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Abstract Cervical cancer remains a significant global health burden for women, with approximately 660,000 
new cases and 350,000 associated deaths recorded worldwide in 2022. Machine learning methods have 
shown great promise in advancing timely detection and accurate diagnosis. This investigation compares 
two widely used oversampling strategies, Synthetic Minority Oversampling Technique (SMOTE) and 
Adaptive Synthetic Sampling (ADASYN), applied to cervical cancer identification via the XGBoost classifier, 
paired with Multiple Imputation by Chained Equations (MICE) to handle incomplete data. The dataset 
consists of cervical cancer risk factors with four diagnostic outcomes: Hinselmann, Schiller, Cytology, and 
Biopsy, which are treated as independent binary classification tasks rather than a single multilabel 
classification problem. The process began by preparing a dataset of cervical cancer risk factors through 
MICE imputation, then applying SMOTE and ADASYN to address class imbalance. The XGBoost model is 
optimized using Random Search hyperparameter tuning and evaluated across train-test split ratios (50:50, 
60:40, 70:30, 80:20, and 90:10) using accuracy, precision (macro, micro, weighted), recall (macro, micro, 
weighted), F1-score (macro, micro, weighted), and AUC metrics. The results indicated that the XGBoost 
setup with MICE and SMOTE outperformed the others, achieving 97.1% accuracy, 97.1% mic-precision, 
97.1% mic-recall, 97.1% mic-F1, and 97.1% AUC. Meanwhile, the ADASYN-integrated model showed 
marginally lower results, with 95.4% accuracy, 95.4% micro-precision, 95.4% micro-recall, 95.4% micro-F1, 
and 55.5% AUC. SMOTE proved more adept at creating evenly distributed synthetic data for the 
underrepresented group. Overall, this work underscores the value of integrating MICE imputation, SMOTE 
oversampling, and tuned XGBoost as a reliable approach for cervical cancer detection. These insights pave 
the way for automated screening tools that can bolster clinical judgment and improve early diagnosis 
outcomes. 

Keywords Cervical cancer; MICE; XGBoost; Random Search; SMOTE; ADASYN. 

I. Introduction 
The cervix is part of the female reproductive organ and 
is located at the lower fibromuscular portion of the 
uterus [1]. When the cells that cover the cervix start to 
grow and multiply uncontrollably without following the 
proper mechanisms, it can lead to cervical cancer [2]. 
Cervical cancer is one of the leading causes of 
women's deaths worldwide [3]. In 2022, there will be an 
estimated 660,000 new cases and 350,000 deaths due 
to cervical cancer worldwide [4]. Cervical cancer is 
caused by the human papillomavirus (HPV), with the 
highest risk types being HPV 16, 18, 31, and 33 [5]. 
HPV is mostly transmitted through sexual contact and 
targets basal keratinocytes in the genital mucosa, oral 
mucosa, and skin [6]. Various factors, such as 
smoking, long-term use of oral contraceptives, multiple 
pregnancies, or pregnancy at a young age, may also 
increase the risk of cervical cancer [7]. Treatments for 
cervical cancer include radiation, surgery, 

chemotherapy [8], and Pap smears. Pap smears have 
been the lifesaver for millions of women with cervical 
cancer [9].  

Cervical cancer can be detected with machine 
learning. ML models have been shown to accelerate 
the diagnosis of cervical cancer [2]. Research on 
cervical cancer has been conducted by [2] using the 
decision tree method, with features selected via RFE 
and SMOTE-Tomek, achieving an accuracy of 98.72% 
and a sensitivity of 100%. Other research on cervical 
cancer was conducted by [10] using the Random 
Forest, Decision Tree, Adaptive Boosting, and Gradient 
Boosting methods with an accuracy value of 100%, 
while the SVM method produced an accuracy value of 
99%. Although these results are encouraging, selecting 
an appropriate model remains crucial, particularly for 
medical datasets that are often characterized by class 
imbalance, complex feature interactions, and a high 
risk of overfitting. Consequently, ensemble learning 
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methods that employ regularization and advanced 
optimization algorithms are increasingly favored in 
cancer detection tasks. One of the machine learning 
models commonly used in the medical field, including 
detecting cancer, is called XGBoost [11]. XGBoost is 
an extension of GBDT [12] that is efficient for complex 
classification tasks [13]. Moreover, XGBoost employs 
advanced hyperparameter tuning mechanisms to 
reduce overfitting, decrease prediction variance, and 
improve model accuracy, thereby enabling optimal 
model performance [14][15]. Several studies have 
demonstrated the effectiveness of XGBoost in medical 
applications. For instance, research by [16] using the 
XGBoost method on heart disease achieved an 
accuracy value of 91.8%. Other research conducted by 
[17] on Aneurysmal Subarachnoid Hemorrhage 
disease resulted in higher auc values in the XGBoost 
model to predict mortality and adverse functional 
outcomes, which were 0.950 and 0.958, compared to 
logistic regression models, which were 0.767 and 
0.829. 

To improve the performance of the XGBoost model, 
hyperparameter tuning using Random Search is 
employed to identify configurations that deliver optimal 
outcomes. Hyperparameter optimization has been 
shown to significantly influence the performance of 
machine learning models, although its effectiveness 
may vary across algorithms [18]. Compared to 
exhaustive methods such as Grid Search, RS samples 
hyperparameters randomly from predefined 
distributions, enabling broader, more diverse 
exploration of the search space at substantially lower 
computational cost [19]. Although more advanced 
approaches, such as Bayesian Optimization, provide 
adaptive search strategies, they often involve higher 
computational complexity and require careful modeling 
of the objective function, which may be less practical 
for high-dimensional hyperparameter spaces. 
Consequently, RS represents a suitable trade-off 
between computational efficiency and search diversity, 
particularly for complex models such as XGBoost. 
Despite its advantages, RS is not without limitations, as 
its stochastic sampling strategy may lead to variability 
in outcomes [20]. Nevertheless, several studies have 
demonstrated the effectiveness of RS in improving the 
performance of XGBoost models. For instance, [21] 
applied XGBoost with RS to the Chronic Kidney Failure 
dataset from the UCI Machine Learning Repository and 
combined XGBoost with Random Search, achieving an 
accuracy of 98.57% and an F-Measure of 0.9842. In 
another study, [22] applied XGBoost optimized with RS 
for shallow landslide classification in Trabzon Province, 
Turkey, reporting an accuracy of 75.64%, precision of 
94.71%, recall of 55.23%, and an F1-score of 69.77%. 

One of the common challenges in machine learning 
based disease detection is the presence of missing 
values and class imbalance. The cervical cancer 

dataset used in this study, obtained from the UCI 
Machine Learning Repository, contains a substantial 
proportion of missing data, which can adversely affect 
model accuracy and predictive reliability if not properly 
addressed [23]. Although missing values can be 
handled using various imputation techniques [24] 
simple approaches such as mean, median, or mode 
imputation may distort data distributions and fail to 
preserve important relationships among features, 
which are critical in medical datasets. Therefore, this 
study employs Multivariate Imputation by Chained 
Equations (MICE), a model-based imputation method 
that iteratively imputes missing values by modeling 
each feature conditional on the others [25] [26]. MICE 
is particularly advantageous for the cervical cancer 
dataset, as it is capable of maintaining complex inter-
feature relationships and reducing bias introduced by 
missing data, thereby producing more realistic and 
statistically consistent imputations. The effectiveness 
of MICE has been demonstrated in previous studies, 
for example, [27] using MICE techniques to replace 
outliers in concrete slump data from the UCI Machine 
Learning Repository resulted in the highest value in the 
𝑅2 stacking model 0.9702, RMSE and MAE of the KNN 
model are 0.1392 and 0.1162. 

Imbalanced data makes it difficult for machine 
learning models to perform optimally [28]. 
Oversampling is a commonly used strategy to address 
this issue by increasing the number of minority class 
samples to achieve a more balanced class distribution 
[29] [30]. Among various oversampling approaches, 
Synthetic Minority Oversampling Technique (SMOTE) 
and Adaptive Synthetic Sampling (ADASYN) were 
selected in this study due to their distinct mechanisms 
for generating synthetic minority samples. SMOTE 
creates synthetic instances through interpolation 
between existing minority samples and their nearest 
neighbors, aiming to achieve a more uniform class 
balance [31]. In contrast, ADASYN adaptively 
generates synthetic samples by emphasizing minority 
instances that are more difficult to learn, particularly 
those located in regions with high class overlap [32]. 
These fundamental differences provide a strong basis 
for comparative analysis, as SMOTE focuses on global 
class balance, whereas ADASYN prioritizes learning 
from challenging samples. Research conducted by [33] 
using the SMOTE and ADASYN methods to balance 
data on CCF datasets resulted in the highest accuracy 
value in the Random Forest model with SMOTE, which 
is 99.99%, while the accuracy value of Random Forest 
with ADASYN is 99.98%. 

The primary objective of this research is to assess 
and compare the efficacy of oversampling methods for 
classifying cervical cancer using an XGBoost model. 
Addressing challenges of missing data and class 
imbalance, the study explores the relative effects of 
SMOTE and ADASYN, combined with MICE 
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imputation, on classification outcomes, with the aim of 
determining the optimal strategy to enhance predictive 
accuracy in unbalanced cervical cancer datasets. This 
work provides several contributions: it develops an 
integrated evaluation framework that merges MICE 
imputation, oversampling approaches, and XGBoost 
modeling; it conducts a thorough comparison of 
SMOTE and ADASYN within a unified classification 
workflow, offering insights into their comparative 
efficacy in managing class imbalance; and it analyzes 
the influence of these preprocessing methods on 
classification results, emphasizing the importance of 
data preprocessing and model refinement in boosting 
predictive reliability. The key contributions of this study 
are outlined as follows: 
1) An integrated classification framework designed for 

cervical cancer datasets, incorporating MICE 

imputation, oversampling methods, and XGBoost 

enhanced by Random Search for hyperparameter 

optimization. 

2) A comprehensive comparative study of SMOTE 

and ADASYN oversampling techniques, 

emphasizing their effects on classification 

outcomes within a consistent modeling setup. 

3) An empirical assessment identifying the most 

efficient oversampling approach to enhance 

cervical cancer classification in unbalanced 

datasets. 

The subsequent sections of this paper are organized 
as follows. Section I surveys existing literature on 
cervical cancer classification and techniques for 
addressing data imbalance. Section II details the 
dataset, preprocessing procedures, oversampling 
methods, and the proposed XGBoost-based approach. 

