

Weight 48 – 120 

BMI (Body Mass Index 

kg/m2) 

18.12 –41.90 

DM (Diabetes Mellitus) 0, 1 

HTN (Hypertension) 0, 1 

Current Smoker 0, 1 

Ex-Smoker 0, 1 

FH (Family History) 0, 1 

Obesity Y (BMI > 25), 

N (BM I< 25) 

CRF (Chronic Renal 

Failure) 

Y, N 

CVA (cerebrovascular 

Accident) 

Y, N 

Thyroid disease Y, N 

Airway disease Y, N 

CHF (Congestive Heart 

Failure) 

Y, N 

DLP (Dyslipidemia) Y, N 

Symptoms and 

Examination 

BP (Blood Pressure) 90 – 190 

PR (Pulse Rate) 50 – 110 

Edema 0, 1 

Weak peripheral pulse Y, N 

Lung rales Y, N 

Systolic murmur Y, N 

Diastolic murmur Y, N 

Typical chest pain 0, 1 

Dyspnea Y, N 

Function class 0 – 3 

Category Feature Name Range 

Atypical Y, N 

Nonanginal CP (Chest 

Pain) 

Y, N 

Exertional CP (Chest 

Pain) 

N 

lowTH Ang (low-

Threshold Angina) 

Y, N 

Laboratory and Echo 

FBS (Fasting Blood Sugar 

mg/dL) 

62 – 400 

CR (Creatine mg/dL) 0.5 – 2.2 

TG (Triglyceride mg/dL) 37 – 1050 

LDL (Low-density 

lipoprotein mg/dL) 

18 – 232 

HDL (High-density 

lipoprotein) 

15 – 111 

BUN (Blood Urea 

Nitrogen mg/dL) 

6 – 52 

ESR (Erythrocyte 

Sedimentation Rate 

mm/h) 

1 – 90 

HB (Hemoglobin g/dL) 8.9 – 17.6 

K (Potassium mEq/lit) 3.0 – 6.6 

Na (Sodium mEq/lit) 128 – 156 

WBC (White Blood Cell 

cells/mL) 

3700-18000 

Lymph (Lymphocyte %) 7 - 69 

Neut (Neutrophil %) 32 – 89 

PLT (Platelet 1000/mL) 25 – 742 

EF (Ejection Fraction %) 15 – 60 

Region RWMA (Regional 

Wall Motion 

Abnormality) 

0, 1, 2, 3, 4 

VHD (Vulvar Heart 

Disease) 

Normal, Mild, 

Moderate, 

Severe 

Electrocardiogram 

Q Wave 0, 1 

St elevation 0, 1 

St depression 0, 1 

T inversion 0, 1 

LVH (Left Ventricular 

Hypertrophy) 

Y, N 

Poor R Progression Y, N 

BBB (Bundle Branch 

Block) 

N, LBBB, 

RBBB 

B. DATA SHARING 

Data sharing in this study employs cross-validation techniques 

with a value of k = 10. The application of cross-validation as 

a performance evaluation method ensures the dependability of 

the prediction outcomes. This procedure entails randomly 

dividing the dataset into K sections. One of these sections 

serves as validation data to assess the model, while the 

remaining sections function as training data to educate the 

classifier. This iterative process is conducted K times, with a 

distinct validation subset chosen for each iteration [12]. 
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Cross-validation is a crucial process in data analysis, as 

noted by [13]. It involves the division of the original dataset 

into two distinct parts: training data and testing data. The term 

"ten-fold" denotes the value of K, where K is equal to 10 in 

this particular case. The initial dataset is then divided into ten 

equal subsets, each serving as either testing or training data in 

an alternating fashion. This sequential process is repeated for 

every subset. The visual representation of this data division 

can be observed in FIGURE 2, which showcases the 

implementation of 10-fold cross-validation. 

