
Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 304-323                                        e-ISSN: 2656-8632 

 

Manuscript Received 20 October 2025; Revised 5 January 2026; Accepted 10 January 2026; Available online 20 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1443 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 304               

RESEARCH ARTICLE  OPEN ACCESS 

Mental Health Detection Expert System Model 
Based on DASS-42 Using Fuzzy Inference 
System  
 

Eko Ginanjar Basuki Rahmat , Wiharto , and Umi Salamah  

Department of Informatics, Universitas Sebelas Maret, Surakarta Indonesia. 

Corresponding author: Wiharto. (e-mail: wiharto@staff.uns.ac.id) 

Abstract Mental health disorders such as depression, anxiety, and stress frequently co-occur and exhibit 

overlapping symptoms, making accurate diagnosis challenging due to the subjective nature of 

psychological assessments. Conventional use of the Depression Anxiety Stress Scales (DASS-42) relies 

on rigid score aggregation, while many machine learning approaches fail to adequately represent 

uncertainty and expert reasoning. This study aims to develop an expert system for mental health detection 

by integrating fuzzy logic with expert knowledge derived from the DASS-42 instrument. The main 

contribution of this research is a hybrid knowledge-based framework that combines decision tree–based 

rule extraction with psychological expert validation, ensuring both interpretability and clinical relevance. 

The proposed method employs a Fuzzy Inference System (FIS) using triangular and trapezoidal 

membership functions to model symptom intensity as linguistic variables, followed by rule generation 

using the CART decision tree algorithm and expert refinement. System performance is evaluated using 

Cohen’s Kappa coefficient, including standard error and 95% confidence intervals, to measure inter-rater 

reliability between the expert system, the DASS instrument, and two human experts. The results indicate 

that the expert system achieves almost perfect agreement in identifying dominant psychological 

conditions, with an average Kappa value of 0.918. For severity-level classification, strong agreement is 

observed for depression (Kappa = 0.842) and stress (Kappa = 0.811), while anxiety severity shows 

moderate-to-substantial agreement (Kappa = 0.648), reflecting inherent variability in expert interpretation. 

In conclusion, the proposed FIS-based expert system effectively captures expert diagnostic reasoning and 

outperforms decision tree–only models, demonstrating strong potential as an interpretable and reliable 

mental health screening tool. 

Keywords Mental health; DASS-42; Fuzzy Inference System; Expert System; Fuzzy Logic.  

I. Introduction  

Mental health disorders (such as depression, anxiety, 
and stress) constitute a significant burden of disease 
globally [1], [2]. These three conditions often co-occur 
and share interrelated symptoms: for example, feelings 
of sadness, loss of interest in activities (depression); 
excessive worry, physiological agitation (anxiety); and 
mental tension or fatigue (stress). The Depression 
Anxiety Stress Scales (DASS) are used to specifically 
measure these three aspects. The Depression Scale 
assesses dysphoria, hopelessness, decreased 
meaning in life, self-deprecation, lack of interest or 
engagement, anhedonia, and inertia. The Anxiety 
Scale assesses autonomic arousal, effects on skeletal 
muscles, situational anxiety, and the subjective 
experience of anxious affect. The Stress Scale, 
meanwhile, is sensitive to chronic nonspecific arousal 
levels, including difficulty relaxing, nervous arousal, 
restlessness, irritability, and impatience [2], [3]. 
Therefore, early screening is important because 
depression and anxiety are among the leading causes 

of disability worldwide [1], [2], and early detection can 
help guide better treatment. However, conventional 
diagnosis relies on subjective assessments and time-
consuming clinical interviews, and is sometimes 
hampered by stigma and a lack of mental health 
resources [4]. For example, WHO data shows that 
stigma and lack of awareness hinder screening and 
treatment in many developing countries [1]. 
Furthermore, the lack of objective biomarkers makes 
psychological symptoms imprecise and subjective [4], 
making conventional approaches less efficient in 
addressing this uncertainty. 

Previous studies on mental health diagnosis have 
predominantly employed conventional machine 
learning algorithms such as Random Forests, Support 
Vector Machines, and Decision Trees in model 
development [5], [6] While these approaches 
demonstrate strong predictive capabilities, they 
typically rely on rigid feature representations and 
discrete decision boundaries that are not well suited to 
the subjective and ambiguous nature of psychological 
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assessment data. Psychological symptoms measured 
using instruments such as the DASS questionnaire 
often exist on a continuous spectrum and are 
influenced by individual perception as well as expert 
interpretation, which conventional ML models do not 
explicitly account for [7]. In many studies, DASS 
responses are further simplified by linearly summing 
item scores prior to classification, assuming equal 
contribution of all symptoms and fixed severity 
thresholds. This aggregation-based approach limits the 
model’s ability to capture symptom overlap, intensity-
dependent interpretation, and gradual transitions in 
mental health severity, thereby reducing its validity in 
representing complex psychological conditions [8]. 

Regarding subjectivity, conventional machine 
learning (ML) methods do reduce subjectivity in 
analysis. Algorithms like Random Forest, Support 
Vector Machine, and Decision Trees work based on 
processed data, which helps eliminate human bias. 
However, these models have limitations, particularly in 
handling subjective or uncertain data, such as 
psychological symptoms measured with instruments 
like DASS. Typically, in conventional ML model 
development, subjective data, such as the 
interpretation of DASS scores or expert judgments, are 
not sufficiently accounted for. Often, the DASS scores 
are simply summed up to classify the severity of 
symptoms, which can lower validity, as it doesn't 
capture the nuances in subjective data [9]. 

Conventional machine learning (ML) models often 
rely on rigid feature representations that are not well 
suited to the inherent uncertainty and ambiguity of 
psychological assessments. In such approaches, 
questionnaire items are typically treated as fixed 
indicators of specific psychological domains, assuming 
that each DASS item consistently and exclusively 
reflects a single construct (e.g., stress, anxiety, or 
depression) regardless of symptom intensity or 
contextual interaction. This static interpretation 
overlooks the variability in how respondents experience 
symptoms and how clinicians interpret their severity, 
particularly in borderline or overlapping cases. As a 
result, subtle shifts in symptom expression and cross-
domain influences may be insufficiently captured, 
leading to less sensitive and potentially inaccurate 
mental health classification outcomes. These 
limitations highlight the need for more flexible modeling 
approaches that can accommodate gradual transitions 
and overlapping symptom representations commonly 
observed in psychological data [9].  

To address these limitations, this study uses the 
concept of fuzzy logic. Algorithms that use fuzzy logic 
concepts include the Probabilistic Hesitant Fuzzy 
(PHF) algorithm. However, this algorithm has the 
drawback of high complexity and reflects the decision 
maker's ambiguous and hesitant criteria preferences 

when assigning criteria weights. An alternative is to can 
be use Fuzzy Inference System (FIS). FIS is a 
framework using fuzzy logic to handle uncertainty and 
ambiguity in data. Unlike binary logic, which consists of 
0 and 1, FIS introduces degrees of membership 
between 0 and 1 [7]. Therefore, FIS is an ideal 
approach for processing subjective and uncertain 
psychological data. 

Fuzzy Inference Systems (FIS) are widely applied in 
the mental health sector due to their ability to handle 
the uncertainty of psychological symptoms. One study 
developed an IoT-based and machine learning-based 
stress and emotion detection system, equipped with a 
fuzzy logic-based mental health risk assessment 
module. This system categorizes the level of 
psychological stress threat into a five-level scale (very 
low to very high) based on measurable symptoms [8], 
[10]. Previous research has developed an expert 
system using the Fuzzy Inference System (FIS) 
method to detect mental health based on anxiety 
symptoms. However, this research did not utilize the 
DASS instrument and focused solely on the anxiety 
aspect [11]. Meanwhile, other research has used the 
DASS instrument in an FIS-based system, but has not 
involved direct expert validation [9]. This study aims to 
address these shortcomings by combining the use of 
the DASS instrument with the involvement of expert 
psychologists in developing a knowledge base. This 
allows the system to detect three aspects of mental 
health: depression, anxiety, and stress, using expert 
psychology knowledge, and reducing subjectivity 
among experts in mental health diagnoses. 

However, the effectiveness of an FIS-based system 
is highly dependent on the quality and structure of its 
rule base. On the one hand, fully automated rule 
extraction methods such as decision tree-based 
approaches can generate interpretable rules directly 
from data. While these rules are objective and 
reproducible, they tend to emphasize statistically 
dominant features and may ignore clinically important 
but less frequent symptoms. Consequently, purely 
data-driven rules risk producing outputs that are 
mathematically optimal yet clinically misaligned. 

