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Abstract Mental health disorders such as depression, anxiety, and stress frequently co-occur and exhibit
overlapping symptoms, making accurate diagnosis challenging due to the subjective nature of
psychological assessments. Conventional use of the Depression Anxiety Stress Scales (DASS-42) relies
on rigid score aggregation, while many machine learning approaches fail to adequately represent
uncertainty and expert reasoning. This study aims to develop an expert system for mental health detection
by integrating fuzzy logic with expert knowledge derived from the DASS-42 instrument. The main
contribution of this research is a hybrid knowledge-based framework that combines decision tree—based
rule extraction with psychological expert validation, ensuring both interpretability and clinical relevance.
The proposed method employs a Fuzzy Inference System (FIS) using triangular and trapezoidal
membership functions to model symptom intensity as linguistic variables, followed by rule generation
using the CART decision tree algorithm and expert refinement. System performance is evaluated using
Cohen’s Kappa coefficient, including standard error and 95% confidence intervals, to measure inter-rater
reliability between the expert system, the DASS instrument, and two human experts. The results indicate
that the expert system achieves almost perfect agreement in identifying dominant psychological
conditions, with an average Kappa value of 0.918. For severity-level classification, strong agreement is
observed for depression (Kappa = 0.842) and stress (Kappa = 0.811), while anxiety severity shows
moderate-to-substantial agreement (Kappa = 0.648), reflecting inherent variability in expert interpretation.
In conclusion, the proposed FIS-based expert system effectively captures expert diagnostic reasoning and
outperforms decision tree—only models, demonstrating strong potential as an interpretable and reliable
mental health screening tool.
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of disability worldwide [1], [2], and early detection can
help guide better treatment. However, conventional
diagnosis relies on subjective assessments and time-
consuming clinical interviews, and is sometimes
hampered by stigma and a lack of mental health
resources [4]. For example, WHO data shows that
stigma and lack of awareness hinder screening and
treatment in many developing countries [1].
Furthermore, the lack of objective biomarkers makes
psychological symptoms imprecise and subjective [4],
making conventional approaches less efficient in
addressing this uncertainty.

l. Introduction

Mental health disorders (such as depression, anxiety,
and stress) constitute a significant burden of disease
globally [1], [2]- These three conditions often co-occur
and share interrelated symptoms: for example, feelings
of sadness, loss of interest in activities (depression);
excessive worry, physiological agitation (anxiety); and
mental tension or fatigue (stress). The Depression
Anxiety Stress Scales (DASS) are used to specifically
measure these three aspects. The Depression Scale
assesses dysphoria, hopelessness, decreased
meaning in life, self-deprecation, lack of interest or

engagement, anhedonia, and inertia. The Anxiety
Scale assesses autonomic arousal, effects on skeletal
muscles, situational anxiety, and the subjective
experience of anxious affect. The Stress Scale,
meanwhile, is sensitive to chronic nonspecific arousal
levels, including difficulty relaxing, nervous arousal,
restlessness, irritability, and impatience [2], [3].
Therefore, early screening is important because
depression and anxiety are among the leading causes

Previous studies on mental health diagnosis have
predominantly employed conventional machine
learning algorithms such as Random Forests, Support
Vector Machines, and Decision Trees in model
development [5], [6] While these approaches
demonstrate strong predictive capabilities, they
typically rely on rigid feature representations and
discrete decision boundaries that are not well suited to
the subjective and ambiguous nature of psychological
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assessment data. Psychological symptoms measured
using instruments such as the DASS questionnaire
often exist on a continuous spectrum and are
influenced by individual perception as well as expert
interpretation, which conventional ML models do not
explicitly account for [7]. In many studies, DASS
responses are further simplified by linearly summing
item scores prior to classification, assuming equal
contribution of all symptoms and fixed severity
thresholds. This aggregation-based approach limits the
model’s ability to capture symptom overlap, intensity-
dependent interpretation, and gradual transitions in
mental health severity, thereby reducing its validity in
representing complex psychological conditions [8].

Regarding subjectivity, conventional machine
learning (ML) methods do reduce subjectivity in
analysis. Algorithms like Random Forest, Support
Vector Machine, and Decision Trees work based on
processed data, which helps eliminate human bias.
However, these models have limitations, particularly in
handling subjective or uncertain data, such as
psychological symptoms measured with instruments
like DASS. Typically, in conventional ML model
development, subjective data, such as the
interpretation of DASS scores or expert judgments, are
not sufficiently accounted for. Often, the DASS scores
are simply summed up to classify the severity of
symptoms, which can lower validity, as it doesn't
capture the nuances in subjective data [9].

Conventional machine learning (ML) models often
rely on rigid feature representations that are not well
suited to the inherent uncertainty and ambiguity of
psychological assessments. In such approaches,
questionnaire items are typically treated as fixed
indicators of specific psychological domains, assuming
that each DASS item consistently and exclusively
reflects a single construct (e.g., stress, anxiety, or
depression) regardless of symptom intensity or
contextual interaction. This static interpretation
overlooks the variability in how respondents experience
symptoms and how clinicians interpret their severity,
particularly in borderline or overlapping cases. As a
result, subtle shifts in symptom expression and cross-
domain influences may be insufficiently captured,
leading to less sensitive and potentially inaccurate
mental health classification outcomes. These
limitations highlight the need for more flexible modeling
approaches that can accommodate gradual transitions
and overlapping symptom representations commonly
observed in psychological data [9].

To address these limitations, this study uses the
concept of fuzzy logic. Algorithms that use fuzzy logic
concepts include the Probabilistic Hesitant Fuzzy
(PHF) algorithm. However, this algorithm has the
drawback of high complexity and reflects the decision
maker's ambiguous and hesitant criteria preferences

when assigning criteria weights. An alternative is to can
be use Fuzzy Inference System (FIS). FIS is a
framework using fuzzy logic to handle uncertainty and
ambiguity in data. Unlike binary logic, which consists of
0 and 1, FIS introduces degrees of membership
between 0 and 1 [7]. Therefore, FIS is an ideal
approach for processing subjective and uncertain
psychological data.

Fuzzy Inference Systems (FIS) are widely applied in
the mental health sector due to their ability to handle
the uncertainty of psychological symptoms. One study
developed an loT-based and machine learning-based
stress and emotion detection system, equipped with a
fuzzy logic-based mental health risk assessment
module. This system categorizes the level of
psychological stress threat into a five-level scale (very
low to very high) based on measurable symptoms [8],
[10]. Previous research has developed an expert
system using the Fuzzy Inference System (FIS)
method to detect mental health based on anxiety
symptoms. However, this research did not utilize the
DASS instrument and focused solely on the anxiety
aspect [11]. Meanwhile, other research has used the
DASS instrument in an FIS-based system, but has not
involved direct expert validation [9]. This study aims to
address these shortcomings by combining the use of
the DASS instrument with the involvement of expert
psychologists in developing a knowledge base. This
allows the system to detect three aspects of mental
health: depression, anxiety, and stress, using expert
psychology knowledge, and reducing subjectivity
among experts in mental health diagnoses.

However, the effectiveness of an FIS-based system
is highly dependent on the quality and structure of its
rule base. On the one hand, fully automated rule
extraction methods such as decision tree-based
approaches can generate interpretable rules directly
from data. While these rules are objective and
reproducible, they tend to emphasize statistically
dominant features and may ignore clinically important
but less frequent symptoms. Consequently, purely
data-driven rules risk producing outputs that are
mathematically optimal yet clinically misaligned.