 FIGURE 2. Data sharing with 10-fold cross-validation 

C. PRE-PROCESS DATA 

1. LABEL ENCODER 

The SciKit-learn library in Python possesses a component 

known as the label encoder. This encoder serves the purpose 

of transforming text or categorical data into numerical data 

within a single column of data automatically [14][15]. An 

example of using encoder labels on the Z-Alizadeh Sani 

dataset, on the Sex and BBB features, each data set has 

categorical variables with set values {"Male", "Fmale"} and 

{"N", "LBBB", "RBBB"}, then after the encoder label 

process, it becomes {0, 1} and {0, 1, 2}. 

2. MIN-MAX NORMALIZATION 

Data normalization is a crucial concern in numerous datasets, 

including the Z-Alizadeh Sani dataset, due to the presence of 

variations in numerical feature measurements across 

different units. Thus, it becomes imperative to conduct data 

normalization as a preliminary step in data preparation, 

particularly for tabular data, in order to facilitate the 

comparison of measurements during model development. 

Data normalization involves the rescaling of feature values 

to conform to a standard normal distribution, thereby 

ensuring uniformity in the input data[16]. Min-max 

normalization is a frequently employed technique for the 

normalization of data. This method involves applying a 

linear transformation to the data to be normalized, as 

described by Eq. (1) [17]. 

x′ =
x − min value

max value −  min value
  (1) 

 

where x′ indicates the value of data that has been normalized, 

x indicates the true value of the data, max value indicates the 

maximum value of the data, and min value indicates minimum 

value of the data. 

 

D. GRADIENT BOOSTING DECISION TREE 

The Gradient Boosting Decision Tree (GBDT) technique 

employs a weak classifier known as the Classification and 

Regression Tree (CART) during each iteration. The core 

concept behind GBDT is to train a fresh learning machine in a 

direction that gradually reduces the error rate of the previous 

learning machine [18]. This iterative process generates a new 

learning machine that builds upon the knowledge of the 

previous one. The GBDT algorithm follows a set of steps [19]. 

Step 1 the learning machine is initialized using Eq. (2). 

𝐹0(𝑥) = arg  𝑚𝑖𝑛𝜌 + ∑ 𝐿(𝛾𝑖  , 𝜌)

𝑁

𝑖=1

 (2) 

Step 2 computes the appropriate objective of the regression 

tree during each iteration. Presented below is the mathematical 

expression employed for this calculation. 

γm,i = [
∂L(γi, F(xi))

∂F(xi)
] (3) 

𝐹(𝑥𝑖) = 𝐹𝑚−1(𝑥𝑖) (4) 

Step 3 after the initial iteration, one can acquire the optimal 

base classification by employing the subsequent calculation 

formula in Eq. (5). 

𝛼𝑚 = arg  𝑚𝑖𝑛 + ∑(𝑟𝑚,𝑖 − 𝛽ℎ(𝑥𝑖 ; 𝛼𝑚))

𝑁

𝑖=1

 (5) 

The calculation of the optimal learning law (ρ_m) is 

performed through the utilization of the linear optimization 

technique, and the subsequent updating of the base learning is 

accomplished by applying Eq. (6)  that follows. 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) +  𝜌𝑚ℎ(𝑥𝑖 ; 𝛼𝑚)  (6) 

Step 4 involves constructing the most potent learning 

apparatus. 

E. MONARCH BUTTERFLY OPTIMIZATION 

The Monarch Butterfly Optimization (MBO) algorithm is a 

type of population-based algorithm that falls under the 

category of swarm intelligence algorithms. The inspiration 

for this algorithm comes from the behavior of certain species, 

such as bees, butterflies, and similar organisms, which tend 

to gather together [20]. As stated in [21], the MBO algorithm 

is characterized by its simplicity and ease of implementation. 

The Monarch Butterfly Optimization (MBO) Algorithm 

starts with a random and uniform population that is called the 

monarch butterflies population. This population includes the 

solution candidates of the problem. MBO divides the 

population into two groups: Land 1 and Land 2. Therefore, 

the number of monarch butterfly individuals in 

subpopulations Land 1 and Land 2 are as follows: 

Land 1 = NP1 × ceil(p × NP) (7) 
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Land 2 = NP −  NP1 ×  (NP2) (8) 

NP represents the total count of populations, while ceil(x) 

refers to the process of rounding x to the nearest integer that 

is greater than or equal to x. Additionally, p determines the 

ratio of monarch butterflies in Land 1 [22]. The migration 

operator and the butterfly adjustment operator are the two 

position update operators utilized in the monarch butterfly 

optimization algorithm [23]. 

