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Abstract Liver fibrosis staging is a crucial component in the clinical management of chronic liver disease
because it directly affects prognosis, therapeutic decision-making, and long-term patient monitoring.
Ultrasound imaging is widely used as a noninvasive diagnostic modality due to its safety, low cost, and
broad accessibility. Nevertheless, ultrasound-based fibrosis assessment remains challenging because
liver parenchymal echotexture often exhibits low contrast, speckle noise, and subtle inter-stage variations,
particularly among adjacent METAVIR stages. These characteristics frequently limit the effectiveness of
conventional convolutional neural networks, which tend to emphasize dominant global patterns while
suppressing weak but clinically meaningful texture cues. This study presents a task-oriented integration
of a Convolutional Block Attention Module into a ResNet-50 backbone to enhance feature discrimination
for five-stage liver fibrosis classification using heterogeneous B-mode ultrasound images. Rather than
introducing a new attention mechanism, the contribution lies in the systematic insertion of CBAM after
residual outputs across multiple network stages, enabling repeated channel and spatial recalibration from
low-level texture descriptors to higher-level semantic representations. To further improve robustness and
reduce prediction variance, a stratified 5-fold training strategy is combined with logit-level ensemble
inference, where logits from independently trained fold models are averaged prior to Softmax
normalization. Experiments were conducted on a publicly available dataset comprising 6,323 ultrasound
images acquired from two tertiary hospitals using multiple ultrasound systems, with fibrosis stages labeled
from FO to F4 according to histopathology-based METAVIR scoring. The proposed framework achieves a
test accuracy of 98.34%and consistently high precision, recall, and F1 scores across all fibrosis stages,
with the most pronounced improvement observed for intermediate stages. Statistical analysis based on
paired fold-wise comparisons confirms that the performance gain over the baseline ResNet 50 model is
statistically significant. These results demonstrate that combining lightweight attention-based feature
refinement with logit ensemble inference effectively addresses the inherent challenges of ultrasound-
based liver fibrosis staging and provides a reliable noninvasive decision support framework with strong
potential for clinical application and future multicenter validation.

Keywords Liver fibrosis; Ultrasound; ResNet-50; CBAM.

l. Introduction

Chronic liver disease continues to exert a profound
impact on global health, accounting for a significant

Without early diagnosis and appropriate therapeutic
intervention, fibrosis may advance to end-stage liver
complications such as cirrhosis, liver failure, and

proportion of deaths worldwide [1]. Its development is
linked to various primary causes, including chronic
hepatitis B and C infections, alcohol associated hepatic
disease, and the increasingly prevalent non-alcoholic
fatty liver disease (NAFLD), driven in part by the
worldwide rise in obesity [2]. Among the pathological
manifestations of long-term liver injury, fibrosis is one
of the most prevalent, arising from continuous
hepatocellular insult and characterized by excessive
collagen-rich extracellular matrix deposition [3].

hepatocellular carcinoma (HCC), which are linked to
poor patient outcomes [4]. A comprehensive meta-
analysis including 168,571 participants across 19
studies revealed that non-cirrhotic MASH patients
exhibited a significantly higher prevalence of HCC
(38.0%) compared with non-cirrhotic individuals with
other liver disease etiologies (14.2%; p < 0.001) [5], [6].
Therefore, evaluating liver fibrosis is a fundamental
aspect of chronic liver disease (CLD) management,
facilitating prognosis, individualized therapeutic and
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surveillance strategies, and assessment of treatment
response over time [7].

Given these challenges, early detection and
accurate staging of liver fibrosis are critically important
in clinical practice [7]. Reliable fibrosis staging not only
guides prognosis but also informs therapeutic
decisions and enables effective monitoring of treatment
response [8]. For decades, liver biopsy has been
regarded as the gold standard for determining the
severity of fibrosis [9]. However, biopsy presents
substantial limitations, including its invasive nature, risk
of complications such as bleeding, relatively high cost,
and susceptibility to sampling error, which can lead to
inaccurate or non-representative assessments [10].

In response to these limitations, non-invasive
diagnostic alternatives have been increasingly
developed, with ultrasound (US) imaging becoming a
prominent option [11]. Since its introduction as a
diagnostic technique in the mid twentieth century,
ultrasound has evolved into a compact and
sophisticated modality characterized by enhanced
image quality and advanced features, including artificial
intelligence applications [12]. Early hepatobiliary
applications date back to 1958, when only A-mode
ultrasound was available, followed by the introduction
of real-time B-mode imaging in the mid 1970s [13].
Increasing reliance on ultrasound imaging highlights
the importance of understanding its physical principles,
including sound propagation, tissue interactions, and
image construction, to improve diagnostic accuracy
and reduce artifacts [14]. Ultrasound is extensively
utilized as the first line modality for liver evaluation due
to its wide availability, cost-effectiveness, and safety
advantages, such as the absence of ionizing radiation
and contrast agents [15], [16]. However, the
interpretation of ultrasound images is strongly
influenced by operator experience, resulting in
variability and limiting the consistency of diagnostic
assessments [17]. Recent studies further emphasize
that machine learning and deep learning techniques
offer significant advantages in reducing inter-observer
variability and improving diagnostic reliability in
ultrasound-based liver assessment [18], [19]. These
findings show that automated feature extraction can
enhance fibrosis staging performance even when
ultrasound quality varies due to operator dependency.