To overcome the shortcomings of both purely
expert-based and purely data-driven approaches, this
study proposes a hybrid knowledge-based framework
that integrates decision tree—based rule extraction with
expert psychologist validation within a Fuzzy Inference
System (FIS). In this hybrid approach, decision trees
are first employed to extract initial diagnostic rules from
DASS response data, ensuring objectivity and
consistency. These rules are then reviewed, refined,
and augmented by expert psychologists, who adjust
antecedents, add or modify symptoms, and revise
diagnostic consequents based on clinical reasoning
and psychological theory.
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Fig. 1. The implementation of Expert System using Fuzzy Inference System.

The following are important contributions made to
this study.

1. Combines the strengths of decision tree-based rule
extraction with expert psychologist validation in a
hybrid framework, ensuring both objectivity and
clinical relevance.

2. Addresses the limitations of conventional machine
learning methods, particularly in handling the
subjectivity and ambiguity inherent in psychological
assessments. By incorporating fuzzy logic, the
system better captures gradual transitions and
overlapping symptoms, providing a more nuanced
understanding of mental health conditions.

3. Uses the DASS instrument in combination with
expert input to build a more robust and clinically
valid system for diagnosing depression, anxiety,
and stress.

4. Improves the interpretability and accuracy of
mental health diagnoses by reducing inter-rater
variability, offering a more standardized approach
that can be adapted to various clinical settings.

Il. Method

This chapter outlines the methodology employed to
develop the expert system, which integrates data-driven
rule extraction with  human expertise. The
implementation process begins by preprocessing a
dataset to extract initial rules using a decision tree
algorithm, followed by refinement through expert
consultation to establish a comprehensive knowledge

base. This knowledge base is then utilized within a
Fuzzy Inference System (FIS) to process user input from
the DASS-42 questionnaire, ultimately generating a
diagnostic result. Fig. 1 illustrates the complete
implementation flowchart of the proposed expert
system.

A. Dataset Collection

The dataset used in this study was collected between
2017 and 2019 through an online version of the
Depression Anxiety Stress Scales (DASS), available at
https://openpsychometrics.org. The survey was open to
the public, and participants were primarily motivated by
the opportunity to receive personalized psychological
feedback based on their responses. At the end of the
test, participants were invited to complete a brief
research survey. Only the data from respondents who
agreed to participate in the research and confirmed that
their answers were accurate were included in this
dataset.

This study uses the DASS-42 instrument to obtain a
comprehensive and fine-grained representation of
depression, anxiety, and stress symptoms. The larger
number of questionnaire items allows for richer symptom
coverage and greater variability in response patterns,
which is particularly important for data-driven rule
extraction and expert-based knowledge refinement. This
level of detail supports the construction of a more
expressive fuzzy knowledge base, enabling the Fuzzy
Inference System (FIS) to model dominant symptom
patterns and gradual severity transitions in a manner
that aligns with psychological assessment practices.
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Table 1. Categorization of Depression, Anxiety, and Stress Scores

Condition Score Range Category
0-9 Normal
10-13 Mild
Depression 14-20 Moderate
21-27 Severe
28 or higher Extremely Severe
0-7 Normal
8-9 Mild
Anxiety 10-14 Moderate
15-19 Severe
20 or higher Extremely Severe
0-14 Normal
15-18 Mild
Stress 19-25 Moderate
26-33 Severe
34 or higher Extremely Severe

The survey included 42 items (Q1-Q42), each
assessing emotional states related to depression,
anxiety, and stress. Participants rated how often each
statement applied to them during the past week using a
four-point Likert scale, ranging from 7 = Did not apply to
me at all to 4 = Applied to me very much or most of the
time. Each question was presented individually and in
random order to minimize response bias. In addition to
response scores, the system recorded the response
time (in milliseconds) for each question, as well as other
timing metrics such as time spent on the introduction, the
DASS questionnaire, and the demographic survey.

The dataset also contains a comprehensive
demographic section that includes variables such as
education level, gender, age, religion, race, marital
status, and more. It further includes responses to the
Ten ltem Personality Inventory (TIPI), which measures
the Big Five personality traits, as well as a vocabulary
checklist (VCL) designed to assess linguistic
understanding and response validity. Technical data
such as country code, device type, and survey source
were also recorded to provide contextual information
about each participant.

B. Data Preprocessing

In this stage, only the relevant data from the dataset
were extracted, specifically the response values for
items Q1 to Q42, which correspond to the Depression
Anxiety Stress Scales (DASS). Before further
processing, a preprocessing step was conducted to
normalize the response values. The original scale

ranging from 1 to 4 was transformed into a 0-3 range to
facilitate computation and maintain uniformity across all
items [12].

After normalization, the items were grouped into
three main psychological categories Depression,
Anxiety, and Stress based on the official DASS
questionnaire structure. The complete DASS-42
questionnaire used in this study is presented in
Appendix A. Each category consists of specific question
items as follows [13], [14]:

 Depression: Q3, Q5, Q10, Q13, Q16, Q17, Q21,
Q24, Q26, Q31, Q34, Q37, Q38, Q42

e Anxiety: Q2, Q4, Q7, Q9, Q15, Q19, Q20, Q23,
Q25, Q28, Q30, Q36, Q40, Q41

¢ Stress: Q1, Q6, Q8, Q11, Q12, Q14, Q18, Q22,

Q27, Q29, Q32, Q33, Q35, Q39

For each category, the normalized scores were
summed and averaged to produce a total score
representing the individual’s level of depression, anxiety,
and stress. These total scores were then classified into
severity levels, typically categorized as [15]: Normal,
Mild, Moderate, Severe, Extremely Severe as shown in
Table 1.

To comprehensively assess the severity of
depression, anxiety, and stress, the total scores
obtained from each corresponding DASS subscale are
systematically compared against standardized severity
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thresholds. These established cut-off points serve to
categorize the intensity of each emotional state, ranging
from Normal to Extremely Severe, based on the
cumulative sum of the items within each subscale. The
following table details the specific score ranges and their
corresponding severity classifications for Depression,
Anxiety, and Stress. These thresholds enable a
standardized interpretation of an individual's
psychological condition based on their DASS responses
[16], [17]. After obtaining the normalized total scores for
each category (Depression, Anxiety, and Stress), the
values within the 0-3 range were further transformed
into fuzzy membership degrees to better represent the
gradual nature of psychological conditions. In this step,
each score was mapped into three fuzzy membership
functions Low, Medium, and High which describe the
degree to which a score belongs to each severity level.

Following the fuzzification process, each individual
questionnaire item (Q1-Q42) was represented by its
corresponding fuzzy membership degrees, which
served as the input features for the subsequent decision
tree—based rule extraction phase. In this stage, the
decision tree utilized the fuzzified representations of the
DASS items to capture non-linear symptom interactions
and dominant patterns across responses. The target
variables for the decision tree were defined as the
severity levels of Depression, Anxiety, and Stress,
derived from the aggregated normalized subscale
scores. Each instance was labeled according to its
corresponding severity category (Normal, Mild,
Moderate, Severe, or Extremely Severe), which enabled
the extraction of interpretable if-then rules linking fuzzy
symptom representations to psychological severity
outcomes. Each input score (for Depression, Anxiety, or
Stress) is evaluated across three fuzzy sets define in Fig.
2, producing corresponding membership values that
indicate the degree to which the score belongs to each
category. The highest membership degree among the
three is then selected to determine the dominant fuzzy
category for that particular input.

