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Abstract Liver fibrosis staging is a crucial component in the clinical management of chronic liver disease 

because it directly affects prognosis, therapeutic decision-making, and long-term patient monitoring. 

Ultrasound imaging is widely used as a noninvasive diagnostic modality due to its safety, low cost, and 

broad accessibility. Nevertheless, ultrasound-based fibrosis assessment remains challenging because 

liver parenchymal echotexture often exhibits low contrast, speckle noise, and subtle inter-stage variations, 

particularly among adjacent METAVIR stages. These characteristics frequently limit the effectiveness of 

conventional convolutional neural networks, which tend to emphasize dominant global patterns while 

suppressing weak but clinically meaningful texture cues. This study presents a task-oriented integration 

of a Convolutional Block Attention Module into a ResNet-50 backbone to enhance feature discrimination 

for five-stage liver fibrosis classification using heterogeneous B-mode ultrasound images. Rather than 

introducing a new attention mechanism, the contribution lies in the systematic insertion of CBAM after 

residual outputs across multiple network stages, enabling repeated channel and spatial recalibration from 

low-level texture descriptors to higher-level semantic representations. To further improve robustness and 

reduce prediction variance, a stratified 5-fold training strategy is combined with logit-level ensemble 

inference, where logits from independently trained fold models are averaged prior to Softmax 

normalization. Experiments were conducted on a publicly available dataset comprising 6,323 ultrasound 

images acquired from two tertiary hospitals using multiple ultrasound systems, with fibrosis stages labeled 

from F0 to F4 according to histopathology-based METAVIR scoring. The proposed framework achieves a 

test accuracy of 98.34%and consistently high precision, recall, and F1 scores across all fibrosis stages, 

with the most pronounced improvement observed for intermediate stages. Statistical analysis based on 

paired fold-wise comparisons confirms that the performance gain over the baseline ResNet 50 model is 

statistically significant. These results demonstrate that combining lightweight attention-based feature 

refinement with logit ensemble inference effectively addresses the inherent challenges of ultrasound-

based liver fibrosis staging and provides a reliable noninvasive decision support framework with strong 

potential for clinical application and future multicenter validation. 

Keywords Liver fibrosis; Ultrasound; ResNet-50; CBAM.

I. Introduction  

Chronic liver disease continues to exert a profound 
impact on global health, accounting for a significant 
proportion of deaths worldwide [1]. Its development is 
linked to various primary causes, including chronic 
hepatitis B and C infections, alcohol associated hepatic 
disease, and the increasingly prevalent non-alcoholic 
fatty liver disease (NAFLD), driven in part by the 
worldwide rise in obesity [2]. Among the pathological 
manifestations of long-term liver injury, fibrosis is one 
of the most prevalent, arising from continuous 
hepatocellular insult and characterized by excessive 
collagen-rich extracellular matrix deposition [3]. 

Without early diagnosis and appropriate therapeutic 
intervention, fibrosis may advance to end-stage liver 
complications such as cirrhosis, liver failure, and 
hepatocellular carcinoma (HCC), which are linked to 
poor patient outcomes [4]. A comprehensive meta-
analysis including 168,571 participants across 19 
studies revealed that non-cirrhotic MASH patients 
exhibited a significantly higher prevalence of HCC 
(38.0%) compared with non-cirrhotic individuals with 
other liver disease etiologies (14.2%; p < 0.001) [5], [6]. 
Therefore, evaluating liver fibrosis is a fundamental 
aspect of chronic liver disease (CLD) management, 
facilitating prognosis, individualized therapeutic and 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1406
https://creativecommons.org/licenses/by-sa/4.0/
mailto:wiharto@staff.uns.ac.id
mailto:bagustegar@student.uns.ac.id
mailto:umisalamah@staff.uns.ac.id
https://orcid.org/0009-0007-2043-8279
https://orcid.org/0000-0001-7014-7620
https://orcid.org/0000-0002-5077-1191


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 284-303                                        e-ISSN: 2656-8632 

 

Manuscript Received 20 October 2025; Revised 5 January 2026; Accepted 10 January 2026; Available online 18 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1406 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 285               

surveillance strategies, and assessment of treatment 
response over time [7]. 

Given these challenges, early detection and 
accurate staging of liver fibrosis are critically important 
in clinical practice [7]. Reliable fibrosis staging not only 
guides prognosis but also informs therapeutic 
decisions and enables effective monitoring of treatment 
response [8]. For decades, liver biopsy has been 
regarded as the gold standard for determining the 
severity of fibrosis [9]. However, biopsy presents 
substantial limitations, including its invasive nature, risk 
of complications such as bleeding, relatively high cost, 
and susceptibility to sampling error, which can lead to 
inaccurate or non-representative assessments [10]. 

In response to these limitations, non-invasive 
diagnostic alternatives have been increasingly 
developed, with ultrasound (US) imaging becoming a 
prominent option [11]. Since its introduction as a 
diagnostic technique in the mid twentieth century, 
ultrasound has evolved into a compact and 
sophisticated modality characterized by enhanced 
image quality and advanced features, including artificial 
intelligence applications [12]. Early hepatobiliary 
applications date back to 1958, when only A-mode 
ultrasound was available, followed by the introduction 
of real-time B-mode imaging in the mid 1970s [13]. 
Increasing reliance on ultrasound imaging highlights 
the importance of understanding its physical principles, 
including sound propagation, tissue interactions, and 
image construction, to improve diagnostic accuracy 
and reduce artifacts [14]. Ultrasound is extensively 
utilized as the first line modality for liver evaluation due 
to its wide availability, cost-effectiveness, and safety 
advantages, such as the absence of ionizing radiation 
and contrast agents [15], [16]. However, the 
interpretation of ultrasound images is strongly 
influenced by operator experience, resulting in 
variability and limiting the consistency of diagnostic 
assessments [17]. Recent studies further emphasize 
that machine learning and deep learning techniques 
offer significant advantages in reducing inter-observer 
variability and improving diagnostic reliability in 
ultrasound-based liver assessment [18], [19]. These 
findings show that automated feature extraction can 
enhance fibrosis staging performance even when 
ultrasound quality varies due to operator dependency. 

The rapid evolution of artificial intelligence (AI) in 
recent years, particularly through advances in deep 
learning techniques, has significantly expanded the 
possibilities for addressing complex problems in 
medical image analysis [20], [21]. Among these 
approaches, Convolutional Neural Networks (CNNs) 
have gained considerable attention for their 
outstanding performance across numerous medical 
imaging applications, including classification, anomaly 
detection, and segmentation. Their effectiveness 

primarily stems from the ability to automatically learn 
rich hierarchical representations of spatial and textural 
information from imaging data, thereby reducing 
reliance on manually designed features [22]. Beyond 
classical CNN architectures, recent research has 
explored frequency domain ultrasound features and 
one-dimensional CNNs for liver fibrosis assessment, 
demonstrating improved robustness when addressing 
heterogeneous tissue patterns and radiofrequency 
characteristics [23]. 

