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Abstract Cervical cancer remains a significant global health burden for women, with approximately 660,000
new cases and 350,000 associated deaths recorded worldwide in 2022. Machine learning methods have
shown great promise in advancing timely detection and accurate diagnosis. This investigation compares
two widely used oversampling strategies, Synthetic Minority Oversampling Technique (SMOTE) and
Adaptive Synthetic Sampling (ADASYN), applied to cervical cancer identification via the XGBoost classifier,
paired with Multiple Imputation by Chained Equations (MICE) to handle incomplete data. The dataset
consists of cervical cancer risk factors with four diagnostic outcomes: Hinselmann, Schiller, Cytology, and
Biopsy, which are treated as independent binary classification tasks rather than a single multilabel
classification problem. The process began by preparing a dataset of cervical cancer risk factors through
MICE imputation, then applying SMOTE and ADASYN to address class imbalance. The XGBoost model is
optimized using Random Search hyperparameter tuning and evaluated across train-test split ratios (50:50,
60:40, 70:30, 80:20, and 90:10) using accuracy, precision (macro, micro, weighted), recall (macro, micro,
weighted), F1-score (macro, micro, weighted), and AUC metrics. The results indicated that the XGBoost
setup with MICE and SMOTE outperformed the others, achieving 97.1% accuracy, 97.1% mic-precision,
97.1% mic-recall, 97.1% mic-F1, and 97.1% AUC. Meanwhile, the ADASYN-integrated model showed
marginally lower results, with 95.4% accuracy, 95.4% micro-precision, 95.4% micro-recall, 95.4% micro-F1,
and 55.5% AUC. SMOTE proved more adept at creating evenly distributed synthetic data for the
underrepresented group. Overall, this work underscores the value of integrating MICE imputation, SMOTE
oversampling, and tuned XGBoost as a reliable approach for cervical cancer detection. These insights pave
the way for automated screening tools that can bolster clinical judgment and improve early diagnosis
outcomes.
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l. Introduction chemotherapy [8], and Pap smears. Pap smears have

The cervix is part of the female reproductive organ and
is located at the lower fibromuscular portion of the
uterus [1]. When the cells that cover the cervix start to
grow and multiply uncontrollably without following the
proper mechanisms, it can lead to cervical cancer [2].
Cervical cancer is one of the leading causes of
women's deaths worldwide [3]. In 2022, there will be an
estimated 660,000 new cases and 350,000 deaths due
to cervical cancer worldwide [4]. Cervical cancer is
caused by the human papillomavirus (HPV), with the
highest risk types being HPV 16, 18, 31, and 33 [5].
HPV is mostly transmitted through sexual contact and
targets basal keratinocytes in the genital mucosa, oral
mucosa, and skin [6]. Various factors, such as
smoking, long-term use of oral contraceptives, multiple
pregnancies, or pregnancy at a young age, may also
increase the risk of cervical cancer [7]. Treatments for
cervical cancer include radiation, surgery,

been the lifesaver for millions of women with cervical
cancer [9].

Cervical cancer can be detected with machine
learning. ML models have been shown to accelerate
the diagnosis of cervical cancer [2]. Research on
cervical cancer has been conducted by [2] using the
decision tree method, with features selected via RFE
and SMOTE-Tomek, achieving an accuracy of 98.72%
and a sensitivity of 100%. Other research on cervical
cancer was conducted by [10] using the Random
Forest, Decision Tree, Adaptive Boosting, and Gradient
Boosting methods with an accuracy value of 100%,
while the SVM method produced an accuracy value of
99%. Although these results are encouraging, selecting
an appropriate model remains crucial, particularly for
medical datasets that are often characterized by class
imbalance, complex feature interactions, and a high
risk of overfitting. Consequently, ensemble learning
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methods that employ regularization and advanced
optimization algorithms are increasingly favored in
cancer detection tasks. One of the machine learning
models commonly used in the medical field, including
detecting cancer, is called XGBoost [11]. XGBoost is
an extension of GBDT [12] that is efficient for complex
classification tasks [13]. Moreover, XGBoost employs
advanced hyperparameter tuning mechanisms to
reduce overfitting, decrease prediction variance, and
improve model accuracy, thereby enabling optimal
model performance [14][15]. Several studies have
demonstrated the effectiveness of XGBoost in medical
applications. For instance, research by [16] using the
XGBoost method on heart disease achieved an
accuracy value of 91.8%. Other research conducted by
[17] on Aneurysmal Subarachnoid Hemorrhage
disease resulted in higher auc values in the XGBoost
model to predict mortality and adverse functional
outcomes, which were 0.950 and 0.958, compared to
logistic regression models, which were 0.767 and
0.829.

To improve the performance of the XGBoost model,
hyperparameter tuning using Random Search is
employed to identify configurations that deliver optimal
outcomes. Hyperparameter optimization has been
shown to significantly influence the performance of
machine learning models, although its effectiveness
may vary across algorithms [18]. Compared to
exhaustive methods such as Grid Search, RS samples
hyperparameters randomly from predefined
distributions, enabling broader, more diverse
exploration of the search space at substantially lower
computational cost [19]. Although more advanced
approaches, such as Bayesian Optimization, provide
adaptive search strategies, they often involve higher
computational complexity and require careful modeling
of the objective function, which may be less practical
for  high-dimensional  hyperparameter  spaces.
Consequently, RS represents a suitable trade-off
between computational efficiency and search diversity,
particularly for complex models such as XGBoost.
Despite its advantages, RS is not without limitations, as
its stochastic sampling strategy may lead to variability
in outcomes [20]. Nevertheless, several studies have
demonstrated the effectiveness of RS in improving the
performance of XGBoost models. For instance, [21]
applied XGBoost with RS to the Chronic Kidney Failure
dataset from the UCI Machine Learning Repository and
combined XGBoost with Random Search, achieving an
accuracy of 98.57% and an F-Measure of 0.9842. In
another study, [22] applied XGBoost optimized with RS
for shallow landslide classification in Trabzon Province,
Turkey, reporting an accuracy of 75.64%, precision of
94.71%, recall of 55.23%, and an F1-score of 69.77%.

One of the common challenges in machine learning
based disease detection is the presence of missing
values and class imbalance. The cervical cancer

dataset used in this study, obtained from the UCI
Machine Learning Repository, contains a substantial
proportion of missing data, which can adversely affect
model accuracy and predictive reliability if not properly
addressed [23]. Although missing values can be
handled using various imputation techniques [24]
simple approaches such as mean, median, or mode
imputation may distort data distributions and fail to
preserve important relationships among features,
which are critical in medical datasets. Therefore, this
study employs Multivariate Imputation by Chained
Equations (MICE), a model-based imputation method
that iteratively imputes missing values by modeling
each feature conditional on the others [25] [26]. MICE
is particularly advantageous for the cervical cancer
dataset, as it is capable of maintaining complex inter-
feature relationships and reducing bias introduced by
missing data, thereby producing more realistic and
statistically consistent imputations. The effectiveness
of MICE has been demonstrated in previous studies,
for example, [27] using MICE techniques to replace
outliers in concrete slump data from the UCI Machine
Learning Repository resulted in the highest value in the
R? stacking model 0.9702, RMSE and MAE of the KNN
model are 0.1392 and 0.1162.

Imbalanced data makes it difficult for machine
learning models to perform optimally [28].
Oversampling is a commonly used strategy to address
this issue by increasing the number of minority class
samples to achieve a more balanced class distribution
[29] [30]. Among various oversampling approaches,
Synthetic Minority Oversampling Technique (SMOTE)
and Adaptive Synthetic Sampling (ADASYN) were
selected in this study due to their distinct mechanisms
for generating synthetic minority samples. SMOTE
creates synthetic instances through interpolation
between existing minority samples and their nearest
neighbors, aiming to achieve a more uniform class
balance [31]. In contrast, ADASYN adaptively
generates synthetic samples by emphasizing minority
instances that are more difficult to learn, particularly
those located in regions with high class overlap [32].
These fundamental differences provide a strong basis
for comparative analysis, as SMOTE focuses on global
class balance, whereas ADASYN prioritizes learning
from challenging samples. Research conducted by [33]
using the SMOTE and ADASYN methods to balance
data on CCF datasets resulted in the highest accuracy
value in the Random Forest model with SMOTE, which
is 99.99%, while the accuracy value of Random Forest
with ADASYN is 99.98%.

The primary objective of this research is to assess
and compare the efficacy of oversampling methods for
classifying cervical cancer using an XGBoost model.
Addressing challenges of missing data and class
imbalance, the study explores the relative effects of
SMOTE and ADASYN, combined with MICE

Manuscript received 13 November 2025; Revised 10 January 2026; Accepted 22 January 2026; Available online 24 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1415

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

369


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1415
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp:

368-394 e-ISSN: 2656-8632

imputation, on classification outcomes, with the aim of
determining the optimal strategy to enhance predictive
accuracy in unbalanced cervical cancer datasets. This
work provides several contributions: it develops an
integrated evaluation framework that merges MICE
imputation, oversampling approaches, and XGBoost
modeling; it conducts a thorough comparison of
SMOTE and ADASYN within a unified classification
workflow, offering insights into their comparative
efficacy in managing class imbalance; and it analyzes
the influence of these preprocessing methods on
classification results, emphasizing the importance of
data preprocessing and model refinement in boosting
predictive reliability. The key contributions of this study
are outlined as follows:

1) Anintegrated classification framework designed for
cervical cancer datasets, incorporating MICE
imputation, oversampling methods, and XGBoost
enhanced by Random Search for hyperparameter
optimization.