Section III reports the experimental outcomes and 
performance metrics. Section IV deliberates on the 
results and the study's constraints. Lastly, Section V 
summarizes the conclusions and suggests avenues for 
future investigation. 
 
II. Method 

This research compares SMOTE and ADASYN on 

cervical cancer classification using the XGBoost 
method. The flowchart of this research is represented 
in Fig.. This research uses Python for machine learning 
classification on the “Cervical Cancer” dataset from 
UCI. The methodology consists of several stages. First, 
data preprocessing using the MICE (Multivariate 
Imputation by Chained Equations) technique was 
performed to impute missing values. The dataset is 
then divided into training and testing sets in various 
proportions (90:10, 80:20, 70:30, 60:40, and 50:50) for 
comparative analysis. Next, the data was balanced 
using SMOTE and ADASYN. The data is then 
classified using the XGBoost method with Randomized 
Hyperparameter Tuning. Finally, the test data 
evaluation results are measured using accuracy, 
precision (macro, micro, and weighted), recall (macro, 
micro, and weighted), F1-score (macro, micro, and 
weighted), and AUC. 

A. Data Collection 
The dataset used in this study is the Cervical Cancer 
(Risk Factors) Dataset from the University of California, 
Irvine (UCI) Machine Learning Repository, which 
contains patient data from “Hospital Universitario de 
Caracas” in Caracas, Venezuela. This dataset can be 
 accessed through the following link: 
https://archive.ics.uci.edu/dataset/383/cervical+cancer

 
Fig. 1. Research flowchart comparing SMOTE and ADASYN in cervical cancer classification, with MICE 
imputation and XGBoost optimization using Random Search hyperparameter tuning. 
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+risk+factors. This dataset was chosen due to its 
comprehensive representation of cervical cancer risk 
factors, which contains 858 patient data and 36 
attributes. The attributes include patient demographic 
information, medical history, and lifestyle factors. The 
target variables are the diagnosis results of 
Hinselmann, Schiller, Cytology, and Biopsy, which are 

the main diagnosis methods for cervical cancer. Details 
of the dataset's features are presented in Table. 

 
B. Multiple Imputation by Chained Equations 

(MICE)  

MICE is an imputation method that fills in missing data 
using a univariate conditional distribution for each 

Table 1. A detailed description of the Cervical Cancer dataset used in the current study 

No Attribute Type Range Missing Value 

1 Age Integer 13 - 84 Years 0 

2 Number of sexual partners Integer 1 - 28 sexual partners 26 

3 First sexual intercourse Integer 10 - 32 years 7 

4 Number of pregnancies Integer 0 - 11 pregnancies 56 

5 Smokes Boolean 0 → No, 1 → Yes 13 

6 Smokes (years) Integer 0 - 37 years 13 

7 Smokes (pack/year) Integer 0 - 37 packs per years 13 

8 Hormonal Contraceptives Boolean 0 → No, 1 → Yes 108 

9 Hormonal Contraceptives (years) Integer 0 - 30 years 108 

10 Intrauterine Device (IUD) Boolean 0 → No, 1 → Yes 117 

11 IUD (years) Integer 0 - 19 years 117 

12 Sexually Transmitted Diseases 
(STDs) 

Boolean 
0 → No, 1 → Yes 

105 

13 STDs (number) Boolean 0 → No, 1 → Yes 105 

14 STDs:condylomatosis Boolean 0 → No, 1 → Yes 105 

15 STDs:cervical condylomatosis Boolean 0 → No, 1 → Yes 105 

16 STDs: vaginal condylomatosis Boolean 0 → No, 1 → Yes 105 

17 STDs: vulvo-perineal condylomatosis Boolean 0 → No, 1 → Yes 105 

18 STDs:syphilis Boolean 0 → No, 1 → Yes 105 

19 STDs:pelvic inflammatory disease Boolean 0 → No, 1 → Yes 105 

20 STDs:genital herpes Boolean 0 → No, 1 → Yes 105 

21 STDs:molluscum contagiosum Boolean 0 → No, 1 → Yes 105 

22 STDs:AIDS Boolean 0 → No, 1 → Yes 105 

23 STDs:HIV Boolean 0 → No, 1 → Yes 105 

24 STDs:Hepatitis B Boolean 0 → No, 1 → Yes 105 

25 STDs:HPV Boolean 0 → No, 1 → Yes 105 

26 STDs: Number of diagnoses Integer 0 - 3 0 

27 STDs: Time since first diagnosis Integer 1 - 22 787 

28 STDs: Time since last diagnosis Integer 1 - 22 787 

29 Dx:Cancer Boolean 0 → No, 1 → Yes 0 

30 Dx:CIN Boolean 0 → No, 1 → Yes 0 

31 Dx:HPV Boolean 0 → No, 1 → Yes 0 

32 Diagnosis: Dx Boolean 0 → No, 1 → Yes 0 

33 Hinselmann (Target Variable) Boolean 0 → No, 1 → Yes 0 

34 Schiller (Target Variable) Boolean 0 → No, 1 → Yes 0 

35 Citology (Target Variable) Boolean 0 → No, 1 → Yes 0 

36 Biopsy (Target Variable) Boolean 0 → No, 1 → Yes 0 
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variable, considering the other variables iteratively [34]. 
MICE, also known as Multiple Sequential Regression 
Imputation, was first introduced by Donald Bruce Rubin 
in 1987 [35]. The development and refinement of this 
method was then popularized more widely by Stef Van 
Buuren in the early 2000s through his contributions in 
the field of statistics and the development of software 
supporting this technique [27].  

The advantages of MICE lie in its ability to consider 
uncertainty in imputation [36], use relationships 
between variables [25], and provide flexibility for 
imputing continuous, binary, and categorical data with 
regression models appropriate for each type of data 
[37] [38] [26]. The steps of the MICE algorithm are as 
follows:  
1. Initial Imputation 

Replace missing values using simple methods, 
such as mean imputation, to generate an initial 
complete data set [39]. 

2. Storage in MIDS Object 
Store the initial imputed dataset in an object called 
Multiply Imputed Dataset (MIDS), which is a copy of 
the original dataset with the missing values replaced 
[40]. 

3. Regression and Coefficient Estimation 
Perform an Ordinary Least Squares (OLS) 
regression on each of the imputed datasets. From 
this regression, regression coefficients are 
obtained, which are used to estimate the missing 
values. The regression results are stored in the 
Multiply Imputed Repeated Analysis (MIRA) object 
shown in Eq. (1) as follows  [41]: 
𝑋1 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀 (1) 

where, 𝑋1 is the dependent variable that the model 

wants to predict or explain. The term 𝛽0 represents 
the baseline value of 𝑋1 when all independent 

variables 𝑋2, 𝑋3, … , 𝑋𝑘 are zero. The coefficients 

𝛽1, 𝛽2, … , 𝛽𝑘 indicate the effect of each independent 
variable, which serves as a predictor, on the 
dependent variable. The term 𝜀 accounts for model 
error by capturing factors not explained by the 
predictors. 
Suppose each of the 𝑘 independent variables, 

𝑥1, 𝑥2, … , 𝑥𝑘, has 𝑛 levels. Then, 𝑥𝑖𝑗 is the 𝑖𝑡ℎ level of 

the 𝑗𝑡ℎ independent variable 𝑥𝑗 and 𝑦1, 𝑦2, … , 𝑦𝑛 has 

𝑛 levels. Thus, the 𝑛-tuples of observations are 
assumed to follow the same model, which is 
expressed in Eq. (2) to Eq. (5) below: 
𝑦1 = 𝑏0 + 𝑏1𝑥11 + 𝑏2𝑥12 + ⋯+ 𝑏𝑘𝑥1𝑘+ 𝑒1 (2) 

𝑦2 = 𝑏0 + 𝑏1𝑥21 + 𝑏2𝑥22 + ⋯+ 𝑏𝑘𝑥2𝑘+ 𝑒2 (3) 

𝑦𝑖 =  𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯+ 𝑏𝑘𝑥𝑖𝑘+ 𝑒𝑖  (4) 
………. 

𝑦𝑛 = 𝑏0 + 𝑏1𝑥𝑛1 + 𝑏2𝑥𝑛2 + ⋯+ 𝑏𝑘𝑥𝑛𝑘+ 𝑒𝑛 (5) 
If each independent variable has 𝑛 observations, 
this Eq. (6) can be written in matrix form as follows 
[42]:  

𝑦 = 𝑋𝛽 + 𝜀   (6) 
where 𝑋 is an (𝑛 × 𝑘) matrix of 𝑛 observations on 𝑘 

independent variables 𝑋1, 𝑋2, … , 𝑋𝑘, , 𝑦 is an (𝑛 × 1) 
vector of 𝑛 observations of the research variable, 𝛽 

is a (𝑘 × 1) vector of regression coefficients and 𝜀 is 

an (𝑛 × 1) vector of disturbances. Using matrix 
notation, this equation can be written Eq. (7) below: 

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
1 𝑥11 𝑥12 … 𝑥1𝑛

1 𝑥21 𝑥22 … 𝑥2𝑛

… … … … …
… … … … …
… … … … …
1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑛]

 
 
 
 
 

[
 
 
 
 
 
𝛽1

𝛽2

.

.

.
𝛽𝑛]

 
 
 
 
 

+

[
 
 
 
 
 
𝜀1

𝜀2

.

.

.
𝜀𝑛]

 
 
 
 
 

  (7) 

The regression coefficient can be calculated using 
the formula in Eq. (8) [42]: 

𝛽 = (𝑋′𝑋)−1𝑋′𝑦  (8) 
where 𝑋′ is the transpose matrix of 𝑋. 

4. Pooling Estimates 
Pool all coefficient estimates from the imputed 
dataset using Rubin's Rules. The pooled mean 
estimate is calculated in Eq. (9) [43]: 

𝜃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
1

𝑚
∑ 𝜃𝑖

𝑚
𝑖=1   (9) 

where, 𝜃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is calculated by averaging the 

mean estimates 𝜃𝑖 from each of the 𝑚 is the number 
of imputed datasets, providing a single 
representative value that accounts for variability 
introduced by the imputation process. 
After that, perform a combined variance that takes 
into account the variance of each estimate and the 
variance between imputations in Eq. (10) [44]: 

𝑉𝜃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
=  

1

𝑚
∑ 𝑉(𝜃𝑖) + (1 +

1

𝑚
)𝑚

𝑖=1  . 𝐵(𝜃)  (10) 

where the combined variance, denoted as 
𝑉𝜃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

, is obtained from multiple imputation by 

accounting for both within- and between-imputation 
variability. In this context, 𝑚 represents the number 
of imputations used (for example, if there are 5 

imputation datasets, then 𝑚 = 5), while 𝜃𝑖 denotes 

the parameter estimate of the  𝑖𝑡ℎ imputation 
dataset, such as a mean or regression coefficient. 