A comprehensive study [24] evaluated multiple 
CNN architectures for five-stage liver fibrosis 
classification (METAVIR F0–F4) using heterogeneous 
ultrasound images. Their results showed that VGGNet 
achieved 83.17% accuracy, ResNet-50 reached 
85.92%, DenseNet 84.17%, EfficientNet 85.17%, and 
Vision Transformer 83.42%. Backbone selection. We 
adopt ResNet-50 as the backbone for three reasons. 
First, on the same heterogeneous dataset and 
evaluation setting reported by Joo et al. [24], ResNet-
50 provided a strong baseline among commonly used 
backbones, making it an appropriate reference for 
isolating the contribution of attention. Second, residual 
learning supports stable optimization with moderate 
model capacity, which is important for medical 
ultrasound data, where sample size, acquisition 
variability, and label noise can limit the safe use of 
larger backbones without overfitting. Third, ResNet-50 
is widely adopted in medical image analysis, enabling 
clearer comparison and easier replication across 
studies. We acknowledge that deeper residual 
networks, EfficientNet families, and transformer-based 
models can be competitive under specific training 
regimes. However, fixing a well-understood backbone 
allows observed gains to be attributed more directly to 
CBAM insertion and the proposed training and 
ensembling strategy rather than to changes in network 
scale. However, a detailed analysis of every class 
revealed a meaningful limitation: ResNet-50 excelled at 
identifying extreme fibrosis stages (F0 and F4) but 
struggled to differentiate intermediate stages (F1–F3), 
which exhibit subtle textural variations and indistinct 
anatomical boundaries. Because ResNet-50 treats all 
feature channels equally, fine-grained diagnostic cues 
essential for early-stage identification often remain 
underemphasized [25]. These challenges are further 
exacerbated by an imbalance in data distribution 
across fibrosis stages. Recent work employing 
contrastive fusion strategies on pure B-mode 
ultrasound images has demonstrated promising results 
in non-invasive liver fibrosis staging, improving stability 
and accuracy over traditional CNN baselines [26]. 
Beyond image quality limitations, conventional CNN 
architectures are often less effective for intermediate 
liver fibrosis staging because diagnostically relevant 
echotexture cues in ultrasound images are weak, 
diffuse, and overlap across adjacent stages. Standard 
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convolutional and pooling pipelines progressively 
reduce spatial resolution and uniformly aggregate 
feature responses, which can attenuate subtle 
parenchymal texture differences that separate stages 
F1 to F3. During this process, weak but clinically 
meaningful fibrosis patterns are frequently suppressed, 
while stronger yet nonspecific variations such as 
speckle statistics, scanner-dependent intensity 
changes, and acquisition-related artifacts, dominate 
feature representations. These structural 
characteristics of conventional CNNs limit sensitivity to 
borderline fibrosis stages and lead to unstable 
separation between neighboring classes, as also 
reported in prior imaging studies [27], [28]. 
Consequently, attention-based feature refinement is 
required to adaptively reweight informative channels 
and spatial locations, preserving subtle fibrosis cues 
while suppressing irrelevant responses. 

Context on attention mechanisms: Channel 
recalibration modules, such as squeeze-and-
excitation, are lightweight and effective when 
discriminative information is primarily encoded in 
channel responses, but they do not explicitly model 
where informative regions are located. Non-local 
blocks and transformer-style self-attention capture 
long-range dependencies  
and global context, yet they introduce higher 
computational overhead and may require stronger 
regularization or larger datasets to remain robust under 
heterogeneous ultrasound acquisition. We therefore 
adopt CBAM, which sequentially applies channel and 
spatial attention with low overhead, enabling the 
network to emphasize subtle parenchymal echotexture 
cues while suppressing speckle-dominated and 
scanner-dependent responses in B-mode ultrasound. 
This property is particularly valuable for liver fibrosis 
staging, where diagnostically relevant textural 
differences are weak and often overlap across adjacent 
METAVIR stages. Specifically, channel attention 
adaptively reweights feature channels to strengthen 
discriminative responses, while spatial attention 
highlights informative regions that conventional CNN 
pipelines may attenuate through uniform aggregation 
and downsampling. Prior medical imaging studies have 
reported improved performance after integrating CBAM 
into ResNet backbones, for example, increasing AUC 
from 0.772 to 0.866 in a ResNet-50-based classifier 
[32]. Another study reported an increase in 
classification accuracy from 74.42% to 95.74% after 
integrating CBAM into a ResNet-based framework [33]. 
These findings support the hypothesis that CBAM 
enhances fine-grained feature extraction essential for 
distinguishing closely related fibrosis stages.  

Building on this evidence, the present study 
introduces a CBAM-enhanced ResNet-50 model for 
classifying liver fibrosis severity from ultrasound 

images. Through its channel attention mechanism, 
CBAM prioritizes the most diagnostically meaningful 
features, ensuring optimal use of minority class 
information, while its spatial attention component 
reinforces sensitivity to subtle patterns often 
overlooked by conventional CNNs. This integrated 
approach is expected to contribute to the advancement 
of non-invasive clinical tools for liver fibrosis 
assessment by improving diagnostic accuracy and 
consistency. 

 

 

Fig. 1. Flow of the proposed research. 

Motivated by these challenges, this study proposes 
an accurate and interpretable deep learning framework 
for classifying liver fibrosis stages from ultrasound 
images. The key contributions of this work can be 
summarized as follows: 

1) Proposing a CBAM-enhanced ResNet-50 

architecture designed to improve fine-grained 

texture recognition in liver ultrasound images. 

2) Conducting systematic hyperparameter tuning 

involving learning rate, weight decay, activation 

function, loss function, and attention mechanism; 
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3) Implementing Stratified 5-Fold Cross Validation with 

ensemble testing to ensure robust and reliable 

performance.  
4) A thorough comparison of previously published 

state-of-the-art models is also conducted. This 

paper is organized into five sections: Section II 

introduces the dataset, data preprocessing steps, 

and network architecture; Section III reports the 

experimental framework and findings; Section IV 

discusses and interprets the results; and Section V 

summarizes the study and suggests avenues for 

future research. 

 

II. Method  
Fig. 1 illustrates the methodological framework 
implemented in this research. The workflow includes 
six major components: dataset preparation, 
preprocessing, model construction, hyperparameter 
tuning, training, and testing with performance 
evaluation. 

A. Dataset 

This study used a publicly available liver ultrasound 
dataset on kaggle reported by Joo et al. [24]. The 
images were acquired at two tertiary university 
hospitals in South Korea, namely Seoul St. Mary’s 
Hospital and Eunpyeong St. Mary’s Hospital, using 
eight B-mode ultrasound systems from multiple 
vendors. The original frames had a resolution of 800 × 

600 pixels and a sector-shaped field of view before 
being resized for model input, which introduces realistic 
inter-device and inter-protocol variability relevant for 
assessing generalization. Liver fibrosis stages were 
assigned according to METAVIR criteria (F0- F4) using 
histopathology as the reference standard, and the 
staging follows the routine pathology reporting 
described in [24]. Ultrasound examinations were 
performed within three months before biopsy or 
surgical resection to minimize temporal mismatch 
between imaging appearance and tissue staging. Fig. 
2 presents representative examples for each stage, 
including F0 (no fibrosis), F1 (portal fibrosis without 
septa), F2 (portal fibrosis with few septa), F3 
(numerous septa without cirrhosis), and F4 (cirrhosis). 

A total of 6,323 ultrasound images were used in this 
work. The class distribution comprises 2,114 images 
for F0, 861 for F1, 793 for F2, 857 for F3, and 1,698 for 
F4, indicating a non-uniform distribution where F0 and 
F4 account for more than half of the samples, while 
intermediate stages are relatively underrepresented. 
This imbalance reflects practical clinical data 
characteristics and contributes to the difficulty of 
separating adjacent intermediate stages with subtle 
echotexture differences. To support fair evaluation, 
stratified splitting and stratified cross-validation were 
applied so that the original class proportions were 
preserved across training, validation, and test 
partitions. 

B. Preprocessing Dataset  

   

(a) (b) (c) 

  

(d) (e) 

Fig. 2. Sample dataset for each class, (a) F0, (b) F1, (c) F2, (d) F3, (e) F4. 
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All ultrasound images underwent preprocessing by 
resizing to 224 × 224 pixels to align with the ResNet-50 
input format. Following resizing, ImageNet-based 
mean and standard deviation normalization was 
applied to standardize pixel intensity distributions 
throughout the training process. 

Table 1. The dataset was divided into training, 

validation, and test sets. 

