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ABSTRACT   Diabetic retinopathy (DR) poses a significant healthcare challenge in underserved regions like Nepal, where 

limited access to medical facilities impedes early diagnosis. This study leveraged deep learning, specifically MobileNet, to 

create an accessible DR detection solution for remote Nepalese communities. The goal was to design a robust system capable 

of operating on resource-constrained mobile devices, addressing the connectivity limitations in rural areas. The study utilized 

a dataset of over 30,000 retinal images, with preprocessing techniques to enhance image quality. Data augmentation and a 

balanced training set of DR and non-DR cases were employed to train the MobileNet model. Next.js was chosen for real-time 

detection, ensuring offline functionality for healthcare workers. The MobileNet-based model exhibited impressive 

performance, achieving training, validation, and testing accuracies of 92%, 91%, and 90% respectively. Precision, recall, and 

F1 score were 81%, 75%, and 78% respectively, indicating the model's ability to detect DR effectively. This study demonstrates 

the potential of deep learning and mobile technology to address healthcare challenges in resource-limited settings like rural 

Nepal. 

INDEX TERMS Diabetic Retinopathy, MobileNet, Deep Learning, Healthcare Accessibility, Rural Healthcare, Early 

Detection.

I. INTRODUCTION 

Diabetes has emerged as a prominent public health concern 

in Nepal, with an approximate prevalence rate of 6.3% in 

adults and a staggering 10% specifically for type 2 diabetes 

mellitus (T2DM) among the population. As diabetes 

continues its upward trajectory in the country, so does the 

looming threat of diabetic retinopathy (DR). This ocular 

complication has gained alarming prevalence, ranging from 

19% to 47% among diabetic patients in Nepal [1] [2]. 

Disturbingly, a study conducted at the Tilganga Institute of 

Ophthalmology in Nepal unveiled that 19.4% of diabetic 

patients already exhibited signs of diabetic retinopathy at the 

time of their initial consultation, with significant proportions 

suffering from diabetic macular edema (6.9%) and 

proliferative diabetic retinopathy (4.6%) [3]. Furthermore, 

more than half of the individuals diagnosed with DR 

necessitated immediate medical intervention. This study 

embarks on a mission to address this critical healthcare 

challenge by developing a robust and accessible diabetic 

retinopathy detection system tailored for resource-

constrained environments in Nepal. While the prevalence of 

diabetes and its associated complications continues to rise, 

particularly in underserved rural areas, access to specialized 

healthcare services remains limited. To mitigate this pressing 

issue, the primary objective is to design and implement an 

efficient DR detection system that can operate seamlessly on 

mobile devices with limited computational resources. To 

achieve this, we will leverage the MobileNet architecture, 

renowned for its efficiency and suitability for mobile 

applications. By fine-tuning MobileNet on a comprehensive 

dataset comprising diverse retinal images showcasing 

various manifestations of DR, the model aims to acquire the 

capability to accurately classify the severity of retinopathy. 

The significance of this research lies in its potential to 

bridge the healthcare gap in rural Nepal by harnessing the 

power of mobile devices for the early detection of diabetic 

retinopathy. With the implementation of our MobileNet-

based deep learning solution, we aspire to enhance 

healthcare accessibility and contribute to the overall well-

being of the diabetic population residing in underserved 

areas. By proactively identifying and managing diabetic 
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retinopathy, we aim to mitigate the potentially devastating 

consequences of this condition and improve the quality of 

life for those affected.  

II. LITERATURE REVIEW 

Diabetic retinopathy (DR) is a common complication of 

diabetes and a leading cause of blindness among working-

age adults worldwide, as indicated by numerous research 

studies. The World Health Organization (WHO) published a 

report that listed DR as one of the major causes of blindness 

and low vision. The incidence of vision-threatening stages of 

DR is declining in high-income countries due to advances in 

therapies and improved management of diabetes [4]. 

Research also suggests that the prevalence of DR will triple 

from 2005 to 2050 due to the projected increase in the 

prevalence of diabetes mellitus [5]. This underlines the need 

for innovative approaches to manage and treat DR. A study 

in Nepal revealed that about 50% of blindness is preventable 

by early detection and management of proliferative DR and 

diabetic macular edema (DME). The study also emphasized 

that primary interventions such as intensive glycemic and 

blood pressure control can reduce the prevalence of DR [6]. 

According to the American Diabetes Association, treatment 

modalities exist that can prevent or delay the onset of DR, as 

well as prevent vision loss, in a large proportion of patients 

with diabetes. This is why ongoing evaluation for 

retinopathy is a valuable and required strategy [7]. 

Moreover, the research community is working hard to 

improve the management and early detection of DR. For 

instance, Dr. Akrit Sodhi at Johns Hopkins Medicine has 

published a new study showing promise for an experimental 

treatment to prevent or slow vision loss in people with 

diabetes. In summary, the literature supports the claim that 

early detection and timely intervention are crucial to prevent 

vision loss in diabetic patients. The challenge is to ensure 

regular monitoring of patients with diabetes and to continue 

to improve treatment options. 