To overcome the shortcomings of both purely 
expert-based and purely data-driven approaches, this 
study proposes a hybrid knowledge-based framework 
that integrates decision tree–based rule extraction with 
expert psychologist validation within a Fuzzy Inference 
System (FIS). In this hybrid approach, decision trees 
are first employed to extract initial diagnostic rules from 
DASS response data, ensuring objectivity and 
consistency. These rules are then reviewed, refined, 
and augmented by expert psychologists, who adjust 
antecedents, add or modify symptoms, and revise 
diagnostic consequents based on clinical reasoning 
and psychological theory.  
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The following are important contributions made to 
this study. 

1. Combines the strengths of decision tree-based rule 

extraction with expert psychologist validation in a 

hybrid framework, ensuring both objectivity and 

clinical relevance. 

2. Addresses the limitations of conventional machine 

learning methods, particularly in handling the 

subjectivity and ambiguity inherent in psychological 

assessments. By incorporating fuzzy logic, the 

system better captures gradual transitions and 

overlapping symptoms, providing a more nuanced 

understanding of mental health conditions.  

3. Uses the DASS instrument in combination with 

expert input to build a more robust and clinically 

valid system for diagnosing depression, anxiety, 

and stress.  

4. Improves the interpretability and accuracy of 

mental health diagnoses by reducing inter-rater 

variability, offering a more standardized approach 

that can be adapted to various clinical settings.  

 

II. Method  

This chapter outlines the methodology employed to 
develop the expert system, which integrates data-driven 
rule extraction with human expertise. The 
implementation process begins by preprocessing a 
dataset to extract initial rules using a decision tree 
algorithm, followed by refinement through expert 
consultation to establish a comprehensive knowledge 

base. This knowledge base is then utilized within a 
Fuzzy Inference System (FIS) to process user input from 
the DASS-42 questionnaire, ultimately generating a 
diagnostic result. Fig. 1 illustrates the complete 
implementation flowchart of the proposed expert 
system. 

A. Dataset Collection 

The dataset used in this study was collected between 
2017 and 2019 through an online version of the 
Depression Anxiety Stress Scales (DASS), available at 
https://openpsychometrics.org. The survey was open to 
the public, and participants were primarily motivated by 
the opportunity to receive personalized psychological 
feedback based on their responses. At the end of the 
test, participants were invited to complete a brief 
research survey. Only the data from respondents who 
agreed to participate in the research and confirmed that 
their answers were accurate were included in this 
dataset. 

This study uses the DASS-42 instrument to obtain a 
comprehensive and fine-grained representation of 
depression, anxiety, and stress symptoms. The larger 
number of questionnaire items allows for richer symptom 
coverage and greater variability in response patterns, 
which is particularly important for data-driven rule 
extraction and expert-based knowledge refinement. This 
level of detail supports the construction of a more 
expressive fuzzy knowledge base, enabling the Fuzzy 
Inference System (FIS) to model dominant symptom 
patterns and gradual severity transitions in a manner 
that aligns with psychological assessment practices. 

 
Fig. 1. The implementation of Expert System using Fuzzy Inference System. 
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The survey included 42 items (Q1–Q42), each 
assessing emotional states related to depression, 
anxiety, and stress. Participants rated how often each 
statement applied to them during the past week using a 
four-point Likert scale, ranging from 1 = Did not apply to 
me at all to 4 = Applied to me very much or most of the 
time. Each question was presented individually and in 
random order to minimize response bias. In addition to 
response scores, the system recorded the response 
time (in milliseconds) for each question, as well as other 
timing metrics such as time spent on the introduction, the 
DASS questionnaire, and the demographic survey. 

The dataset also contains a comprehensive 
demographic section that includes variables such as 
education level, gender, age, religion, race, marital 
status, and more. It further includes responses to the 
Ten Item Personality Inventory (TIPI), which measures 
the Big Five personality traits, as well as a vocabulary 
checklist (VCL) designed to assess linguistic 
understanding and response validity. Technical data 
such as country code, device type, and survey source 
were also recorded to provide contextual information 
about each participant. 

B. Data Preprocessing  

In this stage, only the relevant data from the dataset 
were extracted, specifically the response values for 
items Q1 to Q42, which correspond to the Depression 
Anxiety Stress Scales (DASS). Before further 
processing, a preprocessing step was conducted to 
normalize the response values. The original scale 

ranging from 1 to 4 was transformed into a 0–3 range to 
facilitate computation and maintain uniformity across all 
items [12]. 

After normalization, the items were grouped into 
three main psychological categories Depression, 
Anxiety, and Stress based on the official DASS 
questionnaire structure. The complete DASS-42 
questionnaire used in this study is presented in 
Appendix A. Each category consists of specific question 
items as follows [13], [14]: 

• Depression: Q3, Q5, Q10, Q13, Q16, Q17, Q21, 
Q24, Q26, Q31, Q34, Q37, Q38, Q42 

• Anxiety: Q2, Q4, Q7, Q9, Q15, Q19, Q20, Q23, 
Q25, Q28, Q30, Q36, Q40, Q41 

• Stress: Q1, Q6, Q8, Q11, Q12, Q14, Q18, Q22, 
Q27, Q29, Q32, Q33, Q35, Q39 

For each category, the normalized scores were 
summed and averaged to produce a total score 
representing the individual’s level of depression, anxiety, 
and stress. These total scores were then classified into 
severity levels, typically categorized as [15]: Normal, 
Mild, Moderate, Severe, Extremely Severe as shown in 
Table 1.   

To comprehensively assess the severity of 
depression, anxiety, and stress, the total scores 
obtained from each corresponding DASS subscale are 
systematically compared against standardized severity 

Table 1. Categorization of Depression, Anxiety, and Stress Scores 

Condition Score Range Category 

Depression 

0–9 Normal 

10–13 Mild 

14–20 Moderate 

21–27 Severe 

28 or higher Extremely Severe 

Anxiety 

0–7 Normal 

8–9 Mild 

10–14 Moderate 

15–19 Severe 

20 or higher Extremely Severe 

Stress 

0–14 Normal 

15–18 Mild 

19–25 Moderate 

26–33 Severe 

34 or higher Extremely Severe 
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thresholds. These established cut-off points serve to 
categorize the intensity of each emotional state, ranging 
from Normal to Extremely Severe, based on the 
cumulative sum of the items within each subscale. The 
following table details the specific score ranges and their 
corresponding severity classifications for Depression, 
Anxiety, and Stress. These thresholds enable a 
standardized interpretation of an individual’s 
psychological condition based on their DASS responses 
[16], [17]. After obtaining the normalized total scores for 
each category (Depression, Anxiety, and Stress), the 
values within the 0–3 range were further transformed 
into fuzzy membership degrees to better represent the 
gradual nature of psychological conditions. In this step, 
each score was mapped into three fuzzy membership 
functions Low, Medium, and High which describe the 
degree to which a score belongs to each severity level. 

Following the fuzzification process, each individual 
questionnaire item (Q1–Q42) was represented by its 
corresponding fuzzy membership degrees, which 
served as the input features for the subsequent decision 
tree–based rule extraction phase. In this stage, the 
decision tree utilized the fuzzified representations of the 
DASS items to capture non-linear symptom interactions 
and dominant patterns across responses. The target 
variables for the decision tree were defined as the 
severity levels of Depression, Anxiety, and Stress, 
derived from the aggregated normalized subscale 
scores. Each instance was labeled according to its 
corresponding severity category (Normal, Mild, 
Moderate, Severe, or Extremely Severe), which enabled 
the extraction of interpretable if–then rules linking fuzzy 
symptom representations to psychological severity 
outcomes. Each input score (for Depression, Anxiety, or 
Stress) is evaluated across three fuzzy sets define in Fig. 
2, producing corresponding membership values that 
indicate the degree to which the score belongs to each 
category. The highest membership degree among the 
three is then selected to determine the dominant fuzzy 
category for that particular input. 

C. Extraction Rules 

In this stage, the fuzzy-transformed data for each 
category Depression, Anxiety, and Stress were used to 
generate a set of decision rules. The purpose of this 
process is to identify logical relationships between 
questionnaire responses (Q1–Q42) and the 
corresponding mental health severity levels. The rules 
were derived using a Decision Tree algorithm, which 
helps to map combinations of fuzzy input values (Low, 
Medium, High) into interpretable outputs representing 
each condition’s severity classification. Each category 
was processed independently to produce its own rule 
set, forming the preliminary logic framework for the fuzzy 
inference system by describing how different response 
patterns correspond to mental health states. 

