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ABSTRACT Defects that occur in software products are a universal occurrence. Software defect prediction is usually carried 

out to determine the performance, accuracy, precision and performance of the prediction model or method used in research, 

using various kinds of datasets. Software defect prediction is one of the Software Engineering studies that is of great concern 

to researchers. The purpose of this research is to improve the performance produced by the Decision Tree, Random Forest, 

and Deep Forest classification methods by selecting the Firefly feature in predicting software defects. In addition, it is also to 

find out a tree-based classification algorithm with Firefly feature selection that can provide better software defect prediction 

performance. The dataset used in this study is the ReLink dataset which consists of Apache, Safe and Zxing. Then the data is 

divided into testing data and training data with 10-fold cross validation. Then feature selection is performed using the Firefly 

Algorithm. Each ReLink dataset will be processed by each tree-based classification algorithm, namely Decision Tree, 

Random Forest and Deep Forest according to the results of the Firefly feature selection. Performance evaluation uses the 

AUC value (Area under the ROC Curve). Research was conducted using google collab and the average AUC value generated 

by Firefly-Decision Tree is 0.66, the average AUC value generated by Firefly-Random Forest is 0.77, and the average AUC 

value generated by Firefly-Deep Forest is 0.76. The results of this study indicate that the approach using the Firefly algorithm 

with Random Forest classification gets better results compared to other tree-based algorithms. 

 

INDEX TERMS Software Defect Prediction, Firefly, Decision tree, Random forest, Deep forest 

 

 
I. INTRODUCTION 

Software systems continue to serve important functions in 

every aspect of our society, the presence of a flaw in such a 

system can have a major impact on the economy and the 

general population[1]. Software development projects 

necessitate a phase of software testing which is of utmost 

importance and incurs significant costs for investigating the 

efficacy of the resultant product[2]. A software defect 

denotes a flaw, error, bug, mistake, fault, or failure within a 

computer system or program that may result in an 

unexpected or inaccurate outcome or hinder intended 

software behavior[3]. To attain high-quality software, the 

final product must have minimal defects. Early detection of 

software defects can lead to reduced development costs, 

rework efforts, and more dependable software[4]. Defect 

prediction is an exceedingly dynamic domain within 

software analytics[5]. The utilization of software defect 

prediction metrics is of parfrequency significance in the 

development of a prediction model, which has the objective 

of enhancing software quality by foreseeing a maximal 

number of software defects[6]. 

In research conducted by Andini et al[7]. in his research 

using a tree-based classification with hyperparameter 

tuning, the average AUC value generated by a Decision 

Tree is 0.69, while the average AUC value generated by a 

Random Forest is 0.76 and the average AUC value 

produced by Deep Forest is 0.79. In another study by Anbu 

et al. the Firefly optimization method was used to improve 

software defect prediction performance as feature selection, 

the final results of the study concluded that the Firefly 

search algorithm is effective for feature selection problems 

with the results of classification accuracy SVM-with FS has 

better accuracy by 4.53% compared to SVM-without FS, by 

5.4% compared to KNN without FS, by 11% compared to 

NB-without FS. In a previous study conducted by Zhou et 

al. proposes several methods such as Deep Belief Networks 
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(DBN), Random Forest (RF), Naive Bayes (NB ), Logistic 

Regression (LR) and Support Vector Machine (SVM) in 

predicting software defects. The data used are NASA, 

PROMISE, AEEEM and ReLink datasets. Based on the 

comparison results, for the NASA dataset it can be seen that 

DPDF has the best performance, AUC increases and the 

highest value is 92%. For the PROMISE and AEEEM 

datasets, the DPDF results are also better than the others, 

with the highest scores of 89% and 86%. And across 

multiple datasets ReLink, DPDF has not outperformed RF 

and DBN, the highest score is 75%. Feature selection plays 

a crucial role in a plethora of applications owing to its 

indispensability in ensuring generalization, performance, 

computational efficiency, and feature interpretability[8]. So 

in this study research will be carried out on the application 

of feature selection in predicting software defects using the 

Firefly algorithm for tree-based classification, namely 

Decision Tree, Random Forest classification, and Deep 

Forest with the aim of improving the resulting performance. 