The term 𝑉(𝜃𝑖) indicates within-dataset variance, 

reflecting the uncertainty in the estimate for the 
dataset, and 𝐵(𝜃) represents the between-
imputation variance, capturing the variation 
between estimates from different imputation 
datasets. 

5. Process Iteration 
Repeat steps 2 to 4 for each variable with missing 
data. One-time processing of all variables is 
referred to as one cycle (iteration). This cycle is 
repeated several times until the imputation results 
are stable, meaning the predicted values change 
little between cycles. 
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Table presents the “Cervical Cancer” sample dataset 
before preprocessing, and Table presents the “Cervical 
Cancer” sample dataset after preprocessing. 
C. Oversampling  
Unbalanced datasets lead to imbalances in the minority 
and majority classes in multiclass classification 
problems. Unbalanced data occurs when the minority 
class has fewer samples than the majority class. Class 
imbalance can adversely affect model training, degrade 
classification performance, and lead to high false 
positives for certain minority class samples [45] [46]. 
Oversampling is a technique for overcoming 
imbalanced datasets [29] that is easily applied to 
multiclass classification [47] which works by replicating 
samples from the minority class [48], thus increasing 
the size of the dataset [33] making the number of 
samples equal to the majority class [49]. 

Oversampling does not require extensive parameter 
tuning and can be performed in seconds [31]. 
Oversampling can balance the class distribution of a 
dataset without losing information [50], although it can 
lead to overfitting [32] due to the large number of 
replicated samples in the minority class and cannot 
contribute to extending the decision boundary to the 
majority class region [28]. Therefore, oversampling has 
several variations to overcome overfitting. SMOTE and 
ADASYN are oversampling techniques often used to 
balance datasets and avoid overfitting. 
1. Synthetic Minority Oversampling Technique 

(SMOTE) 

SMOTE is an oversampling technique that starts by 
randomly selecting a minority class instance and 
finding its k-nearest minority class neighbors [51]. 

Table 2. A representative sample of the cervical cancer dataset before data preprocessing steps 

Age 
Number of 

sexual partners 
First sexual 
intercourse 

... Hinselmann Schiller Citology Biopsy 

18 4 15 ... 0 0 0 0 

15 1 14 ... 0 0 0 0 

34 1 ? ... 0 0 0 0 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

32 2 19 ... 0 0 0 0 

25 2 17 ... 0 0 1 0 

33 2 24 ... 0 0 0 0 

29 2 20 ... 0 0 0 0 

 
Table 3. A representative sample of the cervical cancer dataset after data preprocessing steps. 

Age 
Number of 

sexual partners 
First sexual 
intercourse 

... Hinselmann Schiller Citology Biopsy 

18 4 15 ... 0 0 0 0 

15 1 14 ... 0 0 0 0 

34 1 202.147 ... 0 0 0 0 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... 

32 2 19 ... 0 0 0 0 

25 2 17 ... 0 0 1 0 

33 2 24 ... 0 0 0 0 

29 2 20   0 0 0 0 
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SMOTE is an improved method based on Random 
Oversampling (ROS) [52] that was first proposed by 
Narasimhan Chawla and colleagues in 2002 [53]. 
SMOTE overcomes overfitting by generating synthetic 
samples that are similar, but not identical, to the 
minority class samples [50]. This technique improves 
the representation of rare events, allowing the model to 
learn patterns in imbalanced data [54], and improves 
the accuracy of minority class fault detection [46]. The 
algorithm of SMOTE is as follows: 
a) Calculating Euclidean Distance and Finding K 

Nearest Neighbors 
For each sample in the training set, calculate the 
Euclidean distance to each minority class sample 

𝑥𝑖, and find the k nearest neighbors for each 
minority-class sample. The Euclidean distance 
between two points in the feature space 𝑥 =
 (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 =  (𝑦1, 𝑦2, … , 𝑦𝑛) is calculated 
by the following Eq. (11) [55]: 

𝑑(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1   (11) 

where the distance 𝑑(𝑥, 𝑦) represents the 
measure of dissimilarity between two data points 

𝑥 and 𝑦. Each 𝑥𝑖 dan 𝑦𝑖 corresponds to the 𝑖𝑡ℎ 
feature of the sample 𝑥 and 𝑦, respectively, and 𝑛 
denotes the total number of features considered in 
the calculation. 

b) Determine the Sampling Ratio (N) 
Based on the sampling imbalance rate, determine 
the sampling ratio N. For 𝑥𝑖, randomly select N 
samples from its k nearest neighbors, denoted as 
𝑥ℎ [30]. 

c) Building a New Synthetic Sample 
Build a new sample based on 𝑥𝑖 and 𝑥ℎ until the 

classes are balanced, denoted as 𝑋𝑛𝑒𝑤 in the 
following Eq. (12) [56]: 

𝑋𝑛𝑒𝑤 =  𝑥𝑖 +  𝜆 . (𝑥ℎ − 𝑥𝑖)  (12) 
where a new synthetic sample, denoted as 𝑋𝑛𝑒𝑤, is 

generated based on an original minority sample, 𝑥𝑖, 

and one of its nearest neighbors, 𝑥ℎ. The 
interpolation between 𝑥𝑖 and 𝑥ℎ is controlled by a 

random value 𝜆 ranging from 0 to 1, which 
determines the relative contribution of the original 
sample and its neighbor in creating the synthetic 
instance.  

2. Adaptive Synthetic Sampling (ADASYN) 

ADASYN is an extension of the SMOTE method that 
serves as an adaptive oversampling technique for 
minority classes [57]. By generating new synthetic 
samples around hard-to-classify data, ADASYN 
increases data variability, reduces the risk of overfitting, 
and is proven to improve machine learning model 
performance on highly imbalanced datasets [58]. 
ADASYN uses a density distribution to adaptively 
generate a number of synthetic samples, whereas 
SMOTE generates the same number of synthetic 

samples for each minority class [59]. The steps of 
applying the ADASYN technique are as follows: 
1. Class Initialization and Ratio 

The first step in ADASYN is to calculate the ratio 
between the number of samples of the minority 

class (𝑁𝑚𝑖𝑛) and the majority class (𝑁𝑚𝑎𝑗) in  Eq. 

(13): 

𝑇 =
𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑗
   (13) 

The value of 𝑇 is used for algorithm initialization and 
as a basis for calculating the oversampling 
requirement [60]. 

2. Determining the Total Number of Synthetic Samples 
(𝐺) 
Based on the degree of imbalance and the 
parameter β (usually between 0 - 1), calculate the 
total number of synthetic samples to be generated 
in Eq. (14). 

𝐺 = (|𝑁𝑚𝑎𝑗| − |𝑁𝑚𝑖𝑛|) × 𝛽 (14) 

where 𝛽 𝜖 [0, 1] is a parameter that represents the 
desired level of balance after adding synthetic data. 
A value of 𝛽 = 0 means that no synthetic samples 
are added, while 𝛽 = 1 will result in a fully balanced 
dataset, where the majority and minority classes 
have equal proportions [61]. 

3. Calculate Majority Dominance Around Each 
Minority Sample 
For each minority sample 𝑥𝑖, the ADASYN algorithm 
finds the k nearest neighbors based on Euclidean 
distance, then calculates the majority dominance 

ratio 𝑟𝑖 in Eq. (15) as follows [62]: 

𝑟𝑖 =
∆𝑖

𝑘
    (15) 

Where the majority dominance rate 𝑟𝑖, represents 
the proportion of the majority class sample 

surrounding the 𝑖𝑡ℎ minority sample. In this context, 

∆𝑖 denotes the number of majority neighbors of that 

minority sample, while 𝑘 indicates the total number 
of neighbors considered when calculating the 
dominance rate. 

4. Normalization of 𝑟𝑖 
The 𝑟𝑖 values are then normalized to produce a 
weight distribution 𝐺𝑖 that sums to 1 in Eq. (16) [63]: 

𝐺𝑖 =
𝑟𝑖

∑ 𝑟𝑖
𝑁𝑚𝑖𝑛
𝑖=1

  (16) 

where the normalized weight for the 𝑖𝑡ℎ minority 

sample, 𝐺𝑖, is determined based on the majority 

dominance ratio 𝑟𝑖 of that sample. 𝑁𝑚𝑖𝑛 represents 
the total number of minority samples, and the sum 
of all majority dominance ratios across these 

samples, ∑ 𝑟𝑖
𝑁𝑚𝑖𝑛
𝑖=1 , reflects the overall influence of 

the majority class in the neighborhood of the 
minority samples.  

5. Determining the Number of Synthetic Samples per 
Point (𝑔𝑖) 
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The number of synthetic samples that need to be 
made from each minority sample 𝑥𝑖 in Eq. (17) as 
follows [64]: 

𝑔𝑖 = 𝐺𝑖 × 𝐺   (17) 
where the number of synthetic samples to be 

created around the 𝑖𝑡ℎ  minority sample is denoted 
as 𝑔𝑖, and this is determined based on the 

normalized weight 𝐺𝑖 of that sample. The total 
number of synthetic samples created across all 
minority samples is represented by 𝐺, providing a 
measure of the overall augmentation applied to the 
dataset. 

6. Creating Synthetic Samples 
For each minority sample 𝑥𝑖, 𝑔𝑖 a synthetic sample 

is created by interpolating one of its neighbors 𝑥𝑧𝑖 in 
Eq. (18) as follows [65]: 

𝑠𝑖 = 𝑥𝑖 + 𝜆 ∙  (𝑥𝑧𝑖 − 𝑥𝑖) (18) 

where a synthetic data point, denoted as 𝑠𝑖, is 
generated based on an original processed minority 
sample 𝑥𝑖 and one of its nearest neighbors 𝑥𝑧𝑖 from 
the minority class. The interpolation between 𝑥𝑖 and 

𝑥𝑧𝑖 is controlled by a random value 𝜆 ranging from 0 
to 1, which determines the relative contribution of 
the original sample and its neighbor in creating the 
synthetic instance. 