C. Extraction Rules

In this stage, the fuzzy-transformed data for each
category Depression, Anxiety, and Stress were used to
generate a set of decision rules. The purpose of this
process is to identify logical relationships between
questionnaire  responses (Q1-Q42) and the
corresponding mental health severity levels. The rules
were derived using a Decision Tree algorithm, which
helps to map combinations of fuzzy input values (Low,
Medium, High) into interpretable outputs representing
each condition’s severity classification. Each category
was processed independently to produce its own rule
set, forming the preliminary logic framework for the fuzzy
inference system by describing how different response
patterns correspond to mental health states.

1.0
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Membership Degree
o o
) >

o
o
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Fig. 2. Fuzzy Membership Function for Item
Score

To construct these rule sets, the study employed a
Decision Tree learning approach, a supervised
classification method that recursively partitions the input
space based on feature values to maximize the
separation between target classes [18], [19], [20]. The
use of Decision Tree modelling in this study is grounded
in its capacity to generate transparent, interpretable, and
rule-based representations of relationships within
questionnaire-derived psychological data. Because
Decision Trees decompose multivariate patterns into
hierarchical conditional structures [18], they are highly
suitable for translating fuzzy input variables into explicit
if-then rules required by a fuzzy inference system. The
adoption of the CART framework further enhances this
capability, as CART performs automatic variable
selection and binary splitting to produce homogeneous
partitions that clearly reflect severity distinctions across
Depression, Anxiety, and Stress levels.

Empirical findings have shown that CART delivers
higher explanatory power and more intuitive
interpretability than traditional statistical approaches,
particularly due to its ability to automatically identify
influential predictors [21]. Compared to other decision
tree algorithms such as ID3 and C4.5, CART offers
several methodological advantages that are particularly
suitable for psychological assessment data [22]. ID3
relies heavily on entropy-based information gain and is
primarily designed for categorical attributes, requiring
prior discretization when handling continuous variables.
This preprocessing step may lead to information loss
and reduced sensitivity to subtle variations in
psychological symptom severity [23]. Although C4.5
extends ID3 by supporting continuous attributes, it often
enerates multi-branch splits that result in more complex
and less uniform rule structures, making direct
integration into fuzzy rule-based systems less
straightforward [24].

In contrast, CART natively processes numerical
data and consistently produces binary splits, yielding
simpler, more standardized rule forms that are easier to
interpret and refine through expert validation. Moreover,
CART demonstrates greater robustness to outliers and
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Algorithm 1. CART model

Decision Tree

(1) Input: Dataset DASS
(2) Output: Decision Tree T
(3)  Function BuildTree(D):
@) Calculate current impurity of D (e.g.,
Gini Index)
(5) For each feature Xi in D:
(6) For each possible split point t:
7) Partition D into D_left (Xi < t) and
D right (Xi >=1)
(8) Calculate split impurity
Select (Xi, t) with maximum impurity
reduction
) If stopping criteria met:
Create Leaf Node with majority class
) label
) Return Leaf Node
)
)

Pseudo-code

Else:
Create Decision Node with best split
(Xi, t)
DecisionNode.left_child = BuildTree
(D_left)

(16) DecisionNode.right_child = BuildTree

(D_right)
(17) Return DecisionNode

noisy data, which are common in mental health datasets
due to subjective self-reporting and individual response
variability. Additional evidence indicates that decision-
tree-based models have substantial advantages in
clinical and diagnostic modelling, offering transparent
decision pathways that support expert validation, an
essential aspect for mental health—related applications
[25]. Decision-tree  methodologies have also
demonstrated effectiveness in broader engineering
decision systems, where they provide structured and
interpretable logic for optimal decision-making in
complex environments [26], [27]. These insights
collectively justify the use of Decision Trees and
specifically the CART method in this study, as they offer
a scientifically robust balance between clarity,
computational efficiency, and the capacity to generate
structured rule sets required for a transparent fuzzy
inference system. The detailed procedural steps for this
rule extraction and the construction of the preliminary
logic framework are presented in Algorithm 1.

Based on this procedure, the resulting decision rules
for each mental health category are summarized in the
following tables, serving as concrete examples of how
the CART-derived logic translates questionnaire inputs
into severity classifications. These rule sets are
presented in Table 2 (Depression), Table 3 (Anxiety),
and Table 4 (Stress). These decision rules, derived from
the CART model, map the input variables (questionnaire

responses) to the appropriate severity levels for each
mental health domain.

Table 2. Example of Extracted Decision Tree
Ruleset for Depression Classification

No Antecedent Consequent
1 Q3 = Low AND Q10 = Low Normal
Q13 = Medium AND Q17 = .
2 Medium Mild
Q24 = High AND Q31 =
3 High Severe

Table 3. Example of Extracted Decision Tree
Ruleset for Anxiety Classification

No Antecedent Consequent
1 Q7 = Low AND Q19 = Low Normal
2 Q23 = Mediurr_1 AND Q25 = Mild
Medium
3 Q30 = High. AND Q36 = Severe
High

Table 4. Example of Extracted Decision Tree
Ruleset for Stress Classification

No Antecedent Consequent
1 Q1 =Low AND Q6 = Low Normal
2 Q11 = I\ﬁedlurr_] AND Q12 Mild
= Medium
3 Q29 = H|gh. AND Q35 = Severe
High

These rules illustrate how combinations of fuzzy
inputs are translated into psychological interpretations.
However, it is important to note that the rules generated
in this phase are still part of a preliminary draft. They are
intended solely for model development and will be
further reviewed and validated by domain experts
(psychologists or mental health professionals) to ensure
their accuracy and clinical relevance. The finalized rule
set will be refined based on expert consultation to form
the main decision logic of the fuzzy inference system.

D. Expert Consultation

In this stage, the draft rules generated from the decision
tree were systematically reviewed and validated through
structured consultation with psychological domain
experts. This review aimed to ensure that the
automatically extracted rules were not only statistically
valid but also aligned with established psychological
theory and assessment practice. Each rule within the
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Fig. 3. Fuzzy Membership Function for (a) Depression Score, (b) Anxiety Score, (c) Stress Score

Depression, Anxiety, and Stress categories was
evaluated based on its clinical plausibility, symptom
relevance, and consistency with recognized DASS
constructs. Expert feedback was then incorporated to
refine the rule base in a controlled and iterative manner.
Specifically, experts provided guidance to refine rule
consequents, merge overlapping or redundant rules,
and remove statistically derived rules that lacked clear
clinical interpretability. Additionally, several rules were
reinterpreted to better represent dominant symptom
patterns commonly observed in clinical assessments,
rather than relying solely on data-driven correlations. In
cases where differing expert opinions emerged during
the review process, consensus-based discussions were
conducted to reach an agreed interpretation. Final
decisions were guided by standard DASS theoretical
guidelines and widely accepted psychological
assessment practices to ensure methodological
consistency. Through this expert-informed refinement
process, a validated and coherent knowledge base was
established, balancing statistical robustness with clinical
relevance and serving as the foundation for the Fuzzy
Inference System (FIS).