To construct these rule sets, the study employed a 
Decision Tree learning approach, a supervised 
classification method that recursively partitions the input 
space based on feature values to maximize the 
separation between target classes [18], [19], [20]. The 
use of Decision Tree modelling in this study is grounded 
in its capacity to generate transparent, interpretable, and 
rule-based representations of relationships within 
questionnaire-derived psychological data. Because 
Decision Trees decompose multivariate patterns into 
hierarchical conditional structures [18], they are highly 
suitable for translating fuzzy input variables into explicit 
if–then rules required by a fuzzy inference system. The 
adoption of the CART framework further enhances this 
capability, as CART performs automatic variable 
selection and binary splitting to produce homogeneous 
partitions that clearly reflect severity distinctions across 
Depression, Anxiety, and Stress levels.  

Empirical findings have shown that CART delivers 
higher explanatory power and more intuitive 
interpretability than traditional statistical approaches, 
particularly due to its ability to automatically identify 
influential predictors [21]. Compared to other decision 
tree algorithms such as ID3 and C4.5, CART offers 
several methodological advantages that are particularly 
suitable for psychological assessment data [22]. ID3 
relies heavily on entropy-based information gain and is 
primarily designed for categorical attributes, requiring 
prior discretization when handling continuous variables. 
This preprocessing step may lead to information loss 
and reduced sensitivity to subtle variations in 
psychological symptom severity [23]. Although C4.5 
extends ID3 by supporting continuous attributes, it often  
enerates multi-branch splits that result in more complex 
and less uniform rule structures, making direct 
integration into fuzzy rule-based systems less 
straightforward [24]. 

In contrast, CART natively processes numerical 
data and consistently produces binary splits, yielding 
simpler, more standardized rule forms that are easier to 
interpret and refine through expert validation. Moreover, 
CART demonstrates greater robustness to outliers and 

 
Fig. 2. Fuzzy Membership Function for Item 
Score 

0.0

0.2

0.4

0.6

0.8

1.0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

M
e

m
b

e
rs

h
ip

 D
e

g
re

e

Score

Low (μ) Medium (μ) High (μ)

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1443
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 304-323                                        e-ISSN: 2656-8632 

 

Manuscript Received 20 October 2025; Revised 5 January 2026; Accepted 10 January 2026; Available online 20 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1443 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 309               

noisy data, which are common in mental health datasets 
due to subjective self-reporting and individual response 
variability. Additional evidence indicates that decision-
tree-based models have substantial advantages in 
clinical and diagnostic modelling, offering transparent 
decision pathways that support expert validation, an 
essential aspect for mental health–related applications 
[25]. Decision-tree methodologies have also 
demonstrated effectiveness in broader engineering 
decision systems, where they provide structured and 
interpretable logic for optimal decision-making in 
complex environments [26], [27]. These insights 
collectively justify the use of Decision Trees and 
specifically the CART method in this study, as they offer 
a scientifically robust balance between clarity, 
computational efficiency, and the capacity to generate 
structured rule sets required for a transparent fuzzy 
inference system. The detailed procedural steps for this 
rule extraction and the construction of the preliminary 
logic framework are presented in Algorithm 1.  

Based on this procedure, the resulting decision rules 
for each mental health category are summarized in the 
following tables, serving as concrete examples of how 
the CART-derived logic translates questionnaire inputs 
into severity classifications. These rule sets are 
presented in Table 2 (Depression), Table 3 (Anxiety), 
and Table 4 (Stress). These decision rules, derived from 
the CART model, map the input variables (questionnaire 

responses) to the appropriate severity levels for each 
mental health domain. 

 

Table 2. Example of Extracted Decision Tree 
Ruleset for Depression Classification 

No Antecedent Consequent 

1 Q3 = Low AND Q10 = Low Normal 

2 
Q13 = Medium AND Q17 = 

Medium 
Mild 

3 
Q24 = High AND Q31 = 

High 
Severe   

 

Table 3. Example of Extracted Decision Tree 
Ruleset for Anxiety Classification 

No Antecedent Consequent 

1 Q7 = Low AND Q19 = Low Normal 

2 
Q23 = Medium AND Q25 = 

Medium 
Mild 

3 
Q30 = High AND Q36 = 

High 
Severe   

 

Table 4. Example of Extracted Decision Tree 
Ruleset for Stress Classification 

No Antecedent Consequent 

1 Q1 = Low AND Q6 = Low Normal 

2 
Q11 = Medium AND Q12 

= Medium 
Mild 

3 
Q29 = High AND Q35 = 

High 
Severe   

These rules illustrate how combinations of fuzzy 
inputs are translated into psychological interpretations. 
However, it is important to note that the rules generated 
in this phase are still part of a preliminary draft. They are 
intended solely for model development and will be 
further reviewed and validated by domain experts 
(psychologists or mental health professionals) to ensure 
their accuracy and clinical relevance. The finalized rule 
set will be refined based on expert consultation to form 
the main decision logic of the fuzzy inference system. 

D. Expert Consultation 

In this stage, the draft rules generated from the decision 
tree were systematically reviewed and validated through 
structured consultation with psychological domain 
experts. This review aimed to ensure that the 
automatically extracted rules were not only statistically 
valid but also aligned with established psychological 
theory and assessment practice. Each rule within the 

Algorithm 1. Pseudo-code CART model 
Decision Tree 

(1) Input: Dataset DASS 
(2) Output: Decision Tree T 
(3) Function BuildTree(D): 

(4) 
Calculate current impurity of D (e.g., 
Gini Index) 

(5) For each feature Xi in D:  
(6) For each possible split point t: 

(7) 
Partition D into D_left (Xi < t) and 
D_right (Xi >= t) 

(8) Calculate split impurity 

(9) 
Select (Xi, t) with maximum impurity 
reduction 

(10) If stopping criteria met: 

(11) 
Create Leaf Node with majority class 
label 

(12) Return Leaf Node 
(13) Else: 

(14) 
Create Decision Node with best split 
(Xi, t) 

(15) 
DecisionNode.left_child = BuildTree 
(D_left) 

(16) 
DecisionNode.right_child = BuildTree 
(D_right) 

(17) Return DecisionNode 
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Depression, Anxiety, and Stress categories was  
evaluated based on its clinical plausibility, symptom 
relevance, and consistency with recognized DASS 
constructs. Expert feedback was then incorporated to 
refine the rule base in a controlled and iterative manner. 
Specifically, experts provided guidance to refine rule 
consequents, merge overlapping or redundant rules, 
and remove statistically derived rules that lacked clear 
clinical interpretability. Additionally, several rules were 
reinterpreted to better represent dominant symptom 
patterns commonly observed in clinical assessments, 
rather than relying solely on data-driven correlations. In 
cases where differing expert opinions emerged during 
the review process, consensus-based discussions were 
conducted to reach an agreed interpretation. Final 
decisions were guided by standard DASS theoretical 
guidelines and widely accepted psychological 
assessment practices to ensure methodological 
consistency. Through this expert-informed refinement 
process, a validated and coherent knowledge base was 
established, balancing statistical robustness with clinical 
relevance and serving as the foundation for the Fuzzy 
Inference System (FIS). 

E. Fuzzy Inference System  

In this study, FIS was applied to analyze levels of 
depression, anxiety, and stress based on input from the 
DASS instrument. This system enables the conversion 

of quantitative data into linguistically interpretable 
output. The FIS process involves several stages, 
namely[28], [29], [30]:  

1. Fuzzy Variables and Membership Function 

In this step is defining the fuzzy variables and their 
respective membership functions. In this study, the input 
variables are derived from the 42 items of the DASS-42 
questionnaire, with each item measured on a scale of 0 
to 3. These inputs are categorized into three linguistic 
sets: Low, Medium, and High. Conversely, the output of 
the system consists of three categories Depression, 
Anxiety, and Stress, each characterized by five linguistic 
levels, there are Normal, Mild, Moderate, Severe, and 
Extremely Severe. The variables are mathematically 
represented using two types of membership functions, 
the triangular membership function and the trapezoidal 
membership function. The use of these two membership 
functions allows greater flexibility in modeling the data 
characteristics, accommodating both simple linear 
transitions and more stable regions of membership. 
More complex membership functions such as Gaussian 
or sigmoidal were not adopted in this study. Gaussian 
and sigmoidal functions tend to obscure explicit 
boundary definitions between linguistic categories, 
potentially reducing interpretability and complicating 
expert validation. Given that psychological symptom 
assessment relies heavily on clear threshold-based 
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(b) 

 

(c) 
 

Fig. 3. Fuzzy Membership Function for (a) Depression Score, (b) Anxiety Score, (c) Stress Score 
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interpretations rather than probabilistic smoothness, the 
use of triangular and trapezoidal membership functions 
is considered more suitable for this context. The 
triangular membership function is defined by three 
parameters{𝑎, 𝑏, 𝑐} as shown in Eq. (1), while the 

trapezoidal membership function is defined by four 
parameters {𝑎, 𝑏, 𝑐, 𝑑} as expressed in Eq. (2) [29], [31], 

[32], [33]. The algorithm for membership function shown 
in Algorithm 2 for triangular membership and Algorithm 
3 for trapezoidal membership. 