 
II.  METHOD 

This research method describes the dataset used, Decision 

Tree algorithm, Random Forest, Deep Forest, Firefly 

algorithm, test validation using cross validation, and 

performance measurement using the evaluation method using 

AUC. The following is the research procedure that will be 

carried out. Figure 1 show the flow of this research. 

 
FIGURE 1. Research flow with feature selection 

In this study, a flowchart is presented in Figure 1. The initial 

step involves collecting the ReLink dataset, followed by 

sharing the data using cross validation. The validation 

technique adopted in this study is 10-fold validation. To 

achieve this, each ReLink dataset is partitioned into 10 

sections, with 9 sections designated as training data and the 

remaining section used as test data. Subsequently, feature 

selection is executed via the Firefly algorithm before 

classification. The classification phase involves three 

scenarios, which are Decision Tree, Random Forest, and 

Deep Forest. The study's evaluation employs the average 

AUC value. The experimentation was conducted using 

Python Google Collaboratory. 

A. DATA COLLECTION 

The dataset used in this study is a software metrics dataset 

called ReLink, which consists of Apache, Safe, and Zxing 

data. This dataset can be downloaded at the following link 

https://github.com/bharlow058/AEEEM-and-otherSDP-

datasets/tree/master/dataset/Relink.  

TABLE 1 shows the frequency of data that varies in each 

ReLink dataset, namely Apache with 194 data, Safe with 56 

data and Zxing with 399 data. Then explains the ReLink 

dataset software metrics which are grouped into 2 software 

metric categories (groups), namely Complexity Metric 

(CPM) and Count Metric (CTM). The ReLink dataset has 

the same number of software metrics[7]. 
 

TABLE 1 

Relink dataset 

Matrix 

Category 

Attribute Name 

 

Dataset Original 

Apache Safe Zxing 

Complexity 

Metric(CPM) 

AvgCyclomatic √ √ √ 

AvgCyclomaticModified √ √ √ 

AvgCyclomaticStrict √ √ √ 

AvgEssential √ √ √ 

MaxCyclomatic √ √ √ 

MaxCyclomaticModified √ √ √ 

MaxCyclomaticStrict √ √ √ 

RatioCommentToCode √ √ √ 

SumCyclomatic √ √ √ 

SumCyclomaticModified √ √ √ 

SumCyclomaticStrict √ √ √ 

SumEssential √ √ √ 

Count 

Metric(CTM) 

AvgLine √ √ √ 

AvgLineBlank √ √ √ 

AvgLineCode √ √ √ 

AvgLineComment √ √ √ 

CountLine √ √ √ 

CountLineBlank √ √ √ 

CountLineCode √ √ √ 

CountLineCodeDecl √ √ √ 

CountLineCodeExe √ √ √ 

CountLineComment √ √ √ 

CountSemicolon √ √ √ 

CountStmt √ √ √ 

CountStmtDecl √ √ √ 

CountStmtExe √ √ √ 
 

Number of Modules 194 56 399 

Number of Attributes 

(Feature) 

26 26 26 

Number of Classes 

(Buggy) 

98 22 ll8 

Number of Classes 

(Clean) 

96 34 281 

Percentage (Buggy) 50.52% 39.29% 29.57% 
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B. DATA SHARING 
1. CROSS VALIDATION 

The reduction of bias in the case of random sampling of 

datasets is accomplished through the implementation of 

cross validation[9]. Cross Validation divides the original 

data into training data and testing data[4]. It consists of 

randomly dividing the data set into K parts[10]. One part is 

used to validate the model and the rest to train the classifier. 

This process is repeated K times, selecting different 

validation subsets. Cross Validation divides raw data into 

training data and testing data randomly. Weaknesses that K-

Fold Cross Validation has when using unbalanced data 

where there is a possibility of causing some data to be lost 

and only testing a few instances so that there are still many 

untested[11]. 