D. Data Split  
Before classification, the dataset is split into training 
and test sets. The machine learning model is trained on 
training data and evaluated on test data. In this study, 
the training and testing data are divided into several 
proportions: 90:10, 80:20, 70:30, 60:40, and 50:50 [66], 
[67]. 
E. Extreme Gradient Boosting (XGBoost)  
XGBoost is an optimized and highly scalable decision 
tree-based machine learning algorithm [68]. It was 
developed by Chen and Guestrin as a highly scalable 
end-to-end boosting system that has been widely 
implemented and optimized in various research fields 
[69]. XGBoost is an extension of the Gradient Boosted 
Regression Trees (GBRT) framework designed to 
deliver high prediction performance. As an ensemble 
learning method, XGBoost combines prediction results 
from a number of weak models to form a stronger 
model. 
One of the key features of XGBoost is the use of 
objective function normalization to reduce model 
complexity, speed up the training process, and reduce 
the risk of overfitting. Empirically, XGBoost performs 
relatively faster than other ensemble classification 
algorithms. It also supports parallel processing so that 
it can utilize multicore computer resources to efficiently 
handle large datasets [70]. The following are the steps 
of the XGBoost algorithm: 
1. Boosting Model Prediction 

The XGBoost model consists of K CART trees, with 
the output being the sum of their outputs. The 

cumulative value serves as the predictive value of 
the XGBoost model and can be expressed 
mathematically in Eq. (19) as follows [12]: 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1    (19) 

where the number of CART trees usd in the model 
is denoted by 𝐾, and 𝑓𝑘 refers to a specific CART 
tree within the ensemble. The output of the 
XGBoost model for a given input is represented by 
𝑦̂𝑖, which aggregates the contributions of all 
individual trees in the ensemble.  

2. Loss and Regularization Functions 

XGBoost is similar to most machine learning 
models, and its objective function can be the sum of 
a loss function and a regular term, which control the 
accuracy and complexity of the model, respectively. 
The specific Eq. (20) is as follows [71]: 

𝐿(𝑦̂) = ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖)
𝑛
𝑖=1 + ∑  (𝑓𝑘)𝐾

𝑘=1   (20) 

Where: 

 (𝑓
𝑘
) =  𝛾𝑇 +  

1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1     (21) 

where the target value for a given observation is 
denoted as 𝑦𝑖, and the loss function, 𝑙, measure the 

difference between the predicted value 𝑦̂𝑖 and 𝑦𝑖. 

The regularization term, , is included to penalize 

model complexity and avoid overfitting. In the 
decision tree, 𝑇 represents the number of leaves, 

with 𝑤𝑗 denoting the weight of the 𝑗𝑡ℎ leaf. The 

parameter 𝛾 penalizes the number of leaves, while 

 serves as a regularization parameter for leaf 

weights, ensuring the model maintains both 
accuracy and generalization. 

3. Taylor Expansion for Model Updating 
GB is effective in regression and classification 
problems. GB is used with a loss function, which is 
expanded by a second-order Taylor expansion, with 
constant terms removed to produce a simplified 
objective in the first step, in  Eq. (22) to Eq. (24) as 
follows [72]: 

𝐿(𝑡) = ∑ (𝑔𝑖𝑓𝑖(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑖

2(𝑥𝑖)) +   (𝑓𝑘)𝑛
𝑖=1  (22) 

     =  ∑ (𝑔𝑖𝑓𝑖(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑖

2(𝑥𝑖)) + 𝛾𝑇 +𝑛
𝑖=1

          
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1      (23) 

    = ∑ [(∑ 𝑔𝑖𝑖∈𝐼𝑗
)𝑤𝑗 +

1

2
(∑ ℎ𝑖𝑖∈𝐼𝑗

+ ) 𝑤𝑗
2]𝑇

𝑗=1 +

          𝛾𝑇      (24) 

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} denotes the sample set of 

leaf t, and 

𝑔𝑖 =
𝜕𝐼(𝑦̂𝑖

(𝑡−1)
,𝑦𝑖)

𝜕𝑦̂𝑖
(𝑡−1)    (25) 

ℎ𝑖 =
𝜕𝐼(𝑦̂𝑖

(𝑡−1)
,𝑦𝑖)

𝜕(𝑦̂
𝑖
(𝑡−1)

)2
  (26) 

where the objective function at the 𝑖𝑡ℎ iteration, 

denoted as 𝐿(𝑡), is minimized during the training 
process to produce the best prediction. The 
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previous prediction is represented by 𝑦̂𝑖
(𝑡−1)

, while 𝑔𝑖 

is the gradient of the loss function with respect to 
the previous prediction and ℎ𝑖 is the Hessian 
(second derivative), which measures the sensitivity 
of the loss function to changes in predictions. The 
prediction generated by the model, for example 𝑥𝑖, 

which is the result of the decision tree at iteration 𝑡 
is given by 𝑓𝑖(𝑥𝑖), which corresponds to the output 
of the decision tree constructed during that iteration. 

4. Calculation of Leaf Weight and Objective Function 
For a fixed structure, the optimal weights and 
objective function can be calculated in Eq. (27) to 
Eq. (28) as follows [73]. 

𝑤𝑗 = −
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖𝑖∈𝐼𝑗
+

   (27) 

𝐿(𝑡) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)
2

∑ ℎ𝑖𝑖∈𝐼𝑗
+

𝑇
𝑗=1 +  𝛾𝑇  (28) 

where the weight of the 𝑗𝑡ℎ leaf in the decision tree 
is denoted as 𝑤𝑗, while the term 𝛾𝑇 represents the 

penalty imposed on the number of leaves in the tree. 
This is part of regularization, which aims to reduce 
the complexity of the tree. 

5. Split Evaluation and Selection 
To select the best split, XGBoost calculates the loss 
reduction after splitting the data at each node. After 
the split, we have two groups, left 𝐼𝐿 and right 𝐼𝑅, 

where 𝐼 =𝐼𝑅 ∪ 𝐼𝐿. The loss reduction after splitting is 
calculated in Eq. (29) as follows [74]: 

𝐺𝑎𝑖𝑛 =
1

2
[
(∑ 𝑔𝑖𝑖∈𝐼𝐿

)
2

∑ ℎ𝑖𝑖∈𝐼𝐿
+

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖𝑖∈𝐼𝑅
+

−
(∑ 𝑔𝑖𝑖𝜖𝐼 )2

∑ ℎ𝑖+𝑖𝜖𝐼
] − 𝛾  (29) 

F. Random Search Hyperparameter Tuning  
RS is a hyperparameter optimization method that 
works by defining a probability distribution for each 
hyperparameter value range, then randomly selecting 
a combination of values from that distribution to 
evaluate the model performance [18]. This search 
process will be stopped when the model performance 
reaches a certain threshold, or the number of iterations 
has reached a user-defined limit [75]. RS is known as 
a simple yet effective approach, as it is able to find high-
performance hyperparameter configurations through 
fewer iterations than methods such as Grid Search, 
especially in high-dimensional search spaces [76]. 
Computationally, it is more efficient when dealing with 
many hyperparameters, as it does not need to evaluate 
all possible combinations [46]. 
Another advantage of RS is the flexibility to adjust the 
search budget to the distribution of the search space. 
This is particularly useful when some hyperparameters 
are not evenly distributed, as the randomized approach 
is more adaptive to such irregularities. Moreover, since 
each evaluation is performed independently, this 
method supports parallel execution, thus allowing for 
optimal utilization of computational resources [77]. 

With this combination of advantages, RS is a powerful 
and efficient alternative for hyperparameter 
optimization, including in complex settings. The 
performance of the XGBoost model can be improved 
by tuning the RS Hyperparameter Tuning [78]. 
XGBoost has a number of important hyperparameters, 
such as learning rate, maximum number of iterations, 
and maximum depth [79]. The procedure of RS in Eq. 
(30) is as follows [80]: 
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = arg𝑚𝑖𝑛𝜃 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝜃)  (30) 

where, 𝜃 is a hyperparameter vector to be optimized 
and 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝜃) is a function that measures the 
performance of the model based on a particular 
hyperparameter combination. 
RS consists of the following steps [21]: 

1. Starting the number of iterations of the parameter 
combination  

2. Initialize all parameter values  

3. Repeating a random combination of parameter 
values based on the number of iterations  

4. Performing training using XGBoost on training data 

5. Evaluating the resulting classification with test data 
test data Saving the best value of the classification 
results and the best combination of parameter 
values 

Table 1. summarizes the hyperparameters and their 

respective search ranges explored using random 
search, based on the optimal parameter values 
reported in previous studies [19], [20], [21], [78]. 

 
G. Evaluation  
In this study, model performance was evaluated using 
a confusion matrix, including accuracy, precision, 
recall, F1-score, and Area Under the Curve (AUC). The 
selection of appropriate evaluation metrics is very 
important to measure the performance of machine 
learning models objectively and accurately [81].  
Metrics such as accuracy, precision, recall, and F1 
score, both macro- and weighted-averaged, are used 
to address the impact of class imbalance. Micro-
averaged calculates the total true positives, false 
positives, and false negatives across all classes, then 
produces a global metric that gives equal weight to 
each instance. Macro-averaged calculates the metric 
for each class separately, then averages without regard 
to sample size, thus giving equal weight to each class. 

Table 1. A detailed list of parameters with their 
respective value ranges in this study. 

Parameter Parameter Value Range 

learning_rate (0.01, ..., 0.1) 

max_depth (1, ..., 12) 

n_estimators (100, ..., 1000) 

subsample (0.6, ..., 1.0) 

colsample_bytree (0.6, ..., 1.0) 
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Weighted average, on the other hand, calculates the 
metric per class then averages with weights based on 
the sample size in each class, reflecting the 
unbalanced class distribution in the dataset [82], [83]. 
The confusion matrix for binary classification is 

presented in Table. The actual values are coded as 

True (1) and False (0), while the predicted results are 
classified as Positive (1) and Negative (0). Four 
possible classification outcomes, True Positive (TP), 
True Negative (TN), False Positive (FP), and False 
Negative (FN), are derived from the confusion matrix, 
with the following explanation [84]: 

 
Accuracy, as expressed in Eq. (31) [85], represents the 
proportion of correct predictions to the total number of 
predictions made. Mathematically, accuracy is 
calculated by the following formula [86]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (31) 

Precision is the ratio between the number of correct 
positive predictions and the total number of positive 
predictions. Precision measures the accuracy of 
positive predictions. The precision, macro precision, 
and weighted precision are calculated using the 
formula written in Eq. (32) to Eq. (35) [31] [87] [82]:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (32) 

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖

𝑁
𝑖=1   (33) 

𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ 𝑇𝑃𝑖+ ∑ 𝐹𝑃𝑖
𝑁
𝑖=1

𝑁
𝑖=1

  (34) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

∑ |𝐶𝑖|
𝑁
𝑖=1

∑
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
× |𝐶𝑖|

𝑁
𝑖=1  (35) 