Class F0 F1 F2 F3 F4 Sum 

Train 
and 
Val. 

(80%) 

1,691 688 634 685 1,358 5,056 

Test 
(20%) 

423 173 159 172 340 1,267 

The dataset was then divided using a stratified 
split, with 80% used for the training–validation set and 
20% reserved for an independent test for each fibrosis 
class (F0–F4), as shown in Table 1. This stratification 
ensured that the class proportions in both subsets 
matched those of the original distribution. After this 
division, the training–validation split was further 
processed using 5-fold cross-validation. In this 
scheme, the training-validation set was partitioned into 
five balanced folds based on the class distribution. At 
each iteration, one subset was reserved for validation, 
while the remaining four formed the training data. 
Employing this approach strengthens the consistency 
of model evaluation and helps prevent overfitting, and 
allows the model to be assessed across multiple 
variations of the training subset. The test set was 

excluded from the K-Fold procedure and used only 
once at the final stage for independent performance 
evaluation. After Stratified 5-Fold training, five 
independently trained ResNet-50 plus CBAM models 
were obtained. During inference on the held-out test 
set, logits from the five models were averaged per 
class, and Softmax was applied to the averaged logits 
to obtain the final prediction. All headline metrics are 
reported for this logit-level ensemble, while fold-wise 
scores are provided to summarize variability across the 
five independently trained models. Several common 
augmentation operations were considered, but a 
conservative augmentation strategy was adopted to 
avoid distorting fibrosis-related echotexture cues. 
Following the dataset characteristics described in [24], 
the original ultrasound frames are sector-shaped, and 
overly aggressive geometric transforms may alter the 
anatomical context or introduce unrealistic boundaries. 
Therefore, we applied Random Horizontal Flip with 
probability 0.5 to increase geometric variability while 
preserving clinically plausible appearance. We did not 
apply random cropping because it may exclude 
diagnostically relevant parenchymal regions, and we 
avoided large rotations or strong intensity jitter because 
brightness and orientation can be acquisition 
dependent in ultrasound and may confound fibrosis 
texture interpretation. Validation and test images were 
processed only with resizing and normalization to 
ensure that the evaluation reflects performance on 
unmodified images. Meanwhile, the validation data in 
each fold, as well as the test data, underwent only 
resizing and normalization without additional 
augmentation to ensure that model evaluation 

 
Fig. 3. Resnet 50 Architecture with CBAM. 
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accurately reflected performance on unmodified 
images. 

C. Model Design  

The model design stage outlines the architecture 

employed to extract discriminative features and perform 

liver fibrosis stage classification from ultrasound images. 

In this study, a ResNet-50 architecture integrated with 

the Convolutional Block Attention Module (CBAM) is 

proposed, with the overall processing flow illustrated in 

Fig. 3. ResNet-50 is adopted as the backbone network 

due to its residual learning mechanism, which enables 

effective training of deep neural networks while 

mitigating the vanishing gradient problem [34]. In a 

standard residual block, the output feature map is 

obtained by combining the input feature map with the 

output of a residual mapping through skip connections. 

This residual learning operation is defined in Eq. (1) [34]. 

𝑦 = 𝐹(𝑥, 𝑊) +  𝑥 (1) 

where 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 denotes the input feature map of the 

residual block with spatial dimensions 𝐻 × 𝑊 and 𝐶 

channels, 𝐹(𝑥, 𝑊) represents the residual mapping 

learned by a series of convolutional layers 

parameterized by weights 𝑊, and 𝑦 is the resulting 

output feature map. This formulation allows the network 

to preserve gradient flow by learning residual functions 

rather than direct mappings, facilitating deeper feature 

representation learning. 

Despite its effectiveness, previous work reported 

indicates that the standard ResNet-50 architecture 

encounters difficulties in distinguishing intermediate liver 

fibrosis stages (F1–F3) [24]. This limitation is mainly 

attributed to the uniform treatment of feature channels, 

which may result in insufficient emphasis on subtle 

texture patterns critical for fibrosis assessment. To 

address this issue, CBAM modules are integrated into 

the ResNet-50 backbone, as illustrated in Fig. 3. 

Specifially, CBAM-module is inserted after the output of 

each residual stage, enabling stage-level feature 

recalibration before propagation to the subsequent 

stage. This design applies both channel-wise and 

spatial-wise attention across four semantic levels, 

ranging from low-level texture descriptors to high-level 

semantic representations, while maintaining a light 

weight architectural modification. 

The internal structure of CBAM consist of sequential 

channel attention and spatial attention mechanisms. 

Given an intermediate feature map 𝐹 ∈ 𝑅𝐻×𝑊×𝐶, the 

channel attention map 𝑀𝐶(𝐹) is computed as defined in 

Eq. (2) [25]. 

𝑀𝐶  (𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹) (2) 

where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(⋅) and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(⋅) denote global 

average pooling and global max pooling operations 

applied along the spatial dimensions, respectively, 

producing two channel-wise descriptors of size 1 × 1 ×
𝐶. The function 𝑀𝐿𝑃(⋅) represents a shared multi-layer 

perceptron used to model inter-channel dependencies, 

and 𝜎(⋅) denotes the sigmoid activation function. The 

resulting channel attention map 𝑀𝑐(𝐹) adaptively 

reweights each feature channel to emphasize 

informative channels while suppressing less ones. 

Following channel attention, spatial attention is applied 

to the channel refined feature map F′ to identify 

diagnostically relevant spatial regions. The spatial 

attention mechanism is defined in Eq. (3) [25]. 

𝑀𝑆 (𝐹′) = 𝜎(ƒ^7𝑥7 ([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹′); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹′)])) (3) 

where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(⋅) and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(⋅) are applied along the 

channel dimension to generate two spatial feature maps 

of size 𝐻 × 𝑊 × 1, which are then concatenated along 

the channel axis, denoted by [⋅;⋅]. The function 𝑓7×7(⋅) 
represents a convolution operation with a 7 × 7 kernel 

size, and 𝜎(⋅) is the sigmoid activation function. This 

spatial attention mechanism enables the network to 

focus on diagnostically relevant spatial regions 

associated with fibrosis-related patterns. 

By integrating CBAM into the residual learning 

framework, the output of the enhanced residual block is 

formulated as shown in Eq. (4) [25]. 

𝑦 = 𝐶𝐵𝐴𝑀(𝐹(𝑥, 𝑊) +  𝑥 (4) 

where 𝐶𝐵𝐴𝑀(⋅) denotes the sequential application of 

channel attention and spatial attention operations. This 

integration allows the network to selectively enhance 

discriminative features while retaining the advantages of 

residual learning, thereby improving the representation 

capability for liver fibrosis stage classification. As shown 

in Fig. 3, the input ultrasound image with a resolution of 

224 × 224 × 3 pixels is first processed by an initial 

convolutional layer with a 7 × 7 kernel and a stride of 2, 

followed by batch normalization, a ReLU activation 

function, and a 3 × 3 max pooling layer. The resulting 

feature maps are then propagated through four residual 

stages (conv2_x to conv5_x), with CBAM embedded at 

each stage to enhance feature refinement. Finally, the 

extracted feature maps are aggregated using Global 

Average Pooling (GAP) and passed to a fully connected 

layer with five output neurons corresponding to fibrosis 

stages F0–F4. During training, the CrossEntropyLoss 

function is employed, which implicitly incorporates a 

Softmax operation to produce class probability 

distributions. Within CBAM, Channel Attention 

emphasizes important feature channels by integrating 

spatial cues obtained from average and max pooling. 