𝜇(𝑥) =  

{
 
 

 
 
0            ;        𝑥 ≤ 𝑎 
𝑥 − 𝑎

𝑏 − 𝑎
   ; 𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
   ; 𝑏 <  𝑥 ≤ 𝑐

0           ;          𝑥 > 𝑐

 (1) 

𝜇(𝑥) =  

{
  
 

  
 
0           ;        𝑥 ≤ 𝑎 
𝑥 − 𝑎

𝑏 − 𝑎
  ; 𝑎 < 𝑥 ≤ 𝑏

1           ; 𝑏 < 𝑥 ≤ 𝑐
𝑐 − 𝑥

𝑐 − 𝑏
   ; 𝑐 <  𝑥 ≤ 𝑑

0           ;          𝑥 > 𝑑

 (2) 

where 𝜇(𝑥) is the degree of membership of input 𝑥in a 

fuzzy set and {𝑎, 𝑏, 𝑐, 𝑑} are threshold values that define 

the shape and range of the membership function. The 
distribution of these linguistic degrees for the input 
variables (Q1-Q42) is illustrated in Fig. 2. The 
fuzzification process occurs when a crisp input value is 
mapped onto these functions. For instance, if an input 
score for a specific question (e.g., Q1) is 2, it will be 
processed to determine its membership degrees, such 
as “Medium” (𝜇 = 0.33) and “High” (𝜇 = 0.33). This 

ensures that the inherent ambiguity in psychological 
scoring is properly represented before the inference 
process begins. For the output variables, they are 
divided into three categories: depression, anxiety, and 
stress. Each category is further classified into five 
linguistic levels, representing the severity degree of the 
condition, namely normal, mild, moderate, severe, and 
extremely severe. The membership functions for each 
output category and their corresponding linguistic levels 
are illustrated in Fig. 3 

2. Rule base 

A rule base is a collection of IF–THEN rules formulated 
to represent expert knowledge or experience in a 
system. In decision tree-based research, these rules are 
derived from decision tree learning outcomes and then 
validated by expert psychologists to ensure their 
suitability to real-world conditions. In general, a fuzzy 
rule base can be written as Eq. (3) [29], [33], [34]:  

𝑖𝑓 →  𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡(𝑠) 𝑡ℎ𝑒𝑛 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡(𝑠) (3) 

where the antecedent (premise) and consequent 
(conclusion) of a fuzzy rule are propositions containing 
linguistic variables. The antecedent and consequent 
parts of a linguistic rule can form a combination of fuzzy 
sets combined using logical operators such as union, 
and intersection [34]. 

3. Fuzzy Inference 

The fuzzy inference stage is the process where the rules 
in the rule base are evaluated using fuzzy logic 
operators, such as union (or) and intersection (and)[34], 
which enable the system to handle data uncertainty and 
ambiguity. At this stage, the membership degrees of 
each input are combined according to the applicable 
rules, resulting in a fuzzy output (a set of membership 
degrees). The fuzzy inference process, as outlined in the 
algorithm shown in Algorithm 4. Let the 𝑘 fuzzy sets rules 

consist 𝑛 antecedents. where each rule 𝑅𝑘 establishes a 

relationship between the input vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] 
and the output 𝑦. In mamdani fuzzy inference, the firing 

strength α𝑘 for a rule using the "AND" operator is 

determined by the T-norm operation, expressed as Eq. 
(4) [29], [33] 

αk = min (μA1k(x1), μA2k(x2),… , μAnk(xn)) (4) 

Algorithm 3. Pseudo-code Trapezoidal 
Membership Function 

(1) 
Input: Input values x and Parameters a, 
b, c, d 

(2) Output: Membership Values 
(3) Function trapmf(x, a, b, c, d): 
(4) Calculate left slope (x - a) / (b - a) 
(5) Calculate right slope (d - x) / (d - c) 

(6) 
Take the minimum of both slopes 
and clamp it between 0 and 1 

(7) Return the result 

 

 

Algorithm 4. Pseudo-code Inference Fuzzy 

(1) 
Input: Vector x (Q1-Q42) and List of 
Fuzzy Rules 

(2) Output: Aggregated Fuzzy Set  
(3) Function fuzzy_inference 

(4) 
Initialize aggregated_fuzzy as an empty 
list 

(5) For each rule in rules: 

(6) 

Compute the firing strength using 

AND (T-norm) in Eq. (4) or OR 

(S-norm) in Eq. (5) 

(7) 
Clip or scale the consequent 
membership function using Eq. (6) 

(8) Append to aggregated_fuzzy 

(9) 
Aggregate all fuzzy consequences 
using Eq. (7). 

(10) Return aggregated_fuzzy 

 

 

Algorithm 2. Pseudo-code Triangular Membership 
Function 

(1) 
Input: Input values x and Parameters a, 
b, c 

(2) Output: Membership Values 
(3) Function trimf(x, a, b, c): 

(4) 
Initialize y as a tensor of zeros with the 
same shape as x 

(5) If a ≠ b: 

(6) 
Find indices where x is between a 
and b 

(7) 
Set values at these indices to (x - a) 
/ (b - a) 

(8) If b ≠ c: 

(9) 
Find indices where x is between b 
and c 

(10) 
Set values at these indices to (c - x) 
/ (c - b) 

(11) Set values where x is equal to b to 1.0 
(12) Return y, clamped between 0 and 1 
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while the "OR" operator utilizes the S-norm, typically 
defined as Eq. (5) [29], [31], [33] 

𝛼𝑘 = max (𝜇𝐴1𝑘(𝑥1), 𝜇𝐴2𝑘(𝑥2),… , 𝜇𝐴𝑛𝑘(𝑥𝑛)) (5) 

This firing strength is subsequently used to clip or scale 
the consequent membership function through the 
Mamdani implication method, resulting in a modified 
fuzzy set. This operation is formally represented by Eq. 
(6) 

μ𝐵𝑘
′(𝑦) = min (α𝑘 , μ𝐵𝑘(𝑦)) 

(6) 

to produce a comprehensive system output, these 
individual fuzzy consequences are aggregated using the 
maximum operator. The final aggregated fuzzy set is 
expressed in Eq. (7). 

μ𝑎𝑔𝑔(𝑦) = max𝑘=1
𝐾 [μ𝐵𝑘

′(𝑦)] (7) 

4. Defuzzification  

Defuzzification is the final stage in FIS where the fuzzy 
output, which is still in the form of membership degrees, 
is converted into crisp values. The method used is the 
centroid method, which calculates the weighted average 
value of all possible outputs. This method can be written 
as Eq. (8) [31], [33]: 

𝑧∗ =
∫𝑦 . 𝜇𝑎𝑔𝑔(𝑦)𝑑𝑦

∫𝜇𝑎𝑔𝑔(𝑦)𝑑𝑦
 (8) 

where 𝑧∗ denotes the final crisp output obtained from the 

defuzzification process, representing the representative 
value of the aggregated fuzzy output. The variable 𝑦 is 

the output domain, while 𝜇agg(𝑦)represents the 

aggregated membership function resulting from the 
combination of all activated fuzzy rules. The 
defuzzification process shown in Algorithm 5. 

Once the crisp output value (z) is obtained for each 
domain: Depression, Anxiety, and Stress, the value is 
reanalyzed against the output fuzzy membership sets 
defined in the system. These membership sets 
represent the official DASS-42 severity levels, consisting 
of: Normal, Mild, Moderate, Severe. Extremely Severe. 
Each crisp result is evaluated to determine which 

severity membership function provides the highest 
membership degree, and that category becomes the 
final diagnosis result. Fig. 3 illustrate the fuzzy 
membership functions for Depression, Anxiety, and 
Stress, respectively. These figures depict how the crisp 
output (𝑧∗) obtained by defuzzification is mapped into the 

five DASS-42 severity categories: Normal, Mild, 
Moderate, Severe, and Extremely Severe. 

F. Evaluation  

The evaluation stage is a crucial step aimed at 
thoroughly validating the performance and reliability of 
the developed expert system. Its primary focus is to 
measure the accuracy of the system in conducting 
psychological assessments based on the DASS-42 
instrument, specifically by comparing it against standard 
benchmarks and human expert judgments. This 
comparison verifies the system's ability to replicate an 
expert's diagnostic logic before deployment, ensuring 
both technical functionality and psychological validity. 