The rapid evolution of artificial intelligence (Al) in
recent years, particularly through advances in deep
learning techniques, has significantly expanded the
possibilities for addressing complex problems in
medical image analysis [20], [21]. Among these
approaches, Convolutional Neural Networks (CNNs)
have gained considerable attention for their
outstanding performance across numerous medical
imaging applications, including classification, anomaly
detection, and segmentation. Their effectiveness

primarily stems from the ability to automatically learn
rich hierarchical representations of spatial and textural
information from imaging data, thereby reducing
reliance on manually designed features [22]. Beyond
classical CNN architectures, recent research has
explored frequency domain ultrasound features and
one-dimensional CNNs for liver fibrosis assessment,
demonstrating improved robustness when addressing
heterogeneous tissue patterns and radiofrequency
characteristics [23].

A comprehensive study [24] evaluated multiple
CNN architectures for five-stage liver fibrosis
classification (METAVIR FO0—F4) using heterogeneous
ultrasound images. Their results showed that VGGNet
achieved 83.17% accuracy, ResNet-50 reached
85.92%, DenseNet 84.17%, EfficientNet 85.17%, and
Vision Transformer 83.42%. Backbone selection. We
adopt ResNet-50 as the backbone for three reasons.
First, on the same heterogeneous dataset and
evaluation setting reported by Joo et al. [24], ResNet-
50 provided a strong baseline among commonly used
backbones, making it an appropriate reference for
isolating the contribution of attention. Second, residual
learning supports stable optimization with moderate
model capacity, which is important for medical
ultrasound data, where sample size, acquisition
variability, and label noise can limit the safe use of
larger backbones without overfitting. Third, ResNet-50
is widely adopted in medical image analysis, enabling
clearer comparison and easier replication across
studies. We acknowledge that deeper residual
networks, EfficientNet families, and transformer-based
models can be competitive under specific training
regimes. However, fixing a well-understood backbone
allows observed gains to be attributed more directly to
CBAM insertion and the proposed training and
ensembling strategy rather than to changes in network
scale. However, a detailed analysis of every class
revealed a meaningful limitation: ResNet-50 excelled at
identifying extreme fibrosis stages (FO and F4) but
struggled to differentiate intermediate stages (F1-F3),
which exhibit subtle textural variations and indistinct
anatomical boundaries. Because ResNet-50 treats all
feature channels equally, fine-grained diagnostic cues
essential for early-stage identification often remain
underemphasized [25]. These challenges are further
exacerbated by an imbalance in data distribution
across fibrosis stages. Recent work employing
contrastive fusion strategies on pure B-mode
ultrasound images has demonstrated promising results
in non-invasive liver fibrosis staging, improving stability
and accuracy over traditional CNN baselines [26].
Beyond image quality limitations, conventional CNN
architectures are often less effective for intermediate
liver fibrosis staging because diagnostically relevant
echotexture cues in ultrasound images are weak,
diffuse, and overlap across adjacent stages. Standard
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convolutional and pooling pipelines progressively
reduce spatial resolution and uniformly aggregate
feature responses, which can attenuate subtle
parenchymal texture differences that separate stages
F1 to F3. During this process, weak but clinically
meaningful fibrosis patterns are frequently suppressed,
while stronger yet nonspecific variations such as
speckle statistics, scanner-dependent intensity
changes, and acquisition-related artifacts, dominate
feature representations. These structural
characteristics of conventional CNNs limit sensitivity to
borderline fibrosis stages and lead to unstable
separation between neighboring classes, as also
reported in prior imaging studies [27], [28].
Consequently, attention-based feature refinement is
required to adaptively reweight informative channels
and spatial locations, preserving subtle fibrosis cues
while suppressing irrelevant responses.

Context on attention mechanisms: Channel
recalibration modules, such as squeeze-and-
excitation, are lightweight and effective when

discriminative information is primarily encoded in
channel responses, but they do not explicitly model
where informative regions are located. Non-local
blocks and transformer-style self-attention capture
long-range dependencies
and global context, yet they introduce higher
computational overhead and may require stronger
regularization or larger datasets to remain robust under
heterogeneous ultrasound acquisition. We therefore
adopt CBAM, which sequentially applies channel and
spatial attention with low overhead, enabling the
network to emphasize subtle parenchymal echotexture
cues while suppressing speckle-dominated and
scanner-dependent responses in B-mode ultrasound.
This property is particularly valuable for liver fibrosis
staging, where diagnostically relevant textural
differences are weak and often overlap across adjacent
METAVIR stages. Specifically, channel attention
adaptively reweights feature channels to strengthen
discriminative responses, while spatial attention
highlights informative regions that conventional CNN
pipelines may attenuate through uniform aggregation
and downsampling. Prior medical imaging studies have
reported improved performance after integrating CBAM
into ResNet backbones, for example, increasing AUC
from 0.772 to 0.866 in a ResNet-50-based classifier
[32]. Another study reported an increase in
classification accuracy from 74.42% to 95.74% after
integrating CBAM into a ResNet-based framework [33].
These findings support the hypothesis that CBAM
enhances fine-grained feature extraction essential for
distinguishing closely related fibrosis stages.