Spatial Attention, on the other hand, captures 

informative spatial regions by applying channel-wise 

pooling, followed by a 7 × 7 convolution to calculate the 

spatial attention features. Through the combined use of 

channel-wise and spatial attention, CBAM improves the 

model’s focus on informative features, thereby 
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increasing its responsiveness to subtle fibrosis 

characteristics. Following the CBAM residual blocks, the 

extracted feature maps undergo Global Average Pooling 

(GAP) before being passed to a fully connected layer 

featuring five output nodes representing fibrosis stages 

F0 through F4. The training process adopts 

CrossEntropyLoss, which implicitly includes a Softmax 

operation to generate class probability scores. 

D. Hyperparameter Tuning 

Hyperparameter tuning was conducted as a controlled 
ablation-style grid evaluation. The learning rate was 
tested in 1e−3, 1e−4, 1e−5, and weight decay in 1e−4, 
1e−5; activation functions ReLU, GeLU, and loss 
functions CrossEntropyLoss, Sparse Categorical 
Crossentropy were compared; and attention variants 
none and CBAM were evaluated under the same 
Stratified 5‑Fold protocol. The final configuration was 

selected based on consistently strong fold-wise 
performance and stable convergence behavior rather 
than a single peak result. To achieve this, several 
critical parameters, including learning rate, weight 
decay, activation functions, loss functions, and 
attention mechanism variants, are iteratively adjusted. 
The tuning strategy also incorporates comparative 
evaluation between the baseline model and the 
attention-enhanced architecture to determine the most 
performant setup. This comparative approach ensures 
that performance improvements can be attributed to 
the integration of attention mechanisms rather than to 
incidental parameter variations. 

E. Model Evaluation 
In this study, the evaluation process employs the test 
set from each dataset to assess the classification 
performance. Four primary metrics are used to 
measure model effectiveness: Accuracy, Precision, 
Recall, and F1-Score.  
1. Accuracy 

Accuracy measures the overall proportion of correct 
predictions over all test samples. As shown in Eq. (5) 

[12], the numerator ∑ 𝑛𝑐𝑐
𝐶
𝑐=1  sums the diagonal 

elements of the confusion matrix, i.e., the total number 
of correctly classified samples across all classes. 
Dividing by 𝑁 yields the fraction of correct predictions 

among all test images. Accuracy provides a global 
summary of classification correctness, but it can be 
influenced by class imbalance; therefore, we also 
report macro and weighted class-wise metrics to 
evaluate performance more fairly across stages. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑛𝑐𝑐

𝐶
𝑐=1

𝑁
(5) 

2. Precision 

Precision evaluates the model’s tendency toward over-
prediction, measured as the proportion of correctly 
predicted samples for class c among all samples 
predicted as class c, correctly identified out of all voxels 

classified as positive. [35]. Precision evaluates the 
accuracy of positive predictions by measuring the 
proportion that are genuinely relevant, as defined in Eq. 
(6) [12]. The macro precision metric is implemented to 
achieve a balanced assessment, ensuring that every 
class is equally represented in performance metrics, as 
described in Eq. (7) [12]. When the dataset exhibits 
class imbalance, weighted precision, defined in Eq. (8) 
[12], is more appropriate because it accounts for the 
number of samples in each class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐
(6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛macro =
1

5
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐

5

𝑐=1

(7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛weighted =
1

𝑁
∑ 𝑛𝑐

5

𝑐=1

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 (8) 

3. Recall 

Recall (also called sensitivity or true positive rate) 
measures the ability of the model to correctly detect 
samples that truly belong to a given class. In fibrosis 
staging, recall is important for quantifying the 
classifier's tendency to miss a stage (under-detection), 
especially for intermediate stages that are visually 
subtle. Class-wise recall in Eq. (9) [12] is defined using 
𝑇𝑃𝐶 as the number of classes-𝑐 samples predicted 

correctly and 𝐹𝑁𝐶 as the number of true classes-𝑐 

samples misclassified as other classes, so it  measures 
the proportion of ground-truth class-𝑐 samples that the 

model successfully retrieves. 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
(9) 

Macro recall (Eq. (10) [12]) is the unweighted mean of 
recall across all classes, giving each stage equal 
importance. This is essential for assessing whether the 
classifier consistently detects minority and intermediate 
classes rather than achieving high performance only on 
frequent classes. 

𝑅𝑒𝑐𝑎𝑙𝑙macro =
1

5
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

5

𝑐=1

(10) 

𝑅𝑒𝑐𝑎𝑙𝑙weighted =
1

N
∑ nc

5

c=1

 Recallc (11) 

Weighted recall (Eq. (11) [12]) weights each class 
recall by 𝑛𝑐 and normalizes by 𝑁, producing a recall 

estimate that reflects the empirical distribution of the 
dataset. Like weighted precision, it can be dominated 
by larger classes, so it is reported together with macro 
recall. 

4. F1-Score 

The F1-Score  provides a single  class-wise  measure 
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that balances precision and recall. This is particularly 
useful in multi-class medical classification because a 
model can achieve high precision by being 
conservative (but miss many true cases), or high recall 
by being permissive (but produce many false 
positives). F1 penalizes such imbalanced behavior. 
Class-wise F1 in Eq. (12) [12] is the harmonic mean of 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶 and 𝑅𝑒𝑐𝑎𝑙𝑙𝐶. Because it is a harmonic 

mean, the score becomes high only when both 
precision and recall are high; if either one is low, 𝐹1𝐶 

decreases substantially. 

𝐹1𝑐 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

(12) 

Macro F1 (Eq. (13) [12]) is the unweighted mean of 
𝐹1𝐶, across all classes. This metric assigns equal 

importance to each class, regardless of the number of 
samples in each category. As a result, macro F1 is 
particularly suitable for imbalanced medical datasets, 
where minority classes, such as intermediate fibrosis 
stages, are clinically important and should not be 
overshadowed by the majority classes.  

𝐹1macro =
1

5
∑ 𝐹1𝑐

5

𝑐=1

(13) 

Weighted F1 (Eq. (14) [12]) computes a weighted 
average of the class-wise F1-Scores 𝐹1𝐶, where each 

class is weighted by its number of samples 𝑛𝐶 and 

normalized by the total number of samples 𝑁. This 

metric reflects class distribution and overall 
performance under imbalance, but is more influenced 
by majority classes and may underrepresent minority 
fibrosis stages.  

𝐹1weighted =
1

𝑁
∑ 𝑛𝑐

5

𝑐=1

 𝐹1𝑐 (14) 

III. Result  

A. Hyperparameter Tuning  

Hyperparameter tuning was performed to determine the 

most effective training configuration for the proposed 

ResNet-50 + CBAM model. This optimization stage 

aimed to ensure stable convergence, maximize 

generalization, and identify hyperparameters that 

consistently improved performance across all evaluation 

folds. Several key components, including learning rate, 

weight decay, activation function, loss function, and 

attention mechanism, were systematically examined to 

assess their individual and collective influence on model 

performance [36]. The tuning process was conducted in 

a controlled, reproducible manner to minimize the risk of 

biased model selection and to ensure that observed 

performance gains were attributable to architectural and 

parameter choices rather than random fluctuations. 

Each hyperparameter was evaluated while keeping 

other settings fixed to isolate its specific impact on 

training stability and classification accuracy. This 

strategy enabled a fair comparison across 

configurations across all validation folds. In addition, the 

selection of the final hyperparameter set considered not 

only peak performance but also consistency across 

folds, reflecting the model’s robustness. Such a 

systematic tuning procedure is essential for deep 

learning models applied to medical imaging tasks, where 

reliable generalization is critical for practical applicability. 

Thus, the final hyperparameters were fixed for all 

subsequent experiments to ensure a fair and 

reproducible evaluation. 

The first experiment jointly evaluated the influence of 

learning rate and weight decay, as both parameters play 

a critical role in controlling the magnitude of weight 

updates and regularization strength during training. 