C. FEATURE SELECTION 
1. FIREFLY ALGORITHM BASED FEATURE SELECTION 
Feature selection constitutes a combinational optimization 

problem[12]. The Firefly algorithm (FA) is a novel 

population-based meta-heuristic algorithm that exhibits 

exceptional performance on a multitude of optimization 

problems[13]. The Firefly Algorithm is algorithm that 

draws inspiration from the light flashing behavior of the 

original Firefly[14]. It should be noted that every Firefly 

has its unique position that is determined by the number 

that is generated for each of them[15]. Firefly Algorithm 

for discriminatory features selection of classification and 

regression models to support the decision-making process 

using database-based learning methods[16]. It can be 

posited that the algorithm in question has achieved a 

remarkable level of success, despite its relatively low 

cost[17]. This algorithm is inspired by the blinking 

behavior of a Firefly, a randomly generated solution will be 

treated as a Firefly, and the brightness assigned depends on 

its performance in the objective function[14]. The 

brightness of a Firefly is determined by evaluating the 

fitness function. For the problem of maximizing brightness, 

it can be compared with the value of the objective function 

(fitness function)[18]. The Firefly algorithm exhibits 

superior capacity to evade trapping in local optima, 

alongside a marked enhancement in both the speed of 

convergence and precision of solutions[19]. 

The attractiveness of the Firefly is determined by its 

brightness, which is contingent on the light intensity. The 

calculation of attractiveness for each Firefly is 

accomplished through the utilization of Equation (1)[14]. 

 

β(r) = β0e
-γr2   (1) 

 

where variable β0 is utilized to signify the level of appeal at 

the point where distance (r)=0, and in certain instances, it is 

regarded as equivalent to the value of one for mathematical 

computations. Meanwhile, the symbol γ is representative of 

the degree of light absorption. It should be noted that r 

denotes the distance between two fireflies, i and j, who are 

in constant motion from one position to another. It is a 

well-established fact that the degree of attractiveness 

between these fireflies is closely linked with the distance 

that separates them. Therefore, the distance between two 

fireflies, i and j, is determined using the Euclidean distance 

law[14]. calculated by the equation(2). 

rij = ||xi – xj|| = √∑ = 1(𝑋𝑖, 𝑘 − 𝑋𝑗, 𝑘)𝑑
𝑘

2  (2) 

where d denotes the dimensions of the given problem, xi,k 

corresponds to the k-th component of the Firefly position i. 

After calculating the distance between two fireflies, if 

Firefly i exhibits a lower luminosity compared to Firefly j, 

then the resulting attraction between the two occurs when 

Firefly i moves towards Firefly j. the movement in question 

is governed by Equation (3)[14], which is stated as follows: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽0𝑒
−(𝛾𝑟𝑖𝑗

2 ) ∗ (𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝛼 ∗ (𝑟𝑎𝑛𝑑 − 1/2) 

(3) 

where t denotes the number of iterations, the coefficient α 

denotes a stochastic variable governing the magnitude of 

the random walk, and rand signifies a random number 

generator that falls within the interval [0,1]. The Firefly 

with lower luminosity translocates towards the brighter 

Firefly after considering three factors[14]. The first factor 

corresponds to the current position of the less luminous 

Firefly. The second factor denotes the movement towards 

the brighter Firefly, which is guided by the attraction 

coefficient β. Finally, the last factor corresponds to a type 

of random walk that is computed by a random generator 

multiplied by α. 

 
D. CLASSIFICATION 
1. DECISION TREE CLASSIFICATION  

A Decision Tree(DT) is a classification technique utilized 

in data mining that constructs a model in a top-down tree-

like fashion, predicated on the attributes intrinsic to a 

designated data set[20]. The Decision Tree classification 

method is capable of resolving both binary and multi-class 

classification problems in data mining classification[21]. As 

with an ordinary tree, the Decision Tree comprises a root, 

branches, and leaves, adhering to the same structure[22]. 

The essence of DT lies in its hierarchal and predictive 

modeling strategy, wherein the item's observation serves as 

branches to determine the item's target value in the leaf[23].  