Building on this evidence, the present study
introduces a CBAM-enhanced ResNet-50 model for
classifying liver fibrosis severity from ultrasound

images. Through its channel attention mechanism,
CBAM prioritizes the most diagnostically meaningful
features, ensuring optimal use of minority class
information, while its spatial attention component
reinforces sensitivity to subtle patterns often
overlooked by conventional CNNs. This integrated
approach is expected to contribute to the advancement
of non-invasive clinical tools for liver fibrosis
assessment by improving diagnostic accuracy and
consistency.
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Fig. 1. Flow of the proposed research.

Motivated by these challenges, this study proposes
an accurate and interpretable deep learning framework
for classifying liver fibrosis stages from ultrasound
images. The key contributions of this work can be
summarized as follows:

1) Proposing a  CBAM-enhanced  ResNet-50
architecture designed to improve fine-grained
texture recognition in liver ultrasound images.

2) Conducting systematic hyperparameter tuning
involving learning rate, weight decay, activation
function, loss function, and attention mechanism;
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(d)

3) Implementing Stratified 5-Fold Cross Validation with
ensemble testing to ensure robust and reliable
performance.

4) A thorough comparison of previously published
state-of-the-art models is also conducted. This
paper is organized into five sections: Section Il
introduces the dataset, data preprocessing steps,
and network architecture; Section Il reports the
experimental framework and findings; Section IV
discusses and interprets the results; and Section V
summarizes the study and suggests avenues for
future research.

Il. Method

Fig. 1 illustrates the methodological framework
implemented in this research. The workflow includes
six ~major components: dataset preparation,
preprocessing, model construction, hyperparameter
tuning, training, and testing with performance
evaluation.

A. Dataset

This study used a publicly available liver ultrasound
dataset on kaggle reported by Joo et al. [24]. The
images were acquired at two tertiary university
hospitals in South Korea, namely Seoul St. Mary’s
Hospital and Eunpyeong St. Mary’s Hospital, using
eight B-mode ultrasound systems from multiple
vendors. The original frames had a resolution of 800 x

(e)
Fig. 2. Sample dataset for each class, (a) FO0, (b) F1, (c) F2, (d) F3, (e) F4.

600 pixels and a sector-shaped field of view before
being resized for model input, which introduces realistic
inter-device and inter-protocol variability relevant for
assessing generalization. Liver fibrosis stages were
assigned according to METAVIR criteria (FO- F4) using
histopathology as the reference standard, and the
staging follows the routine pathology reporting
described in [24]. Ultrasound examinations were
performed within three months before biopsy or
surgical resection to minimize temporal mismatch
between imaging appearance and tissue staging. Fig.
2 presents representative examples for each stage,
including FO (no fibrosis), F1 (portal fibrosis without
septa), F2 (portal fibrosis with few septa), F3
(numerous septa without cirrhosis), and F4 (cirrhosis).

A total of 6,323 ultrasound images were used in this
work. The class distribution comprises 2,114 images
for FO, 861 for F1, 793 for F2, 857 for F3, and 1,698 for
F4, indicating a non-uniform distribution where FO and
F4 account for more than half of the samples, while
intermediate stages are relatively underrepresented.
This imbalance reflects practical clinical data
characteristics and contributes to the difficulty of
separating adjacent intermediate stages with subtle
echotexture differences. To support fair evaluation,
stratified splitting and stratified cross-validation were
applied so that the original class proportions were
preserved across training, validation, and test
partitions.

B. Preprocessing Dataset
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Part A. Overview of the Proposed ResNet-50 Architecture with Sequential CBAM Integration
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Fig. 3. Resnet 50 Architecture with CBAM.

All ultrasound images underwent preprocessing by
resizing to 224 x 224 pixels to align with the ResNet-50
input format. Following resizing, ImageNet-based
mean and standard deviation normalization was
applied to standardize pixel intensity distributions
throughout the training process.

Table 1. The dataset was divided into training,
validation, and test sets.

Class FO F1 F2 F3 F4
1,691 688 634 685

Sum
1,358 5,056

Train
and
Val.