The evaluating method using Cohen’s Kappa 
coefficient. This statistical measure is utilized to evaluate 
the degree of agreement between the system’s 
diagnostic outputs and the expert’s clinical assessments 
(ground truth) while accounting for the possibility of 
agreement occurring by chance. For notational 
convenience, let 𝑃 denote the agreement table with the 

Table 5. Cross-tabulation of inter-rater ratings for Cohen’s Kappa calculation 

Rater B Rater A Row totals 

1 2 ⋯ ⋯ 𝑛 − 1 𝑛 

1 𝑎1 𝑏1     𝑝1 

2 𝑐1 𝑎2 𝑏2    𝑝2 

⋮  ⋱ ⋱ ⋱   ⋮ 

⋮   ⋱ ⋱ ⋱  ⋮ 

𝑛 − 1    𝑐𝑛−2 𝑎𝑛−1 𝑏𝑛−1 𝑝𝑛−1 

𝑛     𝑐𝑛−1 𝑎𝑛 𝑝𝑛 

Column totals 𝑞1 𝑞2 ⋯ ⋯ 𝑞𝑛−1 𝑞𝑛 1 

 

Algorithm 5. Pseudo-code Defuzzification 

(1) 
Input: Output Domain y (Severity Level) 
and Aggregated Fuzzy Set (mu) 

(2) Output: Crips Value 
(3) Function defuzzification(y, mu): 

(4) 
Calculate denominator as the sum of 
mu along the second dimension 

(5) For each row in the mu tensor: 

(6) 
If denominator > small_value (e.g., 
1e-6): 

(7) 
Compute centroid as the 
weighted average of y using mu 

(8) Else: 
(9) Set centroid to 0 
(10) Return the calculated centroids 
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same dimensions as 𝑇 (𝑛 × 𝑛) matrix whose entries are 

defined by Eq. (9) 
 𝑝𝑖𝑗 = 𝑡𝑖𝑗/𝑚 (9) 

The row and column marginal totals of 𝑃 are denoted by 

formula Eq. (10) and Eq. (11) [35], [36] 

𝑝𝑖 =∑𝑝𝑖𝑗

𝑛

𝑗=1

 (10) 

𝑞𝑗 =∑𝑝𝑖𝑗

𝑛

𝑖=1

 (11) 

respectively. The matrix 𝑃 is presented as Table 5. The 

resulting Kappa value (κ) provides a robust metric for 

inter-rater reliability, ensuring that the model's 
classification of depression, anxiety, and stress levels is 
scientifically consistent with professional standards. The 
Cohen’s Kappa coefficient is calculated using formula 
Eq. (12) [35], [36] 

𝜅 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

 (12) 

where 𝑃𝑜 is the relative observed agreement among 

raters (the accuracy of the system) and 𝑃𝑒 is the 

hypothetical probability of chance agreement. The 
observed agreement 𝑃𝑜is derived from the joint 
probability 𝑝𝑖𝑗defined in Eq. (9). By aggregating the 

weighted joint probabilities across all category pairs, the 
expression of 𝑃𝑜is obtained, as formulated in Eq. (13) 

[35], [36]. 

𝑃𝑜 = ∑∑𝑤𝑖𝑗𝑝𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (13) 

For the expected agreement 𝑃𝑒 is computed using the 

marginal probabilities 𝑝𝑖and 𝑞𝑗defined in Eq. (10) and 

Eq. (11), respectively. Under the assumption of 
independence between raters, the expected probability 
of chance agreement is given by 𝑝𝑖𝑞𝑗, which leads to the 

formulation of 𝑃𝑒 in Eq. (14) [35], [36]. 

𝑃𝑒 = ∑∑𝑤𝑖𝑗𝑝𝑖𝑞𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (14) 

with weight 𝑤𝑖𝑗 ∈ [0, 1] and 𝑤𝑖𝑖 = 1 for 𝑖, 𝑗 ∈

{1, 2, … , … , 𝑛}.  
The weighting matrix 𝑊 ∈ ℝ𝑘×𝑘 in Eq. (15) encodes the 

degree of agreement between category pairs, where the 
diagonal elements equal one and off-diagonal elements 
decrease as the distance between categories increases. 
This matrix is used to compute the weighted observed 
and expected agreements. 

𝑊 = [

𝑤11 𝑤12 ⋯ 𝑤1𝑘
𝑤21 𝑤22 ⋯ 𝑤2𝑘
⋮ ⋮ ⋱ ⋮
𝑤𝑘1 𝑤𝑘2 ⋯ 𝑤𝑘𝑘

] (15) 

Each element 𝑤𝑖𝑗 of the weighting matrix is calculated 

using the formula presented in Eq. (16). where the 
weight decreases as the difference between categories 
𝑖and 𝑗 increases [35]. 

𝑤𝑖𝑗 =  1 − (
𝑖 − 𝑗 

𝑘 − 1
)
2

 (16) 

For nominal data type the weights 𝑤𝑖𝑗 are define by 

using Eq. (17) [35]. 

𝑤𝑖𝑗 = {
0, 𝑖 ≠ 𝑗 
1, 𝑖 = 𝑗

  (17) 

To ensure the statistical rigor of the inter-rater reliability 
analysis, it is essential to calculate the Standard Error of 
Cohen’s Kappa (𝑆𝐸κ), which facilitates the estimation of 

confidence intervals and the assessment of the 
coefficient's precision. The 𝑆𝐸𝜅 is derived from the 

proportions of observed and expected agreement 
relative to the total sample size. In accordance with 
standard psychometric procedures, the 𝑆𝐸𝜅 is computed 

using Eq. (18) [37], [38]:  

𝑆𝐸κ = √
𝑝𝑜(1 − 𝑝𝑜)

𝑛(1 − 𝑝𝑒)2
 (18) 

By applying the result of this equation, researchers can 
establish the 95% Confidence Interval (CI) for the Kappa 
statistic, typically expressed as Eq. (19) [38]. 

𝜅 ± 1.96 × 𝑆𝐸𝜅 (19) 
thereby providing a more comprehensive interpretation 
of the consensus stability beyond a point estimate. To 
ensure consistent interpretation of inter-rater reliability, 
the strength of agreement associated with Cohen’s 
Kappa values is classified according to the criteria 
summarized in Table 6. These categories range from 
poor agreement to almost perfect agreement, providing 
a standardized framework for evaluating the reliability of 
the assessments[39]. 
 

Table 6. Interpretation of Cohen’s Kappa 
Agreement Strength 

Kappa Value Strength Agreement 

< 0.00 Poor 
0.00 – 0.20 Slight 
0.21 – 040 Fair 
0.41 – 0.60 Moderate 
0.61 – 0.80 Substantial 
0.81 – 1.00 Almost Perfect 

A poor agreement (κ < 0.00) indicates that the level of 

agreement between raters is worse than what would be 

expected by random chance, suggesting fundamentally 

inconsistent or contradictory judgments. Slight 

agreement (κ = 0.00–0.20) reflects minimal consistency, 

where raters occasionally agree, but their decisions are 

largely unreliable. Fair agreement (κ = 0.21–0.40) 

implies some observable consistency, yet the 

agreement remains weak and insufficient for 

dependable decision-making. A moderate agreement (κ 

= 0.41–0.60) suggests that raters show a reasonable 

level of consistency, although discrepancies still occur 

with notable frequency. Substantial agreement (κ = 

0.61–0.80) represents a high level of consistency, 
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indicating that raters generally interpret and apply 

assessment criteria in a similar manner, with only limited 

disagreement. Finally, almost perfect agreement (κ = 

0.81–1.00) denotes an exceptionally strong level of 

concordance, where raters reach the same conclusions 

in the vast majority of cases, reflecting near-equivalent 

judgment patterns. 

 

III. Result 

A. Knowledge Based 

As the result of the rule extraction and expert 

consultation processes, a comprehensive knowledge 

base was successfully developed for the Fuzzy 

Inference System (FIS). This knowledge base integrates 

both the automatically generated rules from the decision 

tree and the refinements provided by the psychological 

expert, resulting in a validated and reliable decision 

framework. From the processed dataset and fuzzy 

transformation, a total of 500 rules These rules 

collectively form the foundation of the system’s 

reasoning process, where each rule represents a 

relationship between the fuzzy input variables (Low, 

Medium, High) and the resulting classification levels 

(Normal, Mild, Moderate, Severe, Extremely Severe). 

Through expert validation, several rules were refined to 
better reflect the actual psychological patterns observed 
in individuals. This ensures that the resulting knowledge-
based model not only captures the statistical tendencies 
from the dataset but also aligns with clinical 
interpretations recognized in the field of psychology. The 
final knowledge base thus serves as a core component 
of the Fuzzy Inference System, enabling accurate and 
interpretable decision-making in evaluating levels of 
depression, anxiety, and stress. 