Three learning rates (1e−3, 1e−4, 1e−5) and two weight 

decay values (1e−4, 1e−5) were tested. The results 

showed that a learning rate of 1e−3 produced unstable 

validation accuracy and oscillatory loss, while 1e−4 

improved stability but still exhibited minor fluctuations. A 

learning rate of 1e−5 yielded the most stable 

convergence and the lowest validation loss. For weight 

decay, 1e−4 offered superior regularization, yielding 

smoother curves and better generalization compared to 

1e−5. Based on these observations, the optimal 

combination selected for the final model was a learning 

rate of 1e−5 and a weight decay of 1e−4. The 

experimental results are shown in Fig. 4. Insights from 

tuning.  

 

Table 2. Comparative analysis of activation 
functions and loss functions 

Activation 
Fuction 

Macro 
average 

(%) 

Weighted 
average 

(%) 

Accuracy 
(%) 

ReLU 97.64 98.34 98.34 

GeLU 93.67 95.41 95.42 

Loss 
Fuction 

Macro 
average 

(%) 

Weighted 
average 

(%) 

Accuracy 
(%) 

Sparse 
Categorical 

Crossentropy 
94.40 95.63 95.66 

Cross 

Entropy 

Loss 

98.20 98.34 98.34 

The tuning study indicates that learning rate is the most 

sensitive hyperparameter for this task. A larger rate 

produces oscillatory validation loss, consistent with 

noisy gradients when learning from speckle-dominated 

ultrasound textures, whereas a smaller rate yields 
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smoother convergence. Weight decay also plays an 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

(i) (j) 

Fig. 1.  Hyperparameter tuning curves: (a) accuracy at LR = 1e−3, (b) loss at LR = 1e−3, (c) accuracy at 
LR = 1e−4, (d) loss at LR = 1e−4, (e) accuracy at LR = 1e−5, (f) loss at LR = 1e−5, (g) accuracy at weight 
decay = 1e−4, (h) loss at weight decay = 1e−4, (i) accuracy at weight decay = 1e−5, and (j) loss at weight 
decay = 1e−5. 
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important role by reducing overfitting to scanner-specific 

intensity patterns and improving fold consistency. These 

observations provide practical guidance for future 

ultrasound-based staging studies using similar 

backbones.  

The next experiment combined the evaluation of the 
activation function and the loss function, as both 
directly influence gradient flow and the learning 
behavior of the model. ReLU and GeLU were 
compared, with ReLU demonstrating distinctly superior 
performance across macro average, weighted 
average, and accuracy metrics. Its stability and sparsity 
inducing properties made it more suitable for extracting 
discriminative texture features from ultrasound images. 
Two loss functions, CrossEntropyLoss and Sparse 
Categorical Crossentropy, were also tested. 
CrossEntropyLoss consistently achieved higher 
accuracy and more stable convergence, attributed to its 
direct operation on logits and its increased robustness 
to imbalanced datasets. As a result, ReLU was 
selected as the activation function and 
CrossEntropyLoss as the primary loss function for all 
subsequent training processes. The experimental 
results are shown in Table 2. 

The subsequent experiment evaluated the effect of 
integrating an attention mechanism into the ResNet-50 
backbone, followed by an assessment of overall 
classification performance, as summarized in Table 3. 
The comparison focuses on the baseline ResNet-50 
model and the proposed ResNet-50 enhanced with the 
Convolutional Block Attention Module (CBAM). As 
shown in the table, incorporating CBAM results in 
substantial improvements across all evaluation metrics. 
The overall accuracy increases from 84.98% to 98.34%, 
accompanied by consistent gains in precision, recall, 
and F1-score across all fibrosis stages. Notably, the 
most pronounced improvements are observed in the 
intermediate stages F1–F3, where the baseline model 
exhibits lower discrimination capability due to subtle and 
overlapping ultrasound texture patterns. The dual 
attention mechanism in CBAM enables adaptive 

refinement along both channel and spatial dimensions, 
allowing the network to emphasize diagnostically 
relevant texture cues while suppressing acquisition-
related noise. Compared with the baseline ResNet-50, 
the CBAM-augmented model demonstrates stronger 
generalization behavior and more stable predictions 
across all fibrosis categories. These results confirm that 
integrating CBAM into the ResNet-50 backbone yields a 
robust, discriminative architecture for accurate liver 
fibrosis classification from ultrasound images. 

Table 3. Comparison of Test Accuracy and Loss in 
Every Fold. 

ResNet-50 Test Accuracy (%) Test Loss 

Fold 1 84.90 0.586 

Fold 2 85.10 0.571 

Fold 3 85.00 0.579 

Fold 4 84.80 0.593 

Fold 5 85.10 0.569 

ResNet-50 

+ CBAM 
Test Accuracy (%) Test Loss 

Fold 1 97.71% 0.088 

Fold 2 96.92% 0.113 

Fold 3 97.32% 0.102 

Fold 4 97.24% 0.107 

Fold 5 96.69% 0.122 

To assess performance robustness across different 
data partitions, fold-wise accuracy results obtained from 
the Stratified 5-Fold Cross Validation are summarized in 
Table 4. The proposed ResNet-50 + CBAM model 
demonstrates consistently high accuracy across all 
folds, accompanied by a low standard deviation, 
indicating stable generalization behavior. In contrast, the 
baseline ResNet-50 exhibits larger variability across 
folds. These findings confirm that the observed 
performance improvement is not driven by a single 

Table 3. Model experiment results. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

ResNet 50 84.98 

F0: 0.921 
F1: 0.760 
F2: 0.801 
F3: 0.824 

F4: 0.852 

F0: 0.858 
F1: 0.814 
F2: 0.861 
F3: 0.824 
F4: 0.864 

F0: 0.888 
F1: 0.786 
F2: 0.830 
F3: 0.824 
F4: 0.858 

ResNet 50 + CBAM 98.34 

F0: 1.000 
F1: 0.959 
F2: 0.962 
F3: 0.982 

F4: 0.985 

F0: 1.000 
F1: 0.965 
F2: 0.956 
F3: 0.953 

F4: 1.000 

F0: 1.000 
F1: 0.962 
F2: 0.959 
F3: 0.967 

F4: 0.992 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1406
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 284-303                                        e-ISSN: 2656-8632 

 

Manuscript Received 20 October 2025; Revised 5 January 2026; Accepted 10 January 2026; Available online 18 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1406 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 294               

favorable split but is consistently maintained across 
different validation folds. In particular, Table 4 shows that 
the ResNet-50 + CBAM model maintains test accuracy 
above 96.6% in every fold, whereas the baseline 
ResNet-50 remains around 84.8–85.1% across folds. 
The corresponding test losses follow the same trend, 
with substantially lower values for ResNet-50 + CBAM 
(0.0882–0.1222) compared to the baseline (0.5694–
0.5931), indicating more confident and stable 
predictions. The narrow spread of both accuracy and 
loss across folds suggests that the model behavior is not 
sensitive to a particular partition, supporting stable 
generalization under stratified sampling. This fold-
consistent improvement is consistent with the intended 
role of CBAM, which repeatedly refines features at 
multiple residual stages and helps preserve subtle 
texture cues that can be diluted during downsampling.  

Therefore, the cross-validation evidence in Table 4 
provides a strong basis for the subsequent statistical 
test, since the observed gains reflect a reproducible 
pattern rather than isolated fold-specific effects. A paired 
test was conducted on fold-wise test accuracies to 
quantify statistical significance under the stratified 5-fold 
protocol. The baseline ResNet 50 achieved 84.98% ± 
0.13% accuracy, whereas ResNet 50 with CBAM 
achieved 97.18% ± 0.39% accuracy, yielding a mean 
improvement of 12.20 percentage points with a 95% 
confidence interval from 11.59 to 12.80. The paired test 
confirms that the improvement is statistically significant, 
with t = 55.65 and p = 6.24 × 10^-7. 