(80%)

Test
(20%)

The dataset was then divided using a stratified
split, with 80% used for the training—validation set and
20% reserved for an independent test for each fibrosis
class (FO-F4), as shown in Table 1. This stratification
ensured that the class proportions in both subsets
matched those of the original distribution. After this
division, the training—validation split was further
processed using 5-fold cross-validation. In this
scheme, the training-validation set was partitioned into
five balanced folds based on the class distribution. At
each iteration, one subset was reserved for validation,
while the remaining four formed the training data.
Employing this approach strengthens the consistency
of model evaluation and helps prevent overfitting, and
allows the model to be assessed across multiple
variations of the training subset. The test set was

423 173 159 172 340 1,267

excluded from the K-Fold procedure and used only
once at the final stage for independent performance
evaluation. After Stratified 5-Fold training, five
independently trained ResNet-50 plus CBAM models
were obtained. During inference on the held-out test
set, logits from the five models were averaged per
class, and Softmax was applied to the averaged logits
to obtain the final prediction. All headline metrics are
reported for this logit-level ensemble, while fold-wise
scores are provided to summarize variability across the
five independently trained models. Several common
augmentation operations were considered, but a
conservative augmentation strategy was adopted to
avoid distorting fibrosis-related echotexture cues.
Following the dataset characteristics described in [24],
the original ultrasound frames are sector-shaped, and
overly aggressive geometric transforms may alter the
anatomical context or introduce unrealistic boundaries.
Therefore, we applied Random Horizontal Flip with
probability 0.5 to increase geometric variability while
preserving clinically plausible appearance. We did not
apply random cropping because it may exclude
diagnostically relevant parenchymal regions, and we
avoided large rotations or strong intensity jitter because
brightness and orientation can be acquisition
dependent in ultrasound and may confound fibrosis
texture interpretation. Validation and test images were
processed only with resizing and normalization to
ensure that the evaluation reflects performance on
unmodified images. Meanwhile, the validation data in
each fold, as well as the test data, underwent only
resizing and normalization without additional
augmentation to ensure that model evaluation
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accurately
images.
C. Model Design

The model design stage outlines the architecture
employed to extract discriminative features and perform
liver fibrosis stage classification from ultrasound images.
In this study, a ResNet-50 architecture integrated with
the Convolutional Block Attention Module (CBAM) is
proposed, with the overall processing flow illustrated in
Fig. 3. ResNet-50 is adopted as the backbone network
due to its residual learning mechanism, which enables
effective training of deep neural networks while
mitigating the vanishing gradient problem [34]. In a
standard residual block, the output feature map is
obtained by combining the input feature map with the
output of a residual mapping through skip connections.
This residual learning operation is defined in Eq. (1) [34].

y =F@x,W) + x (1)
where x € R7*WXC denotes the input feature map of the
residual block with spatial dimensions H x W and C
channels, F(x,W) represents the residual mapping
learned by a series of convolutional layers
parameterized by weights W, and y is the resulting
output feature map. This formulation allows the network
to preserve gradient flow by learning residual functions
rather than direct mappings, facilitating deeper feature
representation learning.

Despite its effectiveness, previous work reported
indicates that the standard ResNet-50 architecture
encounters difficulties in distinguishing intermediate liver
fibrosis stages (F1-F3) [24]. This limitation is mainly
attributed to the uniform treatment of feature channels,
which may result in insufficient emphasis on subtle
texture patterns critical for fibrosis assessment. To
address this issue, CBAM modules are integrated into
the ResNet-50 backbone, as illustrated in Fig. 3.
Specifially, CBAM-module is inserted after the output of
each residual stage, enabling stage-level feature
recalibration before propagation to the subsequent
stage. This design applies both channel-wise and
spatial-wise attention across four semantic levels,
ranging from low-level texture descriptors to high-level
semantic representations, while maintaining a light
weight architectural modification.

The internal structure of CBAM consist of sequential
channel attention and spatial attention mechanisms.
Given an intermediate feature map F € RF*W*C  the
channel attention map M. (F) is computed as defined in
Eq. (2) [25].

M. (F) = a(MLP(AvgPool(F)) + MLP(MaxPool(F) (2)

where AvgPool(-) and MaxPool(-) denote global
average pooling and global max pooling operations
applied along the spatial dimensions, respectively,

reflected performance on unmodified

producing two channel-wise descriptors of size 1 x 1 X
C. The function MLP(-) represents a shared multi-layer
perceptron used to model inter-channel dependencies,
and o(-) denotes the sigmoid activation function. The
resulting channel attention map Mc(F) adaptively
reweights each feature channel to emphasize
informative channels while suppressing less ones.
Following channel attention, spatial attention is applied
to the channel refined feature map F' to identify
diagnostically relevant spatial regions. The spatial
attention mechanism is defined in Eq. (3) [25].