1. MIGRATION OPERATOR  

The algorithm generates a new child population by 

considering the monarch butterfly parents from both Lands. 

In cases where the parent holds a better value than the 

generated child, the parent is replaced with the child in order 

to maintain a constant population count. This ensures the 

preservation of efficient patents for the subsequent 

generation. The aforementioned concept can be formulated 

in the following manner. 

χi,k
t+1 =  χr1,k

t   (9) 

the notation  χi,k
t+1 is used to represent the kth element of the 

position (χi) of monarch butterfly I at generation t+1, 

Similarly, χr1,k
t  denotes the kth updated element of χr1 for the 

individual r1, and the variable t represents the number of 

current iterations. The individual r1 is selected randomly 

from Land 1. If r has a value less than or equal to p, it can be 

obtained using the following equation: 

𝑟 = 𝑝 × 𝜏 (10) 

whereas τ denotes the duration of migration and r represents 

an evenly distributed and stochastic variable, conversely, 

when the value of p is smaller than r, the element k for the 

newly emerged butterfly is obtained subsequently: 

χi,k
t+1 =  χr2,k

t  (11) 

the kth updated element of xr1, denoted as χr2,k
t , represents an 

individual r1 randomly chosen from Land 2. An interesting 

advantage of the algorithm lies in its ability to balance the 

utilization of Land 1 and Land 2. When the value of p is 

larger, a greater number of populations are selected from 

Land 1. Conversely, when p has a smaller value, the majority 

of the population is chosen from Land 2. 

2.  BUTTERFLY ADJUSTMENT OPERATOR 

If the generated child for the monarch butterfly i has a value 

that is smaller or equal to p, the position is updated according 

to the following procedure. 

χi,k
t+1 =  χbest,k

t  (12) 

where,  χbest,k
t  describes the kth individual of xbest that gives 

the best result in the population. 

If the value of p is smaller than ρ, the position has been 

modified according to the following procedure. 

χi,k
t+1 =  χr3,k

t  (13) 

r3 ∈ [1,2, … , NP2] (14) 

where, χr3,k
t  describes the kth randomly selected member of 

xr3 from Land 2. 

During the algorithm, if the rate of adjustment of the 

butterfly (Rba) proves to be lesser in value than ρ, the position 

has been effectively modified in the following manner: 

 

χi,k
t+1 = 𝜒𝑖,𝑘

𝑡 + 𝛼 × (𝑑𝑥𝑘 − 0,5)   (15) 

The walking step of individual i, represented by dx, can be 

obtained in the following manner: 

𝑑𝑥 = 𝐿ⅇ𝑣𝑦(𝑥𝑖
𝑡) (16) 

Let α denote the weighting coefficient, where it points to the 

aforementioned value. 

α =
𝑠𝑚

t2
 (17) 

where sm represents the maximum walk step that is passed 

by a butterfly in one step. 

By selecting a large value for parameter α, a lengthy 

exploration step has been obtained, which amplifies the 

influence of dx on the application of χi,k
t+1 to the exploration 

term. Conversely, if α has a small value, α brief exploration 

step will be taken for χi,k
t+1 leading to an exploitation 

mechanism[22]. 

E. EVALUATION 

1. CONFUSION MATRIX 

In the realm of machine learning, the assessment of classifier 

performance is typically accomplished through the utilization 

of a confusion matrix. The confusion matrix, also referred to 

as a contingency table, possesses the ability to be of arbitrary 

size. The main diagonal of the matrix indicates the number of 

instances that have been classified correctly, while the 

remaining entries correspond to cases that have been 

misclassified. This matrix encapsulates information regarding 

both the actual classification outcomes and the predictions 

generated by the classification system. The evaluation of 

system performance is typically conducted by leveraging the 

data encapsulated within this matrix [24]. When considering 

binary classification, the matrix takes the form of a 2x2 square, 

as depicted in TABLE 2, in which the columns represent the 

predictions made by the classifier, and the rows represent the 

actual values of the class labels. In the presence of imbalanced 

data, it is customary to assign a positive label to the minority 

class, while the majority class is designated as negative [25]. 