 
FIGURE 2. Struktur Decision Tree[24] 

This implies that it is a coordinated tree through a node 

called the "root," with no imminent edges, while various 
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other nodes have only one imminent edge. An inner or 

exam node is referred to as a center with complex edges. 

Each additional node is titled as either greeneries or 

incurable or excellent nodes. The leaf node is linked to the 

name of the class. The Decision Tree is an integral 

constituent of the planning set[24]. A Decision Tree of this 

nature is depicted in FIGURE 2. 

 
2. RANDOM FOREST CLASSIFICATION 

Random Forest(RF) algorithm is a supervised classification 

algorithm, as indicated by its name, which involves the 

creation of a forest through a random process. The number 

of trees within the forest directly affects the accuracy of the 

outcomes, with larger numbers of trees resulting in greater 

precision[25]. Random Forest classification is done by 

obtaining the majority class votes from the individual vote 

class trees[26]. One important benefit associated with RF 

relates to the fact that there is no need to prune individual 

trees, given the presence of multiple trees. However, the 

disadvantage is that due to the large number of trees, the 

ability to visualize them effectively is impaired[27]. This 

method is underpinned by two primary principles: row 

sampling and voting classifier. The provided records are 

resampled and then forwarded to the next base learner 

models for training. Aggregating is the voting classifier 

concept, where the output for test data is chosen for the 

class with the highest vote from the base learner 

models[28]. A generalized model for the Random Forest is 

depicted in FIGURE 3. 

 

 
FIGURE 3. Random Forest structure[28] 

3. DEEP FOREST CLASSIFICATION 

Deep Forest is a new tree based classification algorithm 

which is an improvement over Random Forest algorithm. 

Deep Forest is referred to as an alternative Deep Neural 

Network (DNN), Deep Forest has parts or components, 

namely a layer-by-layer structure called a cascade 

forest[29]. A cascading forest is a distribution of classes 

generated by each tree for each instance[30].  The image 

presented below illustrates the layered nature of the 

algorithm, where each layer is stacked one on top of the 

other. The initial layer obtains input from the original 

dataset's attributes or features, which are then handled by 

the Random Forest in the next layer (FIGURE 4). The layer 

will stop if the process generated Random Forest does not 

increase or if the output at the given layer decreases. The 

Deep Forest algorithm will average the results from layer to 

layer to the final layer of each layer level. The downside is 

that Deep Forests take longer to process than Random 

Forests[7]. 

 
FIGURE 4. The architecture of the cascade forest[29] 

E. EVALUATION OF RESULT 

The features of this study were taken from 3 ReLink 

datasets obtained from the github repository, each of which 

has 26 features. Feature selection is an important step in 

data analysis, because the right features will improve the 

classification performance of the model. In this study, 

feature selection was performed using the Firefly Algorithm 

to improve feature selection efficiency and improve the 

accuracy of the tree-based classification model. Firefly is 

used to find the best feature combination that gives higher 

AUC performance than the classification model. In this 

study, 10 trials were carried out to find out the average 

AUC value obtained. After implementing Firefly, the final 

results show a comparison of the AUC between models that 

use a combination of classification and selection of Firefly 

features and models that use classification and 

hyperparameter tuning, so that it can be seen whether the 

implementation of the Firefly feature provides an increase 

in AUC performance in classification on prediction of 

software defects. Evaluation of the classification 

performance of the Decision Tree, Random Forest and 

Deep Forest models for each ReLink dataset uses the AUC 

(Area under the ROC Curve) value. 

The AUC represents the area under the ROC curve and has 

been recommended for improving cross-study 

comparability. Its potential for significantly enhancing 

convergence across empirical experiments in software 

defect prediction lies in its ability to disentangle predictive 

performance from operating conditions, thereby serving as 

a general measure of predictiveness[31]. 