Mg (F") = o(f*7x7 ([AvgPool(F"); MaxPool(F")])) (3)
where AvgPool(-) and MaxPool(-) are applied along the
channel dimension to generate two spatial feature maps
of size H x W x 1, which are then concatenated along
the channel axis, denoted by [-;-]. The function f7*7(-)
represents a convolution operation with a 7 x 7 kernel
size, and o (-) is the sigmoid activation function. This
spatial attention mechanism enables the network to
focus on diagnostically relevant spatial regions
associated with fibrosis-related patterns.

By integrating CBAM into the residual learning
framework, the output of the enhanced residual block is
formulated as shown in Eq. (4) [25].

y = CBAM(F(x,W) + x (4)
where CBAM(-) denotes the sequential application of
channel attention and spatial attention operations. This
integration allows the network to selectively enhance
discriminative features while retaining the advantages of
residual learning, thereby improving the representation
capability for liver fibrosis stage classification. As shown
in Fig. 3, the input ultrasound image with a resolution of
224 x 224 x 3 pixels is first processed by an initial
convolutional layer with a 7 x 7 kernel and a stride of 2,
followed by batch normalization, a RelLU activation
function, and a 3 x 3 max pooling layer. The resulting
feature maps are then propagated through four residual
stages (conv2_x to conv5_x), with CBAM embedded at
each stage to enhance feature refinement. Finally, the
extracted feature maps are aggregated using Global
Average Pooling (GAP) and passed to a fully connected
layer with five output neurons corresponding to fibrosis
stages FO—F4. During training, the CrossEntropylLoss
function is employed, which implicitly incorporates a
Softmax operation to produce class probability
distributions.  Within CBAM, Channel Attention
emphasizes important feature channels by integrating
spatial cues obtained from average and max pooling.
Spatial Attention, on the other hand, captures
informative spatial regions by applying channel-wise
pooling, followed by a 7 x 7 convolution to calculate the
spatial attention features. Through the combined use of
channel-wise and spatial attention, CBAM improves the
model's focus on informative features, thereby
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increasing its responsiveness to subtle fibrosis
characteristics. Following the CBAM residual blocks, the
extracted feature maps undergo Global Average Pooling
(GAP) before being passed to a fully connected layer
featuring five output nodes representing fibrosis stages
FO through F4. The training process adopts
CrossEntropyLoss, which implicitly includes a Softmax
operation to generate class probability scores.

D. Hyperparameter Tuning

Hyperparameter tuning was conducted as a controlled
ablation-style grid evaluation. The learning rate was
tested in 1e-3, 1e-4, 1e-5, and weight decay in 1e—4,
1e-5; activation functions RelLU, GelLU, and loss
functions CrossEntropyLoss, Sparse Categorical
Crossentropy were compared; and attention variants
none and CBAM were evaluated under the same
Stratified 5-Fold protocol. The final configuration was
selected based on consistently strong fold-wise
performance and stable convergence behavior rather
than a single peak result. To achieve this, several
critical parameters, including learning rate, weight
decay, activation functions, loss functions, and
attention mechanism variants, are iteratively adjusted.
The tuning strategy also incorporates comparative
evaluation between the baseline model and the
attention-enhanced architecture to determine the most
performant setup. This comparative approach ensures
that performance improvements can be attributed to
the integration of attention mechanisms rather than to
incidental parameter variations.

E. Model Evaluation

In this study, the evaluation process employs the test
set from each dataset to assess the classification
performance. Four primary metrics are used to
measure model effectiveness: Accuracy, Precision,
Recall, and F1-Score.

1. Accuracy

Accuracy measures the overall proportion of correct
predictions over all test samples. As shown in Eq. (5)
[12], the numerator Y¢_,n. sums the diagonal
elements of the confusion matrix, i.e., the total number
of correctly classified samples across all classes.
Dividing by N yields the fraction of correct predictions
among all test images. Accuracy provides a global
summary of classification correctness, but it can be
influenced by class imbalance; therefore, we also
report macro and weighted class-wise metrics to

evaluate performance more fairly across stages.
C

c=1"Ncc
- (5)

Accuracy =

2. Precision

Precision evaluates the model’s tendency toward over-
prediction, measured as the proportion of correctly
predicted samples for class ¢ among all samples
predicted as class c, correctly identified out of all voxels

classified as positive. [35]. Precision evaluates the
accuracy of positive predictions by measuring the
proportion that are genuinely relevant, as defined in Eq.
(6) [12]. The macro precision metric is implemented to
achieve a balanced assessment, ensuring that every
class is equally represented in performance metrics, as
described in Eq. (7) [12]. When the dataset exhibits
class imbalance, weighted precision, defined in Eq. (8)
[12], is more appropriate because it accounts for the
number of samples in each class.