 
TABLE 2 

Confusion matrix 

 Predicted Positive Predicted Negative 

Actual Positive TP (True Positive) FN (False Negative) 

Actual Negative FP (False Positive) TP (True Negative) 

TP (True Positive) denotes that the "positive prediction" 

aligns with the "true condition is positive'. FP (False Positive) 

signifies that the "positive prediction" does not align with the 

"true condition is positive." TN (True Negative) signifies that 

a "negative prediction" aligns with a "negative true state." FN 

(False Negative) denotes that the "negative prediction" does 

not coincide with the "true condition is positive" [26]. 
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Presented here are several equations executed on the 

confusion matrix: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (18) 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (20) 

Equation (19) represents the mathematical expression utilized 

to derive the Positive Predictive Value (PPV), a metric that is 

synonymous with recall or sensitivity. Conversely, the 

determination of the True Positive Rate (TPR), which is also 

referred to as precision, can be accomplished through the 

application of equation (20) [27], [28]. 

 
2. AREA UNDER CURVE (AUC) 

The Area Under Curve (AUC) is a technique employed for the 

determination of the area beneath the Receiver Operating 

Characteristic (ROC) curve. The AUC serves as a metric to 

assess the likelihood that, upon selection of one positive and 

one negative instance, the classification approach will assign 

a higher score to the positive instance. Consequently, a higher 

AUC value corresponds to an improved classification method 

[29]. The classification quality accuracy, as determined by the 

AUC value, is presented in TABLE 3. 

TABLE 3 

Accuracy of classification results based on AUC value 

AUC Value Category 

0.90 – 1.00 Excellent Classification 

0.80 – 0.90 Good Classification 

0.70 – 0.80 Fair Classification 

0.60 – 0.70 Poor Classification 

0.50 – 0.60 Failure 

The calculation of the Area Under the Curve (AUC) is derived 

from the mean value of the trapezium plane approximations 

for the graphical representations formed by the True Positive 

(TP) rate and False Positive (FP) rate [30]. The AUC measure 

is determined by utilizing equation (21) for this calculation. 

AUC =
1

2
+ (

TP

TP + FN
+

TN

TP + FP
) (21) 

III. RESULTS 

A. THE RESULTS OF GRADIENT BOOSTING DECISION 
TREE RESEARCH METHOD 

The findings of this investigation demonstrate the outcome 

of the trials carried out employing the gradient-boosting 

decision tree approach. The initial trial was executed using 

the predetermined parameters, whereas the subsequent trial 

entailed determining the optimal values for the max depth, 

learning rate, and n-estimator parameters. The outcomes 

attained with the predetermined parameters (max depth=3, 

learning rate=0.1, and n-estimator=100) are observable in 

TABLE 4. 
TABLE 4 

Results with Default Parameters 

Accuracy Precision Recall AUC 

84,48 % 77,58 % 66,74 % 78,82 % 

 
1. PARAMETER MAX DEPTH 
When examining the max depth parameter, the default values 

for the learning rate and n-estimator parameters are 

employed, specifically a learning rate of 0.1 and an n-

estimator of 100. The outcomes of the analysis of the max 

depth parameter can be observed in TABLE 5 provided 

below. 
TABLE 5 

Accuracy Results of Max Depth Parameter 

Nilai Max 

Depth 
Accuracy Precision Recall AUC 

1 85,47 % 80,14 % 68,78 % 80,55 % 
2 86,79 % 82,38 % 71,13 % 81,98 % 

3 84,48 % 77,58 % 66,74 % 78,82 % 

4 86,13 % 80,64 % 70,40 % 81,14 % 
5 84,48 % 77,18 % 69,16 % 79,79 % 

6 82,48 % 71,88 % 70,83 % 78,97 % 

7 78,18 % 65,72 % 55,38 % 71,28 % 
8 78,89 % 65,55 % 64,18 % 74,78 % 

9 79,55 % 68,10 % 63,76 % 75,07 % 

10 77,57 % 63,21 % 63,09 % 73,32 % 

Based on the table above, the best test results are in max 

depth with a value of 2. 