Recall, also known as sensitivity or True Positive Rate 
(TPR), is the ratio of correctly predicted positive 
observations to all observations in the dataset. Recall, 
macro recall, and weighted recall are calculated using 
the formula in Eq. (36) to Eq. (39) as follows [31] [87] 
[82]:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (36) 

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁
𝑖=1    (37) 

𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ 𝑇𝑃𝑖+ ∑ 𝐹𝑁𝑖
𝑁
𝑖=1

𝑁
𝑖=1

   (38) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

∑ |𝐶𝑖|
𝑁
𝑖=1

∑
𝑇𝑃𝑖

𝑇𝑃𝑖+ 𝐹𝑁𝑖

𝑁
𝑖=1 × |𝐶𝑖| (39) 

The F1-score is a measure of test accuracy. This value 
is calculated based on precision and recall using the 
formula in equation (38) [84]. Macro F1 and weighted 

F1 are calculated using formula in Eq. (40) to Eq. (43) 
as follows [83] [88] [82]: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
   (40) 

𝑀𝑎𝑐𝑟𝑜 𝐹1 =  
1

𝑁
∑

2×
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
×

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑃𝑖

+
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁
𝑖=1   (41) 

𝑀𝑖𝑐𝑟𝑜 𝐹1 =
2× 𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑖𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙
  (42) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 =  
1

∑ |𝐶𝑖|
𝑁
𝑖=1

∑
2×

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑃𝑖

×
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
+

𝑇𝑃𝑖
𝑇𝑃𝑖+𝐹𝑁𝑖

× |𝐶𝑖|
𝑁
𝑖=1  (43) 

The Area Under the Curve (AUC) is a metric in an ROC 
diagram that represents the area under the ROC curve 
of an algorithm. Therefore, the higher the AUC value, 
the better the performance of the algorithm [85]. The 
ROC curve depicts the true positive rate (TPR) written 
in Eq. (36) against the false positive rate (FPR) written 
in Eq. (44) [31] at various classification thresholds [89]: 

𝐹𝑃𝑅 =
𝐹𝑃 

𝑇𝑁+𝐹𝑃
   (44) 

AUC evaluates a model's ability to distinguish between 
classes by TPR against FPR; the higher the AUC, the 
better the model. The higher TPR indicates that the 
model is performing well. However, accuracy metrics 
can be misleading when classes are imbalanced, i.e., 
when one class has more examples. The AUC metric 
is less affected by class imbalance and provides a 
comprehensive view of the model's performance 
across all thresholds [86].  

 
AUC stands for “Area Under the ROC Curve”. An ideal 
ROC curve thus has AUC = 1.0 [16]. For the diagnosis 
test to be more accurate, the AUC should be greater 
than 0.5. Generally, an AUC ≥ 0.8 is considered 
acceptable [90]. 
 
III. Result  
This section presents the results of cervical cancer 
classification for four target variables (Hinselmann, 
Schiller, Cytology, and Biopsy) using XGBoost, 
XGBoost with Random Search Hyperparameter Tuning 
with SMOTE, and XGBoost with Random Search 
Hyperparameter Tuning with ADASYN. The 
performance of each model is evaluated using 
accuracy, precision (macro, micro, and weighted), 

Table 5. Confusion matrix showing the actual 
and predicted classifications of the dataset. 

Classification 
Prediction 

Positive Negative 

Actual 

Positive 
True 
Positive 

True 
Negative 

Negative 
False 
Positive 

False 
Negative 

 

Table 6. Interpretation of the Area Under the 
Curve (AUC) for model performance 
evaluation. 

Area Under the Curve (AUC) Interpretation 

0,9 <= AUC Excellent 

0,8 <= AUC <= 0,9 Good 

0,7 <= AUC <= 0,8 Fair 

0,6 <= AUC <= 0,7 Poor 

0,5 <= AUC <= 0,6 Fail 
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recall (macro, micro, and weighted), F1 score (macro, 
micro, and weighted), and AUC. 
A. XGBoost 
In this study, the first classification is using the 
XGBoost algorithm. Performance was measured using 
accuracy, precision (macro, micro, and weighted), 

recall (macro, micro, and weighted), F1-score (macro, 
micro, and weighted), and AUC. The results of the 
XGBoost model performance evaluation for the four 
target variables (Hinselmann, Schiller, Citology, and 
Biopsy) are presented in Table. 

 

Table 7. Summary of XGBoost model performance measured across various classification evaluation 
metrics.  

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10 

Hinselmann 

Accuracy 0.965 0.962 0.961 0.959 0.954 

Precision 0.6 0.6 0.6 0.5 0.5 

Precision Macro 0.787 0.784 0.784 0.735 0.732 

Precision Micro 0.965 0.962 0.961 0.959 0.954 

Precision Weighted 0.959 0.953 0.953 0.951 0.943 

Recall 0.353 0.214 0.273 0.286 0.25 

Recall Macro 0.672 0.604 0.632 0.637 0.619 

Recall Micro 0.965 0.962 0.961 0.959 0.954 

Recall Weighted 0.965 0.962 0.961 0.959 0.954 

F1 0.444 0.316 0.375 0.364 0.333 

F1 Macro 0.713 0.648 0.678 0.671 0.655 

F1 Micro 0.965 0.962 0.961 0.959 0.954 

F1 Weighted 0.961 0.954 0.954 0.954 0.946 

AUC 0.981 0.981 0.986 0.981 0.988 

Schiller 

Accuracy 0.97 0.968 0.965 0.965 0.954 

Precision 0.9 0.852 0.882 1 0.8 

Precision Macro 0.938 0.915 0.927 0.982 0.882 

Precision Micro 0.97 0.968 0.965 0.965 0.954 

Precision Weighted 0.969 0.967 0.963 0.966 0.95 

Recall 0.73 0.767 0.682 0.6 0.571 

Recall Macro 0.861 0.877 0.837 0.8 0.779 

Recall Micro 0.97 0.968 0.965 0.965 0.954 

Recall Weighted 0.97 0.968 0.965 0.965 0.9535 

F1 0.806 0.807 0.769 0.75 0.667 

F1 Macro 0.895 0.895 0.875 0.866 0.821 

F1 Micro 0.97 0.968 0.965 0.965 0.954 

F1 Weighted 0.968 0.967 0.963 0.961 0.95 

AUC 0.909 0.925 0.86 0.825 0.937 

Citology 

Accuracy 0.939 0.93 0.93 0.936 0.954 

Precision 0.25 0.125 0.222 0.25 0 

Precision Macro 0.601 0.537 0.589 0.601 0.477 

Precision Micro 0.939 0.93 0.93 0.936 0.954 

Precision Weighted 0.917 0.906 0.919 0.916 0.909 

Recall 0.091 0.056 0.154 0.111 0 

Recall Macro 0.538 0.517 0.563 0.546 0.5 

Recall Micro 0.939 0.93 0.93 0.936 0.954 

Recall Weighted 0.939 0.93 0.93 0.936 0.954 

F1 0.133 0.077 0.182 0.154 0 

F1 Macro 0.551 0.52 0.573 0.56 0.488 

F1 Micro 0.939 0.93 0.93 0.936 0.954 

F1 Weighted 0.926 0.917 0.924 0.924 0.931 

AUC 0.753 0.722 0.641 0.553 0.512 

Biopsy 

Accuracy 0.944 0.942 0.95 0.959 0.965 

Precision 0.6 0.571 0.625 0.75 0.8 

Precision Macro 0.78 0.765 0.798 0.86 0.887 

Precision Micro 0.944 0.942 0.95 0.959 0.965 

Precision Weighted 0.937 0.933 0.948 0.955 0.963 

Recall 0.429 0.364 0.588 0.546 0.667 

Recall Macro 0.704 0.673 0.782 0.767 0.827 

Recall Micro 0.944 0.942 0.95 0.959 0.965 

Recall Weighted 0.944 0.942 0.95 0.959 0.965 
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The best evaluation results of the XGBoost 
classification on 4 target variables are as follows: 

• Hinselmann achieved the best results at a ratio of 
50:50 with an accuracy value of 0.965, precision of 
0.6, macro precision of 0.787, micro precision of 
0.965, weighted precision of 0.959, recall of 0.353, 
macro recall of 0.672, micro recall of 0.965, 
weighted recall of 0.965, F1 score of 0.444, macro 
F1 of 0.713, micro F1 of 0.965, weighted F1 of 
0.961, and AUC of 0.981. 

• Schiller achieved the best results at a ratio of 50:50 
get the best results an accuracy value 0.958, 
precision 0.788, precision macro 0.88, precision 
micro 0.958, precision weighted 0.956, recall 
0.703, recall macro 0.842, recall micro 0.958, recall 
weighted 0.958, f1 score 0.743, f1 macro 0.86, f1 
micro 0.958, f1 weighted 0.957, and AUC 0.906. 

• Citology achieved the best results at a ratio of 
90:10, the best results an accuracy value of 0.954, 
precision 0.5, precision macro 0.732, precision 
micro 0.954, precision weighted 0.943, recall 0.25, 
recall macro 0.619, recall micro 0.954, recall 
weighted 0.954, f1 score 0.333, f1 macro 0.655, f1 
micro 0.954, f1 weighted 0.946, and AUC 0.537. 

• Biopsy achieved the best results at a ratio of 90:10, 
the best results an accuracy value of 0.965, 
precision 0.8, precision macro 0.888, precision 
micro 0.965, precision weighted 0.963, recall 
0.667, recall macro 0.827, recall micro 0.965, recall 
weighted 0.965, f1 score 0.727, f1 macro 0.854, f1 
micro 0.965, f1 weighted 0.964, and AUC 0.96. 