2) A comprehensive comparative study of SMOTE
and ADASYN oversampling techniques,
emphasizing their effects on classification
outcomes within a consistent modeling setup.

3) An empirical assessment identifying the most
efficient oversampling approach to enhance
cervical cancer classification in unbalanced
datasets.

The subsequent sections of this paper are organized

as follows. Section | surveys existing literature on

cervical cancer classification and techniques for
addressing data imbalance. Section |l details the
dataset, preprocessing procedures, oversampling
methods, and the proposed XGBoost-based approach.

Risk Factor Cervical Cancer 4)@

k.

Section Il reports the experimental outcomes and
performance metrics. Section IV deliberates on the
results and the study's constraints. Lastly, Section V
summarizes the conclusions and suggests avenues for
future investigation.

Il. Method

This research compares SMOTE and ADASYN on
cervical cancer classification using the XGBoost
method. The flowchart of this research is represented
in Fig.. This research uses Python for machine learning
classification on the “Cervical Cancer” dataset from
UCI. The methodology consists of several stages. First,
data preprocessing using the MICE (Multivariate
Imputation by Chained Equations) technique was
performed to impute missing values. The dataset is
then divided into training and testing sets in various
proportions (90:10, 80:20, 70:30, 60:40, and 50:50) for
comparative analysis. Next, the data was balanced
using SMOTE and ADASYN. The data is then
classified using the XGBoost method with Randomized
Hyperparameter Tuning. Finally, the test data
evaluation results are measured using accuracy,
precision (macro, micro, and weighted), recall (macro,
micro, and weighted), F1-score (macro, micro, and
weighted), and AUC.

A. Data Collection

The dataset used in this study is the Cervical Cancer
(Risk Factors) Dataset from the University of California,
Irvine (UCIl) Machine Learning Repository, which
contains patient data from “Hospital Universitario de
Caracas” in Caracas, Venezuela. This dataset can be
accessed through the following link:
https://archive.ics.uci.edu/dataset/383/cervical+cancer

Confusion Matrix
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Multiple Imputation by ‘ -
Chained Equations [FiEr W LA
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SMOTE
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Fig. 1. Research flowchart comparing SMOTE and ADASYN in cervical cancer classification, with MICE

imputation and XGBoost optimization using Random

Search hyperparameter tuning.
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Table 1. A detailed description of the Cervical Cancer dataset used in the current study

No Attribute Type Range Missing Value
1  Age Integer 13 - 84 Years 0
2 Number of sexual partners Integer 1 - 28 sexual partners 26
3  First sexual intercourse Integer 10 - 32 years 7
4 Number of pregnancies Integer 0 - 11 pregnancies 56
5 Smokes Boolean 0 — No, 1 — Yes 13
6 Smokes (years) Integer 0 - 37 years 13
7  Smokes (pack/year) Integer 0 - 37 packs per years 13
8 Hormonal Contraceptives Boolean 0 — No, 1 — Yes 108
9 Hormonal Contraceptives (years) Integer 0 - 30 years 108
10 Intrauterine Device (IUD) Boolean 0 — No, 1 — Yes 117
11 IUD (years) Integer 0- 19 years 117
12 Sexually Transmitted Diseases Boolean 105
(STDs) 0 — No,1— Yes

13 STDs (number) Boolean 0 — No, 1 — Yes 105
14 STDs:condylomatosis Boolean 0 — No, 1 — Yes 105
15 STDs:cervical condylomatosis Boolean 0 — No, 1 — Yes 105
16 STDs: vaginal condylomatosis Boolean 0 — No, 1 — Yes 105
17 STDs: vulvo-perineal condylomatosis  Boolean 0 — No, 1 — Yes 105
18 STDs:syphilis Boolean 0 — No, 1 — Yes 105
19 STDs:pelvic inflammatory disease Boolean 0 — No, 1 — Yes 105
20 STDs:genital herpes Boolean 0 — No, 1 — Yes 105
21  STDs:molluscum contagiosum Boolean 0 — No, 1 — Yes 105
22 STDs:AIDS Boolean 0 — No, 1 — Yes 105
23 STDs:HIV Boolean 0 — No, 1 — Yes 105
24 STDs:Hepatitis B Boolean 0 — No, 1 — Yes 105
25 STDs:HPV Boolean 0 — No, 1 — Yes 105
26 STDs: Number of diagnoses Integer 0-3 0
27 STDs: Time since first diagnosis Integer 1-22 787
28 STDs: Time since last diagnosis Integer 1-22 787
29 Dx:Cancer Boolean 0 — No, 1 — Yes 0
30 Dx:CIN Boolean 0 — No, 1 — Yes 0
31 Dx:HPV Boolean 0 — No, 1 — Yes 0
32 Diagnosis: Dx Boolean 0 — No, 1 — Yes 0
33 Hinselmann (Target Variable) Boolean 0 — No, 1 — Yes 0
34 Schiller (Target Variable) Boolean 0 — No, 1 — Yes 0
35 Citology (Target Variable) Boolean 0 — No, 1 — Yes 0
36 Biopsy (Target Variable) Boolean 0 — No, 1 — Yes 0

+risk+factors. This dataset was chosen due to its
comprehensive representation of cervical cancer risk
factors, which contains 858 patient data and 36
attributes. The attributes include patient demographic
information, medical history, and lifestyle factors. The
target variables are the diagnosis results of
Hinselmann, Schiller, Cytology, and Biopsy, which are

the main diagnosis methods for cervical cancer. Details
of the dataset's features are presented in Table.

B. Multiple Imputation by Chained Equations
(MICE)

MICE is an imputation method that fills in missing data

using a univariate conditional distribution for each
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variable, considering the other variables iteratively [34].
MICE, also known as Multiple Sequential Regression
Imputation, was first introduced by Donald Bruce Rubin
in 1987 [35]. The development and refinement of this
method was then popularized more widely by Stef Van
Buuren in the early 2000s through his contributions in
the field of statistics and the development of software
supporting this technique [27].
The advantages of MICE lie in its ability to consider
uncertainty in imputation [36], use relationships
between variables [25], and provide flexibility for
imputing continuous, binary, and categorical data with
regression models appropriate for each type of data
[37] [38] [26]. The steps of the MICE algorithm are as
follows:
1. Initial Imputation
Replace missing values using simple methods,
such as mean imputation, to generate an initial
complete data set [39].
2. Storage in MIDS Object
Store the initial imputed dataset in an object called
Multiply Imputed Dataset (MIDS), which is a copy of
the original dataset with the missing values replaced
[40].
3. Regression and Coefficient Estimation
Perform an Ordinary Least Squares (OLS)
regression on each of the imputed datasets. From
this regression, regression coefficients are
obtained, which are used to estimate the missing
values. The regression results are stored in the
Multiply Imputed Repeated Analysis (MIRA) object
shown in Eq. (1) as follows [41]:

X1 = Bo+ PriXe+ Xy + o+ BiXi + € (1)

where, X, is the dependent variable that the model
wants to predict or explain. The term S, represents
the baseline value of X; when all independent
variables X,, X5, ...,X), are zero. The coefficients
B, B2, ..., By indicate the effect of each independent
variable, which serves as a predictor, on the
dependent variable. The term & accounts for model
error by capturing factors not explained by the
predictors.
Suppose each of the k independent variables,
X1, X3, ..., Xy, has n levels. Then, x;; is the i level of
the j** independent variable x; and y,, y,, ..., ¥, has
n levels. Thus, the n-tuples of observations are
assumed to follow the same model, which is
expressed in Eq. (2) to Eq. (5) below:

Y1 = bo 4 bix13 + byx1p + -+ brxypteg 2)

Y2 = by + bixp1 + byXop + -+ byt ey (3)
Yi= b + blxll + blez +t bkxlk+ €; (4)

Yn = by + biXpg + byXpy + o+ brXnpt en (5)
If each independent variable has n observations,
this Eq. (6) can be written in matrix form as follows
[42]:

y=XB+¢ (6)
where X is an (n X k) matrix of n observations on k
independent variables X;, X,, ..., X, ,yisan (n x 1)
vector of n observations of the research variable,
is a (k x 1) vector of regression coefficients and ¢ is
an (n x 1) vector of disturbances. Using matrix
notation, this equation can be written Eq. (7) below:

V1] 1 x11 %92 [£1]
[ Yz | [1 X21  X22 ﬁz |£2|
Yn L Xn1 Xpz o e xnn Bn l ‘

The regression coefficient can be calculated using
the formula in Eq. (8) [42]:
p=&XX)Xy (8)

where X' is the transpose matrix of X.
Pooling Estimates
Pool all coefficient estimates from the imputed
dataset using Rubin's Rules. The pooled mean

estimate is calculated in Eq (9) [43]:

Hcombmed - Zz 19 (9)

where, 8.ompinea iS calculated by averaging the
mean estimates ; from each of the m is the number
of imputed datasets, providing a single
representative value that accounts for variability
introduced by the imputation process.
After that, perform a combined variance that takes
into account the variance of each estimate and the
variance between imputations in Eq. (10) [44]:
beompinea = =2 V(0) + (1+) .B(®) (10)
where the combined variance, denoted as
Vo .ompmea» 1S ODtained from multiple imputation by
accounting for both within- and between-imputation
variability. In this context, m represents the number
of imputations used (for example, if there are 5
imputation datasets, then m = 5), while §; denotes
the parameter estimate of the it* imputation
dataset, such as a mean or regression coefficient.
The term V(8;) indicates within-dataset variance,
reflecting the uncertainty in the estimate for the
dataset, and B(0) represents the between-
imputation variance, capturing the variation
between estimates from different imputation
datasets.