 

2. PARAMETER LEARNING RATE 
The optimal value for the max depth parameter in the 

previous test is employed as the value for testing the learning 

rate parameter. The default value of 100 is utilized for the n-

estimator parameter. The outcomes of the test for the max 

depth parameter can be observed in TABLE 6 provided 

below. 
TABLE 6 

Accuracy Results of Learning Rate Parameter 

Nilai 

Learning 

Rate 

Accuracy Precision Recall AUC 

0,1 86,79 % 82,38 % 71,13 % 81,98 % 

0,2 85,81 % 79,8 % 69,59 % 80,73 % 
0,3 86,46 % 81,7 % 68,8 % 80,8 % 

0,4 84,79 % 78,75 % 69,91 % 80,12 % 
0,5 84,15 % 77,65 % 67,14 % 78,97 % 

0,6 84,78 % 78,91 % 69,05 % 79,91 % 

0,7 85,15 % 78,1 % 67,49 % 79,69 % 
0,8 86,12 % 81,48 % 70,05 % 81,16 % 

0,9 85,46 % 80,18 % 66,97 % 79,65 % 

1 83,81 % 75,07 % 68,18 % 78,77 % 

 

Based on the table above, the best test results are on the 

learning rate with a value of 0,1.  

 

3. PARAMETER N-ESTIMATOR 
The n-estimator parameters are examined in order to 

determine the most optimal values for the max depth and 

learning rate parameters. These values are derived from the 

outcomes of the preceding test, representing the best possible 

options. The test results for the max depth parameter are 

presented in TABLE 7 for reference. 
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TABLE 7 

Accuracy results of n-estimator parameter 

Nilai N-

Estimator 
Accuracy Precision Recall AUC 

50 86,46 % 82,16 % 70,02% 81,41 % 
100 86,79 % 82,38 % 71,13 % 81,98 % 

150 87,46 % 83,85 % 70,37 % 82,09 % 

200 86,12 % 81,4 % 69,35 % 80,84 % 
250 86,12 % 82,24 % 67,69 % 80,21 % 

300 85,47 % 79,51 % 67,69 % 79,76 % 

350 85,46 % 78,18 % 68,94 % 80,14 % 
400 84,46 % 74,66 % 68,94 % 79,46 % 

450 84,13 % 74,08 % 68,94 % 79,20 % 

500 84,13 % 74,33 % 67,83 % 78,91 % 

Based on the table above, the best test results are at max 

depth with a value of 150. 

 

B. THE RESULTS OF GRADIENT BOOSTING DECISION 
TREE RESEARCH METHOD USING MONARCH 
BUTTERFLY OPTIMIZATION 

To select features, Monarch Butterfly Optimization was used 

on the Z-Alizadeh Sani dataset. The GBDT results with the 

best max depth, learning rate, and n-estimator parameter 

values from the previous experiment were applied to the 

feature selection process using Monarch Butterfly 

Optimization. Furthermore, the experiment was conducted 

10 times for each parameter and the average was taken. The 

results of this experiment are shown in TABLE 8 below. 

 
TABLE 8 

Gradient boosting decision tree results with monarch butterfly 
optimization 

Pop 

Size 
Iteration 

Rata-rata 

Accuracy Precision Recall AUC 

50 100 86,99 % 80,65 % 73,89 % 82,96% 
100 200 87,63 % 81,52 % 75,06 % 83,88 % 

150 300 87,62 % 81,19 % 74,91 % 83,74 % 

200 400 88,94 % 84,29 % 77,58 % 85,04 % 
250 500 90,26 % 86,82 % 80,79 % 87,33 % 

According to the data presented in TABLE 8, it can be 

observed that as the values of Pop Size and Iteration increase, 

there is a corresponding improvement in the performance of 

the model. The most optimal outcomes are achieved when 

employing a population size of 250 and conducting 500 

iterations. Further information regarding the experiment can 

be found in the table provided below. 