B. XGBoost with RSHT with SMOTE 
The second classification in this study utilised the 
XGBoost algorithm optimised using Random Search 
Hyperparameter Tuning (RSHT), and the SMOTE 
technique to handle imbalanced data. The results of the 
SMOTE technique implementation are presented in 

Table . The best parameters from the Random Search 

results for XGBoost are presented in Table 9.. The 

overall classification results for the four target variables 
(Hinselmann, Schiller, Cytology, and Biopsy) using the 
XGBoost method with a combination of RSHT and 

SMOTE are presented sequentially in Table. Based on 

Table 8.  and Fig., before the application of SMOTE, 
the number of samples for the minority class (1) was 
less than the majority class (0). After SMOTE, the 
number of samples in the minority class was 

successfully increased, resulting in balanced 
proportions with the majority class across all target 
variables. The target variables on the X-axis represent 
different diagnostic tests: Hinselmann, Schiller, 
Cytology, and Biopsy, while the Y-axis shows the total 
number of samples (count) in the dataset. For example, 
the Hinselmann minority class increased from 18 to 
411, the Schiller class from 37 to 392, the cytology 
class from 40 to 732, and the biopsy class from 44 to 
642. 
Based on Table 9., the best parameter values for 
random search on 4 target variables are as follows: 

• Hinselmann achieved the best parameter at a ratio 
50:50, the best parameter is learning_rate 0.051, 
max_depth 1, n_estimators 929, subsample 0.989, 
and colsample_bytree 0.808 

• Schiller achieved the best parameter at a ratio of 
50:50. The best parameters are learning_rate 

Table 7. (continued) 

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10 

Biopsy 

F1 0.5 0.444 0.606 0.632 0.727 

F1 Macro 0.735 0.707 0.79 0.805 0.854 

F1 Micro 0.944 0.942 0.95 0.959 0.965 

F1 Weighted 0.94 0.936 0.949 0.956 0.964 

AUC 0.956 0.923 0.94 0.958 0.973 

 

Table 8. Comparison of dataset distributions 
before and after applying the SMOTE 
oversampling technique. 

Target 
Variable 

Data 
Split 

Before 
SMOTE 

After 
SMOTE 

0 1 0 1 

Hinselmann 

50:50 411 18 411 411 

60:40 493 21 493 493 

70:30 576 24 576 576 

80:20 658 28 658 658 

90:10 741 31 741 741 

Schiller 

50:50 392 37 392 392 

60:40 470 44 470 470 

70:30 548 52 548 548 

80:20 627 59 627 627 

90:10 705 67 705 705 

Citology 

50:50 407 22 407 407 

60:40 488 26 488 488 

70:30 569 31 569 569 

80:20 651 35 651 651 

90:10 732 40 732 732 

Biopsy 

50:50 402 27 402 402 

60:40 481 33 481 481 

70:30 562 38 562 562 

80:20 642 44 642 642 

90:10 723 49 723 723 
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Fig. 2. Visualization of the dataset showing differences before and after SMOTE oversampling 
applied. 
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Table 9. Table presenting the hyperparameter setup for Random Search with corresponding 
value ranges tested. 

Target variable Data Split 
Parameter 

learning_rate max_depth n_estimators subsample colsample_bytree 

Hinselmann 

50:50 0.051 1 929 0.989 0.808 

60:40 0.019 9 256 0.921 0.743 

70:30 0.097 8 228 0.68 0.63 

80:20 0.046 2 995 0.722 0.641 

90:10 0.081 4 661 0.865 0.614 

Schiller 

50:50 0.079 4 353 0.604 0.665 

60:40 0.081 4 661 0.865 0.614 

70:30 0.044 9 727 0.741 0.709 

80:20 0.014 11 558 0.947 0.662 

90:10 0.089 11 171 0.84 0.75 

Citology 

50:50 0.014 11 558 0.947 0.662 

60:40 0.079 4 353 0.604 0.665 

70:30 0.097 8 228 0.68 0.63 

80:20 0.084 10 710 0.691 0.646 

90:10 0.096 6 610 0.636 0.788 

Biopsy 

50:50 0.037 4 833 0.656 0.79 

60:40 0.019 9 256 0.921 0.743 

70:30 0.014 11 558 0.947 0.662 

80:20 0.014 11 558 0.947 0.662 

90:10 0.084 8 561 0.678 0.839 
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Table 10. Evaluation of XGBoost performance using random Search Hyperparameter Tuning and SMOTE. 
Target Variable Data Split 50:50 60:40 70:30 80:20 90:10 

Hinselmann 

Accuracy 0.967 0.962 0.954 0.959 0.954 

Precision 0.615 0.556 0.4 0.5 0.5 

Precision Macro 0.797 0.764 0.682 0.735 0.732 

Precision Micro 0.967 0.962 0.954 0.959 0.954 

Precision Weighted 0.964 0.956 0.94 0.951 0.943 

Recall 0.471 0.357 0.182 0.286 0.25 

Recall Macro 0.729 0.673 0.585 0.637 0.619 

Recall Micro 0.967 0.962 0.954 0.959 0.954 

Recall Weighted 0.967 0.962 0.954 0.959 0.954 

F1 0.533 0.435 0.25 0.364 0.333 

F1 Macro 0.758 0.708 0.613 0.671 0.655 

F1 Micro 0.967 0.962 0.954 0.959 0.954 

F1 Weighted 0.965 0.958 0.945 0.954 0.946 

AUC 0.943 0.981 0.979 0.985 0.988 

Schiller 

Accuracy 0.958 0.968 0.961 0.959 0.942 

Precision 0.788 0.88 0.833 0.9 0.667 

Precision Macro 0.88 0.928 0.902 0.932 0.815 

Precision Micro 0.958 0.968 0.961 0.959 0.942 

Precision Weighted 0.956 0.967 0.959 0.958 0.938 

Recall 0.703 0.733 0.682 0.6 0.571 

Recall Macro 0.842 0.862 0.835 0.797 0.773 

Recall Micro 0.958 0.968 0.961 0.959 0.942 

Recall Weighted 0.958 0.968 0.961 0.959 0.942 

F1 0.743 0.8 0.75 0.72 0.615 

F1 Macro 0.86 0.891 0.865 0.849 0.792 

F1 Micro 0.958 0.968 0.961 0.959 0.942 

F1 Weighted 0.957 0.967 0.96 0.956 0.94 

AUC 0.906 0.92 0.865 0.859 0.81 

Cytology 

Accuracy 0.939 0.927 0.93 0.924 0.954 

Precision 0.333 0.182 0.273 0.25 0.5 

Precision Macro 0.645 0.567 0.616 0.604 0.732 

Precision Micro 0.939 0.927 0.93 0.924 0.954 

Precision Weighted 0.925 0.912 0.925 0.92 0.943 

Recall 0.182 0.111 0.231 0.222 0.25 

Recall Macro 0.581 0.542 0.599 0.593 0.619 

Recall Micro 0.939 0.927 0.93 0.924 0.954 

Recall Weighted 0.939 0.927 0.93 0.924 0.954 

F1 0.235 0.138 0.25 0.235 0.333 

F1 Macro 0.602 0.55 0.607 0.598 0.655 

F1 Micro 0.939 0.927 0.93 0.924 0.954 

F1 Weighted 0.931 0.919 0.928 0.922 0.946 

AUC 0.735 0.698 0.644 0.552 0.537 

Biopsy 

Accuracy 0.935 0.954 0.938 0.971 0.965 

Precision 0.5 0.625 0.533 0.8 0.8 

Precision Macro 0.734 0.802 0.748 0.891 0.888 

Precision Micro 0.935 0.802 0.938 0.971 0.965 

Precision Weighted 0.936 0.956 0.935 0.97 0.963 

Recall 0.536 0.682 0.471 0.727 0.667 

Recall Macro 0.749 0.827 0.721 0.857 0.827 

Recall Micro 0.935 0.954 0.938 0.971 0.965 

Recall Weighted 0.935 0.954 0.938 0.971 0.965 

F1 0.517 0.652 0.5 0.762 0.727 

F1 Macro 0.741 0.814 0.734 0.873 0.854 

F1 Micro 0.935 0.954 0.938 0.971 0.965 

F1 Weighted 0.936 0.954 0.936 0.97 0.964 

AUC 0.921 0.933 0.892 0.956 0.96 
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0.0792, max_depth 4, n_estimators 353, 
subsample 0.604, and colsample_bytree 0.665. 

• Citology achieved the best parameter at a ratio 
90:10. The best parameters are learning_rate 
0.096, max_depth 6, n_estimators 610, subsample 
0.636, and colsample_bytree 0.788 

• Biopsy achieved the best parameter at a ratio of 
80:20. The best parameters are learning_rate 
0.014, max_depth 11, n_estimators 558, 
subsample 0.947, and colsample_bytree 0.662. 

The best evaluation results from classification using a 
combination of XGBoost with RSHT and SMOTE on 
four target variables are as follows: 

• Hinselmann achieved the best results at a ratio of 
50:50 get the best results an accuracy value 0.967, 
precision 0.615, precision macro 0.797, precision 
micro 0.967, precision weighted 0.964, recall 
0.471, recall macro 0.729, recall micro 0.967, 
recall weighted 0.967, F1 score 0.533, F1 macro 
0.758, F1 micro 0.967, F1 weighted 0.965, and 
AUC 0.943. 

• Schiller achieved the best results at a ratio of 
60:40, the best result an accuracy value of 0.968, 
precision 0.88, precision macro 0.928, precision 
micro 0.968, precision weighted 0.966, recall 
0.733, recall macro 0.862, recall micro 0.968, 
recall weighted 0.968, F1 score 0.8, F1 macro 
0.891, F1 micro 0.968, F1 weighted 0.967, and 
AUC 0.92. 

• Citology achieved the best results at a ratio of 
90:10, the best results an accuracy value of 
0.954, precision 0.5, precision macro 0.732, 
precision micro 0.954, precision weighted 0.943, 
recall 0.25, recall macro 0.619, recall micro 
0.954, recall weighted 0.954, F1 score 0.333, F1 

macro 0.655, F1 micro 0.954, F1 weighted 0.946, 
and AUC 0.537. 

• Biopsy achieved the best results at a ratio of 
80:20, the best results an accuracy value of 
0.971, precision 0.8, precision macro 0.891, 
precision micro 0.971, precision weighted 0.97, 
recall 0.727, recall macro 0.857, recall micro 
0.971, recall weighted 0.971, F1 score 0.761, F1 

Table 11. Comparison of dataset distributions 
before and after applying the ADASYN 
oversampling technique. 

Target 
Variable 

Data 
Split 

Before 
ADASYN 

After 
ADASYN 

0 1 0 1 

Hinselmann 

50:50 411 18 411 417 

60:40 493 21 493 492 

70:30 576 24 576 568 

80:20 658 28 658 657 

90:10 741 31 741 736 

Schiller 

50:50 392 37 392 392 

60:40 470 44 470 467 

70:30 548 52 548 550 

80:20 627 59 627 622 

90:10 705 67 705 728 

Citology 

50:50 407 22 407 414 

60:40 488 26 488 492 

70:30 569 31 569 576 

80:20 651 35 651 640 

90:10 732 40 732 727 

Biopsy 

50:50 402 27 402 396 

60:40 481 33 481 477 

70:30 562 38 562 578 

80:20 642 44 642 662 

90:10 723 49 723 706 

 

 

 

 
Fig.  3. Visualization of the dataset showing differences before and after ADASYN oversampling applied. 
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macro 0.873, F1 micro 0.971, F1 weighted 0.97, 
and AUC 0.956. 