. Process lteration

Repeat steps 2 to 4 for each variable with missing
data. One-time processing of all variables is
referred to as one cycle (iteration). This cycle is
repeated several times until the imputation results
are stable, meaning the predicted values change
little between cycles.
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Table 2. A representative sample of the cervical cancer dataset before data preprocessing steps

Age seyuuanlquitgfers lrr:’::trcsgtfrus?al Hinselmann Schiller Citology Biopsy
18 4 15 0 0 0 0
15 1 14 0 0 0 0
34 1 ? 0 0 0 0
32 2 19 0 0 0 0
25 2 17 0 0 1 0
33 2 24 0 0 0 0
29 2 20 0 0 0 0

Table 3. A representative sample of the cervical cancer dataset after data preprocessing steps.

Age sesuuarrggﬁtgfers '2,:2:555;‘2 Hinselmann Schiller Citology Biopsy
18 4 15 0 0 0 0
15 1 14 0 0 0 0
34 1 202.147 0 0 0 0
32 2 19 0 0 0 0
25 2 17 0 0 1 0
33 2 24 0 0 0 0
29 2 20 0 0 0 0

Table presents the “Cervical Cancer” sample dataset
before preprocessing, and Table presents the “Cervical
Cancer” sample dataset after preprocessing.

C. Oversampling

Unbalanced datasets lead to imbalances in the minority
and majority classes in multiclass classification
problems. Unbalanced data occurs when the minority
class has fewer samples than the majority class. Class
imbalance can adversely affect model training, degrade
classification performance, and lead to high false
positives for certain minority class samples [45] [46].
Oversampling is a technique for overcoming
imbalanced datasets [29] that is easily applied to
multiclass classification [47] which works by replicating
samples from the minority class [48], thus increasing
the size of the dataset [33] making the number of
samples equal to the majority class [49].

Oversampling does not require extensive parameter
tuning and can be performed in seconds [31].
Oversampling can balance the class distribution of a
dataset without losing information [50], although it can
lead to overfitting [32] due to the large number of
replicated samples in the minority class and cannot
contribute to extending the decision boundary to the
majority class region [28]. Therefore, oversampling has
several variations to overcome overfitting. SMOTE and
ADASYN are oversampling techniques often used to
balance datasets and avoid overfitting.

1. Synthetic Minority Oversampling Technique

(SMOTE)

SMOTE is an oversampling technique that starts by
randomly selecting a minority class instance and
finding its k-nearest minority class neighbors [51].
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SMOTE is an improved method based on Random
Oversampling (ROS) [52] that was first proposed by
Narasimhan Chawla and colleagues in 2002 [53].
SMOTE overcomes overfitting by generating synthetic
samples that are similar, but not identical, to the
minority class samples [50]. This technique improves
the representation of rare events, allowing the model to
learn patterns in imbalanced data [54], and improves
the accuracy of minority class fault detection [46]. The
algorithm of SMOTE is as follows:
a) Calculating Euclidean Distance and Finding K
Nearest Neighbors
For each sample in the training set, calculate the
Euclidean distance to each minority class sample
x;, and find the k nearest neighbors for each
minority-class sample. The Euclidean distance
between two points in the feature space x =
(x1,%2, ., xp) @and y = (y4,¥5, ..., V) is calculated
by the following Eq. (11) [55]:

dlx,y) = XL (i —y)? (11)
where the distance d(x,y) represents the
measure of dissimilarity between two data points
x and y. Each x; dan y; corresponds to the it"
feature of the sample x and y, respectively, and n
denotes the total number of features considered in
the calculation.

b) Determine the Sampling Ratio (N)
Based on the sampling imbalance rate, determine
the sampling ratio N. For x;, randomly select N
samples from its k nearest neighbors, denoted as
xy, [30].

c) Building a New Synthetic Sample
Build a new sample based on x; and x;, until the
classes are balanced, denoted as X,., in the
following Eq. (12) [56]:

Xnew = x;+ 4. (xp — x;) (12)
where a new synthetic sample, denoted as X,,.,,, is
generated based on an original minority sample, x;,
and one of its nearest neighbors, x,. The
interpolation between x; and x; is controlled by a
random value A ranging from 0 to 1, which
determines the relative contribution of the original
sample and its neighbor in creating the synthetic
instance.

2. Adaptive Synthetic Sampling (ADASYN)

ADASYN is an extension of the SMOTE method that
serves as an adaptive oversampling technique for
minority classes [57]. By generating new synthetic
samples around hard-to-classify data, ADASYN
increases data variability, reduces the risk of overfitting,
and is proven to improve machine learning model
performance on highly imbalanced datasets [58].
ADASYN uses a density distribution to adaptively
generate a number of synthetic samples, whereas
SMOTE generates the same number of synthetic

samples for each minority class [59]. The steps of

applying the ADASYN technique are as follows:

1. Class Initialization and Ratio
The first step in ADASYN is to calculate the ratio
between the number of samples of the minority
class (N;;,) and the majority class (Nyq;) in Eq.
(13):

Nomnin
T = m (1 3)

The value of T is used for algorithm initialization and
as a basis for calculating the oversampling
requirement [60].

2. Determining the Total Number of Synthetic Samples
(@)
Based on the degree of imbalance and the
parameter 3 (usually between 0 - 1), calculate the
total number of synthetic samples to be generated
in Eq. (14).

G = (|Nmaj|_ |Nmin|)x:8 (14)
where S € [0,1] is a parameter that represents the
desired level of balance after adding synthetic data.
A value of B = 0 means that no synthetic samples
are added, while g = 1 will result in a fully balanced
dataset, where the majority and minority classes
have equal proportions [61].

3. Calculate Majority Dominance Around Each
Minority Sample
For each minority sample x;, the ADASYN algorithm
finds the k nearest neighbors based on Euclidean
distance, then calculates the majority dominance
ratio r; in Eq. (15) as follows [62]:
r =1t (15)
Where the majority dominance rate r;, represents
the proportion of the majority class sample
surrounding the i" minority sample. In this context,
A; denotes the number of majority neighbors of that
minority sample, while k indicates the total number
of neighbors considered when calculating the
dominance rate.
4. Normalization of r;
The r; values are then normalized to produce a
weight distribution G; that sums to 1 in Eq. (16) [63]:
G; = (16)
i=1 i
where the normalized weight for the " minority
sample, G;, is determined based on the majority
dominance ratio r; of that sample. N,,;, represents
the total number of minority samples, and the sum
of all majority dominance ratios across these

samples, Y"1, reflects the overall influence of
the majority class in the neighborhood of the
minority samples.

5. Determining the Number of Synthetic Samples per

Point (g;)
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The number of synthetic samples that need to be
made from each minority sample x; in Eq. (17) as
follows [64]:
gi=G XG (17)
where the number of synthetic samples to be
created around the i*" minority sample is denoted
as g;, and this is determined based on the
normalized weight G; of that sample. The total
number of synthetic samples created across all
minority samples is represented by G, providing a
measure of the overall augmentation applied to the
dataset.
6. Creating Synthetic Samples
For each minority sample x;, g; a synthetic sample
is created by interpolating one of its neighbors x,; in
Eq. (18) as follows [65]:
si=xi+ 4 (xu—x) (18)
where a synthetic data point, denoted as s;, is
generated based on an original processed minority
sample x; and one of its nearest neighbors x,; from
the minority class. The interpolation between x; and
x,; is controlled by a random value A ranging from 0
to 1, which determines the relative contribution of
the original sample and its neighbor in creating the
synthetic instance.
D. Data Split
Before classification, the dataset is split into training
and test sets. The machine learning model is trained on
training data and evaluated on test data. In this study,
the training and testing data are divided into several
proportions: 90:10, 80:20, 70:30, 60:40, and 50:50 [66],
[67].
E. Extreme Gradient Boosting (XGBoost)
XGBoost is an optimized and highly scalable decision
tree-based machine learning algorithm [68]. It was
developed by Chen and Guestrin as a highly scalable
end-to-end boosting system that has been widely
implemented and optimized in various research fields
[69]. XGBoost is an extension of the Gradient Boosted
Regression Trees (GBRT) framework designed to
deliver high prediction performance. As an ensemble
learning method, XGBoost combines prediction results
from a number of weak models to form a stronger
model.
One of the key features of XGBoost is the use of
objective function normalization to reduce model
complexity, speed up the training process, and reduce
the risk of overfitting. Empirically, XGBoost performs
relatively faster than other ensemble classification
algorithms. It also supports parallel processing so that
it can utilize multicore computer resources to efficiently
handle large datasets [70]. The following are the steps
of the XGBoost algorithm:
1. Boosting Model Prediction
The XGBoost model consists of K CART trees, with
the output being the sum of their outputs. The

cumulative value serves as the predictive value of
the XGBoost model and can be expressed
mathematically in Eq. (19) as follows [12]:

Vi = Ti=1fi(x) (19)
where the number of CART trees usd in the model
is denoted by K, and f; refers to a specific CART
tree within the ensemble. The output of the
XGBoost model for a given input is represented by
¥;, which aggregates the contributions of all
individual trees in the ensemble.