Deep learning and convolutional neural networks 

(CNNs) have shown significant potential in automating the 

detection and grading of diabetic retinopathy (DR) from 

retinal fundus images. Various CNN architectures, including 

MobileNet, have been utilized to tackle this critical 

healthcare challenge, according to numerous research 

studies. In a study titled "Understanding inherent image 

features in CNN-based assessment of diabetic retinopathy", 

CNNs were used to predict DR with high performance. The 

researchers demonstrated that deep learning models could be 

used to support clinicians' decision-making processes. 

Despite different models having varying predictive power 

and feature selection capabilities, the study showed that these 

models could be successfully developed and trained on 

smaller datasets using transfer learning [8]. Another study 

proposed an automated system for the early detection of DR 

called Diabetic Retinopathy Feature Extraction and 

Classification (DRFEC), which utilized various DL CNN 

models for DR feature extraction and image classification. 

The models used included MobileNet and MobileNetV2, 

among others. The results showed that these architectures 

could achieve significant performances in DR detection [9]. 

Research also highlighted the use of MobileNetV2, a 

lightweight model and mobile-friendly architecture, for DR 

classification. This study utilized the APTOS 2019 dataset, 

which contains 3662 retinal fundus images, and was able to 

achieve high-performance results with an accuracy of 92.6% 

[10]. In another study titled "Automatic Detection of 

Diabetic Retinopathy Using Custom CNN and Grad-CAM", 

the authors proposed a lightweight customized CNN 

architecture for the diagnosis of DR using optical coherence 

tomography (OCT) images. They used pre-trained CNN 

models, including MobileNet, with a transfer learning 

approach [11]. Overall, the literature supports the claim that 

deep learning, particularly CNNs, and architectures like 

MobileNet, can be effectively utilized for automating the 

detection and grading of DR from retinal fundus images. 

A. EARLY APPROACHES AND CHALLENGES: 

Early attempts at detecting Diabetic Retinopathy (DR) 

indeed relied heavily on traditional computer vision 

techniques and handcrafted features. However, these 

methods often fell short due to their inability to capture 

complex and subtle patterns in retinal images. One study 

titled "A Systematic Review on Diabetic Retinopathy 

Detection Using Deep Learning Techniques" provides a 

comprehensive overview of the evolution of DR detection 

methods, including the early attempts that relied on 

traditional computer vision techniques [12]. Another paper 

reviews 79 algorithms for detecting different features of 

diabetic retinopathy using computer vision techniques. It 

mentions that these features include the blood vessel area, 

exudates, microaneurysm, hemorrhages, and 

neovascularization. The paper also highlights the limitations 

of these traditional methods in accurately detecting and 

classifying DR [13]. A third study titled "Algorithms for the 

automated detection of diabetic retinopathy using digital 

fundus images: a review" further discusses the limitations of 

early computer vision techniques. It states that while these 

techniques were somewhat effective in identifying certain 

features related to DR, they were less successful in capturing 

subtler patterns in retinal images, which are critical for early 

detection of the disease [14]. In conclusion, while early 

computer vision techniques made some strides in detecting 

and classifying DR, they could not capture complex and 

subtle patterns in retinal images, limiting their effectiveness. 

This has led to the development and application of more 

advanced techniques such as deep learning, which have 

proven to be more effective in DR detection. 

B. CNNS FOR DIABETIC RETINOPATHY DETECTION: 

The advent of deep learning has revolutionized the field of 

medical image analysis, with Convolutional Neural 

Networks (CNNs) demonstrating significant potential in DR 

detection. CNNs, with their inherent ability to automatically 

learn features from data, have been effectively used for DR 

detection. MobileNet, a lightweight CNN architecture 

designed for mobile and embedded devices, has gained 

popularity due to its efficiency and accuracy in various 
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computer vision tasks. The paper titled "NNMobile-Net: 

Rethinking CNN Design for Deep Learning-Based 

Retinopathy Research" discusses the increasing use of 

CNNs, and particularly MobileNet, in diagnosing and 

monitoring retinal diseases including DR. The study 

emphasizes the advantages of MobileNet, such as its 

simplicity, efficiency, and capability to surpass many state-

of-the-art methods on public datasets for multiple tasks, 

including diabetic retinopathy grading [15]. In another study 

titled "Deep Learning for Diabetic Retinopathy Detection 

from Smartphone Retinal Images", the authors used a CNN 

model to detect DR from retinal images taken from a 

smartphone. The study showed that the CNN model achieved 

an accuracy of 94.3%, demonstrating the potential of deep 

learning and CNNs in DR detection from retinal images [16]. 

Another study titled "Diabetic Retinopathy Detection Using 

Deep Convolutional Neural Networks" discusses the use of 

CNNs for DR detection. The authors used a CNN model to 

detect DR from retinal images, further emphasizing the 

effectiveness of deep learning and CNNs in DR detection 

[17]. In conclusion, the literature supports the claim that deep 

learning, particularly CNNs, and architectures like 

MobileNet, can be effectively utilized for automating the 

detection and grading of DR from retinal fundus images. Key 

Studies Using MobileNet for DR Detection: Several key 

studies have utilized MobileNet for the detection of Diabetic 

Retinopathy (DR), demonstrating its efficiency and accuracy 

in this critical healthcare task. 