B.  Questionnaire Reduction  

The reduction process of the DASS questionnaire was 

conducted using two different approaches to optimize 

the expert system's input. The first method relied 

exclusively on the Decision Tree algorithm to identify 

and remove redundant items from the dataset. The 

second method involved a psychological expert who 

served as a validator to refine the reduction results. 

These two approaches yielded different outcomes in 

terms of the total number of items removed, as shown in 

Fig. 4. The implementation of the Decision Tree 

algorithm alone resulted in the reduction of 15 items from 

the original questionnaire, while expert validation 

narrowed the total number of reduced items to 9. 

C. Evaluation 

The performance evaluation of the Fuzzy Inference 

System (FIS) involves a comparative study of its 

reliability across different rule-base configurations to 

ensure accurate decision-making. This analysis focuses 

on the inter-rater reliability between the DASS 

instrument, human experts, and two specific system 

versions: the Expert System (ES), which integrates 

psychological expert refinements, and the Decision Tree 

(DT) model, which utilizes automated rule extraction. By 

examining the Cohen’s Kappa coefficients provided in 

the results below, the level of agreement between these 

raters is quantified to assess the diagnostic 

effectiveness of the developed knowledge base. 

 

Table 7. Inter-Rater Reliability Dominant 

Psychological Category Between DASS, Expert 

System, and Human Experts using Cohen’s Kappa 
Coefficient 

Ratings Kappa SE 

95%CI 

Lower Upper 

Average 0.918       
DASS – ES 0.918 0.080 0.761 1.000 
DASS – Exp A 1.000 0.000 1.000 1.000 
ES – Exp A 0.918 0.080 0.761 1.000 
DASS – Exp B 0.919 0.077 0.767 1.000 
ES – Exp B 0.835 0.107 0.625 1.000 
Exp A – Exp B 0.919 0.077 0.767 1.000 

Table 7 presents the results of the inter-rater reliability 

analysis using the Expert System (ES). The average 

Kappa coefficient for this specific model is 0.918. 

Specifically, the agreement between DASS and the ES 

is 0.918, while the agreement between DASS and 

Expert A reaches 1.000. Furthermore, the ES and 

Expert A show a Kappa value of 0.918, and the 

relationship between DASS and Expert B is 0.919. 

Finally, the ES and Expert B result in a Kappa of 0.835, 

while the agreement between the two human experts (A 

and B) is recorded at 0.919. 

Table 8 provides the reliability metrics when the 

system uses the Decision Tree (DT) approach for 

classification. The average Kappa coefficient for the DT 

model is calculated at 0.567. The agreement between 

DASS and DT is 0.209, which is the same value reported 

for the relationship between DT and Expert A. Although 

the values for DASS-Expert A (1.000) and DASS-Expert 

B (0.919) remain the same as the previous table, the DT 

 
Fig. 4. Number questionnaire after reduction 
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and Expert B relationship shows a lower Kappa of 0.146. 

Lastly, the inter-rater reliability between Expert A and 

Expert B remains consistent at 0.919. 

 

Table 8. Inter-Rater Reliability Dominant 
Psychological Category Between DASS, Decission 
Tree, and Human Experts using Cohen’s Kappa 
Coefficient 

Ratings Kappa SE 

95%CI 

Lower Upper 

Average 0.567       
DASS – DT 0.209 0.150 -0.086 0.503 
DASS – Exp A 1.000 0.000 1.000 1.000 
DT – Exp A 0.209 0.150 -0.086 0.503 
DASS – Exp B 0.919 0.077 0.767 1.000 
DT – Exp B 0.146 0.143 -0.135 0.426 
Exp A – Exp B 0.919 0.077 0.767 1.000 

 

Beyond the identification of dominant categories, the 

system's performance is further evaluated based on its 

ability to classify specific severity levels for depression, 

anxiety, and stress. This ensures that the Expert System 

(ES) delivers a detailed diagnostic output, aligning with 

clinical assessment tools. By categorizing conditions into 

severity levels, the system provides a deeper 

understanding of mental health. The following results 

utilize Cohen’s Kappa coefficients to measure the 

reliability of the system's severity classifications in 

comparison to the DASS instrument and human experts, 

validating the system's clinical accuracy. 

 

Table 9. Inter-Rater Reliability Depression Severity 
Between DASS, Expert System, and Human 
Experts using Cohen’s Kappa Coefficient  

Ratings Kappa SE 

95%CI 

Lower Upper 

Average 0.842    
DASS – ES 0.838 0.045 0.750 0.926 
DASS – Exp A 0.783 0.076 0.634 0.931 
ES – Exp A 0.865 0.049 0.770 0.961 
DASS – Exp B 0.870 0.040 0.792 0.947 
ES – Exp B 0.810 0.077 0.659 0.961 
Exp A – Exp B 0.886 0.045 0.798 0.973 

For depression severity, Table 9 shows an average 

Kappa coefficient of 0.842. The agreement between 

DASS and the Expert System is 0.838, while the 

system’s agreement with Expert A and Expert B is 0.865 

and 0.810, respectively. Additionally, the DASS 

instrument shows an agreement of 0.783 with Expert A 

and 0.870 with Expert B, while the two human experts 

share a Kappa value of 0.886. In the assessment of 

anxiety severity, Table 10 shows that the overall average 

Cohen’s Kappa across all rater pairs is 0.648. The 

agreement between the DASS instrument and the 

Expert System yields a Kappa value of 0.507, while the 

agreement between DASS and Expert A is slightly 

higher at 0.532. 

 

Table 10. Inter-Rater Reliability Anxiety Severity 
Between DASS, Expert System, and Human 
Experts using Cohen’s Kappa Coefficient 

Ratings Kappa SE 

95%CI 

Lower Upper 

Average  0.648       
DASS – ES 0.507 0.092 0.327 0.688 
DASS – Exp A 0.532 0.062 0.411 0.652 
ES – Exp A 0.703 0.146 0.416 0.989 
DASS – Exp B 0.507 0.084 0.344 0.671 
ES – Exp B 0.816 0.091 0.636 0.995 
Exp A – Exp B 0.821 0.087 0.650 0.991 

 

Table 11. Inter-Rater Reliability Stress Severity 
Between DASS, Expert System, and Human 
Experts using Cohen’s Kappa Coefficient 

Ratings Kappa SE 

95%CI 

Lower Upper 

Average  0.808       
DASS – ES 0.831 0.067 0.699 0.963 
DASS – Exp A 0.833 0.051 0.734 0.933 
ES – Exp A 0.844 0.065 0.718 0.971 
DASS – Exp B 0.742 0.082 0.582 0.902 
ES – Exp B 0.833 0.067 0.702 0.964 
Exp A – Exp B 0.762 0.078 0.608 0.916 

The Expert System and Expert A demonstrate a 

substantial agreement with a Kappa coefficient of 0.703. 

Similarly, the agreement between DASS and Expert B is 

0.507. In contrast, the Expert System and Expert B 

achieve a high level of agreement with a Kappa value of 

0.816. The highest reliability among human raters is 

observed between Expert A and Expert B, with a Kappa 

coefficient of 0.821. 

Finally, the results for stress severity are detailed in 

Table 11, which features an average Kappa coefficient 

of 0.811. The Expert System achieves an agreement of 

0.831 with DASS, 0.844 with Expert A, and 0.833 with 

Expert B. Meanwhile, the DASS instrument reports a 

Kappa of 0.833 with Expert A and 0.742 with Expert B. 

The inter-rater reliability between human Expert A and 

Expert B for stress severity is 0.762. 

 

IV. Discussion 

A. Relations Between Number of Questionnaire 

and Inter-Rater Reliability 

The comparative analysis of the results reveals a 
critical relationship between the extent of questionnaire 
reduction and the diagnostic reliability of the developed 
system. While the Decision Tree (DT) algorithm 
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achieved a higher level of simplification by reducing 15 
items from the original DASS questionnaire, this 
aggressive reduction led to a significant compromise in 
clinical accuracy, resulting in an average Kappa 
coefficient of only 0.567. This limitation is further 
reflected in the wide 95% confidence intervals 
observed in DT-related comparisons. For instance, the 
agreement between DT and DASS (Kappa = 0.209) 
exhibits a confidence interval ranging from −0.086 to 
0.503, indicating substantial uncertainty and the 
possibility of agreement no better than chance. This 
decline occurs because the DT prioritizes statistical 
dominance and frequency-based splits, which may 
eliminate items that exhibit weaker individual predictive 
power but play an important role when interpreted 
contextually in combination with other symptoms. In 
contrast, the Expert System (ES), which utilized a more 
conservative reduction of only 9 items validated by 
psychological experts, maintained a superior average 
Kappa of 0.918, supported by consistently narrow and 
high confidence intervals (e.g., DASS–ES: 95% CI = 
0.761–1.000). This disparity suggests that the 
additional items removed by the automated DT process 
likely contained essential clinical nuances, such as 
subtle affective or behavioural indicators, that are 
necessary for distinguishing between overlapping and 
complex psychological severity levels. 