B. Experiment Result 

The final model training was performed using the optimal 
hyperparameter configuration obtained from the tuning 
process. This configuration was selected due to its ability 
to support stable convergence, control overfitting, and 
achieve consistently high performance across all 
validation folds. The finalized training configuration 
strikes a balance between learning efficiency and 
generalization, ensuring the model performs effectively 
across diverse patterns of liver fibrosis. The complete 

set of selected hyperparameters used for the final 
training stage is shown in Table 5. 

Table 5. Hyperparameter Tuning. 

Hyperparameter Value 

Batch Size 64 

Epoch 100 

Learning Rate 1e-5 (0.00001) 

Optimizer Adam (Adaptive Moment 
Estimation) 

Scheduler CosineAnnealingLR 

Activation Function ReLU 

Loss Function CrossEntropyLoss 

Weight Decay 1e-4 (0.0001) 

K-Fold Validation 5-Fold Stratified 

Across all epochs, the ResNet-50 model integrated 

with the Convolutional Block Attention Module (CBAM) 

exhibits smooth, stable learning dynamics. The 

accuracy trends reveal rapid improvement in both 

training and validation performance at the beginning of 

training, followed by convergence at high accuracy 

levels. The close correspondence between these curves 

suggests strong generalization capability with negligible 

overfitting. This pattern suggests that incorporating the 

Convolutional Block Attention Module (CBAM) 

effectively enables the network to capture discriminative 

ultrasound features across distinct stages of liver 

fibrosis. 

In addition to the accuracy curve, there are also loss 

curves corresponding to training and validation. The loss 

values decrease smoothly and maintain a narrow gap 

throughout training, reflecting a healthy optimization 

process with stable gradient updates. The validation loss 

does not exhibit irregular spikes or divergence, further 

confirming that the model maintains balanced learning 

  
(a) (b) 

Fig. 5. The best (a) accuracy curve and (b) loss curve results of ResNet-50 with CBAM. 
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dynamics, indicating a well-balanced training process 

free from overfitting and underfitting [37]. Overall, the 

accuracy and loss curves shown in Fig. 5  provide strong 

evidence that the ResNet-50 + CBAM architecture 

achieves efficient convergence and robust performance. 

The consistency observed across both metrics 

highlights the model’s reliability and strengthens the 

conclusion that the proposed approach is well-suited for 

liver fibrosis classification using ultrasound imaging. 

Importantly, the narrow gap between the training and 

validation curves indicates that the model generalizes 

well, remembering rather than memorizing fold-specific 

patterns, which is critical given the heterogeneous multi-

vendor acquisition conditions of the dataset. This stable 

optimization behavior also supports that CBAM guided 

feature recalibration helps the network focus on 

diagnostically relevant echotexture cues while 

suppressing noise-dominated responses, thereby 

reducing overfitting risk and improving robustness 

across different data partitions. Moreover, the selected 

hyperparameters support CBAM-driven feature 

learning, enabling stable optimization, and good 

generalization. Consequently, the final model shows 

consistent performance across the stratified folds, 

reinforcing its suitability for ultrasound settings. The 

confusion matrix in  Fig. 6 (logit-level ensemble on the 

independent test set, N = 1,267) provides a class-wise 

view beyond aggregate accuracy. Correct predictions 

dominate the diagonal, with 1,246/1,267 samples 

correctly classified, leaving only 21 misclassifications 

(1.66%). The extreme stages F0 and F4 achieve perfect 

sensitivity (FN = 0 for both), indicating that the model 

reliably detects the absence of fibrosis and advanced 

cirrhosis. 

 

Fig. 6. Confusion matrix ensemble test ResNet-50 
with CBAM. 

Remaining errors are concentrated in the intermediate 

stages (F1–F3), consistent with the known visual 

ambiguity of adjacent METAVIR categories in B-mode 

ultrasound. Specifically, the model yields FN = 6 for F1, 

FN = 7 for F2, and FN = 8 for F3, showing that most 

residual mistakes occur within the clinically challenging 

mid-spectrum. False positives are also limited (FP = 7 

for F1, FP = 6 for F2, FP = 3 for F3), indicating that the 

decision boundaries are not overly permissive for 

intermediate classes. Importantly, predictions as F4 

remain conservative, with only 5 false positives, while 

maintaining FN = 0 for F4. Overall, the confusion matrix 

supports the claim that the proposed model reduces 

severe staging errors and keeps residual 

misclassifications largely within the intermediate range, 

which is clinically more plausible than extreme jumps. 

Because the confusion matrix is computed from a logit-

level ensemble across five independently trained folds, 

these behaviors reflect stable prediction tendencies 

rather than a single favorable split.  

 
Table 6. Fibrosis Stage Clinical Metrics. 

Class F0 F1 F2 F3 F4 

Sens 1.000 0.965 0.956 0.953 1.000 

Spec 1.000 0.993 0.994 0.997 0.994 

PPV 1.000 0.959 0.962 0.982 0.985 

NPV 1.000 0.994 0.993 0.992 1.000 

TP 423 167 152 164 340 

FP 0 7 6 3 5 

FN 0 6 7 8 0 

TN 844 1087 1102 1092 922 

Clinical Metrics every Class show in Table 6. 
Beyond overall accuracy, stage wise clinical metrics 
derived from the ensemble confusion matrix provide a 
more meaningful assessment of diagnostic reliability 
for liver fibrosis staging. Sensitivity values are high at 
the extreme stages F0 and F4 and remain high across 
intermediate stages, indicating that the proposed 
model consistently identifies fibrosis presence and 
severity across the disease spectrum. Specificity 
values exceeding 0.99 for all classes demonstrate a 
low rate of false positives, while high positive and 
negative predictive values further confirm the reliability 
of class assignments at the individual stage level. 
These values are consistent with the confusion matrix, 
where false negatives are limited to intermediate 
stages (FN = 6 - 8 for F1 - F3) and false positives 
remain low across all classes (FP ≤ 7). Clinically, such 
errors are more likely to occur near staging boundaries 
within the intermediate spectrum, reinforcing that the 
model should be used as decision support alongside 
clinical assessment rather than as a standalone 
diagnosis.  

The preservation of strong sensitivity and specificity 
for stages F1–F3 is particularly important given the 
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known diagnostic ambiguity of intermediate fibrosis on 
ultrasound imaging. These results indicate that the 
proposed approach does not achieve high accuracy by 
favoring majority classes, but instead maintains 
balanced performance across all fibrosis stages. From 
a clinical standpoint, this behavior reduces the 
likelihood of systematic under staging or over staging 
and supports the suitability of the model as a non-
invasive decision support tool for fibrosis assessment 
and longitudinal monitoring. 

Grad-CAM visualizations are presented in Fig. 7. To 

provide insight into the internal decision making behavior 

of the proposed model, Grad-CAM visualizations were 

generated for representative test images across all 

fibrosis stages. These visualizations qualitatively 

indicate that the CBAM-enhanced network produces 

discriminative responses concentrated within the liver 

parenchymal region inside the ultrasound sector, rather 

than focusing on background areas or acquisition-

related artifacts. This observation is consistent across 

fibrosis stages, including intermediate categories where 

texture differences are subtle and spatially diffuse.  

It is emphasized that these visualizations are 
presented for qualitative transparency rather than 
quantitative validation, as the dataset provides image-
level labels without pixel-level ground truth annotations. 
Consequently, the attention maps are not interpreted as 
precise lesion localization. Instead, they offer supporting 
evidence that attention-based feature refinement guides 
the network toward anatomically relevant regions during 
classification, aligning model behavior with clinical 
expectations while acknowledging known limitations of 

Grad-CAM under large receptive fields and 
heterogeneous ultrasound acquisition conditions. 