C. XGBoost with RSHT with ADASYN 
The third classification using the XGBoost algorithm 
optimised with Random Search HT, and the ADASYN 
technique to handle imbalanced data. The results of 
implementing the ADASYN technique are provided in 
Table 11. The best parameters from the Random 
Search for XGBoost are described in Table 12. The 

classification results for the four target variables 
(Hinselmann, Schiller, Cytology, Biopsy) using the 
XGBoost method with a combination of RSHT and 
ADASYN are presented in Table 13. Based on Table11 

and Fig. 3 before the application of ADASYN, the 
number of samples for the minority class (1) was less 
than that for the majority class (0). After ADASYN, the 
number of samples for the minority class was 
successfully enhanced to balance with the majority 
class on all target variables. The target variables on the 
X-axis represent different diagnostic tests: 
Hinselmann, Schiller, Cytology, and Biopsy, while the 
Y-axis shows the total number of samples (count) in the 

 dataset.  For example, the Hinselmann minority class 
increased from 31 to 736, the Schiller class from 52 to 
550, the Cytology class from 40 to 727, and the Biopsy 
class from 44 to 662. 

Table 12. Table presenting the hyperparameter setup for Random Search with corresponding value 
ranges tested. 

Target 
variable 

Data Split 
Parameter 

learning_rate max_depth n_estimators subsample colsample_bytree 

Hinselmann 

50:50 0.021 2 978 0.932 0.618 

60:40 0.046 2 995 0.722 0.641 

70:30 0.021 2 978 0.932 0.618 

80:20 0.089 2 876 0.606 0.626 

90:10 0.046 2 995 0.722 0.641 

Schiller 

50:50 0.096 4 671 0.704 0.67 

60:40 0.031 6 515 0.837 0.658 

70:30 0.014 11 558 0.947 0.662 

80:20 0.084 10 710 0.691 0.645 

90:10 0.084 10 710 0.691 0.645 

Citology 

50:50 0.081 4 661 0.865 0.614 

60:40 0.019 8 926 0.729 0.877 

70:30 0.084 10 710 0.691 0.645 

80:20 0.084 10 710 0.691 0.645 

90:10 0.096 6 610 0.636 0.788 

Biopsy 

50:50 0.044 9 727 0.741 0.709 

60:40 0.074 4 897 0.953 0.853 

70:30 0.089 2 876 0.606 0.626 

80:20 0.081 4 661 0.865 0.614 

90:10 0.046 8 825 0.955 0.867 
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Table 13.  Evaluation of XGBoost performance using random Search Hyperparameter Tuning and 
ADASYN. 

Target Variable Data Split 50:50 60:40 70:30 80:20 90:10 

Hinselmann 

Accuracy 0.965 0.956 0.957 0.959 0.965 

Precision 0.583 0.429 0.5 0.5 0.667 

Precision Macro 0.78 0.698 0.734 0.735 0.821 

Precision Micro 0.965 0.956 0.957 0.959 0.965 

Precision Weighted 0.961 0.945 0.948 0.951 0.962 

Recall 0.412 0.214 0.273 0.286 0.5 

Recall Macro 0.7 0.601 0.63 0.637 0.744 

Recall Micro 0.965 0.956 0.957 0.959 0.965 

Recall Weighted 0.965 0.956 0.957 0.959 0.965 

F1 0.483 0.286 0.353 0.364 0.571 

F1 Macro 0.732 0.632 0.665 0.671 0.777 

F1 Micro 0.965 0.956 0.957 0.959 0.965 

F1 Weighted 0.962 0.949 0.951 0.954 0.963 

AUC 0.963 0.954 0.95 0.985 0.988 

Schiller 

Accuracy 0.96 0.965 0.969 0.959 0.954 

Precision 0.794 0.846 0.937 0.9 0.8 

Precision Macro 0.884 0.911 0.954 0.932 0.882 

Precision Micro 0.96 0.965 0.969 0.959 0.954 

Precision Weighted 0.959 0.964 0.968 0.958 0.95 

Recall 0.73 0.733 0.682 0.6 0.571 

Recall Macro 0.856 0.86 0.839 0.797 0.779 

Recall Micro 0.96 0.965 0.969 0.959 0.954 

Recall Weighted 0.96 0.965 0.969 0.959 0.954 

F1 0.761 0.786 0.79 0.72 0.667 

F1 Macro 0.87 0.883 0.886 0.849 0.821 

F1 Micro 0.96 0.965 0.969 0.959 0.954 

F1 Weighted 0.96 0.964 0.967 0.956 0.95 

AUC 0.914 0.9159 0.892 0.871 0.863 

Citology 

Accuracy 0.932 0.924 0.923 0.901 0.954 

Precision 0.182 0.1 0.231 0.1 0 

Precision Macro 0.567 0.525 0.595 0.525 0.477 

Precision Micro 0.932 0.924 0.923 0.901 0.954 

Precision Weighted 0.913 0.905 0.923 0.906 0.909 

Recall 0.091 0.056 0.231 0.111 0 

Recall Macro 0.534 0.514 0.595 0.528 0.5 

Recall Micro 0.9324 0.9244 0.9225 0.9012 0.9535 

Recall Weighted 0.932 0.924 0.923 0.901 0.954 

F1 0.121 0.071 0.231 0.105 0 

F1 Macro 0.543 0.516 0.595 0.527 0.488 

F1 Micro 0.932 0.924 0.923 0.901 0.954 

F1 Weighted 0.922 0.914 0.923 0.904 0.931 

AUC 0.68 0.719 0.631 0.556 0.555 

Biopsy 

Accuracy 0.939 0.933 0.938 0.971 0.954 

Precision 0.531 0.467 0.533 0.8 0.75 

Precision Macro 0.752 0.711 0.748 0.891 0.857 

Precision Micro 0.939 0.933 0.938 0.971 0.954 

Precision Weighted 0.944 0.923 0.935 0.97 0.949 

Recall 0.607 0.318 0.471 0.727 0.5 

Recall Macro 0.784 0.647 0.721 0.857 0.744 

Recall Micro 0.939 0.933 0.938 0.971 0.954 

Recall Weighted 0.939 0.933 0.938 0.971 0.954 

F1 0.567 0.378 0.5 0.762 0.6 

F1 Macro 0.767 0.672 0.734 0.873 0.788 

F1 Micro 0.939 0.933 0.938 0.971 0.954 

F1 Weighted 0.941 0.927 0.936 0.97 0.949 

AUC 0.928 0.885 0.892 0.956 0.971 
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Based on Table, the best parameter values for Random 
search on 4 target variables is as follows: 

• Hinselmann achieved the best parameter at a ratio 
of 90:10. The best parameters are learning_rate 
0.046, max_depth 2, n_estimators 995, subsample 
0.722, and colsample_bytree 0.641. 

• Schiller achieved the best parameter at a ratio of 
70:30. The best parameters are learning_rate 
0.014, max_depth 11, n_estimators 558, 
subsample 0.947, and colsample_bytree 0.662. 

• Citology achieved the best parameter at a ratio of 
90:10. The best parameters are learning_rate 
0.096, max_depth 6, n_estimators 610, subsample 
0.636, and colsample_bytree 0.788. 

• Biopsy achieved the best parameter at a ratio of 
80:20. The best parameters are learning_rate 
0.081, max_depth 4, n_estimators 661, subsample 
0.865, and colsample_bytree 0.614. 

The best evaluation results from classification using a 
combination of XGBoost with RSHT and ADASYN on 
four target variables are as follows, first at Hinselmann 
achieved the best results at a ratio of 90:10, the best 
results an accuracy value of 0.965, precision 0.667, 
precision macro 0.821, precision micro 0.965, precision 
weighted 0.962, recall 0.5, recall macro 0.744, recall 
micro 0.965, recall weighted 0.965, F1 score 0.571, F1 
macro 0.777, F1 micro 0.965, F1 weighted 0.963, and 
AUC 0.988. Second, at Schiller achieved the best 
results at a ratio of 70:30, the best results an accuracy 
value of 0.969, precision 0.938, precision macro 0.954, 
precision micro 0.969, precision weighted 0.968, recall 
0.682, recall macro 0.839, recall micro 0.969, recall 
weighted 0.969, F1 score 0.79, F1 macro 0.886, F1 

micro 0.969, F1 weighted 0.967, and AUC 0.892. Third, 
at Citology achieved the best results at a ratio of 90:10, 
the best results an accuracy value of 0.954, precision 
0, precision macro 0.477, precision micro 0.954, 
precision weighted 0.909, recall 0, recall macro 0.5, 
recall micro 0.954, recall weighted 0.954, F1 score 0, 
F1 macro 0.488, F1 micro 0.954, F1 weighted 0.931, 
and AUC 0.555. The last, for Biopsy achieved the best 
results at a ratio of 80:20, the best results an accuracy 
value of 0.971, precision 0.8, precision macro 0.891, 
precision micro 0.971, precision weighted 0.97, recall 
0.727, recall macro 0.857, recall micro 0.971, recall 
weighted 0.971, F1 score 0.762, F1 macro 0.873, F1 
micro 0.971, F1 weighted 0.97, and AUC 0.956. 
 