E. Fuzzy Inference System

In this study, FIS was applied to analyze levels of
depression, anxiety, and stress based on input from the
DASS instrument. This system enables the conversion

of quantitative data into linguistically interpretable
output. The FIS process involves several stages,
namely[28], [29], [30]:

1. Fuzzy Variables and Membership Function

In this step is defining the fuzzy variables and their
respective membership functions. In this study, the input
variables are derived from the 42 items of the DASS-42
qguestionnaire, with each item measured on a scale of 0
to 3. These inputs are categorized into three linguistic
sets: Low, Medium, and High. Conversely, the output of
the system consists of three categories Depression,
Anxiety, and Stress, each characterized by five linguistic
levels, there are Normal, Mild, Moderate, Severe, and
Extremely Severe. The variables are mathematically
represented using two types of membership functions,
the triangular membership function and the trapezoidal
membership function. The use of these two membership
functions allows greater flexibility in modeling the data
characteristics, accommodating both simple linear
transitions and more stable regions of membership.
More complex membership functions such as Gaussian
or sigmoidal were not adopted in this study. Gaussian
and sigmoidal functions tend to obscure explicit
boundary definitions between linguistic categories,
potentially reducing interpretability and complicating
expert validation. Given that psychological symptom
assessment relies heavily on clear threshold-based
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Algorithm 2. Pseudo-code Triangular Membership
Function

) Input: Input values x and Parameters a,
b, c

(2) Output: Membership Values

(3)  Function trimf(x, a, b, ¢):

) Initialize y as a tensor of zeros with the
(5)

(6)

same shape as x

5 Ifa#b:
Find indices where x is between a
6
and b
) Set values at these indices to (x - a)
/(b-a)
(8) Ifb#c:
©) Find indices where x is between b
and c
(10) Set values at these indices to (c - x)
/(c-b)

(11) Set values where x is equal to b to 1.0
(12) Return y, clamped between 0 and 1

Algorithm 3. Pseudo-code
Membership Function

Input: Input values x and Parameters a,

Trapezoidal

Take the minimum of both slopes
and clamp it between 0 and 1
7) Return the result

M) bc d

(2) Output: Membership Values

(3)  Function trapmf(x, a, b, c, d):

(4) Calculate left slope (x -a)/ (b - a)

5) Calculate right slope (d - x) / (d - ¢)
)

interpretations rather than probabilistic smoothness, the
use of triangular and trapezoidal membership functions
is considered more suitable for this context. The
triangular membership function is defined by three
parameters{a, b,c} as shown in Eq. (1), while the
trapezoidal membership function is defined by four
parameters {a, b, c, d} as expressed in Eq. (2) [29], [31],
[32], [33]. The algorithm for membership function shown
in Algorithm 2 for triangular membership and Algorithm
3 for trapezoidal membership.

0 ; x<a
xX—a
p ;a<x<b
px)={2-% (1)
b< x<c
c—b
0 ; xX>c
0 ; x<a
xX—a
;a<x<b
b—a
ux)=+1 ;b<x<c )
X i< x<d
5 ;< x <
0 ; x>d

where u(x) is the degree of membership of input xin a
fuzzy set and {a, b, ¢, d} are threshold values that define
the shape and range of the membership function. The
distribution of these linguistic degrees for the input
variables (Q1-Q42) is illustrated in Fig. 2. The
fuzzification process occurs when a crisp input value is
mapped onto these functions. For instance, if an input
score for a specific question (e.g., Q1) is 2, it will be
processed to determine its membership degrees, such
as “Medium” (u = 0.33) and “High” (u = 0.33). This
ensures that the inherent ambiguity in psychological
scoring is properly represented before the inference
process begins. For the output variables, they are
divided into three categories: depression, anxiety, and
stress. Each category is further classified into five
linguistic levels, representing the severity degree of the
condition, namely normal, mild, moderate, severe, and
extremely severe. The membership functions for each
output category and their corresponding linguistic levels
are illustrated in Fig. 3

2. Rule base

A rule base is a collection of IF-THEN rules formulated
to represent expert knowledge or experience in a
system. In decision tree-based research, these rules are
derived from decision tree learning outcomes and then
validated by expert psychologists to ensure their
suitability to real-world conditions. In general, a fuzzy
rule base can be written as Eq. (3) [29], [33], [34]:

if » antecedent(s) then consequent(s)  (3)

where the antecedent (premise) and consequent
(conclusion) of a fuzzy rule are propositions containing
linguistic variables. The antecedent and consequent
parts of a linguistic rule can form a combination of fuzzy
sets combined using logical operators such as union,
and intersection [34].

3. Fuzzy Inference

The fuzzy inference stage is the process where the rules
in the rule base are evaluated using fuzzy logic
operators, such as union (or) and intersection (and)[34],
which enable the system to handle data uncertainty and
ambiguity. At this stage, the membership degrees of
each input are combined according to the applicable
rules, resulting in a fuzzy output (a set of membership
degrees). The fuzzy inference process, as outlined in the
algorithm shown in Algorithm 4. Let the k fuzzy sets rules
consist n antecedents. where each rule R, establishes a
relationship between the input vector x =[xy, x5, ..., x,]
and the output y. In mamdani fuzzy inference, the firing
strength o, for a rule using the "AND" operator is
determined by the T-norm operation, expressed as Eq.
(4) [29], [33]

e = min (a (), Bay Ba), oo bag (50))  (4)
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while the "OR" operator utilizes the S-norm, typically
defined as Eq. (5) [29], [31], [33]

@ = max (pa,, (0, tay, (62), s tany () (5)

This firing strength is subsequently used to clip or scale
the consequent membership function through the
Mamdani implication method, resulting in a modified
fuzzy set. This operation is formally represented by Eq.

(6)
g () = min (e, g, (7)) (6)

to produce a comprehensive system output, these
individual fuzzy consequences are aggregated using the
maximum operator. The final aggregated fuzzy set is
expressed in Eq. (7).

Hagg () = maxi_y [y ()] (7)
4. Defuzzification

Defuzzification is the final stage in FIS where the fuzzy
output, which is still in the form of membership degrees,
is converted into crisp values. The method used is the
centroid method, which calculates the weighted average
value of all possible outputs. This method can be written
as Eq. (8) [31], [33]:

.Y bagg)dy

_ 8
J tagg Ay ®)

where z* denotes the final crisp output obtained from the
defuzzification process, representing the representative
value of the aggregated fuzzy output. The variable y is
the output domain, while pqq(y)represents the
aggregated membership function resulting from the
combination of all activated fuzzy rules. The
defuzzification process shown in Algorithm 5.

Once the crisp output value (z) is obtained for each
domain: Depression, Anxiety, and Stress, the value is
reanalyzed against the output fuzzy membership sets
defined in the system. These membership sets
represent the official DASS-42 severity levels, consisting
of: Normal, Mild, Moderate, Severe. Extremely Severe.
Each crisp result is evaluated to determine which

severity membership function provides the highest
membership degree, and that category becomes the
final diagnosis result. Fig. 3 illustrate the fuzzy
membership functions for Depression, Anxiety, and
Stress, respectively. These figures depict how the crisp
output (z*) obtained by defuzzification is mapped into the
five DASS-42 severity categories: Normal, Mild,
Moderate, Severe, and Extremely Severe.

F. Evaluation

The evaluation stage is a crucial step aimed at
thoroughly validating the performance and reliability of
the developed expert system. Its primary focus is to
measure the accuracy of the system in conducting
psychological assessments based on the DASS-42
instrument, specifically by comparing it against standard
benchmarks and human expert judgments. This
comparison verifies the system's ability to replicate an
expert's diagnostic logic before deployment, ensuring
both technical functionality and psychological validity.