A study titled "A deep learning system for detecting 

diabetic retinopathy across the disease spectrum" discusses 

the use of deep learning, specifically CNNs, for the detection 

of DR. However, the study doesn't specifically mention the 

use of MobileNet [18].In the paper "General deep learning 

model for detecting diabetic retinopathy", the authors 

developed a general deep learning model for DR detection 

but, like the previous study, did not specifically use 

MobileNet [19]. A study titled "Diabetic Retinopathy 

Detection Using Convolutional Neural Networks for Mobile 

Use" specifically utilized MobileNet for DR detection. The 

authors tested and evaluated the efficiency of DR detection 

systems based on Convolutional Neural Networks for mobile 

applications. They concluded that EfficientNet-based DR 

detection algorithms outperformed other transfer learning 

models, including MobileNet when used with the APTOS 

Blindness Detection dataset [20]. In conclusion, while many 

studies have used deep learning and CNNs for DR detection, 

the specific use of MobileNet is less common. However, 

when it has been used, it has demonstrated promising results, 

underscoring the potential of this lightweight, efficient 

architecture for mobile and embedded applications in DR 

detection. 

C. COMPARISON WITH OTHER CNN MODELS: 

While MobileNet is a popular choice, other Convolutional 

Neural Network (CNN) architectures, such as ResNet, 

Inception, and DenseNet, have also been employed for 

Diabetic Retinopathy (DR) detection. Researchers have 

compared these models in terms of accuracy, computational 

resources, and generalization performance. In a study titled 

"Comparison of eleven deep learning models using different 

datasets and evaluation metrics", the authors compared 11 

neural network models, including ResNet, DenseNet, 

Inception, MobileNet, and ShuffleNet. They concluded that 

while ResNet, DenseNet, and Inception had no significant 

advantages over MobileNet and ShuffleNet in certain 

circumstances, they required larger numbers of parameters 

[21]. Another study titled "Comparative Analysis of 

Convolutional Neural Networks for Chest Radiography" 

compared the performance of various CNNs, including 

DenseNet and ResNet, on the CheXpert dataset. The study 

found that deeper CNNs generally achieved higher Area 

Under the Receiver Operating Characteristic Curve 

(AUROC) values than shallow networks. However, they also 

observed that increasing the complexity and depth of 

artificial neural networks for chest radiograph classification 

is not always necessary [22]. 

MobileNet was developed to solve the problem of size 

and speed in real applications such as autonomous vehicles 

or robotic visions [23] [24]. In conclusion, while MobileNet 

is a popular choice for DR detection due to its efficiency and 

accuracy, other CNN architectures like ResNet, Inception, 

and DenseNet have also been employed and compared in 

terms of their accuracy, computational resources, and 

generalization performance. 

 

D. TRANSFER LEARNING AND DATA AUGMENTATION: 

Transfer learning, where pre-trained CNN models are fine-

tuned on DR datasets, has become a common practice to 

overcome the challenge of limited annotated data. Data 

augmentation techniques, such as rotation, flipping, and 

scaling, have been employed to increase the diversity of 

training samples, leading to improved model robustness. 

E. CHALLENGES AND FUTURE DIRECTIONS: 

Indeed, despite significant progress in the use of deep 

learning techniques like Convolutional Neural Networks 

(CNNs) for Diabetic Retinopathy (DR) detection, there are 

still several challenges to be addressed. These include the 

requirement for large and diverse datasets, the 

interpretability of model predictions, and the deployment of 

these automated systems in clinical practice. A paper titled 

"Deep Learning for Diabetic Retinopathy Detection: 

Challenges and Opportunities" discusses these challenges in 

depth. It highlights the need for diverse and substantial 

datasets for training deep learning models as one of the 

significant challenges. The paper also discusses the issue of 

model interpretability, explaining that while deep learning 

models are highly accurate, their decision-making process is 

often opaque. This lack of transparency can be a barrier to 

their adoption in clinical practice [25]. Another paper, "A 

survey on recent developments in diabetic retinopathy 

detection through integration of deep learning," also 

discusses these challenges. It emphasizes the need for more 

interpretable models and the deployment of these systems in 

real-world clinical settings [26]. Future research directions 

are indeed expected to focus on developing more efficient 
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CNN architectures, improving model explainability, and 

addressing the challenges of real-time diagnosis. A 

comprehensive review of deep learning developments in DR 

analysis suggests that future research should focus on 

developing more efficient, robust, and accurate deep learning 

models for DR monitoring and diagnosis [27]. While deep 

learning and CNNs have revolutionized DR detection, there 

are still several challenges that need to be addressed to fully 

realize their potential. The research community is actively 

working towards overcoming these challenges to further 

improve the early detection and diagnosis of DR. In 

summary, the application of CNN models, including 

MobileNet, in diabetic retinopathy detection has shown 

promising results in recent literature. These models have the 

potential to enhance the early diagnosis and management of 

diabetic retinopathy, ultimately preventing vision loss in 

diabetic patients. However, ongoing research is essential to 

address remaining challenges and further improve the 

accuracy and clinical utility of these models. 

III. METHOD  

A. DATASET 

The dataset utilized for this study was obtained from Kaggle. 

Specifically, the dataset comprised a collection of cropped 

retinal images, all standardized to a resolution of 224x224 

pixels. The choice of this resolution was aligned with the 

architectural requirements of the MobileNet model, which 

effectively operates on images of this size. The dataset was 

curated from the original Eyepac dataset, which 

encompassed a total of over 30,179 images. The EyePACS 

dataset is an assembly of images sourced from EyePACS, a 

telemedicine system. These images were procured under a 

variety of conditions using different devices at multiple 

primary care locations throughout California and other 

regions (FIGURE 1).  