The involvement of psychological experts in the 
validation process acts as a vital stabilizer, ensuring 
that efficiency does not come at the cost of diagnostic 
integrity. This stabilizing effect is evident not only in the 
magnitude of the Kappa values but also in the 
consistency of their confidence intervals. The Expert 
System (ES) demonstrates an almost perfect 
agreement with the DASS instrument (Kappa = 0.918; 
95% CI = 0.761–1.000) and maintains high consistency 
with human Expert A (Kappa = 0.918; 95% CI = 0.761–
1.000) and Expert B (Kappa = 0.835; 95% CI = 0.625–
1.000). The substantial overlap among these 
confidence intervals indicates that the ES, DASS, and 
human experts operate within a statistically 
comparable range of agreement. Conversely, the DT-
only model showed poor alignment with professional 
judgment, dropping to a Kappa of 0.146 when 
compared with Expert B, accompanied by a wide 
confidence interval (95% CI = −0.135–0.426), 
highlighting both low reliability and high variability. This 
contrast indicates that purely data-driven rules were 
insufficient to capture expert-level diagnostic reasoning 
in a stable and reproducible manner. 

The observed differences in agreement can be 
partially attributed to discrepancies in dominant 
symptom diagnosis between the Decision Tree (DT) 
model and the Expert System (ES). While the DT relies 
strictly on data-driven feature selection and rule 
induction, this approach tends to oversimplify complex 

symptom interactions by prioritizing statistically 
dominant patterns and ignoring clinical 
interdependencies among symptoms. Such 
simplification is reflected in the instability of the DT-
related confidence intervals, which remain wide and 
often cross lower agreement thresholds. In contrast, 
during the development of the Expert System, several 
items resulting from the initial DT-based reduction were 
critically re-evaluated by domain experts. This process 
led to the reintroduction of certain clinically important 
symptoms, the modification of others, and the 
adjustment of rule antecedents to better reflect real-
world psychological presentations. Furthermore, the 
consequents of several inference rules were revised to 
represent clinically meaningful dominant symptom 
classifications rather than the original DT-derived 
outputs. These expert-driven refinements 
fundamentally transformed the DT-generated rules into 
a fuzzy inference structure that preserved both high 
agreement values and tighter confidence bounds. 

Overall, these findings underscore that although 
automated algorithms such as Decision Trees are 
effective at identifying statistical redundancies and 
providing an initial structural foundation for rule 
generation, expert involvement is essential to prevent 
distortions in dominant symptom diagnosis. The 
superior and more stable Kappa values achieved by 
the Expert System together with narrower and 
consistently high confidence intervals highlight the 
importance of integrating algorithmic efficiency with 
domain-specific clinical knowledge to ensure 
robustness, interpretability, and diagnostic validity. 

B. Severity Result Interpretation 

The Expert System (ES) demonstrates a high level of 
diagnostic integrity, particularly in the classification of 
depression and stress severity. According to Table 9, 
the average Kappa coefficient for depression severity 
reaches 0.842, while Table 11 shows an average 
Kappa of 0.808 for stress. These figures fall within the 
"almost perfect" agreement range, indicating that the 
system's internal logic effectively mirrors the 
established DASS-42 scoring system. Beyond point 
estimates, the reliability of these agreements is further 
supported by relatively narrow 95% confidence 
intervals (CI). For depression severity, the ES–Expert 
A agreement (κ = 0.865, 95% CI: 0.770–0.961) and 
ES–Expert B agreement (κ = 0.810, 95% CI: 0.659–
0.961) show substantial overlap with the DASS-based 
comparisons, suggesting that the observed 
agreements are statistically stable rather than 
incidental. Similarly, in stress severity assessment, the 
ES–Expert A agreement (κ = 0.844, 95% CI: 0.718–
0.971) exceeds the DASS–Expert B agreement (κ = 
0.742, 95% CI: 0.582–0.902), with overlapping 
confidence intervals indicating comparable levels of 
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reliability while still favoring the Expert System’s 
consistency. 

A contrasting pattern emerges in the anxiety 
severity category in Table 10, which yields the lowest 
average Kappa value (0.648). Agreements between 
DASS and human experts are only moderate (κ = 
0.507–0.532), with relatively wider confidence intervals 
(e.g., DASS–ES: 95% CI: 0.327–0.688), indicating 
greater variability and uncertainty in these 
assessments. This divergence is likely attributable to 
the inherent subjectivity of anxiety symptoms and the 
reliance of DASS on self-reported responses, whereas 
clinicians integrate behavioral observation and 
contextual clinical judgment. Notably, agreements 
between the Expert System and human experts remain 
high in this domain (ES–Expert B: κ = 0.816, 95% CI: 
0.636–0.995), reinforcing the system’s capacity to 
approximate expert reasoning even in diagnostically 
ambiguous conditions. 

Importantly, the overlap of confidence intervals 
across ES–expert and expert–expert comparisons 
implies that the Expert System (ES) performs on par 
with, and in several instances slightly better than, 
human raters when uncertainty is taken into account. 
For example, in depression severity, the ES–Expert 
A agreement (κ = 0.865, 95% CI: 0.770–0.961) slightly 
exceeds the agreement between the two human 
experts themselves (Exp A–Exp B: κ = 0.886, 95% CI: 
0.798–0.973) when considering the overlapping 
confidence intervals with other comparisons. Similarly, 
for anxiety severity, the ES–Expert B agreement (κ = 
0.816, 95% CI: 0.636–0.995) is comparable to, and in 
some interpretations slightly more stable than, the 
agreement between Expert A and Expert B (κ = 0.821, 
95% CI: 0.650–0.991), suggesting that the system can 
approximate expert reasoning even in diagnostically 
ambiguous domains. In stress severity, the ES–
Expert A agreement (κ = 0.844, 95% CI: 0.718–0.971) 
is notably higher than the agreement between DASS 
and Expert B (κ = 0.742, 95% CI: 0.582–0.902), 
reinforcing the system’s ability to consistently capture 
clinically relevant patterns that might be variably 
interpreted by different human raters. 

These instances across multiple psychological 
domains highlight that the Expert System’s fuzzy 
inference rules not only encode the decision logic of 
individual experts but also reduce inter-rater variability, 
effectively standardizing diagnostic outcomes. The 
relatively narrow and overlapping confidence intervals 
across ES–expert comparisons indicate that the 
system’s predictions remain robust across different 
evaluators, minimizing the uncertainty that naturally 
arises in human assessment. In contrast, the wider 
confidence intervals seen in some DASS–expert 
comparisons, particularly in anxiety severity, 
demonstrate that self-reported instruments are more 

sensitive to variability in interpretation and contextual 
factors. 

Overall, these observations suggest that the Expert 
System provides a stable and clinically valid diagnostic 
framework, which captures nuanced symptom 
interactions and preserves the qualitative consistency 
of dominant symptom classification across raters. By 
effectively aligning with human judgment while 
reducing variability, the system demonstrates its 
potential as a reliable tool for standardizing 
psychological assessment and supporting clinical 
decision-making. 

C. Fuzzy Logic and Handling Subjective Symptom 

Assessment 

Beyond the quantitative agreement measures, the 
Expert System (ES) leverages fuzzy logic to effectively 
address the inherent subjectivity and uncertainty 
present in psychological assessments. In conventional 
approaches, such as decision tree-based or DASS 
scoring methods, questionnaire items are typically 
treated as fixed indicators of specific psychological 
domains, assuming that each item consistently and 
exclusively reflects a single construct (e.g., stress, 
anxiety, or depression) regardless of symptom intensity 
or contextual interactions. This static interpretation 
overlooks the variability in how respondents experience 
symptoms and how clinicians interpret their severity, 
particularly in borderline or overlapping cases. 
Consequently, subtle shifts in symptom expression and 
cross-domain influences may be insufficiently 
captured, potentially leading to less sensitive or 
inaccurate mental health classifications. 