Algorithm 5. Pseudo-code Defuzzification

(1) Input: Output Domain y (Severity Level)
and Aggregated Fuzzy Set (mu)

(2) Output: Crips Value

(3) Function defuzzification(y, mu):

Calculate denominator as the sum of

“) mu along the second dimension

(5) For each row in the mu tensor:

(6) If denominator > small_value (e.g.,

1e-6):
Compute centroid as the

") weighted average of y using mu
(8) Else:
(9) Set centroid to 0

(10) Return the calculated centroids

The evaluating method using Cohen’s Kappa
coefficient. This statistical measure is utilized to evaluate
the degree of agreement between the system’s
diagnostic outputs and the expert’s clinical assessments
(ground truth) while accounting for the possibility of
agreement occurring by chance. For notational
convenience, let P denote the agreement table with the

Table 5. Cross-tabulation of inter-rater ratings for Cohen’s Kappa calculation

Rater B Rater A Row totals
1 2 n—1 n

1 a, by P1

2 €1 a b, P2

n—1 Cn-2 ap-1 bn—l Pn-1

n Cn-1 an Pn

Column totals q1 q Qn-1 qn 1
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same dimensions as T (n X n) matrix whose entries are
defined by Eq. (9)
pij = tij/m ©)
The row and column marginal totals of P are denoted by
formula Eq. (10) and Eq. (11) [35], [36]
n

pi= ) pij (10)
4= ) pi (1)

i=1

respectively. The matrix P is presented as Table 5. The
resulting Kappa value (k) provides a robust metric for
inter-rater reliability, ensuring that the model's
classification of depression, anxiety, and stress levels is
scientifically consistent with professional standards. The
Cohen’s Kappa coefficient is calculated using formula
Eq. (12) [35], [36]

_To e
K=1Th (12)

where P, is the relative observed agreement among
raters (the accuracy of the system) and P, is the
hypothetical probability of chance agreement. The
observed agreement P,is derived from the joint
probability p;;defined in Eq. (9). By aggregating the
weighted joint probabilities across all category pairs, the
expression of P,is obtained, as formulated in Eq. (13)

[35], [36]. -
P, = ZZWU’PU (13)

i=1 j=1
For the expected agreement P,is computed using the
marginal probabilities p;and q;defined in Eq. (10) and
Eq. (11), respectively. Under the assumption of
independence between raters, the expected probability
of chance agreement is given by p;q;, which leads to the

formulation of P, in Eq. (14) [35], [36].
n n

P = zzwijpiqj (14)

i=1j=1

Wij € [O, 1]

with  weight fori,j €
{1,2,..,..,n}

The weighting matrix W € R**¥ in Eq. (15) encodes the
degree of agreement between category pairs, where the
diagonal elements equal one and off-diagonal elements
decrease as the distance between categories increases.
This matrix is used to compute the weighted observed

and expected agreements.

and Wi = 1

W11 Wiz 0 Wik
Wi1 Wi 0 Wyg

w = . . . . (15)
Wik1 Wkz2 0 Wk

Each element w;; of the weighting matrix is calculated
using the formula presented in Eq. (16). where the
weight decreases as the difference between categories
iand j increases [35].

. .2
For nominal data type the weights w;; are define by
using Eq. (17) [35].

0, i#j
Wij - {1’ i =]' (17)

To ensure the statistical rigor of the inter-rater reliability
analysis, it is essential to calculate the Standard Error of
Cohen’s Kappa (SE\), which facilitates the estimation of
confidence intervals and the assessment of the
coefficient's precision. The SE, is derived from the
proportions of observed and expected agreement
relative to the total sample size. In accordance with
standard psychometric procedures, the SE, is computed
using Eq. (18) [37], [38]:

— po(l - po) (18)
Tl(l - pe)z

By applying the result of this equation, researchers can

establish the 95% Confidence Interval (Cl) for the Kappa

statistic, typically expressed as Eq. (19) [38].

K+ 1.96 X SE, (19)
thereby providing a more comprehensive interpretation
of the consensus stability beyond a point estimate. To
ensure consistent interpretation of inter-rater reliability,
the strength of agreement associated with Cohen’s
Kappa values is classified according to the criteria
summarized in Table 6. These categories range from
poor agreement to almost perfect agreement, providing
a standardized framework for evaluating the reliability of
the assessments[39].

SE,

Table 6. Interpretation of Cohen’s Kappa
Agreement Strength

Kappa Value Strength Agreement

<0.00 Poor

0.00-0.20 Slight

0.21 - 040 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost Perfect

A poor agreement (k < 0.00) indicates that the level of
agreement between raters is worse than what would be
expected by random chance, suggesting fundamentally
inconsistent or contradictory judgments. Slight
agreement (k = 0.00-0.20) reflects minimal consistency,
where raters occasionally agree, but their decisions are
largely unreliable. Fair agreement (k = 0.21-0.40)
implies some observable consistency, yet the
agreement remains weak and insufficient for
dependable decision-making. A moderate agreement (k
= 0.41-0.60) suggests that raters show a reasonable
level of consistency, although discrepancies still occur
with notable frequency. Substantial agreement (k =
0.61-0.80) represents a high level of consistency,
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indicating that raters generally interpret and apply
assessment criteria in a similar manner, with only limited
disagreement. Finally, almost perfect agreement (k =
0.81-1.00) denotes an exceptionally strong level of
concordance, where raters reach the same conclusions
in the vast majority of cases, reflecting near-equivalent
judgment patterns.

lll. Result
A. Knowledge Based

As the result of the rule extraction and expert
consultation processes, a comprehensive knowledge
base was successfully developed for the Fuzzy
Inference System (FIS). This knowledge base integrates
both the automatically generated rules from the decision
tree and the refinements provided by the psychological
expert, resulting in a validated and reliable decision
framework. From the processed dataset and fuzzy
transformation, a total of 500 rules These rules
collectively form the foundation of the system’s
reasoning process, where each rule represents a
relationship between the fuzzy input variables (Low,
Medium, High) and the resulting classification levels
(Normal, Mild, Moderate, Severe, Extremely Severe).
Through expert validation, several rules were refined to
better reflect the actual psychological patterns observed
in individuals. This ensures that the resulting knowledge-
based model not only captures the statistical tendencies
from the dataset but also aligns with clinical
interpretations recognized in the field of psychology. The
final knowledge base thus serves as a core component
of the Fuzzy Inference System, enabling accurate and
interpretable decision-making in evaluating levels of
depression, anxiety, and stress.

B. Questionnaire Reduction

40
30
20
10

0
With Expert Validation Without Expert Validatior
(DT Only)

Number of Questionnaire

Fig. 4. Number questionnaire after reduction

The reduction process of the DASS questionnaire was
conducted using two different approaches to optimize
the expert system's input. The first method relied
exclusively on the Decision Tree algorithm to identify
and remove redundant items from the dataset. The
second method involved a psychological expert who

served as a validator to refine the reduction results.
These two approaches yielded different outcomes in
terms of the total number of items removed, as shown in
Fig. 4. The implementation of the Decision Tree
algorithm alone resulted in the reduction of 15 items from
the original questionnaire, while expert validation
narrowed the total number of reduced items to 9.

C. Evaluation

The performance evaluation of the Fuzzy Inference
System (FIS) involves a comparative study of its
reliability across different rule-base configurations to
ensure accurate decision-making. This analysis focuses
on the inter-rater reliability between the DASS
instrument, human experts, and two specific system
versions: the Expert System (ES), which integrates
psychological expert refinements, and the Decision Tree
(DT) model, which utilizes automated rule extraction. By
examining the Cohen’s Kappa coefficients provided in
the results below, the level of agreement between these
raters is quantified to assess the diagnostic
effectiveness of the developed knowledge base.

Table 7. Inter-Rater Reliability = Dominant
Psychological Category Between DASS, Expert
System, and Human Experts using Cohen’s Kappa
Coefficient

95%CI

Ratings Kappa SE Lower Upper
Average 0.918
DASS - ES 0.918 0.080 0.761 1.000
DASS - Exp A 1.000 0.000 1.000 1.000
ES-Exp A 0.918 0.080 0.761 1.000
DASS-ExpB 0919 0.077 0.767 1.000
ES -ExpB 0.835 0.107 0.625 1.000
Exp A—ExpB 0.919 0.077 0.767 1.000

Table 7 presents the results of the inter-rater reliability
analysis using the Expert System (ES). The average
Kappa coefficient for this specific model is 0.918.
Specifically, the agreement between DASS and the ES
is 0.918, while the agreement between DASS and
Expert A reaches 1.000. Furthermore, the ES and
Expert A show a Kappa value of 0.918, and the
relationship between DASS and Expert B is 0.919.
Finally, the ES and Expert B result in a Kappa of 0.835,
while the agreement between the two human experts (A
and B) is recorded at 0.919.