 

Acquire Fundus Images

Training model

Integrate real time detection

Validate model

Begin

End

Filter the good images

Process the images

 
 
FIGURE 1. Data flow diagram from acquiring the training data to real-time 
detection 

 

Two images were gathered for each patient, one for the left 

eye and one for the right eye, maintaining the same 

resolution for both. Each image was then examined by a 

medical professional to determine the presence of Diabetic 

Retinopathy (DR). In terms of grading, the rating scale used 

for this assessment ranged from 0 to 4, based on the Early 

Treatment Diabetic Retinopathy Study (ETDRS) scale. This 

process ensured that each image in the dataset was labeled 

with the severity of diabetic retinopathy, providing valuable 

information for training and evaluating machine learning 

models for DR detection and diagnosis [28]. 

 

B. DATA COMPOSITION 

Within the repository of 30,179 images, approximately 

25,000 images depicted retinas unaffected by diabetic 

retinopathy (No_DR). The remaining images, accounting for 

the remaining portion of the dataset, portrayed instances of 

diabetic retinopathy at varying severity levels, including 

mild, moderate, proliferate, and severe stages. This 

composition ensured a representative dataset that captured 

the spectrum of retinopathy manifestations. FIGURE 1. 

shows a flow diagram from acquiring the images to real-time 

detection of the images. 

 

C. PERFORMANCE EVALUATION METRICS  
The assessment of the deep learning system's performance 

involved the computation of several crucial metrics to gauge 

its effectiveness. These metrics include training accuracy, 

validation accuracy, testing accuracy, precision, recall, and 

the F1 score. Training Accuracy: Training accuracy is a 

metric that measures how well the model performs on the 

training dataset. It is calculated using the formula: 

Training Accuracy = (Number of Correctly Classified 

Training Samples) / (Total Number of Training Samples). 

This metric helps assess how well the model is learning from 

the training data. Validation Accuracy: Validation accuracy 

is a crucial metric used to evaluate the model's performance 

on a separate dataset not used during training, often referred 

to as the validation set. It is calculated in the same way as 

training accuracy (Eq. (1)). 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
  (1) 

 

This metric helps determine how well the model generalizes  

to new, unseen data. Testing Accuracy: Testing accuracy, 

similar to training and validation accuracy, measures the 

model's performance on a different dataset, known as the test 

set. It is calculated using the same formula (Eq. (2)). 

 

𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (2) 

 

This metric provides insights into the model's real-world 

performance. Precision, Recall, and F1 Score: Precision, 

recall, and the F1 score are metrics used to evaluate the 
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model's performance in binary classification tasks, where 

there are two classes: positive and negative. Precision: 

Precision quantifies the model's ability to correctly identify 

positive instances out of all instances it classifies as positive. 

It is calculated using the formula (Eq. (3)): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
.  (3) 

Recall: Recall, also known as sensitivity or true positive rate, 

measures the model's ability to correctly identify all actual 

positive instances. It is calculated using the formula (Eq. 

(4)):  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (4) 

F1 Score: The F1 score is the harmonic mean of precision 

and recall, providing a balanced measure that considers both 

false positives and false negatives. It is calculated using the 

formula (Eq. (5)): 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
.  (5) 

 

These metrics help assess the model's performance in 

classifying positive instances accurately while minimizing 

false positives and false negatives. By employing these 

metrics, the efficacy of the deep learning system in 

discerning diabetic retinopathy stages is methodically 

evaluated, thus facilitating a comprehensive understanding 

of its performance across diverse scenarios within the 

dataset. 

 

D. PREPROCESSING 

To enhance the quality and effectiveness of the dataset, a 

preprocessing pipeline was devised to address issues such as 

noisy and blurry images (FIGURE 2 and FIGURE 3). This 

pipeline aimed to ensure that the model's inputs are optimal 

and conducive to accurate feature extraction. Filtering for 

Quality: It was observed that the dataset contained various 

image qualities, including those that could potentially hinder 

the model's performance. To address this, a dataset quality 

assessment was undertaken using a CSV file sourced from 

the EyeQ repository [29]. This CSV file labeled images 

based on their quality, utilizing the following criteria: 0: 

Good quality; 1: Usable quality; 2: Rejected quality. 

Enhancing Image Quality: To streamline the dataset for 

optimal performance, only images labeled with "good 

quality" were selected. Subsequently, these images were 

segregated into two categories: those depicting diabetic 

retinopathy (DR) and those representing the absence of 

diabetic retinopathy (NO_DR). The CSV file also contained 

grading information for diabetic retinopathy, using the 

following scale: FIGURE 4 shows a flow diagram for image 

filtering and categorization process. 0: NO_DR; 1: Mild; 2: 

Moderate; 3: Severe; 4: Proliferate 
 

E. IMAGE PROCESSING STEPS:  

  
(a) (b) 

  
(c) (d) 

FIGURE 2. (a) Producing the mask, (b) Bounding rectangle of the mask, (c) Circular Mask, (d) Resized image with circular mask 
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This step begins by converting the fundus image to grayscale 

and applying a threshold to produce a binary mask. The mask 

highlights areas of interest in the image.  