Loss and Regularization Functions
XGBoost is similar to most machine learning
models, and its objective function can be the sum of
a loss function and a regular term, which control the
accuracy and complexity of the model, respectively.
The specific Eq. (20) is as follows [71]:

L@) =Xy 1 y) + Zk=1 Q2 (fi) (20)
Where:
Q(f,) = 1T+ A3, w} (21)

where the target value for a given observation is
denoted as y;, and the loss function, [, measure the
difference between the predicted value y; and y;.
The regularization term, £2, is included to penalize
model complexity and avoid overfitting. In the
decision tree, T represents the number of leaves,
with w; denoting the weight of the j™ leaf. The
parameter y penalizes the number of leaves, while

A serves as a regularization parameter for leaf
weights, ensuring the model maintains both
accuracy and generalization.

. Taylor Expansion for Model Updating

GB is effective in regression and classification
problems. GB is used with a loss function, which is
expanded by a second-order Taylor expansion, with
constant terms removed to produce a simplified
objective in the first step, in Eq. (22) to Eq. (24) as
follows [72]:

1O = T (i) + 2hfPG)) + () (22)
= S (90 + hf2 (0 ) + 9T +

LT W (23)
= Z]T'=1 [(Zielj gi) wj + %(ZiE’j hi + }\') sz] +
v (24)

where [; = {i|q(x;) = j} denotes the sample set of
leaf t, and

al Ai(t_l), i

g =20 (25)
al Ai(t_l), i

= 6 ) (26)

a2
where the objective function at the i" iteration,
denoted as L®, is minimized during the training
process to produce the best prediction. The
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previous prediction is represented by 37i(t_1), while g;

is the gradient of the loss function with respect to
the previous prediction and h; is the Hessian
(second derivative), which measures the sensitivity
of the loss function to changes in predictions. The
prediction generated by the model, for example x;,
which is the result of the decision tree at iteration t
is given by f;(x;), which corresponds to the output
of the decision tree constructed during that iteration.
4. Calculation of Leaf Weight and Objective Function
For a fixed structure, the optimal weights and
objective function can be calculated in Eq. (27) to
Eq. (28) as follows [73].

Yiel; 9i
L= - J
WIS T e e 27
2
Z'el-gi)
) = _1yT (‘;
L 22]:1 ZiEIj hi+)\ + VT (28)

where the weight of the j** leaf in the decision tree
is denoted as w;, while the term yT represents the
penalty imposed on the number of leaves in the tree.
This is part of regularization, which aims to reduce
the complexity of the tree.

5. Split Evaluation and Selection
To select the best split, XGBoost calculates the loss
reduction after splitting the data at each node. After
the split, we have two groups, left I, and right I,
where I =I; U I,. The loss reduction after splitting is
calculated in Eq. (29) as follows [74]:

2 2
1 (ZiEILgi) + (ZiEIRgi) _ (Zielgi)z -y (29)

Gain = -
2| Zierp hit4d  ZierghitA  Xierhi+

F. Random Search Hyperparameter Tuning

RS is a hyperparameter optimization method that
works by defining a probability distribution for each
hyperparameter value range, then randomly selecting
a combination of values from that distribution to
evaluate the model performance [18]. This search
process will be stopped when the model performance
reaches a certain threshold, or the number of iterations
has reached a user-defined limit [75]. RS is known as
a simple yet effective approach, as it is able to find high-
performance hyperparameter configurations through
fewer iterations than methods such as Grid Search,
especially in high-dimensional search spaces [76].
Computationally, it is more efficient when dealing with
many hyperparameters, as it does not need to evaluate
all possible combinations [46].

Another advantage of RS is the flexibility to adjust the
search budget to the distribution of the search space.
This is particularly useful when some hyperparameters
are not evenly distributed, as the randomized approach
is more adaptive to such irregularities. Moreover, since
each evaluation is performed independently, this
method supports parallel execution, thus allowing for
optimal utilization of computational resources [77].

With this combination of advantages, RS is a powerful
and efficient alternative for  hyperparameter
optimization, including in complex settings. The
performance of the XGBoost model can be improved
by tuning the RS Hyperparameter Tuning [78].
XGBoost has a number of important hyperparameters,
such as learning rate, maximum number of iterations,
and maximum depth [79]. The procedure of RS in Eq.
(30) is as follows [80]:

Parameter = arg ming Loss Function (0) (30)
where, 6 is a hyperparameter vector to be optimized
and Loss Function(8) is a function that measures the
performance of the model based on a particular
hyperparameter combination.

RS consists of the following steps [21]:

1. Starting the number of iterations of the parameter
combination

Initialize all parameter values

Repeating a random combination of parameter
values based on the number of iterations
Performing training using XGBoost on training data
Evaluating the resulting classification with test data
test data Saving the best value of the classification
results and the best combination of parameter
values

Table 1. summarizes the hyperparameters and their
respective search ranges explored using random
search, based on the optimal parameter values
reported in previous studies [19], [20], [21], [78].

Table 1. A detailed list of parameters with their
respective value ranges in this study.

o Ob

Parameter Parameter Value Range
learning_rate (0.01, ...,0.1)
max_depth (1, ..., 12)
n_estimators (100, ..., 1000)
subsample (0.6, ..., 1.0)
colsample_bytree (0.6, ..., 1.0)

G. Evaluation

In this study, model performance was evaluated using
a confusion matrix, including accuracy, precision,
recall, F1-score, and Area Under the Curve (AUC). The
selection of appropriate evaluation metrics is very
important to measure the performance of machine
learning models objectively and accurately [81].
Metrics such as accuracy, precision, recall, and F1
score, both macro- and weighted-averaged, are used
to address the impact of class imbalance. Micro-
averaged calculates the total true positives, false
positives, and false negatives across all classes, then
produces a global metric that gives equal weight to
each instance. Macro-averaged calculates the metric
for each class separately, then averages without regard
to sample size, thus giving equal weight to each class.
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Weighted average, on the other hand, calculates the
metric per class then averages with weights based on
the sample size in each class, reflecting the
unbalanced class distribution in the dataset [82], [83].
The confusion matrix for binary classification is
presented in Table. The actual values are coded as
True (1) and False (0), while the predicted results are
classified as Positive (1) and Negative (0). Four
possible classification outcomes, True Positive (TP),
True Negative (TN), False Positive (FP), and False
Negative (FN), are derived from the confusion matrix,
with the following explanation [84]:

Table 5. Confusion matrix showing the actual
and predicted classifications of the dataset.

Classification Prediction
Positive Negative
Positive ~ 1TUe True
Positive Negative
Actual
Negative 2/S€ False
Positive Negative

Accuracy, as expressed in Eq. (31) [85], represents the
proportion of correct predictions to the total number of

predictions made. Mathematically, accuracy is
calculated by the following formula [86]:
TP+TN
Accuracy = —————— (31)
TP+TN+FP+FN

Precision is the ratio between the number of correct
positive predictions and the total number of positive
predictions. Precision measures the accuracy of
positive predictions. The precision, macro precision,
and weighted precision are calculated using the
formula written in Eq. (32) to Eq. (35) [31] [87] [82]:

TP

Precision = (32)
TP+FP 1 TP
Macro Precision = _Z?I:l . (33)
N TP;+FP;
) . TN TP
Micro Precision = —g—= 11— (34)
Zi=1TPi+ ZilePi
. . 1 TP;
Weighted Precision = =y N ——x|C;]| (35)
XizalCil TPi+FP;

Recall, also known as sensitivity or True Positive Rate
(TPR), is the ratio of correctly predicted positive
observations to all observations in the dataset. Recall,
macro recall, and weighted recall are calculated using
the formula in Eq. (36) to Eq. (39) as follows [31] [87]
[82]:

TP

Recall = Sensitivity = TPR = (36)
Lo Tl TP+FN
Macro Recall = ;Zizlﬂ,#mi (37)
. _ L TP
Micro Recall = SN P+ SN FN (38)
. 1 TP;
Weighted Recall = SV ic §V=1Tpi+ e |G (39)

The F1-score is a measure of test accuracy. This value
is calculated based on precision and recall using the
formula in equation (38) [84]. Macro F1 and weighted

F1 are calculated using formula in Eq. (40) to Eq. (43)
as follows [83] [88] [82]:

2 X Precision X Recall
F1 — score = — (40)
Precision+ Recall
i TP;
1 *TP,+FP; \TP;+FN;
— N i i i i
Macro F1 = S i1 T TP (41)

TP;+FP; TP+FN;
. 2X Micro Precision X Micro Recall
Micro F1 = —; — - (42)
Micro Precision + Micro Recall
L 13

2X e X
Weighted F1 = gy S, —rb—rbt x |G| (43)
=1 TP;+FP; TP +FN;
The Area Under the Curve (AUC) is a metric inan ROC
diagram that represents the area under the ROC curve
of an algorithm. Therefore, the higher the AUC value,
the better the performance of the algorithm [85]. The
ROC curve depicts the true positive rate (TPR) written
in Eq. (36) against the false positive rate (FPR) written
in Eq. (44) [31] at various classification thresholds [89]:

FPR = (44)
TN+FP

AUC evaluates a model's ability to distinguish between
classes by TPR against FPR; the higher the AUC, the
better the model. The higher TPR indicates that the
model is performing well. However, accuracy metrics
can be misleading when classes are imbalanced, i.e.,
when one class has more examples. The AUC metric
is less affected by class imbalance and provides a
comprehensive view of the model's performance

across all thresholds [86].
Table 6. Interpretation of the Area Under the

Curve (AUC) for model performance
evaluation.
Area Under the Curve (AUC) Interpretation
0,9 <= AUC Excellent
0,8 <=AUC<=0,9 Good
0,7 <=AUC<=0,8 Fair
0,6 <= AUC <=0,7 Poor
0,5<=AUC<=0,6 Fail

AUC stands for “Area Under the ROC Curve”. An ideal
ROC curve thus has AUC = 1.0 [16]. For the diagnosis
test to be more accurate, the AUC should be greater
than 0.5. Generally, an AUC = 0.8 is considered
acceptable [90].

lll. Result

This section presents the results of cervical cancer
classification for four target variables (Hinselmann,
Schiller, Cytology, and Biopsy) using XGBoost,
XGBoost with Random Search Hyperparameter Tuning
with SMOTE, and XGBoost with Random Search
Hyperparameter Tuning with ADASYN. The
performance of each model is evaluated using
accuracy, precision (macro, micro, and weighted),
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recall (macro, micro, and weighted), F1 score (macro, recall (macro, micro, and weighted), F1-score (macro,
micro, and weighted), and AUC. micro, and weighted), and AUC. The results of the
A. XGBoost XGBoost model performance evaluation for the four

In this study, the first classification is using the target variables (Hinselmann, Schiller, Citology, and
XGBoost algorithm. Performance was measured using Biopsy) are presented in Table.
accuracy, precision (macro, micro, and weighted),

Table 7. Summary of XGBoost model performance measured across various classification evaluation
metrics.

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10
Accuracy 0.965 0.962 0.961 0.959 0.954
Precision 0.6 0.6 0.6 0.5 0.5

Precision Macro 0.787 0.784 0.784 0.735 0.732
Precision Micro 0.965 0.962 0.961 0.959 0.954
Precision Weighted 0.959 0.953 0.953 0.951 0.943
Recall 0.353 0.214 0.273 0.286 0.25
Hinselmann Recall Macro 0.672 0.604 0.632 0.637 0.619
Recall Micro 0.965 0.962 0.961 0.959 0.954
Recall Weighted 0.965 0.962 0.961 0.959 0.954
F1 0.444 0.316 0.375 0.364 0.333

F1 Macro 0.713 0.648 0.678 0.671 0.655

F1 Micro 0.965 0.962 0.961 0.959 0.954

F1 Weighted 0.961 0.954 0.954 0.954 0.946
AUC 0.981 0.981 0.986 0.981 0.988
Accuracy 0.97 0.968 0.965 0.965 0.954
Precision 0.9 0.852 0.882 1 0.8
Precision Macro 0.938 0.915 0.927 0.982 0.882
Precision Micro 0.97 0.968 0.965 0.965 0.954
Precision Weighted 0.969 0.967 0.963 0.966 0.95
Recall 0.73 0.767 0.682 0.6 0.571
Schiller Recall Macro 0.861 0.877 0.837 0.8 0.779
Recall Micro 0.97 0.968 0.965 0.965 0.954
Recall Weighted 0.97 0.968 0.965 0.965 0.9535
F1 0.806 0.807 0.769 0.75 0.667

F1 Macro 0.895 0.895 0.875 0.866 0.821

F1 Micro 0.97 0.968 0.965 0.965 0.954

F1 Weighted 0.968 0.967 0.963 0.961 0.95
AUC 0.909 0.925 0.86 0.825 0.937
Accuracy 0.939 0.93 0.93 0.936 0.954
Precision 0.25 0.125 0.222 0.25 0
Precision Macro 0.601 0.537 0.589 0.601 0.477
Precision Micro 0.939 0.93 0.93 0.936 0.954
Precision Weighted 0.917 0.906 0.919 0.916 0.909
Recall 0.091 0.056 0.154 0.111 0
Citology Recall M:?xcro 0.538 0.517 0.563 0.546 0.5
Recall Micro 0.939 0.93 0.93 0.936 0.954
Recall Weighted 0.939 0.93 0.93 0.936 0.954
F1 0.133 0.077 0.182 0.154 0

F1 Macro 0.551 0.52 0.573 0.56 0.488

F1 Micro 0.939 0.93 0.93 0.936 0.954

F1 Weighted 0.926 0.917 0.924 0.924 0.931
AUC 0.753 0.722 0.641 0.553 0.512
Accuracy 0.944 0.942 0.95 0.959 0.965
Precision 0.6 0.571 0.625 0.75 0.8
Precision Macro 0.78 0.765 0.798 0.86 0.887
Precision Micro 0.944 0.942 0.95 0.959 0.965
Biopsy Precision Weighted 0.937 0.933 0.948 0.955 0.963
Recall 0.429 0.364 0.588 0.546 0.667
Recall Macro 0.704 0.673 0.782 0.767 0.827
Recall Micro 0.944 0.942 0.95 0.959 0.965
Recall Weighted 0.944 0.942 0.95 0.959 0.965
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Table 7. (continued)

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10
F1 0.5 0.444 0.606 0.632 0.727
F1 Macro 0.735 0.707 0.79 0.805 0.854
Biopsy F1 Micro 0.944 0.942 0.95 0.959 0.965
F1 Weighted 0.94 0.936 0.949 0.956 0.964
AUC 0.956 0.923 0.94 0.958 0.973
The best evaluation results of the XGBoost successfully increased, resulting in balanced

classification on 4 target variables are as follows:

e Hinselmann achieved the best results at a ratio of
50:50 with an accuracy value of 0.965, precision of
0.6, macro precision of 0.787, micro precision of
0.965, weighted precision of 0.959, recall of 0.353,
macro recall of 0.672, micro recall of 0.965,
weighted recall of 0.965, F1 score of 0.444, macro
F1 of 0.713, micro F1 of 0.965, weighted F1 of
0.961, and AUC of 0.981.

e Schiller achieved the best results at a ratio of 50:50
get the best results an accuracy value 0.958,
precision 0.788, precision macro 0.88, precision
micro 0.958, precision weighted 0.956, recall
0.703, recall macro 0.842, recall micro 0.958, recall
weighted 0.958, f1 score 0.743, f1 macro 0.86, f1
micro 0.958, f1 weighted 0.957, and AUC 0.906.

o Citology achieved the best results at a ratio of
90:10, the best results an accuracy value of 0.954,
precision 0.5, precision macro 0.732, precision
micro 0.954, precision weighted 0.943, recall 0.25,
recall macro 0.619, recall micro 0.954, recall
weighted 0.954, f1 score 0.333, f1 macro 0.655, f1
micro 0.954, f1 weighted 0.946, and AUC 0.537.

e Biopsy achieved the best results at a ratio of 90:10,
the best results an accuracy value of 0.965,
precision 0.8, precision macro 0.888, precision
micro 0.965, precision weighted 0.963, recall
0.667, recall macro 0.827, recall micro 0.965, recall
weighted 0.965, f1 score 0.727, f1 macro 0.854, f1
micro 0.965, f1 weighted 0.964, and AUC 0.96.

B. XGBoost with RSHT with SMOTE

The second classification in this study utilised the

XGBoost algorithm optimised using Random Search

Hyperparameter Tuning (RSHT), and the SMOTE

technique to handle imbalanced data. The results of the

SMOTE technique implementation are presented in

Table . The best parameters from the Random Search

results for XGBoost are presented in Table 9.. The

overall classification results for the four target variables

(Hinselmann, Schiller, Cytology, and Biopsy) using the

XGBoost method with a combination of RSHT and

SMOTE are presented sequentially in Table. Based on

Table 8. and Fig., before the application of SMOTE,

the number of samples for the minority class (1) was

less than the majority class (0). After SMOTE, the
number of samples in the minority class was

proportions with the majority class across all target
variables. The target variables on the X-axis represent
different diagnostic tests: Hinselmann, Schiller,
Cytology, and Biopsy, while the Y-axis shows the total
number of samples (count) in the dataset. For example,
the Hinselmann minority class increased from 18 to
411, the Schiller class from 37 to 392, the cytology
class from 40 to 732, and the biopsy class from 44 to
642.
Based on Table 9., the best parameter values for
random search on 4 target variables are as follows:
¢ Hinselmann achieved the best parameter at a ratio
50:50, the best parameter is learning_rate 0.051,
max_depth 1, n_estimators 929, subsample 0.989,
and colsample_bytree 0.808
e Schiller achieved the best parameter at a ratio of
50:50. The best parameters are learning_rate

Table 8. Comparison of dataset distributions

before and after applying the SMOTE
oversampling technique.
Before After
Target Data  guotE  sSMOTE
Variable Split ) r 0 r
50:50 411 18 411 411
60:40 493 21 493 493
Hinselmann 70:30 576 24 576 576
80:20 658 28 658 658
90:10 741 31 741 741
50:50 392 37 392 392
60:40 470 44 470 470
Schiller 70:30 548 52 548 548
80:20 627 59 627 627
90:10 705 67 705 705
50:50 407 22 407 407
60:40 488 26 488 488
Citology 70:30 569 31 569 569
80:20 651 35 651 651
90:10 732 40 732 732
50:50 402 27 402 402
60:40 481 33 481 481
Biopsy 70:30 562 38 562 562
80:20 642 44 642 642
90:10 723 49 723 723
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Fig. 2. Visualization of the dataset showing differences before and after SMOTE oversampling

applied.
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Schiller Cytology
Target Variable
10 (No) m1 (Yes) =0 (No) =1 (Yes)

642 642

Blopsy

Table 9. Table presenting the hyperparameter setup for Random Search with corresponding

value ranges tested.