 
table 9 

10 trials using a pop size of 250 and 500 iterations  

Run 
Selected 

Feature 
Accuracy Precision Recall AUC 

1 32 90,74 88,48 82,21 88,29 

2 24 89,45 86,08 80,96 86,95 

3 30 90,75 88,35 82,34 88,25 
4 31 90,85 88,28 82,18 88,34 

5 28 89,48 84,99 77,28 85,35 

6 31 90,84 88,28 82,18 88,14 
7 29 89,46 83,17 77,98 86,41 

8 28 89,47 85,56 78,21 85,29 

9 33 90,75 86,72 82,35 88,16 
10 31 90,81 88,28 82,17 88,15 

Average 29,7 90,26% 86,82% 80,79% 87,33% 

In table 9, the optimal outcome is observed in the 6th 

experimental trial, where 31 distinct characteristics have 

been chosen. These distinctive attributes are displayed in the 

subsequent TABLE 10. 
TABLE 10 

Selected feature 

No  Selected Feature No Selected Feature 

1 Age 17 Function class 
2 Sex 18 Atypical 

3 BMI 19 Exertional CP 

4 HTN 20 St Elevation 
5 FH 21 Tinversion 

6 Obesity 22 TG 

7 CRF 23 LDL 
8 CVA 24 HB 

9 Airway disease 25 K 

10 Thyroid disease 26 WBC 
11 CHF 27 Lymph 

12 DLP 28 Neut 

13 Weak peripheral pulse 29 EF-TTE 
14 Lung Rales 30 Region RWMA 

15 Typical chest pain 31 VHD 

16 Dyspnea   

IV. DISCUSSION 

Classification of coronary artery disease encompasses four 

primary stages: preprocessing, data sharing, classification, 

and feature selection. The preprocessing stage comprises two 

processes, specifically label encoder and min-max 

normalization. The label encoder serves the purpose of 

converting categorical attributes within the Z-Alizadeh Sani 

dataset into numerical representations, thereby permitting 

algorithmic processing. Given the disparate ranges of values 

within this dataset's features, min-max normalization is 

employed to rescale the data within the range of 0-1. To 

segregate the data into training and testing subsets, the cross-

validation method is implemented, with consideration given 

to the relatively modest size of the dataset. By utilizing a k 

value of 10, the cross-validation method partitions the data 

into ten distinct subsets. 

The classification stage involves the use of the Gradient 

Boosting Decision Tree algorithm. First, classification was 

performed using the default parameter values provided by 

the Scikit-learn library in Python. With the default 

parameters, the results obtained are shown in TABLE 4. 

Second, classification is performed by finding the best 

parameter values for max depth, learning rate, and n-

estimator. Max depth controls the depth of the trees, the 

learning rate regulates the contribution of each tree to the 

ensemble model, and the n-estimator indicates the number of 

trees used. By reducing the max depth value and increasing 

the n-estimator, the model performance improves as shown 

in TABLE 7. With an AUC value of 82.09% based on 

TABLE 3, the model performance is categorized as good 

classification. The Gradient Boosting Decision Tree with the 

best parameter values will then be used to evaluate the 

feature selection process. 

Butterfly Optimization was chosen for feature selection. 

Experiments were conducted 10 times on each combination 

of population size and iteration parameters, then the average 

was taken. Based on TABLE 8, the best performance is at a 

population size of 250 and iteration of 500. The selected 

features can be seen in TABLE 10. Monarch butterfly 

http://jeeemi.org/index.php/jeeemi


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Multidisciplinary: Rapid Review: Open Access Journal                                Vol. 5, No. 4, October 2023, pp: 314-323;  eISSN: 2656-8632 

Homepage: jeeemi.org                                                                                                                                                                                                            321 

optimization can reduce the features of the Z-Alizadeh Sani 

dataset by about 40% - 56% features. The model comparison 

before and after applying feature selection based on TABLE 

7 and table 9 is presented in FIGURE 3. 