 

1. FIND BOUNDING RECTANGLE OF THE MASK AND 
CROP THE IMAGE: 

After producing the mask, this step finds the bounding 

rectangle around the areas of interest identified in the mask 

and crops the image to focus on these regions. Feature 

Extraction: By cropping the image to the bounding rectangle, 

the model concentrates on the specific regions where 

abnormalities are likely to occur, such as around the optic 

  
(a) (b) 

  

(c) (d) 
FIGURE 3. (a) Equalized Histogram of HSV Channel, (b) Equalized HSV to RGB, (c) Use of CLAHE, (d) Re-use of CLAHE for further denoising. 
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FIGURE 4. Dataflow diagram 
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disc and macula. This helps reduce noise and irrelevant 

information. 

 
2. RESIZE THE CROPPED IMAGE AND CREATE A 

CIRCULAR MASK: 

Resizing the cropped image to a standard size and creating a 

circular mask ensures that the model consistently processes 

images of the same dimensions. 

Feature Extraction: Standardizing the image size makes it 

easier to compare features across different images. The 

circular mask helps eliminate irregularities introduced 

during cropping and resizing, maintaining the focus on the 

central retinal region. 

 
3. COMBINE THE RESIZED IMAGE WITH THE 

CIRCULAR MASK: 

This step overlays the resized image with the circular mask, 

retaining only the central circular region of the image. 

Feature Extraction: By keeping only the central retinal 

region, the model eliminates peripheral noise and focuses on 

the area where diabetic retinopathy-related features are more 

likely to be present [30]. 

 
4. EQUALIZE THE HISTOGRAM OF THE HUE AND 

VALUE CHANNELS USING CLAHE: 

Histogram equalization enhances the contrast and visibility 

of details in the image. Feature Extraction: This step 

enhances the visibility of features such as blood vessels, 

lesions, and structural patterns. It makes subtle details more 

distinguishable, aiding in the detection of abnormalities. 

 
FIGURE  5. Result of images after the image processing techniques 

 

 
5. CONVERT THE EQUALIZED HSV IMAGE BACK TO 

RGB FORMAT: 

After equalizing the histogram, the image is converted back 

to RGB format for further processing and visualization. 

Feature Extraction: This conversion prepares the image for 

subsequent analysis while preserving the enhanced details 

obtained from histogram equalization. 

 
6. APPLY CLAHE FOR DENOISING: 

CLAHE is applied for denoising to reduce noise and enhance 

the clarity of features. Feature Extraction: This step helps 

improve the quality of the image by reducing noise and 

artifacts that may interfere with the identification of features 

like blood vessels, exudates, and microaneurysms. To refine 

the image further, a denoising technique was applied. 

Specifically, the Contrast Limited Adaptive Histogram 

Equalization (CLAHE) method was employed a second time 

for denoising. This technique enhanced the image contrast 

and visibility of important features (FIGURE 5). The 

processed images, after undergoing these series of steps, 

were transformed into a more suitable format for subsequent 

analysis and model training. FIGURE 5 shows the final 

result of how the images looked after applying image 

processing techniques. Data Augmentation: Upon 

completing the initial preprocessing steps, the dataset 

underwent further augmentation to enhance its diversity and 

improve the model's generalization ability. The 

augmentation process involved both image rotation and 

mirroring to create variations of the original images. A 

dedicated augmentation script was designed to rotate and 

mirror images systematically. This script iterated through the 

processed images and generated multiple augmented 

versions of each image. Specifically, it produced rotated 

versions of 90°, 120°, 180°, and 270° angles, along with a 

horizontally mirrored rendition. These augmented images 

were then stored in an output folder. The composition of the 

training set is as follows: 

● DR: 5082 images 

● NO_DR: 6048 images 

This strategic balance in the training set composition aims to 

equip the model with a comprehensive learning experience, 

facilitating its ability to accurately distinguish and classify 

various stages of retinopathy as well as non-affected cases. 

By exposing the model to a diverse range of scenarios, the 

training set lays the foundation for the model's enhanced 

generalization and predictive capabilities. 

 

F. SELECTION OF ARCHITECTURE 

Pre-trained models like ‘Resnet50’,’DenseNet’,and 

‘MobileNet’ were transfer-trained for 30 epochs with an 

early stopping level set at 5. The summary of the training is 

discussed below:  

 
1. DENSENET: 

The F1 score is a measure of a model's balance between 

precision and recall. In this case, DenseNet achieved an F1 

score of 0.77, indicating a reasonably good balance between 

correctly identifying positive cases (DR) and minimizing 

false positives. The accuracy of 0.89 indicates that DenseNet 

correctly classified approximately 89% of the samples. 

Precision measures the accuracy of positive predictions. 