Target variable  Data Split

Parameter

learning_rate max_depth

n_estimators subsample colsample_|

50:50 0.051 1 929 0.989 0.808

60:40 0.019 9 256 0.921 0.743

Hinselmann 70:30 0.097 8 228 0.68 0.63
80:20 0.046 2 995 0.722 0.641

90:10 0.081 4 661 0.865 0.614

50:50 0.079 4 353 0.604 0.665

60:40 0.081 4 661 0.865 0.614

Schiller 70:30 0.044 9 727 0.741 0.709
80:20 0.014 11 558 0.947 0.662

90:10 0.089 11 171 0.84 0.75

50:50 0.014 11 558 0.947 0.662

60:40 0.079 4 353 0.604 0.665

Citology 70:30 0.097 8 228 0.68 0.63
80:20 0.084 10 710 0.691 0.646

90:10 0.096 6 610 0.636 0.788

50:50 0.037 4 833 0.656 0.79

60:40 0.019 9 256 0.921 0.743

Biopsy 70:30 0.014 11 558 0.947 0.662
80:20 0.014 11 558 0.947 0.662

90:10 0.084 8 561 0.678 0.839
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Table 10. Evaluation of XGBoost performance using random Search Hyperparameter Tuning and SMOTE.

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10
Accuracy 0.967 0.962 0.954 0.959 0.954
Precision 0.615 0.556 0.4 0.5 0.5

Precision Macro 0.797 0.764 0.682 0.735 0.732
Precision Micro 0.967 0.962 0.954 0.959 0.954
Precision Weighted 0.964 0.956 0.94 0.951 0.943
Recall 0.471 0.357 0.182 0.286 0.25
Hinselmann Recall Macro 0.729 0.673 0.585 0.637 0.619
Recall Micro 0.967 0.962 0.954 0.959 0.954
Recall Weighted 0.967 0.962 0.954 0.959 0.954
F1 0.533 0.435 0.25 0.364 0.333
F1 Macro 0.758 0.708 0.613 0.671 0.655
F1 Micro 0.967 0.962 0.954 0.959 0.954
F1 Weighted 0.965 0.958 0.945 0.954 0.946
AUC 0.943 0.981 0.979 0.985 0.988
Accuracy 0.958 0.968 0.961 0.959 0.942
Precision 0.788 0.88 0.833 0.9 0.667
Precision Macro 0.88 0.928 0.902 0.932 0.815
Precision Micro 0.958 0.968 0.961 0.959 0.942
Precision Weighted 0.956 0.967 0.959 0.958 0.938
Recall 0.703 0.733 0.682 0.6 0.571
Schiller Recall Macro 0.842 0.862 0.835 0.797 0.773
Recall Micro 0.958 0.968 0.961 0.959 0.942
Recall Weighted 0.958 0.968 0.961 0.959 0.942
F1 0.743 0.8 0.75 0.72 0.615
F1 Macro 0.86 0.891 0.865 0.849 0.792
F1 Micro 0.958 0.968 0.961 0.959 0.942
F1 Weighted 0.957 0.967 0.96 0.956 0.94
AUC 0.906 0.92 0.865 0.859 0.81
Accuracy 0.939 0.927 0.93 0.924 0.954
Precision 0.333 0.182 0.273 0.25 0.5
Precision Macro 0.645 0.567 0.616 0.604 0.732
Precision Micro 0.939 0.927 0.93 0.924 0.954
Precision Weighted 0.925 0.912 0.925 0.92 0.943
Recall 0.182 0.111 0.231 0.222 0.25
Cytology Recall Mgcro 0.581 0.542 0.599 0.593 0.619
Recall Micro 0.939 0.927 0.93 0.924 0.954
Recall Weighted 0.939 0.927 0.93 0.924 0.954
F1 0.235 0.138 0.25 0.235 0.333
F1 Macro 0.602 0.55 0.607 0.598 0.655
F1 Micro 0.939 0.927 0.93 0.924 0.954
F1 Weighted 0.931 0.919 0.928 0.922 0.946
AUC 0.735 0.698 0.644 0.552 0.537
Accuracy 0.935 0.954 0.938 0.971 0.965
Precision 0.5 0.625 0.533 0.8 0.8
Precision Macro 0.734 0.802 0.748 0.891 0.888
Precision Micro 0.935 0.802 0.938 0.971 0.965
Precision Weighted 0.936 0.956 0.935 0.97 0.963
Recall 0.536 0.682 0.471 0.727 0.667
Biopsy Recall Mgcro 0.749 0.827 0.721 0.857 0.827
Recall Micro 0.935 0.954 0.938 0.971 0.965
Recall Weighted 0.935 0.954 0.938 0.971 0.965
F1 0.517 0.652 0.5 0.762 0.727
F1 Macro 0.741 0.814 0.734 0.873 0.854
F1 Micro 0.935 0.954 0.938 0.971 0.965
F1 Weighted 0.936 0.954 0.936 0.97 0.964
AUC 0.921 0.933 0.892 0.956 0.96
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0.0792, max _depth 4, n_estimators 353,
subsample 0.604, and colsample_bytree 0.665.
Citology achieved the best parameter at a ratio
90:10. The best parameters are learning_rate
0.096, max_depth 6, n_estimators 610, subsample
0.636, and colsample_bytree 0.788

Biopsy achieved the best parameter at a ratio of
80:20. The best parameters are learning_rate
0.014, max_depth 11, n_estimators 558,
subsample 0.947, and colsample_bytree 0.662.

The best evaluation results from classification using a
combination of XGBoost with RSHT and SMOTE on
four target variables are as follows:

Hinselmann achieved the best results at a ratio of
50:50 get the best results an accuracy value 0.967,
precision 0.615, precision macro 0.797, precision
micro 0.967, precision weighted 0.964, recall
0.471, recall macro 0.729, recall micro 0.967,
recall weighted 0.967, F1 score 0.533, F1 macro
0.758, F1 micro 0.967, F1 weighted 0.965, and
AUC 0.943.

Schiller achieved the best results at a ratio of
60:40, the best result an accuracy value of 0.968,
precision 0.88, precision macro 0.928, precision
micro 0.968, precision weighted 0.966, recall
0.733, recall macro 0.862, recall micro 0.968,
recall weighted 0.968, F1 score 0.8, F1 macro
0.891, F1 micro 0.968, F1 weighted 0.967, and
AUC 0.92.

Citology achieved the best results at a ratio of
90:10, the best results an accuracy value of
0.954, precision 0.5, precision macro 0.732,
precision micro 0.954, precision weighted 0.943,
recall 0.25, recall macro 0.619, recall micro
0.954, recall weighted 0.954, F1 score 0.333, F1

800
700
60
50
40
30
20
100

741 736

Hinselmann

548

Total Dataset
O O O O o

o

Schiller

550

macro 0.655, F1 micro 0.954, F1 weighted 0.946,
and AUC 0.537.

Table 11. Comparison of dataset distributions

before and after applying the ADASYN
oversampling technique.
Target Data Before After
. : ADASYN ADASYN
Variable Split
0 1 0 1
50:50 411 18 411 417
60:40 493 21 493 492
Hinselmann _70:30 576 24 576 568
80:20 658 28 658 657
90:10 741 31 741 736
50:50 392 37 392 392
60:40 470 44 470 467
Schiller 70:30 548 52 548 550
80:20 627 59 627 622
90:10 705 67 705 728
50:50 407 22 407 414
60:40 488 26 488 492
Citology 70:30 569 31 569 576
80:20 651 35 651 640
90:10 732 40 732 727
50:50 402 27 402 396
60:40 481 33 481 477
Biopsy 70:30 562 38 562 578
80:20 642 44 642 662
90:10 723 49 723 706

Biopsy achieved the best results at a ratio of
80:20, the best results an accuracy value of
0.971, precision 0.8, precision macro 0.891,
precision micro 0.971, precision weighted 0.97,
recall 0.727, recall macro 0.857, recall micro
0.971, recall weighted 0.971, F1 score 0.761, F1

732 732 727

Cytology

642 662

Blopsy

Target Variable

=0 (No) m1 (Yes

0 (No)

m1 (Yes)

Fig. 3. Visualization of the dataset showing differences before and after ADASYN oversampling applied.
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macro 0.873, F1 micro 0.971, F1 weighted 0.97,
and AUC 0.956.
C. XGBoost with RSHT with ADASYN
The third classification using the XGBoost algorithm
optimised with Random Search HT, and the ADASYN
technique to handle imbalanced data. The results of
implementing the ADASYN technique are provided in
Table 11. The best parameters from the Random
Search for XGBoost are described in Table 12. The

and Fig. 3 before the application of ADASYN, the
number of samples for the minority class (1) was less
than that for the majority class (0). After ADASYN, the
number of samples for the minority class was
successfully enhanced to balance with the majority
class on all target variables. The target variables on the
X-axis  represent different  diagnostic tests:
Hinselmann, Schiller, Cytology, and Biopsy, while the
Y-axis shows the total number of samples (count) in the

Table 12. Table presenting the hyperparameter setup for Random Search with corresponding value

ranges tested.