. TPc
Precision; = TPc 1 FPe (6)
1S
Precisionmacro = gz Precision, (7)
C;l

1
Precisionyeighted = NZ n. Precision, (8)
c=1

3. Recall

Recall (also called sensitivity or true positive rate)
measures the ability of the model to correctly detect
samples that truly belong to a given class. In fibrosis
staging, recall is important for quantifying the
classifier's tendency to miss a stage (under-detection),
especially for intermediate stages that are visually
subtle. Class-wise recall in Eq. (9) [12] is defined using
TP, as the number of classes-c samples predicted
correctly and FN, as the number of true classes-c
samples misclassified as other classes, so it measures
the proportion of ground-truth class-c samples that the
model successfully retrieves.
Recall Tk 9
e e = TP ¥ FN, ©)
Macro recall (Eq. (10) [12]) is the unweighted mean of
recall across all classes, giving each stage equal
importance. This is essential for assessing whether the
classifier consistently detects minority and intermediate
classes rather than achieving high performance only on
frequent classes.

5
1
Recallmacro = gz Recall, (10)
c=1
1S
Recallyeighted = NZ n, Recall, (1)
c=1

Weighted recall (Eq. (11) [12]) weights each class
recall by n. and normalizes by N, producing a recall
estimate that reflects the empirical distribution of the
dataset. Like weighted precision, it can be dominated
by larger classes, so it is reported together with macro
recall.

4. F1-Score
The F1-Score provides a single class-wise measure
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that balances precision and recall. This is particularly
useful in multi-class medical classification because a
model can achieve high precision by being
conservative (but miss many true cases), or high recall
by being permissive (but produce many false
positives). F1 penalizes such imbalanced behavior.
Class-wise F1 in Eq. (12) [12] is the harmonic mean of
Precision; and Recall.. Because it is a harmonic
mean, the score becomes high only when both
precision and recall are high; if either one is low, F1,
decreases substantially.

F1, = 2 Preic.lswnc Recall, (12)

Precision, + Recall,
Macro F1 (Eq. (13) [12]) is the unweighted mean of
F1., across all classes. This metric assigns equal
importance to each class, regardless of the number of
samples in each category. As a result, macro F1 is
particularly suitable for imbalanced medical datasets,
where minority classes, such as intermediate fibrosis
stages, are clinically important and should not be
overshadowed by the majority classes.
5

1
Flmacro = ngIC (13)
c=1

Weighted F1 (Eq. (14) [12]) computes a weighted
average of the class-wise F1-Scores F1., where each
class is weighted by its number of samples n, and
normalized by the total number of samples N. This
metric reflects class distribution and overall
performance under imbalance, but is more influenced
by majority classes and may underrepresent minority

fibrosis stages.

5
1
Flweighted = Nznc F1, (14)
c=1
lll. Result
A. Hyperparameter Tuning

Hyperparameter tuning was performed to determine the
most effective training configuration for the proposed
ResNet-50 + CBAM model. This optimization stage
aimed to ensure stable convergence, maximize
generalization, and identify hyperparameters that
consistently improved performance across all evaluation
folds. Several key components, including learning rate,
weight decay, activation function, loss function, and
attention mechanism, were systematically examined to
assess their individual and collective influence on model
performance [36]. The tuning process was conducted in
a controlled, reproducible manner to minimize the risk of
biased model selection and to ensure that observed
performance gains were attributable to architectural and
parameter choices rather than random fluctuations.
Each hyperparameter was evaluated while keeping
other settings fixed to isolate its specific impact on
training stability and classification accuracy. This

strategy enabled a fair comparison across
configurations across all validation folds. In addition, the
selection of the final hyperparameter set considered not
only peak performance but also consistency across
folds, reflecting the model's robustness. Such a
systematic tuning procedure is essential for deep
learning models applied to medical imaging tasks, where
reliable generalization is critical for practical applicability.
Thus, the final hyperparameters were fixed for all
subsequent experiments to ensure a fair and
reproducible evaluation.

The first experiment jointly evaluated the influence of
learning rate and weight decay, as both parameters play
a critical role in controlling the magnitude of weight
updates and regularization strength during training.
Three learning rates (1e-3, 1e—4, 1e-5) and two weight
decay values (1e-4, 1e-5) were tested. The results
showed that a learning rate of 1e—3 produced unstable
validation accuracy and oscillatory loss, while 1e-4
improved stability but still exhibited minor fluctuations. A
learning rate of 1e-5 yielded the most stable
convergence and the lowest validation loss. For weight
decay, 1e-4 offered superior regularization, yielding
smoother curves and better generalization compared to
1e-5. Based on these observations, the optimal
combination selected for the final model was a learning
rate of 1e-5 and a weight decay of 1e-4. The
experimental results are shown in Fig. 4. Insights from
tuning.