Table 8 provides the reliability metrics when the
system uses the Decision Tree (DT) approach for
classification. The average Kappa coefficient for the DT
model is calculated at 0.567. The agreement between
DASS and DT is 0.209, which is the same value reported
for the relationship between DT and Expert A. Although
the values for DASS-Expert A (1.000) and DASS-Expert
B (0.919) remain the same as the previous table, the DT
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and Expert B relationship shows a lower Kappa of 0.146.
Lastly, the inter-rater reliability between Expert A and
Expert B remains consistent at 0.919.

Table 8. Inter-Rater Reliability Dominant
Psychological Category Between DASS, Decission
Tree, and Human Experts using Cohen’s Kappa
Coefficient

95%Cl

Ratings Kappa SE  Lower Upper
Average 0.567
DASS - DT 0.209 0.150 -0.086 0.503
DASS-ExpA 1.000 0.000 1.000 1.000
DT-Exp A 0.209 0.150 -0.086 0.503
DASS-ExpB 0919 0.077 0.767 1.000
DT-Exp B 0.146 0.143 -0.135 0.426
Exp A—ExpB 0.919 0.077 0.767 1.000

Beyond the identification of dominant categories, the
system's performance is further evaluated based on its
ability to classify specific severity levels for depression,
anxiety, and stress. This ensures that the Expert System
(ES) delivers a detailed diagnostic output, aligning with
clinical assessment tools. By categorizing conditions into
severity levels, the system provides a deeper
understanding of mental health. The following results
utilize Cohen’s Kappa coefficients to measure the
reliability of the system's severity classifications in
comparison to the DASS instrument and human experts,
validating the system's clinical accuracy.

Table 9. Inter-Rater Reliability Depression Severity
Between DASS, Expert System, and Human
Experts using Cohen’s Kappa Coefficient

95%CI

Ratings Kappa SE Lower Upper
Average 0.842
DASS - ES 0.838 0.045 0.750 0.926
DASS-ExpA 0.783 0.076 0.634 0.931
ES-Exp A 0.865 0.049 0.770 0.961
DASS-ExpB 0.870 0.040 0.792 0.947
ES -Exp B 0.810 0.077 0.659 0.961
Exp A—ExpB 0.886 0.045 0.798 0.973

For depression severity, Table 9 shows an average
Kappa coefficient of 0.842. The agreement between
DASS and the Expert System is 0.838, while the
system’s agreement with Expert A and Expert B is 0.865
and 0.810, respectively. Additionally, the DASS
instrument shows an agreement of 0.783 with Expert A
and 0.870 with Expert B, while the two human experts
share a Kappa value of 0.886. In the assessment of
anxiety severity, Table 10 shows that the overall average
Cohen’s Kappa across all rater pairs is 0.648. The
agreement between the DASS instrument and the

Expert System yields a Kappa value of 0.507, while the
agreement between DASS and Expert A is slightly
higher at 0.532.

Table 10. Inter-Rater Reliability Anxiety Severity
Between DASS, Expert System, and Human
Experts using Cohen’s Kappa Coefficient

95%CI

Ratings Kappa SE Lower Upper
Average 0.648
DASS — ES 0.507 0.092 0.327 0.688
DASS-ExpA 0532 0.062 0.411 0.652
ES-Exp A 0.703 0.146 0.416 0.989
DASS-ExpB 0.507 0.084 0.344 0.671
ES - Exp B 0.816 0.091 0.636 0.995
Exp A—ExpB 0.821  0.087 0.650 0.991

Table 11. Inter-Rater Reliability Stress Severity
Between DASS, Expert System, and Human
Experts using Cohen’s Kappa Coefficient

95%CI

Ratings Kappa SE Lower Upper
Average 0.808
DASS - ES 0.831 0.067 0.699 0.963
DASS-ExpA 0.833 0.051 0.734 0.933
ES—-Exp A 0.844 0.065 0.718 0.971
DASS-ExpB 0.742 0.082 0.582 0.902
ES-ExpB 0.833 0.067 0.702 0.964
Exp A—ExpB 0.762 0.078 0.608 0.916

The Expert System and Expert A demonstrate a
substantial agreement with a Kappa coefficient of 0.703.
Similarly, the agreement between DASS and Expert B is
0.507. In contrast, the Expert System and Expert B
achieve a high level of agreement with a Kappa value of
0.816. The highest reliability among human raters is
observed between Expert A and Expert B, with a Kappa
coefficient of 0.821.

Finally, the results for stress severity are detailed in
Table 11, which features an average Kappa coefficient
of 0.811. The Expert System achieves an agreement of
0.831 with DASS, 0.844 with Expert A, and 0.833 with
Expert B. Meanwhile, the DASS instrument reports a
Kappa of 0.833 with Expert A and 0.742 with Expert B.
The inter-rater reliability between human Expert A and
Expert B for stress severity is 0.762.

IV. Discussion
A. Relations Between Number of Questionnaire
and Inter-Rater Reliability

The comparative analysis of the results reveals a
critical relationship between the extent of questionnaire
reduction and the diagnostic reliability of the developed
system. While the Decision Tree (DT) algorithm

Manuscript Received 20 October 2025; Revised 5 January 2026; Accepted 10 January 2026; Available online 20 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1443

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

315


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1443
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 304-323

e-ISSN: 2656-8632

achieved a higher level of simplification by reducing 15
items from the original DASS questionnaire, this
aggressive reduction led to a significant compromise in
clinical accuracy, resulting in an average Kappa
coefficient of only 0.567. This limitation is further
reflected in the wide 95% confidence intervals
observed in DT-related comparisons. For instance, the
agreement between DT and DASS (Kappa = 0.209)
exhibits a confidence interval ranging from —-0.086 to
0.503, indicating substantial uncertainty and the
possibility of agreement no better than chance. This
decline occurs because the DT prioritizes statistical
dominance and frequency-based splits, which may
eliminate items that exhibit weaker individual predictive
power but play an important role when interpreted
contextually in combination with other symptoms. In
contrast, the Expert System (ES), which utilized a more
conservative reduction of only 9 items validated by
psychological experts, maintained a superior average
Kappa of 0.918, supported by consistently narrow and
high confidence intervals (e.g., DASS-ES: 95% CI =
0.761-1.000). This disparity suggests that the
additional items removed by the automated DT process
likely contained essential clinical nuances, such as
subtle affective or behavioural indicators, that are
necessary for distinguishing between overlapping and
complex psychological severity levels.

The involvement of psychological experts in the
validation process acts as a vital stabilizer, ensuring
that efficiency does not come at the cost of diagnostic
integrity. This stabilizing effect is evident not only in the
magnitude of the Kappa values but also in the
consistency of their confidence intervals. The Expert
System (ES) demonstrates an almost perfect
agreement with the DASS instrument (Kappa = 0.918;
95% CIl = 0.761-1.000) and maintains high consistency
with human Expert A (Kappa =0.918; 95% Cl = 0.761-
1.000) and Expert B (Kappa = 0.835; 95% CI = 0.625—
1.000). The substantial overlap among these
confidence intervals indicates that the ES, DASS, and
human experts operate within a statistically
comparable range of agreement. Conversely, the DT-
only model showed poor alignment with professional
judgment, dropping to a Kappa of 0.146 when
compared with Expert B, accompanied by a wide
confidence interval (95% ClI = -0.135-0.426),
highlighting both low reliability and high variability. This
contrast indicates that purely data-driven rules were
insufficient to capture expert-level diagnostic reasoning
in a stable and reproducible manner.