Target - pata Split reremeter
variable learning_rate max_depth n_estimators subsample colsample_bytree
50:50 0.021 2 978 0.932 0.618
60:40 0.046 2 995 0.722 0.641
Hinselmann 70:30 0.021 2 978 0.932 0.618
80:20 0.089 2 876 0.606 0.626
90:10 0.046 2 995 0.722 0.641
50:50 0.096 4 671 0.704 0.67
60:40 0.031 6 515 0.837 0.658
Schiller 70:30 0.014 11 558 0.947 0.662
80:20 0.084 10 710 0.691 0.645
90:10 0.084 10 710 0.691 0.645
50:50 0.081 4 661 0.865 0.614
60:40 0.019 8 926 0.729 0.877
Citology 70:30 0.084 10 710 0.691 0.645
80:20 0.084 10 710 0.691 0.645
90:10 0.096 6 610 0.636 0.788
50:50 0.044 9 727 0.741 0.709
60:40 0.074 4 897 0.953 0.853
Biopsy 70:30 0.089 2 876 0.606 0.626
80:20 0.081 4 661 0.865 0.614
90:10 0.046 8 825 0.955 0.867

classification results for the four target variables
(Hinselmann, Schiller, Cytology, Biopsy) using the
XGBoost method with a combination of RSHT and
ADASYN are presented in Table 13. Based on Table11

dataset. For example, the Hinselmann minority class
increased from 31 to 736, the Schiller class from 52 to
550, the Cytology class from 40 to 727, and the Biopsy
class from 44 to 662.
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Table 13. Evaluation of XGBoost performance using random Search Hyperparameter Tuning and
ADASYN.

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10
Accuracy 0.965 0.956 0.957 0.959 0.965
Precision 0.583 0.429 0.5 0.5 0.667

Precision Macro 0.78 0.698 0.734 0.735 0.821
Precision Micro 0.965 0.956 0.957 0.959 0.965
Precision Weighted 0.961 0.945 0.948 0.951 0.962
Recall 0.412 0.214 0.273 0.286 0.5
Hinselmann Recall Macro 0.7 0.601 0.63 0.637 0.744
Recall Micro 0.965 0.956 0.957 0.959 0.965
Recall Weighted 0.965 0.956 0.957 0.959 0.965
F1 0.483 0.286 0.353 0.364 0.571
F1 Macro 0.732 0.632 0.665 0.671 0.777
F1 Micro 0.965 0.956 0.957 0.959 0.965
F1 Weighted 0.962 0.949 0.951 0.954 0.963
AUC 0.963 0.954 0.95 0.985 0.988
Accuracy 0.96 0.965 0.969 0.959 0.954
Precision 0.794 0.846 0.937 0.9 0.8
Precision Macro 0.884 0.911 0.954 0.932 0.882
Precision Micro 0.96 0.965 0.969 0.959 0.954
Precision Weighted 0.959 0.964 0.968 0.958 0.95
Recall 0.73 0.733 0.682 0.6 0.571
Schiller Recall Macro 0.856 0.86 0.839 0.797 0.779
Recall Micro 0.96 0.965 0.969 0.959 0.954
Recall Weighted 0.96 0.965 0.969 0.959 0.954
F1 0.761 0.786 0.79 0.72 0.667
F1 Macro 0.87 0.883 0.886 0.849 0.821
F1 Micro 0.96 0.965 0.969 0.959 0.954
F1 Weighted 0.96 0.964 0.967 0.956 0.95
AUC 0.914 0.9159 0.892 0.871 0.863
Accuracy 0.932 0.924 0.923 0.901 0.954
Precision 0.182 0.1 0.231 0.1 0
Precision Macro 0.567 0.525 0.595 0.525 0.477
Precision Micro 0.932 0.924 0.923 0.901 0.954
Precision Weighted 0.913 0.905 0.923 0.906 0.909
Recall 0.091 0.056 0.231 0.111 0
Citology Recall Mgcro 0.534 0.514 0.595 0.528 0.5
Recall Micro 0.9324 0.9244 0.9225 0.9012 0.9535
Recall Weighted 0.932 0.924 0.923 0.901 0.954
F1 0.121 0.071 0.231 0.105 0
F1 Macro 0.543 0.516 0.595 0.527 0.488
F1 Micro 0.932 0.924 0.923 0.901 0.954
F1 Weighted 0.922 0.914 0.923 0.904 0.931
AUC 0.68 0.719 0.631 0.556 0.555
Accuracy 0.939 0.933 0.938 0.971 0.954
Precision 0.531 0.467 0.533 0.8 0.75
Precision Macro 0.752 0.711 0.748 0.891 0.857
Precision Micro 0.939 0.933 0.938 0.971 0.954
Precision Weighted 0.944 0.923 0.935 0.97 0.949
Recall 0.607 0.318 0.471 0.727 0.5
Biopsy Recall Mgcro 0.784 0.647 0.721 0.857 0.744
Recall Micro 0.939 0.933 0.938 0.971 0.954
Recall Weighted 0.939 0.933 0.938 0.971 0.954
F1 0.567 0.378 0.5 0.762 0.6
F1 Macro 0.767 0.672 0.734 0.873 0.788
F1 Micro 0.939 0.933 0.938 0.971 0.954
F1 Weighted 0.941 0.927 0.936 0.97 0.949
AUC 0.928 0.885 0.892 0.956 0.971
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Based on Table, the best parameter values for Random

search on 4 target variables is as follows:

e Hinselmann achieved the best parameter at a ratio
of 90:10. The best parameters are learning_rate
0.046, max_depth 2, n_estimators 995, subsample
0.722, and colsample_bytree 0.641.

e Schiller achieved the best parameter at a ratio of
70:30. The best parameters are learning_rate
0.014, max_depth 11, n_estimators 558,
subsample 0.947, and colsample_bytree 0.662.

e Citology achieved the best parameter at a ratio of
90:10. The best parameters are learning_rate
0.096, max_depth 6, n_estimators 610, subsample
0.636, and colsample_bytree 0.788.

e Biopsy achieved the best parameter at a ratio of
80:20. The best parameters are learning_rate
0.081, max_depth 4, n_estimators 661, subsample
0.865, and colsample_bytree 0.614.

The best evaluation results from classification using a
combination of XGBoost with RSHT and ADASYN on
four target variables are as follows, first at Hinselmann
achieved the best results at a ratio of 90:10, the best
results an accuracy value of 0.965, precision 0.667,
precision macro 0.821, precision micro 0.965, precision
weighted 0.962, recall 0.5, recall macro 0.744, recall
micro 0.965, recall weighted 0.965, F1 score 0.571, F1
macro 0.777, F1 micro 0.965, F1 weighted 0.963, and
AUC 0.988. Second, at Schiller achieved the best
results at a ratio of 70:30, the best results an accuracy
value of 0.969, precision 0.938, precision macro 0.954,
precision micro 0.969, precision weighted 0.968, recall
0.682, recall macro 0.839, recall micro 0.969, recall
weighted 0.969, F1 score 0.79, F1 macro 0.886, F1

micro 0.969, F1 weighted 0.967, and AUC 0.892. Third,
at Citology achieved the best results at a ratio of 90:10,
the best results an accuracy value of 0.954, precision
0, precision macro 0.477, precision micro 0.954,
precision weighted 0.909, recall 0, recall macro 0.5,
recall micro 0.954, recall weighted 0.954, F1 score 0,
F1 macro 0.488, F1 micro 0.954, F1 weighted 0.931,
and AUC 0.555. The last, for Biopsy achieved the best
results at a ratio of 80:20, the best results an accuracy
value of 0.971, precision 0.8, precision macro 0.891,
precision micro 0.971, precision weighted 0.97, recall
0.727, recall macro 0.857, recall micro 0.971, recall
weighted 0.971, F1 score 0.762, F1 macro 0.873, F1
micro 0.971, F1 weighted 0.97, and AUC 0.956.

IV. Discussion

Drawing on the research outcomes outlined earlier, the
top-performing results emerged from three models: the
standard XGBoost, XGBoost enhanced with Random
Search Hyperparameter Tuning (RSHT) and SMOTE,
and XGBoost integrated with RSHT and ADASYN. A
detailed comparison of the optimal performance across
these models is illustrated in Table. As indicated in
Table., incorporating optimization and data balancing
strategies markedly boosted the XGBoost model's
effectiveness. The basic XGBoost model, without
RSHT, SMOTE, or ADASYN, exhibited the lowest
accuracy and AUC scores across the three
experimental setups. In contrast, XGBoost models
augmented with RSHT alongside SMOTE or ADASYN
delivered substantially improved outcomes. Notably,
the XGBoost with RSHT and SMOTE configuration
consistently secured the top accuracy and AUC values
across all target variables,

Table 14. Comparison of the best performance of all classification models in this study.