Table 2. Comparative analysis of activation
functions and loss functions

Macro Weighted

Activation average average Accuracy
H o)
Fuction (%) (%) (%)
RelLU 97.64 98.34 98.34
GelLU 93.67 95.41 95.42
Loss Moo \eONES pcuracy
i 0,
Fuction (%) (%) (%)
Sparse
Categorical 94.40 95.63 95.66
Crossentropy
Cross
Entropy 98.20 98.34 98.34
Loss

The tuning study indicates that learning rate is the most
sensitive hyperparameter for this task. A larger rate
produces oscillatory validation loss, consistent with
noisy gradients when learning from speckle-dominated
ultrasound textures, whereas a smaller rate yields
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Fig. 1. Hyperparameter tuning curves: (a) accuracy at LR = 1e-3, (b) loss at LR = 1e-3, (c) accuracy at
LR =1e-4, (d) loss at LR = 1e-4, (e) accuracy at LR = 1e-5, (f) loss at LR = 1e-5, (g) accuracy at weight
decay = 1e-4, (h) loss at weight decay = 1e—4, (i) accuracy at weight decay = 1e-5, and (j) loss at weight

decay = 1e-5.
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Table 3. Model experiment results.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

FO: 0.921 FO: 0.858 FO: 0.888

F1:0.760 F1:0.814 F1:0.786

ResNet 50 84.08 F2: 0.801 F2: 0.861 F2:0.830
F3:0.824 F3:0.824 F3:0.824

F4: 0.852 F4:0.864 F4:0.858

FO: 1.000 FO: 1.000 FO: 1.000

F1:0.959 F1:0.965 F1:0.962

ResNet 50 + CBAM 98.34 F2: 0.962 F2: 0.956 F2: 0.959
F3:0.982 F3:0.953 F3: 0.967

F4:0.985 F4:1.000 F4:0.992

important role by reducing overfitting to scanner-specific
intensity patterns and improving fold consistency. These
observations provide practical guidance for future
ultrasound-based staging studies using similar
backbones.

The next experiment combined the evaluation of the
activation function and the loss function, as both
directly influence gradient flow and the learning
behavior of the model. ReLU and GelLU were
compared, with ReLU demonstrating distinctly superior
performance across macro average, weighted
average, and accuracy metrics. Its stability and sparsity
inducing properties made it more suitable for extracting
discriminative texture features from ultrasound images.
Two loss functions, CrossEntropyLoss and Sparse
Categorical Crossentropy, were also tested.
CrossEntropyLoss  consistently achieved higher
accuracy and more stable convergence, attributed to its
direct operation on logits and its increased robustness
to imbalanced datasets. As a result, ReLU was
selected as the activation function and
CrossEntropyLoss as the primary loss function for all
subsequent training processes. The experimental
results are shown in Table 2.

The subsequent experiment evaluated the effect of
integrating an attention mechanism into the ResNet-50
backbone, followed by an assessment of overall
classification performance, as summarized in Table 3.
The comparison focuses on the baseline ResNet-50
model and the proposed ResNet-50 enhanced with the
Convolutional Block Attention Module (CBAM). As
shown in the table, incorporating CBAM results in
substantial improvements across all evaluation metrics.
The overall accuracy increases from 84.98% to 98.34%,
accompanied by consistent gains in precision, recall,
and F1-score across all fibrosis stages. Notably, the
most pronounced improvements are observed in the
intermediate stages F1-F3, where the baseline model
exhibits lower discrimination capability due to subtle and
overlapping ultrasound texture patterns. The dual
attention mechanism in CBAM enables adaptive

refinement along both channel and spatial dimensions,
allowing the network to emphasize diagnostically
relevant texture cues while suppressing acquisition-
related noise. Compared with the baseline ResNet-50,
the CBAM-augmented model demonstrates stronger
generalization behavior and more stable predictions
across all fibrosis categories. These results confirm that
integrating CBAM into the ResNet-50 backbone yields a
robust, discriminative architecture for accurate liver
fibrosis classification from ultrasound images.

Table 3. Comparison of Test Accuracy and Loss in
Every Fold.

ResNet-50 Test Accuracy (%) Test Loss
Fold 1 84.90 0.586
Fold 2 85.10 0.571
Fold 3 85.00 0.579
Fold 4 84.80 0.593
Fold 5 85.10 0.569

RfZNB?;:O Test Accuracy (%) Test Loss
Fold 1 97.71% 0.088
Fold 2 96.92% 0.113
Fold 3 97.32% 0.102
Fold 4 97.24% 0.107
Fold 5 96.69% 0.122

To assess performance robustness across different
data partitions, fold-wise accuracy results obtained from
the Stratified 5-Fold Cross Validation are summarized in
Table 4. The proposed ResNet-50 + CBAM model
demonstrates consistently high accuracy across all
folds, accompanied by a low standard deviation,
indicating stable generalization behavior. In contrast, the
baseline ResNet-50 exhibits larger variability across
folds. These findings confirm that the observed
performance improvement is not driven by a single
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favorable split but is consistently maintained across
different validation folds. In particular, Table 4 shows that
the ResNet-50 + CBAM model maintains test accuracy
above 96.6% in every fold, whereas the baseline
ResNet-50 remains around 84.8—-85.1% across folds.
The corresponding test losses follow the same trend,
with substantially lower values for ResNet-50 + CBAM
(0.0882-0.1222) compared to the baseline (0.5694—
0.5931), indicating more confident and stable
predictions. The narrow spread of both accuracy and
loss across folds suggests that the model behavior is not
sensitive to a particular partition, supporting stable
generalization under stratified sampling. This fold-
consistent improvement is consistent with the intended
role of CBAM, which repeatedly refines features at
multiple residual stages and helps preserve subtle
texture cues that can be diluted during downsampling.