The observed differences in agreement can be
partially attributed to discrepancies in dominant
symptom diagnosis between the Decision Tree (DT)
model and the Expert System (ES). While the DT relies
strictly on data-driven feature selection and rule
induction, this approach tends to oversimplify complex

symptom interactions by prioritizing statistically
dominant patterns and ignoring clinical
interdependencies among symptoms. Such

simplification is reflected in the instability of the DT-
related confidence intervals, which remain wide and
often cross lower agreement thresholds. In contrast,
during the development of the Expert System, several
items resulting from the initial DT-based reduction were
critically re-evaluated by domain experts. This process
led to the reintroduction of certain clinically important
symptoms, the modification of others, and the
adjustment of rule antecedents to better reflect real-
world psychological presentations. Furthermore, the
consequents of several inference rules were revised to
represent clinically meaningful dominant symptom
classifications rather than the original DT-derived
outputs. These expert-driven refinements
fundamentally transformed the DT-generated rules into
a fuzzy inference structure that preserved both high
agreement values and tighter confidence bounds.

Overall, these findings underscore that although
automated algorithms such as Decision Trees are
effective at identifying statistical redundancies and
providing an initial structural foundation for rule
generation, expert involvement is essential to prevent
distortions in dominant symptom diagnosis. The
superior and more stable Kappa values achieved by
the Expert System together with narrower and
consistently high confidence intervals highlight the
importance of integrating algorithmic efficiency with
domain-specific  clinical knowledge to ensure
robustness, interpretability, and diagnostic validity.

B. Severity Result Interpretation

The Expert System (ES) demonstrates a high level of
diagnostic integrity, particularly in the classification of
depression and stress severity. According to Table 9,
the average Kappa coefficient for depression severity
reaches 0.842, while Table 11 shows an average
Kappa of 0.808 for stress. These figures fall within the
"almost perfect" agreement range, indicating that the
system's internal logic effectively mirrors the
established DASS-42 scoring system. Beyond point
estimates, the reliability of these agreements is further
supported by relatively narrow 95% confidence
intervals (Cl). For depression severity, the ES—Expert
A agreement (k = 0.865, 95% CI: 0.770-0.961) and
ES-Expert B agreement (k = 0.810, 95% CI: 0.659—
0.961) show substantial overlap with the DASS-based
comparisons, suggesting that the observed
agreements are statistically stable rather than
incidental. Similarly, in stress severity assessment, the
ES—Expert A agreement (k = 0.844, 95% CI: 0.718—
0.971) exceeds the DASS—Expert B agreement (k =
0.742, 95% CI: 0.582-0.902), with overlapping
confidence intervals indicating comparable levels of
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reliability while still favoring the Expert System'’s
consistency.

A contrasting pattern emerges in the anxiety
severity category in Table 10, which yields the lowest
average Kappa value (0.648). Agreements between
DASS and human experts are only moderate (k =
0.507-0.532), with relatively wider confidence intervals
(e.g., DASS-ES: 95% CI: 0.327-0.688), indicating
greater variabilty and uncertainty in these
assessments. This divergence is likely attributable to
the inherent subjectivity of anxiety symptoms and the
reliance of DASS on self-reported responses, whereas
clinicians integrate behavioral observation and
contextual clinical judgment. Notably, agreements
between the Expert System and human experts remain
high in this domain (ES—Expert B: k = 0.816, 95% CI:
0.636-0.995), reinforcing the system’s capacity to
approximate expert reasoning even in diagnostically
ambiguous conditions.

Importantly, the overlap of confidence intervals
across ES-expert and expert—expert comparisons
implies that the Expert System (ES) performs on par
with, and in several instances slightly better than,
human raters when uncertainty is taken into account.
For example, in depression severity, the ES—Expert
A agreement (k = 0.865, 95% CI: 0.770-0.961) slightly
exceeds the agreement between the two human
experts themselves (Exp A—Exp B: k = 0.886, 95% CI:
0.798-0.973) when considering the overlapping
confidence intervals with other comparisons. Similarly,
for anxiety severity, the ES—Expert B agreement (k =
0.816, 95% CI: 0.636-0.995) is comparable to, and in
some interpretations slightly more stable than, the
agreement between Expert A and Expert B (k = 0.821,
95% CI: 0.650-0.991), suggesting that the system can
approximate expert reasoning even in diagnostically
ambiguous domains. In stress severity, the ES-
Expert A agreement (k = 0.844, 95% CI: 0.718-0.971)
is notably higher than the agreement between DASS
and Expert B (k = 0.742, 95% CI. 0.582-0.902),
reinforcing the system’s ability to consistently capture
clinically relevant patterns that might be variably
interpreted by different human raters.

These instances across multiple psychological
domains highlight that the Expert System’s fuzzy
inference rules not only encode the decision logic of
individual experts but also reduce inter-rater variability,
effectively standardizing diagnostic outcomes. The
relatively narrow and overlapping confidence intervals
across ES-expert comparisons indicate that the
system’s predictions remain robust across different
evaluators, minimizing the uncertainty that naturally
arises in human assessment. In contrast, the wider
confidence intervals seen in some DASS—expert
comparisons, particularly in anxiety severity,
demonstrate that self-reported instruments are more

sensitive to variability in interpretation and contextual
factors.

Overall, these observations suggest that the Expert
System provides a stable and clinically valid diagnostic
framework, which captures nuanced symptom
interactions and preserves the qualitative consistency
of dominant symptom classification across raters. By
effectively aligning with human judgment while
reducing variability, the system demonstrates its
potential as a reliable tool for standardizing
psychological assessment and supporting clinical
decision-making.

C. Fuzzy Logic and Handling Subjective Symptom

Assessment

Beyond the quantitative agreement measures, the
Expert System (ES) leverages fuzzy logic to effectively
address the inherent subjectivity and uncertainty
present in psychological assessments. In conventional
approaches, such as decision tree-based or DASS
scoring methods, questionnaire items are typically
treated as fixed indicators of specific psychological
domains, assuming that each item consistently and
exclusively reflects a single construct (e.g., stress,
anxiety, or depression) regardless of symptom intensity
or contextual interactions. This static interpretation
overlooks the variability in how respondents experience
symptoms and how clinicians interpret their severity,
particularly in borderline or overlapping cases.
Consequently, subtle shifts in symptom expression and
cross-domain influences may be insufficiently
captured, potentially leading to less sensitive or
inaccurate mental health classifications.