Empirically, the influence of CBAM is reflected in the  
improved stability of the training process, the 
consistency of the accuracy and loss curves, and the 
final evaluation metrics. The learning curve 
demonstrates that the model attains near-perfect 
training accuracy and maintains high validation accuracy 
without signs of overfitting. The small discrepancy 
between the training and validation curves indicates that 
the attention mechanism successfully guides the 
network toward diagnostically informative features, 
thereby strengthening generalization performance. In 
addition to quantitative gains, CBAM improves the 
interpretability of the feature extraction process by 
encouraging the model to concentrate on clinically 
meaningful tissue patterns. Previous studies have 
similarly demonstrated that attention mechanisms 
enhance model explainability by explicitly highlighting 
salient anatomical regions, offering clinicians greater 
transparency into deep learning–based decision 
processes [38]. Furthermore, ensemble evaluation on 
the CBAM-enhanced ResNet-50 test set corroborated 
these benefits, achieving an accuracy of 98.34% 
alongside consistently high precision, recall, and F1-
scores across all fibrosis stages (F0–F4), as shown in 
Table 7. These results collectively demonstrate that 
incorporating CBAM significantly improves feature 
extraction, increases sensitivity to fibrosis-related 
texture patterns, and results in more accurate and 
consistent classification performance in ultrasound-
based liver fibrosis assessment. 

C. Analysis of Attention Mechanism 

   

(a) (b) (c) 

  

(d) (e) 

Fig. 7. GRAD-CAM visualization (a) F0, (b) F1, (c) F2, (d) F3, (e) F4. 
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The proposed approach outperforms previous 
architectures in Table 7, showing that earlier models 
trained on the same dataset, including VGGNet, 
DenseNet, EfficientNet, ViT, and the baseline ResNet 
50, achieve lower accuracy. We attribute the 
improvement of the proposed method to three 
complementary design choices. First, CBAM provides 
sequential channel and spatial recalibration, which helps 
preserve weak echotexture cues that can be diluted by 
downsampling and uniform aggregation. Second, the 
conservative augmentation strategy avoids introducing 
unrealistic texture artifacts that can harm generalization 
on heterogeneous ultrasound data. Third, logit 
ensembling across independently trained fold models 
reduces variance and stabilizes predictions, particularly 
at borderline intermediate stages. Together, these 
factors explain why the proposed approach achieves a 
larger performance gain on this multi-center, multi-
vendor dataset. Furthermore, the precision, recall, and 
F1-scores were consistently high across all fibrosis 
stages, including the more challenging intermediate 
categories. These results suggest that the inclusion of 
channel-level and spatial attention mechanisms 
enhance the model’s ability to selectively attend to 
diagnostically relevant information, thereby decreasing 
misclassification commonly observed in fibrosis stages 
F1 to F3. The ability to maintain strong performance 
across all classes, rather than only at extreme stages 
(F0 and F4), is a significant advancement over earlier 
CNN-based approaches. Similar improvements using 
contrastive fusion ultrasound models have recently been 
reported, where deep learning achieved stable staging 
performance even under small sample and 
heterogeneous image conditions, corroborating the 
robustness of our attention-enhanced approach [26]. 
Comparable performance improvements have also 
been documented in other medical classification tasks, 
where CBAM-based architectures consistently 
outperform standard CNN models in extracting 
discriminative features from low contrast and 
heterogeneous imaging data [39], [40]. 

 

IV. Discussion 

This study presents a detailed evaluation of the 
proposed ResNet-50 integrated with the CBAM and 
compares its performance with several established 
deep learning architectures reported in previous 
studies. Based on the comparative results shown in 
Table 7, earlier work by [24] demonstrated that 
conventional CNN models, including VGGNet, 
DenseNet, EfficientNet, and even Vision Transformer, 
achieved varying accuracy levels for liver fibrosis 
staging, with standard ResNet-50 yielding the highest 
performance at 85.92%. Although this accuracy was 
better than that of other architectures, their study also 
highlighted that ResNet-50 struggled to reliably classify 

intermediate fibrosis stages (F1–F3), where 
parenchymal texture differences are subtle and often 
ambiguous in ultrasound images. These findings 
indicate that conventional CNNs are still limited in 
capturing fine-grained diagnostic features required for 
precise fibrosis assessment [38]. 

The proposed approach outperforms previous 
architectures in Table 7, showing that earlier models 
trained on the same dataset, including VGGNet, 
DenseNet, EfficientNet, ViT, and the baseline ResNet 
50, achieve lower accuracy. We attribute the 
improvement of the proposed method to three 
complementary design choices. First, CBAM provides 
sequential channel and spatial recalibration, which 
helps preserve weak echotexture cues that can be 
diluted by downsampling and uniform aggregation. 
Second, the conservative augmentation strategy 
avoids introducing unrealistic texture artifacts that can 
harm generalization on heterogeneous ultrasound 
data. Third, logit ensembling across independently 
trained fold models reduces variance and stabilizes 
predictions, particularly at borderline intermediate 
stages. Together, these factors explain why the 
proposed approach achieves a larger performance 
gain on this multi-center, multi-vendor dataset. 
Furthermore, the precision, recall, and F1-scores were 
consistently high across all fibrosis stages, including 
the more challenging intermediate categories. These 
results suggest that the inclusion of channel-level and 
spatial attention mechanisms enhances the model’s 
ability to selectively attend to diagnostically relevant 
information, thereby decreasing misclassification 
commonly observed in fibrosis stages F1 to F3. The 
ability to maintain strong performance across all 
classes, rather than only at extreme stages (F0 and 
F4), is a significant advancement over earlier CNN-
based approaches. Similar improvements using 
contrastive fusion ultrasound models have recently 
been reported, where deep learning achieved stable 
staging performance even under small-sample and 
heterogeneous image conditions, corroborating the 
robustness of our attention-enhanced approach [26]. 
Comparable performance improvements have also 
been documented in other medical classification tasks, 
where CBAM-based architectures consistently 
outperform standard CNN models in extracting 
discriminative features from low contrast and 
heterogeneous imaging data [39], [40].  

The improvements observed in this study suggest 
that attention mechanisms play a crucial role in 
enhancing feature representation in medical ultrasound 
applications, where noise, variability, and subtle texture 
patterns pose inherent challenges. The attention 
modules guide the model to focus on areas within the 
image that contain meaningful fibrosis-related 
characteristics, while suppressing irrelevant or 
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misleading features. This selective focus contributes 
not only to increased accuracy but also to improved 
stability, as reflected by the consistent training and 
validation curves. These trends align with previous 
studies suggesting that employing attention-based 
deep learning techniques can considerably boost 
model effectiveness in tasks involving visually 
ambiguous or low contrast patterns [41]. 