 
III. RESULT 

The TABLE 2 shows the performance of a tree-based 

classification algorithm with the Firefly search feature on 

the Apache dataset. 
TABLE 2 

Table of AUC results with Firefly feature selection on the Apache, Safe 

and Zxing datasets 

Datasets Average 

Features 

Avarage AUC Value 

Decision 

Tree (DT) 

Random Forest 

(RF) 

Deep 

Forest (DF) 

Apache 11.5 0.658 0.773 0.756 

Safe 12.3 0.7323 0.8388 0.8382 
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Datasets Average 

Features 

Avarage AUC Value 

Decision 

Tree (DT) 

Random Forest 

(RF) 

Deep 

Forest (DF) 

Zxing 12.1 0.5904 0.7138 0.679 

 

The TABLE 3 shows the number of times a feature appears 

in 10 trials using Firefly feature selection on the Apache, 

Safe and Zxing datasets. 
 

TABLE 3 
The number of features that appear in the dataset Apache, Safe and 
Zxing 

 
No. Features Apache Safe Zxing Average 

1 AvgCyclomatic 3 4 3 3.3 

2 AvgCyclomaticModified 2 3 2 2.3 

3 AvgCyclomaticStrict 1 4 5 3.3 

4 AvgEssential 5 4 6 5 

5 MaxCyclomatic 2 3 3 2.6 

6 MaxCyclomaticModified 3 6 4 4.3 

7 MaxCyclomaticStrict 6 4 3 4.3 

8 RatioCommentToCode 7 4 6 5.6 

9 SumCyclomatic 7 6 5 6 

10 SumCyclomaticModified 5 6 6 5.6 

11 SumCyclomaticStrict 5 5 5 5 

12 SumEssential 5 3 3 3.6 

13 AvgLine 6 4 4 4.6 

14 AvgLineBlank 3 7 3 4.3 

15 AvgLineCode 2 5 8 5 

16 AvgLineComment 4 5 5 4.6 

17 CountLine 7 5 7 6.3 

18 CountLineBlank 4 4 7 5 

19 CountLineCode 5 7 4 5.3 

20 CountLineCodeDecl 5 4 4 4.3 

21 CountLineCodeExe 8 4 5 5.6 

22 CountLineComment 4 3 2 3 

23 CountSemicolon 1 7 4 4 

24 CountStmt 4 7 3 4.6 

25 CountStmtDecl 5 4 7 5.3 

26 CountStmtExe 6 4 7 5.6 

 
IV. DISCUSSION 

In this study, a total of 10 trials were carried out to obtain 

the average value. The results of the software defect 

prediction assessment of the three ReLink datasets on the 

area under the curve (AUC) values obtained from the ten 

experiments conducted are presented in Tables 2, 4, and 6. 

Due to the random selection of the Firefly feature according 

to the best intensity, the selected features change with each 

trial, resulting in varying AUC values, some higher and 

some lower. It should be noted that the AUC values 

obtained from each experiment are different, with the 

optimal average number of features used being 12 features. 

TABLE 3, TABLE 4, and TABLE 5 describe the frequency 

of characteristic selection via the utilization of the Firefly 

algorithm on the 26 features of the ReLink dataset, 

organized according to their respective degree of 

implementation. Among the plethora of garnered findings, 

the Matrix Category Count Metric (CTM) emerges as the 

most frequently employed feature. TABLE 4 and FIGURE 

5 show the average AUC values achieved across all ReLink 

datasets and the most frequently used feature sets. 

The feature selection carried out by the fireflies on all 

tree-based classification algorithms has proven successful 

in elevating software defect prediction performance 

compared to prior studies that employed hyperparameter 

tuning. This is evidenced by the superior average 

performance of each proposed method, as shown in Table 

10, relative to previous methodologies. 