Fuzzy logic addresses these limitations by
representing symptom intensity as degrees of
membership across multiple severity levels. Triangular
and trapezoidal membership functions allow a single
symptom to partially belong to more than one category
simultaneously for example, a mild anxiety report may
have a membership of 0.3 to “normal” and 0.7 to “mild
anxiety” thereby reflecting ambiguity and overlap
inherent in clinical interpretation. Fuzzy inference rules
then combine these graded memberships across
multiple  symptoms, preserving  cross-domain
interactions and subtle symptom variations. This
process mirrors the reasoning of human experts, who
weigh multiple interacting indicators rather than relying
on rigid thresholds, resulting in diagnostic outputs that
are both more nuanced and clinically plausible. Overall,
the application of fuzzy logic in the ES reduces inter-
rater variability and enhances consistency across
evaluations. It complements the high Cohen’s Kappa
coefficients by demonstrating that the system’s strong
statistical agreement with experts arises not merely
from accurate prediction but from a methodological
capacity to handle uncertainty, contextual symptom
interaction, and subjective interpretation. In this way,
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Table 12. Comparison with Related Works

Accuracy Result Expert
Author Method Dataset D A S Validation
Ramzan et al S Physical
' FIS Symptoms X 87% X Yes
(2023) [11] Anxi
nxiety
D‘(aé%azcl‘; e[g]a" Data Mining + FIS ~ DASS-21 ~70%  ~70%  ~80% No
Rajawat et al. CNN + Fuzzy Image Facial o4O
(2022) [40] Logic Expression 84% X X No
Machine Learning
Priya et al. (DT, Random ) 700 740 750
(2020) [5] Forest, SVM, DASS-21 79% 71% 2% No
KNN)
Kumar et al. K-star + Random ) o o o
(2020) [6] Forest DASS-42 91% 92% 90% No
Proposed
Melfl"s‘;dvfi'tf - DT-FIS DASS-42  084x 064k 080k Yes
Expert Val

fuzzy logic provides both computational rigor and
clinical validity, reinforcing the system’s potential as a
reliable tool for standardized psychological
assessment.

D. Comparison with Related Works

Table 12 presents a comparison between the proposed
method and recent studies in psychological
assessment. Many listed works, such as Kumar et al.
[6] and Priya et al.[5], primarily use standard machine
learning methods like Random Forest, SVM, and KNN
to analyze DASS datasets. Although these data-driven
approaches show high performance, with Kumar et al.
[6] achieving over 90% accuracy on DASS-42. Table 12
identifies a major limitation of that study is the lack of
expert validation. These methos only focus on finding
statistical patterns rather than using clinical reasoning.
As a result, they generate classifications that are
lacking alignment with human diagnosis that is
necessary for actual clinical use.

Studies by Delgado et al. [9] and Rajawat et al.[40]
employ purely data-driven approaches, such as data
mining and convolutional neural networks (CNN) with
fuzzy logic, to tackle the DASS-21 dataset or facial
expression recognition. While these methods offer
valuable insights, they still focus primarily on pattern
extraction from data, without explicitly incorporating
expert validation. Delgado et al.[9] and Rajawat et al.
[40] achieve reasonable accuracy results for Anxiety
(around 70-80%), but their approaches lack the clinical
reasoning needed for real-world psychological
assessments. As seen in Table 12, only the study by
Ramzan et al.[11] and the proposed DT-FIS method
integrate "Expert Validation" to ensure that the

classification logic aligns with expert clinical judgment.
However, Ramzan et al.'s[11] work is limited to physical
symptoms of anxiety, whereas the proposed DT-FIS
method extends this concept by applying expert-
validated fuzzy inference to the more complex,
multifaceted DASS-42 dataset. This makes the
proposed method not just a statistical classifier, but a
comprehensive expert system capable of bridging the
gap between machine learning and clinical expertise.

Furthermore, a fundamental methodological
divergence is observed in the performance metrics
detailed in Table 12. Previous studies predominantly
utilize standard accuracy percentages, which can be
misleading if they do not account for chance
agreement. The proposed method moves beyond this
convention by employing Cohen's Kappa (k) to
rigorously measure the level of agreement between the
system and human experts. Although the numerical
values for the proposed method (e.g., 0.84 x for
Depression) may appear numerically lower than the
91% accuracy reported by Kumar et al. [6], the Kappa
metric represents a far more substantial validation of
reliability. It confirms that the system does not merely
guess the correct label but demonstrates a 'strong' to
'perfect’ concordances with expert diagnosis, a
standard of evaluation that conventional accuracy
metrics fail to capture.

V. Conclusion
This study aims to develop an Expert System that

improves mental health diagnostics, particularly in
depression, anxiety, and stress, by combining fuzzy
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logic and decision tree-based rule extraction with expert
validation. The findings demonstrate that the ES
outperforms the Decision Tree model, achieving higher
diagnostic accuracy and stability. Specifically, the ES
achieved Kappa values of 0.842 for depression and
0.808 for stress, reflecting "almost perfect" agreement.
However, the system's performance for anxiety was
slightly lower, with a Kappa of 0.648, indicating that
anxiety classification requires further refinement. While
the current system performs well, future improvements
are necessary to further enhance its sensitivity,
especially for anxiety classification. Expanding the input
categories from three to five levels (e.g., very low, low,
medium, high, very high) would better capture subtle
symptom variations, particularly in borderline cases.
These changes, along with adaptive or data-driven
optimization of membership functions, are expected to
improve precision and clinical relevance. Such
enhancements would increase the system's robustness
and improve its performance across all psychological
domains. Overall, the integration of expert knowledge
into the fuzzy inference process has proven essential for
ensuring diagnostic validity and reducing inter-rater
variability. This hybrid approach, which combines
computational efficiency with expert insights, enhances
the system's reliability and consistency. Future research
could focus on refining fuzzy input granularity to ensure
the system remains adaptable and accurate in
diagnosing complex and overlapping psychological
conditions.
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APPENDIX A: DASS-42 QUESTIONNAIRE

NO TEXT

Q1 | found myself getting upset by quite trivial things.

Q2 | was aware of dryness of my mouth.

Q3 | couldn't seem to experience any positive feeling at all.

Q4 | experienced breathing difficulty (eg, excessively rapid breathing, breathlessness in the absence of
physical exertion).

Q5 | just couldn’t seem to get going.

Q6 | tended to over-react to situations.

Q7 | had a feeling of shakiness (eg, legs going to give way).

Q8 | found it difficult to relax.

Q9 | found myself in situations that made me so anxious | was most relieved when they ended.

Q10 | Ifelt that | had nothing to look forward to.

Q11 | found myself getting upset rather easily.

Q12 | I felt that | was using a lot of nervous energy.

Q13 | | felt sad and depressed.

Q14 | | found myself getting impatient when | was delayed in any way (eg, elevators, traffic lights, being
kept waiting).

Q15 | I had a feeling of faintness.

Q16 | felt that | had lost interest in just about everything.

Q17 | I felt | wasn’'t worth much as a person.

Q18 | | felt that | was rather touchy.

Q19 | perspired noticeably (eg, hands sweaty) in the absence of high temperatures or physical exertion.

Q20 | | felt scared without any good reason.

Q21 | felt that life wasn’t worthwhile.

Q22 | | found it hard to wind down.

Q23 | had difficulty in swallowing.

Q24 | I couldn’t seem to get any enjoyment out of the things | did.

Q25 | | was aware of the action of my heart in the absence of physical exertion (eg, sense of heart rate
increase, heart missing a beat).

Q26 | | felt down-hearted and blue.

Q27 | found that | was very irritable.

Q28 | felt | was close to panic.

Q29 | found it hard to calm down after something upset me.

Q30 | Ifeared that | would be “thrown” by some trivial but unfamiliar task.

Q31 | was unable to become enthusiastic about anything.

Q32 | found it difficult to tolerate interruptions to what | was doing.

Q33 | was in a state of nervous tension.

Q34 | felt | was pretty worthless.

Q35 | was intolerant of anything that kept me from getting on with what | was doing.

Q36 | | felt terrified.

Q37 | I could see nothing in the future to be hopeful about.

Q38 | I felt that life was meaningless.

Q39 | I found myself getting agitated.

Q40 | I was worried about situations in which | might panic and make a fool of myself.

Q41 | experienced trembling (eg, in the hands).

Q42 | I found it difficult to work up the initiative to do things.
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