Target Variable Hinselmann Schiller Citology Biopsy
Accuracy 0.965 0.97 0.954 0.965
Precision 0.6 0.9 0 0.8
Precision Macro 0.7869 0.938 0.477 0.888
Precision Micro 0.965 0.97 0.954 0.965
Precision Weighted 0.959 0.969 0.909 0.963
Recall 0.353 0.73 0 0.667
XGB Recall Mgcro 0.672 0.861 0.5 0.827
Recall Micro 0.965 0.97 0.954 0.965
Recall Weighted 0.965 0.97 0.954 0.965
F1 0.444 0.806 0 0.727
F1 Macro 0.713 0.895 0.488 0.854
F1 Micro 0.965 0.97 0.954 0.965
F1 Weighted 0.961 0.968 0.931 0.964
AUC 0.981 0.909 0.512 0.973
Accuracy 0.967 0.968 0.954 0.971
Precision 0.615 0.88 0.5 0.8
Precision Macro 0.797 0.928 0.732 0.891
XGB + RSHT Precision Micro 0.967 0.968 0.954 0.971
+ SMOTE Precision Weighted 0.964 0.966 0.943 0.97
Recall 0.471 0.733 0.25 0.727
Recall Macro 0.729 0.862 0.619 0.857
Recall Micro 0.967 0.968 0.954 0.971
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Table 14. (continued)

Target Variable Hinselmann Schiller Citology Biopsy
Recall Weighted 0.967 0.968 0.954 0.971
F1 0.533 0.8 0.333 0.762
XGB + RSHT F1 Macro 0.758 0.891 0.655 0.873
+ SMOTE F1 Micro 0.967 0.968 0.954 0.971
F1 Weighted 0.965 0.967 0.946 0.971
AUC 0.943 0.92 0.537 0.956
Accuracy 0.965 0.969 0.954 0.971
Precision 0.667 0.938 0 0.8
Precision Macro 0.821 0.954 0.477 0.891
Precision Micro 0.965 0.969 0.954 0.971
Precision Weighted 0.962 0.968 0.909 0.97
Recall 0.5 0.682 0 0.727
XGB + RSHT Recall Macro 0.744 0.839 0.5 0.857
+ ADASYN Recall Micro 0.965 0.969 0.954 0.971
Recall Weighted 0.965 0.969 0.954 0.971
F1 0.571 0.789 0 0.762
F1 Macro 0.777 0.886 0.488 0.873
F1 Micro 0.965 0.969 0.954 0.971
F1 Weighted 0.963 0.967 0.931 0.97
AUC 0.988 0.892 0.555 0.956

Table 15. Comparison with previous research on cervical cancer classification results in this study

Research Target Variable Classifier Accuracy
Random Forest + SMOTE 0.95
[91] Biopsy SVM + SMOTE 0.91
Decision Tree + SMOTE 0.95
, XGB + KNN Imputer 0.835
[92] Biopsy XGB + Deleted Missing Value 0.734
. KNN + SMOTE 0.884
[82] Biopsy KNN + ADASYN 0.879
XGBoost 0.965
Hinselmann XGBoost + RSHT + SMOTE 0.967
XGBoost + RSHT + ADASYN 0.965
XGBoost 0.97
Schiller XGBoost + RSHT + SMOTE 0.968
Proposed Work XGBoost + RSHT + ADASYN 0.969
XGBoost 0.954
Citology XGBoost + RSHT + SMOTE 0.954
XGBoost + RSHT + ADASYN 0.954
XGBoost 0.965
Biopsy XGBoost + RSHT + SMOTE 0.971
XGBoost + RSHT + ADASYN 0.971

including Hinselmann, Schiller, Cytology, and Biopsy.
While ADASYN also yielded strong results, SMOTE's
edge was clear in its reliability across recall and F1-
score metrics, which are more significant in medical
diagnostics due to their focus on thorough detection of
positive instances. This suggests that ADASYN's gains
in precision fall short of matching SMOTE's steadiness

in these vital areas. These findings affirm that fine-
tuning parameters via RSHT and addressing data
imbalances with SMOTE are essential for optimizing
classification model performance, representing the
most potent setup for this dataset. An earlier
investigation referenced as [91] employed the 'Cervical
Cancer Risk Factors' dataset to identify cervical
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cancer, focusing on biopsy as the outcome variable.
This was achieved using multiple machines learning
techniques, including Random Forests, SVMs, and
Decision Trees, and integratingSMOTE for data
balancing. Following that, the work in [92] leveraged the
same dataset to pinpoint cervical cancer cases, again
targeting biopsy, by assessing the XGBoost algorithm
alongside various imputation strategies like KNN
Imputer and the removal of missing values.
Additionally, the research from [82] applied the KNN
approach to detect cervical cancer, with biopsy as the
key variable, combined with distinct data balancing
techniques such as SMOTE and ADASYN. A summary
of how these prior studies compare with the present
research is outlined in Table. Based on the
experimental results and the comparison with previous
studies presented in Table., the proposed framework
demonstrates clear and consistent performance
advantages in cervical cancer classification. Prior
research generally agrees that ensemble classifiers
combined with data balancing techniques improve
predictive accuracy, particularly when handling
imbalanced medical datasets. Studies employing
SMOTE or ADASYN with conventional classifiers and
XGBoost report notable performance gains; however,
variations in accuracy remain largely influenced by
preprocessing strategies and dataset characteristics.
In this context, the proposed approach combining
XGBoost, Random Search Hyperparameter Tuning
(RSHT), and SMOTE consistently outperforms
XGBoost with RSHT and ADASYN, as well as methods
reported in previous studies, across all four diagnostic
targets (Hinselmann, Schiller, Cytology, and Biopsy).
This superiority is reflected in higher accuracy, AUC,
and precision, recall, and F1-score under macro, micro,
and weighted schemes, with micro-averaged metrics
showing the strongest performance, indicating robust
overall predictive capability in multitarget cervical
cancer diagnosis. The observed advantage of SMOTE
over ADASYN can be attributed to its ability to generate

evenly distributed synthetic samples for the
underrepresented class, whereas ADASYN
emphasizes hard-to-learn samples, which can

introduce noise and inconsistencies in datasets with
multiple targets, such as Cytology. This difference likely
contributes to the more stable and higher performance
achieved with SMOTE.

The training—testing data ratio also affects
performance. Splits with larger training sets,
particularly 70:30 and 80:20, generally produce more
stable and higher results, as the model can better learn
complex patterns following RSHT optimization and
SMOTE balancing. Conversely, smaller training sets
(50:50) limit learning capacity, while very small test sets
(90:10) increase evaluation variance. Overall, an 80:20
split offers a good balance between model robustness

and evaluation reliability. Performance varies across
the four diagnostic target variables. While Hinselmann
and Biopsy consistently achieve higher AUC values,
the Cytology target exhibits substantially lower
discriminative  performance, with AUC values
approaching random classification (0.5) for certain data
splits, such as 80:20 and 90:10. This reduced
performance is likely attributable to the subjective
nature of cytological assessment and the presence of
ambiguous class boundaries, which increase label
variability and limit model separability. In contrast,
Hinselmann and Biopsy rely on more objective visual
or histopathological evidence, resulting in more
consistent annotations and stronger discriminative
signals. From a clinical perspective, these findings
suggest that Cytology-based predictions should be
interpreted with caution, while from a methodological
standpoint, they highlight the need for target-specific
modeling strategies or complementary features to
improve performance for diagnostically challenging
outcomes. The observed improvement is attributable to
the combination of implemented techniques. XGBoost
iteratively builds strong classifiers, RSHT optimizes
parameters systematically, SMOTE mitigates class
imbalance by generating synthetic minority samples,
and MICE handles missing values to preserve feature
relationships, collectively enhancing model accuracy
and clinical relevance.

Despite the performance improvements achieved,
several limitations should be acknowledged. Although
ADASYN effectively mitigates class imbalance, it may
generate noisy or unevenly distributed synthetic
samples, potentially affecting model stability and
generalization, particularly in terms of accuracy and
AUC. Specifically, an increase in recall was
accompanied by a decrease in AUC across several
target variables, suggesting that the synthetic samples
generated by ADASYN may have introduced noise or
increased class overlap. In addition, relying on
confusion matrix-based metrics without incorporating
macro, micro, and weighted averaging may result in
biased performance interpretations in imbalanced and
multitarget settings, as such evaluations are often
dominated by the majority classes. Further research
should employ larger and more diverse datasets,
alternative balancing methods, and varied model
configurations to improve robustness and clinical
relevance.

V. Conclusion

This study aimed to comparatively evaluate SMOTE
and ADASYN for addressing class imbalance in
cervical cancer identification using an XGBoost
classifier optimized through Random Search
Hyperparameter Tuning (RSHT) and supported by
Multiple Imputation by Chained Equations (MICE). Four
diagnostic outcomes, Hinselmann, Schiller, Cytology,
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and Biopsy, were treated as independent binary
classification tasks. The results demonstrate that
integrating XGBoost, RSHT, MICE, and SMOTE
delivers superior overall performance. The proposed
framework achieved 97.1% accuracy, micro-precision,
micro-recall, micro-F1 score, and AUC, confirming its
robustness and effectiveness in multitarget cervical
cancer classification. In contrast, the ADASYN-based
configuration produced marginally lower micro-
averaged performance and substantially reduced AUC,
indicating less reliable class separability under
imbalanced conditions. Further analysis at the target
level shows that the SMOTE-based model maintains
consistently high accuracy across all diagnostic
outcomes, with  performance ranging from
approximately 95.4% to 97.1%, where Biopsy and
Hinselmann exhibit stronger discriminative capability
than Cytology. These variations highlight the influence
of target-specific characteristics on classification
performance, particularly in diagnostically challenging
outcomes. Future work should explore larger and more
diverse datasets, hybrid imbalance-handling
strategies, and alternative ensemble orthat deep
learning architectures to further enhance robustness
and clinical applicability. Emphasis should also be
placed on developing target-aware modeling strategies
and evaluating deployment feasibility in real-world
clinical screening environments. Overall, this study
confirms that combining MICE imputation, SMOTE
oversampling, and optimized XGBoost provide a
reliable and practical framework for cervical cancer
detection in imbalanced multitarget datasets.
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