 
TABLE 4 

Comparison of AUC results with previous studies 

Datasets Previous research methods 

(AUC) 

The proposed research 

method(AUC) 

DT[[7] RF[7] DF[7] DT RF DF 

Apache 0.76 0.76 0.75 0.66 0.77 0.76 

Saf 0.63 0.73 0.73 0.73 0.84 0.84 

Zxing 0.64 0.67 0.70 0.59 0.71 0.68 

Average 0.66 0.72 0.73 0.66 0.77 0.76 

 

 
FIGURE 5. Graph of AUC performance comparison with previous 
studies 

Based on the data presented in TABLE 4 and FIGURE 6, a 

comparison is made between the Decision Tree algorithm 

that utilizes the proposed Firefly feature selection method 

and the Decision Tree algorithm with hyperparameter 

settings, as previously studied. Interestingly, both methods 

produce an equivalent AUC value of 0.66. In contrast, the 

proposed Random Forest algorithm with Firefly feature 

selection shows an improvement of 5% compared to the 

Random Forest algorithm with hyperparameter tuning, as 

examined in previous studies. Likewise, the Deep Forest 

algorithm using the proposed Firefly feature selection 

method produces a 3% increase when compared to the 

Deep Forest algorithm with hyperparameter settings in 

previous studies. 

In previous research. the Decision Tree parameter was 

set to the default value or without selecting the Firefly 

0.6
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feature. resulting in an average AUC value of 0.66. The 

Random Forest parameter is set to the default value or 

without the Firefly feature selected. resulting in an average 

AUC value of 0.72. And the Deep Forest parameter is set 

to the default value or without the Firefly selection feature 

resulting in an average AUC value of 0.73. In this study. 

the Decision Tree parameters with Firefly feature selection 

produced an average AUC value of 0.66. Setting the 

Random Forest parameter by selecting the Firefly feature 

produces an average AUC value of 0.77. And the Deep 

Forest parameter is set by selecting the Firefly feature so 

that it produces an average AUC value of 0.76. 

 
Table 5 

Comparison of AUC results with other research methods 

Datasets Previous research methods 

(AUC) 

The proposed research 

method 

(AUC) 

NB 

[29] 

LR 

[29] 

SVM[

29] 

DT RF DF 

Apache 0.74 0.70 0.76 0.66 0.77 0.76 

Safe 0.69 0.67 0.69 0.73 0.84 0.84 

Zxing 0.61 0.57 0.66 0.59 0.71 0.68 

Average 0.68 0.64 0.70 0.66 0.77 0.76 

 

 
FIGURE 6. Comparison of AUC results with other research methods 

TABLE 5 and FIGURE 6 present a comprehensive analysis 

of the results compared to previous investigations using 

various methodologies. It is clear that the results of this study 

outperform those of its predecessors. In particular, the 

average AUC value of the Random Forest and Deep Forest 

classification technique using the Firefly feature selection 

method outperforms the average AUC value of other 

methodologies. 

 
V. CONCLUSION 

This study aims to predict software defects in the ReLink 

dataset through the application of Decision Tree, Random 

Forest, and Deep Forest tree-based classification with Firefly 

feature selection. The performance of these models varies, as 

evidenced by the comparison results in experimental trials. 

Specifically, Firefly's feature selection was found to improve 

AUC performance when compared to previous studies using 

hyperparameter tuning for tree-based classification. In 

addition, Firefly feature selection combined with tree-based 

classification outperformed previous studies using the Naïve 

Bayes (NB) method, as well as Logistic Regression (LR) and 

Support Vector Machine (SVM). Overall, these findings 

highlight the potential benefits of using Firefly feature 

selection with tree-based classification to perform well in 

predicting software crashes. 

The findings of the research indicate that the application 

of the Firefly feature selection in conjunction with Random 

Forest classification yields superior performance in 

comparison to feature selection utilizing other classifications 

based on trees. This is evidenced by an average AUC value 

of 0.77, an average feature usage of 12 out of 26 features, 

and the most frequently occurring feature belonging to the 

Count Metric category. Thus, the results suggest that the 

features categorized under CountMetric are the most 

effective. In future studies, the tree-based algorithm will be 

tested with the firefly selection feature on other datasets that 

have a higher score ratio. The goal is to find out better 

algorithm performance in predicting software defects. 

Another further research is experimenting with firefly 

features with other classification algorithms in predicting 

software defects. The aim is to find out the search for firefly 

features with a classification algorithm that is expected to get 

a better performance value. 
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