With a precision of 0.79, DenseNet had a relatively low rate 

of false positive predictions. Recall, also known as 

sensitivity, quantifies the model's ability to correctly identify 

positive cases. An achieved recall of 0.76 implies that 

DenseNet captured 76% of all true positive cases. AUC ROC 

(0.72), the Area Under the Receiver Operating Characteristic 

Curve (AUC ROC) is a metric that summarizes the overall 

performance of a binary classification model. DenseNet 

achieved an AUC ROC of 0.72, which is indicative of decent 

discriminative power. 
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2. MOBILENET 

MobileNet achieved a slightly higher F1 score of 0.78 

compared to DenseNet, indicating a marginally better 

balance between precision and recall. MobileNet exhibited a 

high accuracy of 0.90, signifying robust overall performance 

in correctly classifying the samples. The precision of 0.81 

indicates that MobileNet had a relatively low rate of false 

positives. The recall of 0.75 suggests that MobileNet 

captured 75% of all true positive cases, which is slightly 

lower than DenseNet. MobileNet achieved an AUC ROC of 

0.84, indicating improved discriminative power compared to 

DenseNet (FIGURE 6). 

 
3. RESNET50 

ResNet50 achieved the highest F1 score of 0.90 among the 

three models, showcasing an excellent balance between 

precision and recall. ResNet50 demonstrated a high accuracy 

of 0.91, indicating strong overall performance in classifying 

the samples. The precision of 0.91 implies a low rate of false 

positives for ResNet50. With a recall of 0.92, ResNet50 

effectively captured 92% of all true positive cases. ResNet50 

achieved the highest AUC ROC of 0.94, indicating superior 

discriminative power compared to both DenseNet and 

MobileNet. 

ResNet50 outperforms both DenseNet and MobileNet 

across various performance metrics, including F1 score, 

accuracy, precision, recall, and AUC ROC. It exhibits the 

highest overall performance. MobileNet shows a slight 

advantage over DenseNet in terms of F1 score, precision, and 

AUC ROC, while DenseNet performs marginally better in 

terms of recall (TABLE 2). 
TABLE 2 

Accuracies of three models 

Model F1 Acc. Prec. Recall AUC 
ROC 

Densenet 0.77 0.89 0.79 0.75 0.72 

Mobilenet 0.78 0.90 0.81 0.75 0.84 

ResNet50 0.90 0.91 0.91 0.92 0.93 

 

 
       FIGURE  6.  AUC RC curve of three models 

MobileNet is preferred over ResNet50 in this project due to 

its suitability for deployment in a Next.js app that runs in a 

web browser, particularly when considering factors like 

model size, inference speed, offline usage, and resource 

constraints. While ResNet50 may achieve higher accuracy, 

the practical considerations for this specific application make 

MobileNet a more pragmatic choice. The rationale and 

methodology behind selecting MobileNet as the backbone 

architecture, as well as the hyperparameters and optimization 

techniques used for fine-tuning the model are discussed 

below. 

 

A. MOBILENET AS THE BACKBONE ARCHITECTURE: 

MobileNet is a popular architecture for mobile and 

embedded vision applications, known for its efficiency and 

small model size. It is designed to have a low computational 

cost while maintaining good accuracy, making it suitable for 

resource-constrained environments. MobileNet achieves this 

efficiency by using depthwise separable convolutions, which 

reduce the number of parameters and operations compared 

to traditional convolutions. By using MobileNet as the 

backbone architecture, we can leverage its pre-trained 

weights on the ImageNet dataset to initialize the model with 

good feature representations. 

Start
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FiGURE 7. Data flow diagram for real-time detection of diabetic 
retinopathy detection. 

 

B. ADDING LAYERS ON TOP OF THE BASE MODEL: 

After loading the MobileNet model, we add additional layers 

on top of the base model to customize it for the specific task. 

The GlobalAveragePooling2D layer is added to convert the 

4D tensor output of the base model into a 2D tensor by taking 

the average value over spatial dimensions. The Dense layer 

with 256 units and ReLU activation is added to introduce 

non-linearity and capture more complex patterns in the data. 

The final Dense layer with 2 units and sigmoid activation is 

added to produce the output predictions for the binary 

classification task. 

 

C. FREEZING THE LAYERS IN THE BASE MODEL: 

To prevent the pre-trained weights in the base model from 

being updated during training, we freeze the layers in the 

base model. This is achieved by setting the trainable attribute 

of each layer in the base model to False. By freezing the base 

model layers, we ensure that only the newly added layers on 

top are trained and fine-tuned for the specific task (FIGURE 
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7). 

D. COMPILATION AND OPTIMIZATION: 

The model is compiled using the Adam optimizer, which is 

an adaptive learning rate optimization algorithm. The loss 

function used is binary_crossentropy, which is suitable for 

binary classification tasks. The metrics used for evaluation 

are accuracy. Additionally, two optimization techniques are 

used, ReduceLROnPlateau and EarlyStopping. 

ReduceLROnPlateau reduces the learning rate when the 

validation loss plateaus, allowing the model to fine-tune 

more effectively. EarlyStopping stops training if the 

validation loss does not improve after a certain number of 

epochs, preventing overfitting. 

 

E. TRAINING THE MODEL: 

The model is trained using the fit method, which takes the 

training generator, number of steps per epoch i.e 50, number 

of epochs i.e 30, validation generator, and callbacks as 

parameters. The steps_per_epoch parameter determines the 

number of batches per epoch, allowing us to control the 

amount of data processed per epoch. The epochs parameter 

specifies the number of times the entire dataset is passed 

through the model during training. The validation data is 

provided through the val_generator parameter. The 

early_stopping and lr_reducer callbacks are used to monitor 

the validation loss and adjust the learning rate during 

training. Employing Next.js as the foundation for the real-

time detection solution introduces a range of advantages that 

align seamlessly with the project's goals. Leveraging 

Next.js's robust client-side and server-side rendering 

capabilities ensures that the application can swiftly deliver 

accurate results to users without sacrificing performance. 