IV. Discussion 
Drawing on the research outcomes outlined earlier, the 
top-performing results emerged from three models: the 
standard XGBoost, XGBoost enhanced with Random 
Search Hyperparameter Tuning (RSHT) and SMOTE, 
and XGBoost integrated with RSHT and ADASYN. A 
detailed comparison of the optimal performance across 

these models is illustrated in Table. As indicated in 

Table., incorporating optimization and data balancing 
strategies markedly boosted the XGBoost model's 
effectiveness. The basic XGBoost model, without 
RSHT, SMOTE, or ADASYN, exhibited the lowest 
accuracy and AUC scores across the three 
experimental setups. In contrast, XGBoost models 
augmented with RSHT alongside SMOTE or ADASYN 
delivered substantially improved outcomes. Notably, 
the XGBoost with RSHT and SMOTE configuration 
consistently secured the top accuracy and AUC values 
across all target variables, 

Table 14. Comparison of the best performance of all classification models in this study. 
Target Variable Hinselmann Schiller Citology Biopsy 

XGB 

Accuracy 0.965 0.97 0.954 0.965 

Precision 0.6 0.9 0 0.8 

Precision Macro 0.7869 0.938 0.477 0.888 

Precision Micro 0.965 0.97 0.954 0.965 

Precision Weighted 0.959 0.969 0.909 0.963 

Recall 0.353 0.73 0 0.667 

Recall Macro 0.672 0.861 0.5 0.827 

Recall Micro 0.965 0.97 0.954 0.965 

Recall Weighted 0.965 0.97 0.954 0.965 

F1 0.444 0.806 0 0.727 

F1 Macro 0.713 0.895 0.488 0.854 

F1 Micro 0.965 0.97 0.954 0.965 

F1 Weighted 0.961 0.968 0.931 0.964 

AUC 0.981 0.909 0.512 0.973 

XGB + RSHT 
+ SMOTE 

Accuracy 0.967 0.968 0.954 0.971 

Precision 0.615 0.88 0.5 0.8 

Precision Macro 0.797 0.928 0.732 0.891 

Precision Micro 0.967 0.968 0.954 0.971 

Precision Weighted 0.964 0.966 0.943 0.97 

Recall 0.471 0.733 0.25 0.727 

Recall Macro 0.729 0.862 0.619 0.857 

Recall Micro 0.967 0.968 0.954 0.971 
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including Hinselmann, Schiller, Cytology, and Biopsy. 
While ADASYN also yielded strong results, SMOTE's 
edge was clear in its reliability across recall and F1-
score metrics, which are more significant in medical 
diagnostics due to their focus on thorough detection of 
positive instances. This suggests that ADASYN's gains 
in precision fall short of matching SMOTE's steadiness 

in these vital areas. These findings affirm that fine-
tuning parameters via RSHT and addressing data 
imbalances with SMOTE are essential for optimizing 
classification model performance, representing the 
most potent setup for this dataset. An earlier 
investigation referenced as [91] employed the 'Cervical 
Cancer Risk Factors' dataset to identify cervical 

Table 14. (continued) 
Target Variable Hinselmann Schiller Citology Biopsy 

XGB + RSHT 
+ SMOTE 

Recall Weighted 0.967 0.968 0.954 0.971 

F1 0.533 0.8 0.333 0.762 

F1 Macro 0.758 0.891 0.655 0.873 

F1 Micro 0.967 0.968 0.954 0.971 

F1 Weighted 0.965 0.967 0.946 0.971 

AUC 0.943 0.92 0.537 0.956 

XGB + RSHT 
+ ADASYN 

Accuracy 0.965 0.969 0.954 0.971 

Precision 0.667 0.938 0 0.8 

Precision Macro 0.821 0.954 0.477 0.891 

Precision Micro 0.965 0.969 0.954 0.971 

Precision Weighted 0.962 0.968 0.909 0.97 

Recall 0.5 0.682 0 0.727 

Recall Macro 0.744 0.839 0.5 0.857 

Recall Micro 0.965 0.969 0.954 0.971 

Recall Weighted 0.965 0.969 0.954 0.971 

F1 0.571 0.789 0 0.762 

F1 Macro 0.777 0.886 0.488 0.873 

F1 Micro 0.965 0.969 0.954 0.971 

F1 Weighted 0.963 0.967 0.931 0.97 

AUC 0.988 0.892 0.555 0.956 

 

Table 15. Comparison with previous research on cervical cancer classification results in this study 

Research Target Variable Classifier Accuracy 

[91] Biopsy 

Random Forest + SMOTE 0.95 

SVM + SMOTE 0.91 

Decision Tree + SMOTE 0.95 

[92] Biopsy 
XGB + KNN Imputer  0.835 

XGB + Deleted Missing Value 0.734 

[82] Biopsy 
KNN + SMOTE 0.884 

KNN + ADASYN  0.879 

Proposed Work 

Hinselmann 

XGBoost 0.965 

XGBoost + RSHT + SMOTE 0.967 

XGBoost + RSHT + ADASYN 0.965 

Schiller 

XGBoost 0.97 

XGBoost + RSHT + SMOTE 0.968 

XGBoost + RSHT + ADASYN 0.969 

Citology 

XGBoost 0.954 

XGBoost + RSHT + SMOTE 0.954 

XGBoost + RSHT + ADASYN 0.954 

Biopsy 

XGBoost 0.965 

XGBoost + RSHT + SMOTE 0.971 

XGBoost + RSHT + ADASYN 0.971 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1415
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 368-394                                         e-ISSN: 2656-8632 

 

Manuscript received 13 November 2025; Revised 10 January 2026; Accepted 22 January 2026; Available online 24 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1415 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 387               

cancer, focusing on biopsy as the outcome variable. 
This was achieved using multiple machines learning 
techniques, including Random Forests, SVMs, and 
Decision Trees, and integratingSMOTE for data 
balancing. Following that, the work in [92] leveraged the 
same dataset to pinpoint cervical cancer cases, again 
targeting biopsy, by assessing the XGBoost algorithm 
alongside various imputation strategies like KNN 
Imputer and the removal of missing values. 
Additionally, the research from [82] applied the KNN 
approach to detect cervical cancer, with biopsy as the 
key variable, combined with distinct data balancing 
techniques such as SMOTE and ADASYN. A summary 
of how these prior studies compare with the present 

research is outlined in Table. Based on the 

experimental results and the comparison with previous 

studies presented in Table., the proposed framework 

demonstrates clear and consistent performance 
advantages in cervical cancer classification. Prior 
research generally agrees that ensemble classifiers 
combined with data balancing techniques improve 
predictive accuracy, particularly when handling 
imbalanced medical datasets. Studies employing 
SMOTE or ADASYN with conventional classifiers and 
XGBoost report notable performance gains; however, 
variations in accuracy remain largely influenced by 
preprocessing strategies and dataset characteristics.  

In this context, the proposed approach combining 
XGBoost, Random Search Hyperparameter Tuning 
(RSHT), and SMOTE consistently outperforms 
XGBoost with RSHT and ADASYN, as well as methods 
reported in previous studies, across all four diagnostic 
targets (Hinselmann, Schiller, Cytology, and Biopsy). 
This superiority is reflected in higher accuracy, AUC, 
and precision, recall, and F1-score under macro, micro, 
and weighted schemes, with micro-averaged metrics 
showing the strongest performance, indicating robust 
overall predictive capability in multitarget cervical 
cancer diagnosis. The observed advantage of SMOTE 
over ADASYN can be attributed to its ability to generate 
evenly distributed synthetic samples for the 
underrepresented class, whereas ADASYN 
emphasizes hard-to-learn samples, which can 
introduce noise and inconsistencies in datasets with 
multiple targets, such as Cytology. This difference likely 
contributes to the more stable and higher performance 
achieved with SMOTE. 

The training–testing data ratio also affects 
performance. Splits with larger training sets, 
particularly 70:30 and 80:20, generally produce more 
stable and higher results, as the model can better learn 
complex patterns following RSHT optimization and 
SMOTE balancing. Conversely, smaller training sets 
(50:50) limit learning capacity, while very small test sets 
(90:10) increase evaluation variance. Overall, an 80:20 
split offers a good balance between model robustness 

and evaluation reliability. Performance varies across 
the four diagnostic target variables. While Hinselmann 
and Biopsy consistently achieve higher AUC values, 
the Cytology target exhibits substantially lower 
discriminative performance, with AUC values 
approaching random classification (0.5) for certain data 
splits, such as 80:20 and 90:10. This reduced 
performance is likely attributable to the subjective 
nature of cytological assessment and the presence of 
ambiguous class boundaries, which increase label 
variability and limit model separability. In contrast, 
Hinselmann and Biopsy rely on more objective visual 
or histopathological evidence, resulting in more 
consistent annotations and stronger discriminative 
signals. From a clinical perspective, these findings 
suggest that Cytology-based predictions should be 
interpreted with caution, while from a methodological 
standpoint, they highlight the need for target-specific 
modeling strategies or complementary features to 
improve performance for diagnostically challenging 
outcomes. The observed improvement is attributable to 
the combination of implemented techniques. XGBoost 
iteratively builds strong classifiers, RSHT optimizes 
parameters systematically, SMOTE mitigates class 
imbalance by generating synthetic minority samples, 
and MICE handles missing values to preserve feature 
relationships, collectively enhancing model accuracy 
and clinical relevance. 

Despite the performance improvements achieved, 
several limitations should be acknowledged. Although 
ADASYN effectively mitigates class imbalance, it may 
generate noisy or unevenly distributed synthetic 
samples, potentially affecting model stability and 
generalization, particularly in terms of accuracy and 
AUC. Specifically, an increase in recall was 
accompanied by a decrease in AUC across several 
target variables, suggesting that the synthetic samples 
generated by ADASYN may have introduced noise or 
increased class overlap. In addition, relying on 
confusion matrix-based metrics without incorporating 
macro, micro, and weighted averaging may result in 
biased performance interpretations in imbalanced and 
multitarget settings, as such evaluations are often 
dominated by the majority classes. Further research 
should employ larger and more diverse datasets, 
alternative balancing methods, and varied model 
configurations to improve robustness and clinical 
relevance. 
 
V. Conclusion 
This study aimed to comparatively evaluate SMOTE 
and ADASYN for addressing class imbalance in 
cervical cancer identification using an XGBoost 
classifier optimized through Random Search 
Hyperparameter Tuning (RSHT) and supported by 
Multiple Imputation by Chained Equations (MICE). Four 
diagnostic outcomes, Hinselmann, Schiller, Cytology, 
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and Biopsy, were treated as independent binary 
classification tasks. The results demonstrate that 
integrating XGBoost, RSHT, MICE, and SMOTE 
delivers superior overall performance. The proposed 
framework achieved 97.1% accuracy, micro-precision, 
micro-recall, micro-F1 score, and AUC, confirming its 
robustness and effectiveness in multitarget cervical 
cancer classification. In contrast, the ADASYN-based 
configuration produced marginally lower micro-
averaged performance and substantially reduced AUC, 
indicating less reliable class separability under 
imbalanced conditions. Further analysis at the target 
level shows that the SMOTE-based model maintains 
consistently high accuracy across all diagnostic 
outcomes, with performance ranging from 
approximately 95.4% to 97.1%, where Biopsy and 
Hinselmann exhibit stronger discriminative capability 
than Cytology. These variations highlight the influence 
of target-specific characteristics on classification 
performance, particularly in diagnostically challenging 
outcomes. Future work should explore larger and more 
diverse datasets, hybrid imbalance-handling 
strategies, and alternative ensemble orthat deep 
learning architectures to further enhance robustness 
and clinical applicability. Emphasis should also be 
placed on developing target-aware modeling strategies 
and evaluating deployment feasibility in real-world 
clinical screening environments. Overall, this study 
confirms that combining MICE imputation, SMOTE 
oversampling, and optimized XGBoost provide a 
reliable and practical framework for cervical cancer 
detection in imbalanced multitarget datasets. 
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