Fuzzy logic addresses these limitations by 
representing symptom intensity as degrees of 
membership across multiple severity levels. Triangular 
and trapezoidal membership functions allow a single 
symptom to partially belong to more than one category 
simultaneously for example, a mild anxiety report may 
have a membership of 0.3 to “normal” and 0.7 to “mild 
anxiety” thereby reflecting ambiguity and overlap 
inherent in clinical interpretation. Fuzzy inference rules 
then combine these graded memberships across 
multiple symptoms, preserving cross-domain 
interactions and subtle symptom variations. This 
process mirrors the reasoning of human experts, who 
weigh multiple interacting indicators rather than relying 
on rigid thresholds, resulting in diagnostic outputs that 
are both more nuanced and clinically plausible. Overall, 
the application of fuzzy logic in the ES reduces inter-
rater variability and enhances consistency across 
evaluations. It complements the high Cohen’s Kappa 
coefficients by demonstrating that the system’s strong 
statistical agreement with experts arises not merely 
from accurate prediction but from a methodological 
capacity to handle uncertainty, contextual symptom 
interaction, and subjective interpretation. In this way, 
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fuzzy logic provides both computational rigor and 
clinical validity, reinforcing the system’s potential as a 
reliable tool for standardized psychological 
assessment. 

D. Comparison with Related Works 

Table 12 presents a comparison between the proposed 
method and recent studies in psychological 
assessment. Many listed works, such as Kumar et al. 
[6] and Priya et al.[5], primarily use standard machine 
learning methods like Random Forest, SVM, and KNN  
to analyze DASS datasets. Although these data-driven 
approaches show high performance, with Kumar et al. 
[6] achieving over 90% accuracy on DASS-42. Table 12 
identifies a major limitation of that study is the lack of 
expert validation. These methos only focus on finding 
statistical patterns rather than using clinical reasoning. 
As a result, they generate classifications that are 
lacking alignment with human diagnosis that is 
necessary for actual clinical use.  

Studies by Delgado et al. [9] and Rajawat et al.[40] 
employ purely data-driven approaches, such as data 
mining and convolutional neural networks (CNN) with 
fuzzy logic, to tackle the DASS-21 dataset or facial 
expression recognition. While these methods offer 
valuable insights, they still focus primarily on pattern 
extraction from data, without explicitly incorporating 
expert validation. Delgado et al.[9] and Rajawat et al. 
[40] achieve reasonable accuracy results for Anxiety 
(around 70-80%), but their approaches lack the clinical 
reasoning needed for real-world psychological 
assessments. As seen in Table 12, only the study by 
Ramzan et al.[11] and the proposed DT-FIS method 
integrate "Expert Validation" to ensure that the 

classification logic aligns with expert clinical judgment. 
However, Ramzan et al.'s[11] work is limited to physical 
symptoms of anxiety, whereas the proposed DT-FIS 
method extends this concept by applying expert-
validated fuzzy inference to the more complex, 
multifaceted DASS-42 dataset. This makes the 
proposed method not just a statistical classifier, but a 
comprehensive expert system capable of bridging the 
gap between machine learning and clinical expertise. 

Furthermore, a fundamental methodological 
divergence is observed in the performance metrics 
detailed in Table 12. Previous studies predominantly 
utilize standard accuracy percentages, which can be 
misleading if they do not account for chance 
agreement. The proposed method moves beyond this 
convention by employing Cohen's Kappa (κ) to 

rigorously measure the level of agreement between the 
system and human experts. Although the numerical 
values for the proposed method (e.g., 0.84 κ for 

Depression) may appear numerically lower than the 
91% accuracy reported by Kumar et al. [6], the Kappa 
metric represents a far more substantial validation of 
reliability. It confirms that the system does not merely 
guess the correct label but demonstrates a 'strong' to 
'perfect' concordances with expert diagnosis, a 
standard of evaluation that conventional accuracy 
metrics fail to capture. 

 

V. Conclusion  

This study aims to develop an Expert System that 

improves mental health diagnostics, particularly in 

depression, anxiety, and stress, by combining fuzzy 

Table 12. Comparison with Related Works 

Author Method Dataset 
Accuracy Result Expert 

Validation D A S 

Ramzan et al. 
(2023) [11] 

FIS 
5 Physical 
Symptoms 

Anxiety 
x 87% x Yes 

Delgado et al. 
(2024)  [9] 

Data Mining + FIS DASS-21 ~70% ~70% ~80% No 

Rajawat et al. 
(2022) [40] 

CNN + Fuzzy 
Logic 

Image Facial 
Expression 

~94% x x No 

Priya et al. 
(2020) [5] 

Machine Learning 
(DT, Random 
Forest, SVM, 

KNN) 

DASS-21 ~79% ~71% ~72% No 

Kumar et al. 
(2020) [6] 

K-star + Random 
Forest 

DASS-42 91% 92% 90% No 

Proposed 
Method (DT – 

FIS) with 
Expert Val 

DT-FIS DASS-42 0.84 𝛋 0.64 𝛋 0.80 𝛋 Yes 
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logic and decision tree-based rule extraction with expert 

validation. The findings demonstrate that the ES 

outperforms the Decision Tree model, achieving higher 

diagnostic accuracy and stability. Specifically, the ES 

achieved Kappa values of 0.842 for depression and 

0.808 for stress, reflecting "almost perfect" agreement. 

However, the system's performance for anxiety was 

slightly lower, with a Kappa of 0.648, indicating that 

anxiety classification requires further refinement. While 

the current system performs well, future improvements 

are necessary to further enhance its sensitivity, 

especially for anxiety classification. Expanding the input 

categories from three to five levels (e.g., very low, low, 

medium, high, very high) would better capture subtle 

symptom variations, particularly in borderline cases. 

These changes, along with adaptive or data-driven 

optimization of membership functions, are expected to 

improve precision and clinical relevance. Such 

enhancements would increase the system's robustness 

and improve its performance across all psychological 

domains. Overall, the integration of expert knowledge 

into the fuzzy inference process has proven essential for 

ensuring diagnostic validity and reducing inter-rater  

variability. This hybrid approach, which combines 

computational efficiency with expert insights, enhances 

the system's reliability and consistency. Future research 

could focus on refining fuzzy input granularity to ensure 

the system remains adaptable and accurate in 

diagnosing complex and overlapping psychological 

conditions. 
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APPENDIX A: DASS-42 QUESTIONNAIRE 

 

NO TEXT 

Q1 I found myself getting upset by quite trivial things. 

Q2 I was aware of dryness of my mouth. 

Q3 I couldn't seem to experience any positive feeling at all. 

Q4 I experienced breathing difficulty (eg, excessively rapid breathing, breathlessness in the absence of 
physical exertion). 

Q5 I just couldn’t seem to get going. 

Q6 I tended to over-react to situations. 

Q7 I had a feeling of shakiness (eg, legs going to give way). 

Q8 I found it difficult to relax. 

Q9 I found myself in situations that made me so anxious I was most relieved when they ended. 

Q10 I felt that I had nothing to look forward to. 

Q11 I found myself getting upset rather easily. 

Q12 I felt that I was using a lot of nervous energy. 

Q13 I felt sad and depressed. 

Q14 I found myself getting impatient when I was delayed in any way (eg, elevators, traffic lights, being 
kept waiting). 

Q15 I had a feeling of faintness. 

Q16 I felt that I had lost interest in just about everything. 

Q17 I felt I wasn’t worth much as a person. 

Q18 I felt that I was rather touchy. 

Q19 I perspired noticeably (eg, hands sweaty) in the absence of high temperatures or physical exertion. 

Q20 I felt scared without any good reason. 

Q21 I felt that life wasn’t worthwhile. 

Q22 I found it hard to wind down. 

Q23 I had difficulty in swallowing. 

Q24 I couldn’t seem to get any enjoyment out of the things I did. 

Q25 I was aware of the action of my heart in the absence of physical exertion (eg, sense of heart rate 
increase, heart missing a beat). 

Q26 I felt down-hearted and blue. 

Q27 I found that I was very irritable. 

Q28 I felt I was close to panic. 

Q29 I found it hard to calm down after something upset me. 

Q30 I feared that I would be “thrown” by some trivial but unfamiliar task. 

Q31 I was unable to become enthusiastic about anything. 

Q32 I found it difficult to tolerate interruptions to what I was doing. 

Q33 I was in a state of nervous tension. 

Q34 I felt I was pretty worthless. 

Q35 I was intolerant of anything that kept me from getting on with what I was doing. 

Q36 I felt terrified. 

Q37 I could see nothing in the future to be hopeful about. 

Q38 I felt that life was meaningless. 

Q39 I found myself getting agitated. 

Q40 I was worried about situations in which I might panic and make a fool of myself. 

Q41 I experienced trembling (eg, in the hands). 

Q42 I found it difficult to work up the initiative to do things. 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1443
https://creativecommons.org/licenses/by-sa/4.0/