 

FIGURE 3. Comparison of models without feature selection and with 
feature selection 

The utilization of Monarch Butterfly Optimization in the 

realm of feature selection has contributed to the 

enhancement of accuracy when employing the Gradient 

Boosting Decision Tree algorithm to classify coronary artery 

disease. The visual representation depicted in FIGURE 3, 

elucidates that the accuracy, precision, recall, and AUC all 

exhibited improvement after the execution of feature 

selection. In comparison with previous studies, the results of 

this study show that the Gradient Boosting Decision Tree 

(GDBT) method for classification with feature selection 

using Monarch Butterfly Optimization (MBO) produces 

better performance in classifying coronary artery disease 

datasets. This is because the model proposed in this study 

managed to improve the accuracy rate compared to previous 

studies that used different classification and feature selection 

methods. A previous study [9] that proposed a hybrid 

machine learning model known as Genetic Support Vector 

Machine And Analysis Of Variance (GSVMA) and 

combined it with feature selection using a genetic algorithm, 

achieved the highest accuracy rate of 89.45%. Therefore, it 

can be concluded that in this context, the basic GDBT 

algorithm is effective in improving the quality of coronary 

artery disease classification compared to the hybrid model 

proposed in the previous study. 

However, the weakness in this study lies in the use of an 

unbalanced dataset between CAD and normal classes. In 

many cases, class imbalance relates to real-world problems 

where the minority class may be an important or potentially 

dangerous case. Models trained on data with unbalanced 

classes are less able to generalize well to more balanced data. 

Such models risk overfitting on majority data and have 

difficulty adapting when balanced data is used. Therefore, 

for future research, it is recommended to use dataset 

imbalance handling techniques such as oversampling, and 

undersampling, or synthetic methods such as SMOTE to help 

improve model performance and ensure more accurate 

research results. Nonetheless, despite these limitations, this 

study successfully demonstrated that combining GBDT with 

MBO can improve the performance of coronary artery 

disease classification, in terms of accuracy, precision, recall, 

and AUC. 

The results of this study show that using MBO as a feature 

selection method can improve the performance of the GBDT 

model in classifying coronary artery disease. This indicates 

the potential to reduce the dimension of irrelevant data and 

allow the model to focus more on essential features. The 

implications of these findings include a significant impact in 

medical practice and public health. With the model's ability 

to extract patterns and relationships in data, early diagnosis, 

and appropriate treatment can improve patient prognosis. 

Such implications highlight the important role of technology 

and data analytics in medical and health sciences, with the 

potential to improve the diagnosis, treatment, and prevention 

of serious diseases such as coronary artery disease. 

V. CONCLUSION 

This investigation introduces a Metaheuristic Monarch 

Butterfly Optimization (MBO) algorithm designed 

specifically for feature selection. The utilization of MBO has 

proven to enhance the performance of the Gradient Boosting 

Decision Tree (GBDT) significantly. The findings 

demonstrate that GBDT achieved an accuracy level of 

87.46%, a precision value of 83.85%, a recall rate of 70.37%, 

and an AUC (Area Under the Curve) score of 82.09% in the 

classification of coronary artery disease. Subsequently, 

following the implementation of feature selection utilizing 

MBO, there was a noticeable improvement in various metrics. 

Specifically, there was an increase in accuracy by 2.8%, 

precision by 2.97%, recall by 10.42%, and AUC by 5.24%. 

Consequently, GBDT-MBO achieved an accuracy rate of 

90.26%, a precision rate of 86.82%, a recall rate of 80.79%, 

and an AUC score of 87.33% with a selection of 31 features. 

Based on the evident enhancement in performance, it can be 

deduced that MBO is indeed an effective technique employed 

for feature selection. For future research endeavors, it is 

recommended to consider the utilization of a data balancing 

method before its combination with MBO. Moreover, further 

exploration can be conducted by combining MBO with 

alternative classification algorithms, such as XGBoost. 
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