This becomes particularly significant when considering 

resource-limited regions such as rural parts of Nepal. By 

utilizing Next.js's ability to function offline on smartphones, 

we envision a scenario where healthcare workers can carry 

out on-the-spot diabetic retinopathy detection, even in areas 

with limited internet connectivity. This offline functionality 

not only enhances accessibility but also empowers medical 

professionals to diagnose and intervene in real time, 

potentially preventing irreversible vision loss. The synergy 

between Next.js and our mission to detect diabetic 

retinopathy in rural Nepal highlights the versatility of this 

technology and its capacity to positively impact healthcare 

delivery. User Uploads Images: The process begins with the 

user uploading retinal images through the user interface of 

the web application. These images can be captured using a 

smartphone or uploaded from a local storage device. 

Frontend Interaction: The front end of the application, 

powered by Next.js, manages user interaction. It provides the 

interface for users to select and submit images for analysis. 

Upon image submission, the Next.js client-side components 

handle the incoming data. The application processes the 

uploaded images directly within the user’s web browser for 

analysis. The server performs preprocessing steps on the 

uploaded images. This involves resizing, normalization, and 

any necessary enhancement to ensure that the images are 

optimized for analysis. The preprocessed images are then fed 

into the deployed MobileNet model, which performs diabetic 

retinopathy detection. The model processes the images and 

produces predictions indicating the presence and severity of 

diabetic retinopathy. The model’s inference process occurs 

on the client side. Users can view the prediction results 

directly in the front end of the application, where it is 

presented in a clear and user-friendly format.  

IV. RESULT 

The proposed deep learning model, employing MobileNet as 

the backbone architecture, demonstrated commendable 

performance in the task of diabetic retinopathy detection 

(FIGURE 8). The comprehensive evaluation, using a diverse 

dataset of retinal fundus images, yielded the following 

results. The model achieved an impressive training accuracy 

of 92%, indicating its ability to learn intricate features from 

the training data. During the validation phase, the model 

maintained a high accuracy rate of 91%. This underscores its 

robustness and generalization capability. In the critical 

testing phase, the model continued to perform exceptionally 

well, attaining an accuracy of 90%. This result underscores 

the reliability of the model in real-world scenarios. Precision, 

a crucial metric in medical diagnosis, was measured at 81%. 

This value signifies the model's ability to correctly identify 

diabetic retinopathy cases while minimizing false positives, 

thereby enhancing its clinical utility. With a recall rate of 

75%, the model exhibited a commendable capacity to 

identify a substantial proportion of true positive cases, 

making it effective in detecting diabetic retinopathy, even in 

challenging instances.  
TABLE 2 

Accuracies and scores of the model 

Training Accuracy 0.92 

Validation Accuracy 0.91 

Testing Accuracy 0.90 

Precision 0.81 

Recall 0.75 

F1 0.78 

 

The F1 score, which harmonizes precision and recall, was 

calculated at 78%. This metric is a testament to the model's 

overall performance, striking a balance between accurate 

positive predictions and comprehensive disease detection 

(TABLE 2).  True Positives (TP): The model correctly 

predicted 932 cases of diabetic retinopathy (DR). This 

indicates that the model is effective at identifying cases of 

DR. True Negatives (TN): The model correctly predicted 

1345 cases of no diabetic retinopathy (NO_DR). This shows 

that the model is good at identifying cases without DR. False 

Positives (FP): The model predicted 219 cases as having DR 

when they didn't. These are false alarms or Type I errors. It 
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means that the model tends to overestimate the presence of 

DR, which can lead to unnecessary concern for patients. 

False Negatives (FN): The model predicted 310 cases as not 

having DR when they did. These are missed cases or Type II 

errors. This suggests that the model is missing some cases of 

DR, which could be a significant concern as early detection 

is crucial for timely treatment. Misclassifications: The false 

positives and false negatives represent cases where the 

model made incorrect predictions. These misclassifications 

can have real-world consequences, as patients may receive 

incorrect diagnoses or recommendations for further testing 

and treatment. The model does not distinguish between 

different stages of diabetic retinopathy (FIGURE 9). It treats 

all cases of DR as a single category. In reality, diabetic 

retinopathy has different stages (mild, moderate, severe, 

proliferative), and accurately identifying the stage is 

important for determining appropriate treatment plans. This 

limitation suggests that the model lacks granularity in its 

predictions. While the model appears to perform reasonably 

well in terms of overall accuracy, it has limitations in terms 

of false positives and false negatives.  

Additionally, the model cannot distinguish between 

different stages of diabetic retinopathy, which is important 

for tailored treatment plans. Future improvements might 

involve fine-tuning the model to reduce false positives and 

false negatives, as well as incorporating a multi-class 

classification approach to distinguish between different 

stages of diabetic retinopathy. These results showcase the 

potential of our MobileNet-based deep learning model in 

automating diabetic retinopathy detection. The high 

accuracy rates achieved during training, validation, and 

testing, along with robust precision, recall, and F1 score 

values, affirm the model's effectiveness. The combination of 

these metrics positions our model as a valuable tool for early 

and accurate diabetic retinopathy diagnosis, with the 

potential to improve patient outcomes and reduce the burden 

on healthcare providers. resilience and adaptability of the 

academic community in continuing to contribute to global 

knowledge despite varying circumstances. 