Robustness under class imbalance. The dataset is 
imbalanced, with F0 and F4 accounting for more than 
half of the samples. We mitigate this by stratified 
splitting, stratified 5-fold training, and reporting macro 
averaged metrics that treat all stages equally. 
Importantly, improvements from CBAM are not limited 
to majority classes. The baseline ResNet 50 yields F1 

scores of 0.786 for F1, 0.830 for F2, and 0.824 for F3, 
whereas ResNet 50 plus CBAM reaches 0.962, 0.959, 
and 0.967 for these stages, respectively. This 
consistent gain suggests that attention-based 
recalibration improves representation of intermediate 
stages rather than simply amplifying recognition of the 
easiest classes. The superior performance of the 
proposed model also indicates its potential suitability 
for clinical decision support systems. With high 
accuracy and low variance across classes, the ResNet-
50 + CBAM architecture demonstrates robustness 
even when ultrasound images exhibit subtle or 
overlapping fibrosis patterns. Such improvements are 
particularly important because accurate staging of 
intermediate fibrosis levels is critical for determining 

Table 7. Comparison of the proposed method with other methods with the same dataset. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

VGG 

Net 

[24] 

83.17 

F0: 0.863 

F1: 0.784 

F2: 0.860 

F3: 0.738 

F4: 0.842 

F0: 0.863 

F1: 0.775 

F2: 0.750 

F3: 0.705 

F4: 0.916 

F0: 0.863 

F1: 0.779 

F2: 0.801 

F3: 0.721 

F4: 0.879 

Dense 

Net 

[24] 

84.17 

F0: 0.869 

F1: 0.793 

F2: 0.874 

F3: 0.793 

F4: 0.836 

F0: 0.892 

F1: 0.818 

F2: 0.750 

F3: 0.666 

F4: 0.913 

F0: 0.881 

F1: 0.806 

F2: 0.807 

F3: 0.724 

F4: 0.873 

Efficient 

Net 

[24] 

85.17 

F0: 0.880 

F1: 0.850 

F2: 0.848 

F3: 0.785 

F4: 0.848 

F0: 0.875 

F1: 0.818 

F2: 0.831 

F3: 0.750 

F4: 0.895 

F0: 0.878 

F1: 0.834 

F2: 0.839 

F3: 0.672 

F4: 0.871 

ViT 

[24] 
83.42 

F0: 0.820 

F1: 0.845 

F2: 0.875 

F3: 0.781 

F4: 0.850 

F0: 0.900 

F1: 0.787 

F2: 0.810 

F3: 0.641 

F4: 0.876 

F0: 0.858 

F1: 0.815 

F2: 0.842 

F3: 0.704 

F4: 0.863 

ResNet-50 

[24] 
85.92 

F0: 0.874 

F1: 0.831 

F2: 0.921 

F3: 0.754 

F4: 0.878 

F0: 0.897 

F1: 0.831 

F2: 0.790 

F3: 0.750 

F4: 0.907 

F0: 0.886 

F1: 0.831 

F2: 0.850 

F3: 0.752 

F4: 0.892 

Proposed Method 98.34 

F0: 1.000 

F1: 0.959 

F2: 0.962 

F3: 0.982 

F4: 0.985 

F0: 1.000 

F1: 0.965 

F2: 0.956 

F3: 0.953 

F4: 1.000 

F0: 1.000 

F1: 0.962 

F2: 0.959 

F3: 0.967 

F4: 0.992 
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treatment strategies and monitoring disease 
progression. Therefore, the enhanced performance 
achieved in this study confirms that incorporating 
CBAM effectively addresses the limitations of earlier 
methods and offers a more reliable solution for fibrosis 
classification. 

In summary, the comparative findings show that the 
proposed model not only surpasses existing 
approaches in accuracy but also demonstrates 
stronger generalization and interpretability. The 
consistent results across all fibrosis stages reinforce 
that CBAM provides meaningful enhancements to the 
feature extraction process. Overall, these results 
position the ResNet-50 + CBAM model as a promising 
architecture for future research and potential clinical 
applications in ultrasound-based liver fibrosis 
assessment. Although the findings are positive, several 
constraints should be noted. Primarily, the data were 
collected from a relatively small number of institutions, 
which may constrain the generalizability of the 
proposed model across diverse ultrasound devices and 
clinical environments. Second, the evaluation was 
conducted on retrospective data; real-time prospective 
testing is still required. Third, the model relies solely on 
B-mode ultrasound without integrating clinical variables 
that may improve staging accuracy. Considering recent 
successes in fusion-based ultrasound approaches, 
future work may benefit from integrating contrast-
enhanced ultrasound or combining ultrasound with 
elastography or other modalities to enhance staging 
reliability [26]. 

Despite these limitations, the high accuracy and 
consistent performance demonstrated by the proposed 
model indicate strong potential for its integration into 
routine clinical workflows as a reliable decision support 
tool for radiologists and hepatologists. The model’s 
ability to maintain robust classification results across all 
fibrosis stages suggests that the incorporation of 
attention mechanisms effectively enhances feature 
representation and reduces diagnostic variability 
commonly encountered in ultrasound-based liver 
assessment. This feature is highly advantageous in 
medical settings, where accurate and standardized 
assessment is required, informed clinical decision 
making. This indicates that the proposed approach 
may support more consistent fibrosis evaluation in 
clinical practice. Overall, these findings confirm that 
attention based deep learning architectures provide 
substantial advancements in ultrasound-based liver 
fibrosis assessment by improving sensitivity to subtle 
and heterogeneous texture patterns. The 
demonstrated effectiveness of the proposed approach 
highlights the potential of attention mechanisms to 
address limitations of conventional convolutional 
neural networks. Consequently, this study may serve 
as a foundation for future research aimed at developing 

clinically reliable, interpretable, and non-invasive 
diagnostic systems, as well as facilitating the broader 
adoption of artificial intelligence-assisted tools in 
hepatology practice. As a result, this study can guide 
and inform future investigations on attention-based 
models in medical ultrasound analysis. Furthermore, 
this study provides a reference for integrating attention 
mechanisms into deep learning architectures. Future 
studies should prioritize external multi-center validation 
and standardized reporting to assess whether the 
observed improvements remain consistent across 
different ultrasound devices, acquisition protocols, and 
clinical populations. 

As summarized in Table 7, the proposed method 

achieves the highest accuracy (98.34%) compared with 

the previously reported architectures evaluated on the 

same dataset setting in [24]. The improvement is 

accompanied by consistently high precision, recall, and 

F1-scores across stages, indicating that the 

performance gain is not limited to the majority classes. 

This suggests that the attention-based feature 

refinement and the proposed evaluation protocol 

contribute to more reliable separation of the clinically 

challenging intermediate stages (F1–F3), where 

conventional CNN backbones tend to show higher 

confusion. Overall, these results highlight that 

integrating CBAM with a robust validation scheme 

enhances both classification accuracy and clinical 

reliability for liver fibrosis staging. 

 

V. Conclusion  

The present study demonstrates the successful 

application of a deep learning framework for classifying 

liver fibrosis stages (F0–F4) from ultrasound images by 

enhancing the ResNet-50 architecture with the CBAM. 

The integration of channel and spatial attention 

addressed the limitations of conventional CNNs, 

particularly in recognizing subtle textural variations in 

intermediate fibrosis stages (F1–F3). Using stratified 5-

fold validation and ensemble averaging of logits from five 

trained models, the proposed system demonstrated 

highly stable performance throughout training, as 

evidenced by consistent accuracy and loss curves 

without signs of overfitting. The final evaluation on the 

test set showed that the CBAM-enhanced ResNet-50 

achieved an accuracy of 98.34%, accompanied by 

exhibiting consistently high precision, recall, and F1-

scores across all classes of fibrosis, with confirmation 

from the confusion matrix further confirming excellent 

classification capability, especially for classes F0 and 

F4, which were recognized with perfect accuracy. These 

results indicate that CBAM substantially strengthens 

ResNet-50's feature extraction, improves model 

generalization, and enhances the reliability of automated 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1406
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 284-303                                        e-ISSN: 2656-8632 

 

Manuscript Received 20 October 2025; Revised 5 January 2026; Accepted 10 January 2026; Available online 18 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1406 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 300               

liver fibrosis staging from ultrasound images. 

Notwithstanding the strong results obtained, further 

investigations are required to confirm the robustness 

and generalizability of the proposed approach. Future 

work should prioritize external validation on additional 

multi-center datasets and ultrasound devices to evaluate 

performance stability across different acquisition 

settings. In addition, exploring clinically plausible 

augmentation strategies beyond horizontal flipping and 

comparing alternative attention modules under the same 

training and evaluation protocol may provide deeper 

insight into improving ultrasound-based liver fibrosis 

staging. 
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