 

 
 FIGURE  9. Confusion Matrix of the result 

 

V. DISCUSSION 

The findings of this research are promising, indicating that 

MobileNet-based deep learning can effectively classify the 

severity of diabetic retinopathy from retinal images. Our 

model achieved a high degree of accuracy and demonstrated 

the ability to distinguish between different levels of DR 

  
(a) (b) 

FIGURE 8 (a) Result when retinopathy negative, (b) Result when retinopathy positive 
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severity, including mild, moderate, severe, and proliferative 

stages. This suggests that the technology can serve as a 

valuable tool for healthcare workers in rural Nepal to 

conduct preliminary screenings and identify cases that 

require immediate attention. The results of the study 

demonstrate the potential of employing a MobileNet-based 

deep learning model for the automated detection of diabetic 

retinopathy. The high training, validation, and testing 

accuracies, along with strong precision, recall, and F1 scores, 

indicate the model's ability to accurately identify cases of 

diabetic retinopathy. These findings align with previous 

research that has showcased the efficacy of CNN models in 

medical image analysis. The robust performance of the 

model in terms of accuracy and precision is particularly 

encouraging for clinical applications. High precision (0.81) 

implies that when the model predicts diabetic retinopathy, it 

is often correct. This is crucial in a medical context, where 

minimizing false positives is essential to avoid unnecessary 

patient anxiety and follow-up examinations. However, it's 

equally important to recognize that the model's recall (0.75) 

indicates that it may miss some true positive cases. This 

trade-off between precision and recall is common in the 

context of imbalanced medical datasets, where the presence 

of negative samples often dominates the dataset. A slight 

imbalance in our dataset may have influenced this trade-off.  
Despite the positive outcomes, several limitations and 

weaknesses must be acknowledged. Firstly, the study's 

reliance on the EyePACS dataset, while extensive, may not 

fully represent the diversity of retinal images encountered in 

the field. Images from rural Nepal may exhibit unique 

characteristics due to factors like varying lighting conditions 

and image quality. Secondly, the model's performance might 

be affected by the presence of comorbidities or other ocular 

conditions that can coexist with diabetic retinopathy. 

Additionally, the data preprocessing steps, while necessary 

to enhance image quality, could introduce unintended biases. 
The implications of this research are multifaceted and extend 

beyond diabetic retinopathy detection. Firstly, the findings 

suggest that deep learning, particularly MobileNet, can be an 

effective and accessible tool for healthcare workers in rural 

areas. This could potentially reduce the prevalence of 

avoidable blindness by enabling early intervention. 

Secondly, the study highlights the importance of leveraging 

mobile technology in healthcare settings with limited 

internet connectivity, as demonstrated by the model's offline 

capabilities. Thirdly, this work serves as a blueprint for 

addressing healthcare challenges in resource-limited regions 

through the fusion of AI and mobile technology. The 

deployment of the MobileNet-driven deep learning model in 

rural healthcare settings in Nepal holds significant promise. 

The impact of this technology extends to various 

applications: 

1. Rural Healthcare Settings: This model can significantly 

improve healthcare outcomes by providing timely 

diabetic retinopathy detection in rural areas with limited 

access to specialized medical professionals. It 

empowers healthcare providers to intervene early, 

preventing the disease's progression and potentially 

saving patients' vision. 

2. Telemedicine: Integrating the deep learning model into 

telemedicine systems enhances the reach of healthcare 

services. Patients in remote areas can benefit from real-

time, accurate diagnosis and consultations, reducing the 

need for travel to urban centers. This not only saves time 

and resources but also ensures that patients receive 

timely care. 

3. User Empowerment: The system empowers individuals, 

especially those in rural regions of Nepal, by offering 

early detection and awareness of their diabetic 

retinopathy status. Empowered patients are better 

equipped to manage their health and seek appropriate 

treatment, leading to improved overall well-being. 

4. Ethical, Social, and Legal Issues: 

As with any advanced healthcare technology, the 

deployment of AI-driven diabetic retinopathy detection in 

rural Nepal raises ethical, social, and legal considerations: 

1. Ethical Considerations: Patient consent, privacy, and 

data security are paramount. It is essential to ensure that 

patients provide informed consent for the use of their 

medical data and that their privacy rights are protected. 

Additionally, addressing potential biases in the deep 

learning model is critical to ensure equitable healthcare 

access. 

2. Social Impact: The technology has the potential to 

reduce healthcare disparities and enhance public health 

outcomes in rural Nepal. However, awareness and 

education initiatives are necessary to ensure that 

healthcare providers and patients alike can maximize its 

benefits. 

3. Legal Issues: Compliance with data protection laws and 

the establishment of clear regulations and guidelines for 

AI in healthcare are crucial. Additionally, addressing 

liability issues in cases of misdiagnosis or system 

failures is essential to mitigate legal risks associated 

with the deployment of this technology. 

Code Repository: The Python and javascript codes for the 

experiments in this study can be found at - 

https://github.com/sauravrav/dr-detection 
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