Therefore, the cross-validation evidence in Table 4
provides a strong basis for the subsequent statistical
test, since the observed gains reflect a reproducible
pattern rather than isolated fold-specific effects. A paired
test was conducted on fold-wise test accuracies to
quantify statistical significance under the stratified 5-fold
protocol. The baseline ResNet 50 achieved 84.98% +
0.13% accuracy, whereas ResNet 50 with CBAM
achieved 97.18% + 0.39% accuracy, yielding a mean
improvement of 12.20 percentage points with a 95%
confidence interval from 11.59 to 12.80. The paired test
confirms that the improvement is statistically significant,
with t =55.65 and p = 6.24 x 107-7.

B. Experiment Result

The final model training was performed using the optimal
hyperparameter configuration obtained from the tuning
process. This configuration was selected due to its ability
to support stable convergence, control overfitting, and
achieve consistently high performance across all
validation folds. The finalized training configuration
strikes a balance between learning efficiency and
generalization, ensuring the model performs effectively
across diverse patterns of liver fibrosis. The complete

ResNet-50 + CBAM - Accuracy

100
3
|

90 4
80 4
70 1

60 A

— Train Acc

07 val Acc

0 20 20 60 80 100
Epoch

(a)

set of selected hyperparameters used for the final
training stage is shown in Table 5.

Table 5. Hyperparameter Tuning.

Hyperparameter Value
Batch Size 64
Epoch 100

Learning Rate 1e-5 (0.00001)

Optimizer Adam (Adaptive Moment
Estimation)
Scheduler CosineAnnealingLR
Activation Function ReLU
Loss Function CrossEntropylLoss

Weight Decay 1e-4 (0.0001)
K-Fold Validation 5-Fold Stratified

Across all epochs, the ResNet-50 model integrated
with the Convolutional Block Attention Module (CBAM)
exhibits smooth, stable learning dynamics. The
accuracy trends reveal rapid improvement in both
training and validation performance at the beginning of
training, followed by convergence at high accuracy
levels. The close correspondence between these curves
suggests strong generalization capability with negligible
overfitting. This pattern suggests that incorporating the
Convolutional Block Attention Module (CBAM)
effectively enables the network to capture discriminative
ultrasound features across distinct stages of liver
fibrosis.

In addition to the accuracy curve, there are also loss
curves corresponding to training and validation. The loss
values decrease smoothly and maintain a narrow gap
throughout training, reflecting a healthy optimization
process with stable gradient updates. The validation loss
does not exhibit irregular spikes or divergence, further
confirming that the model maintains balanced learning

ResNet-50 + CBAM - Loss

14 —— Train Loss
Val Loss

0.8
0.6
0.4

0.2 \

0.0

0 20 40 60 80 100
Epoch
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Fig. 5. The best (a) accuracy curve and (b) loss curve results of ResNet-50 with CBAM.
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dynamics, indicating a well-balanced training process
free from overfitting and underfitting [37]. Overall, the
accuracy and loss curves shown in Fig. 5 provide strong
evidence that the ResNet-50 + CBAM architecture
achieves efficient convergence and robust performance.
The consistency observed across both metrics
highlights the model’s reliability and strengthens the
conclusion that the proposed approach is well-suited for
liver fibrosis classification using ultrasound imaging.
Importantly, the narrow gap between the training and
validation curves indicates that the model generalizes
well, remembering rather than memorizing fold-specific
patterns, which is critical given the heterogeneous multi-
vendor acquisition conditions of the dataset. This stable
optimization behavior also supports that CBAM guided
feature recalibration helps the network focus on
diagnostically relevant echotexture cues while
suppressing noise-dominated responses, thereby
reducing overfitting risk and improving robustness
across different data partitions. Moreover, the selected
hyperparameters  support CBAM-driven feature
learning, enabling stable optimization, and good
generalization. Consequently, the final model shows
consistent performance across the stratified folds,
reinforcing its suitability for ultrasound settings. The
confusion matrix in Fig. 6 (logit-level ensemble on the
independent test set, N = 1,267) provides a class-wise
view beyond aggregate accuracy. Correct predictions
dominate the diagonal, with 1,246/1,267 samples
correctly classified, leaving only 21 misclassifications
(1.66%). The extreme stages FO and F4 achieve perfect
sensitivity (FN = 0 for both), indicating that the model
reliably detects the absence of fibrosis and advanced
cirrhosis.

Confusion Matrix (Ensemble Test)

400
FO 423 0 0 0 0
350
n{ o0 167 1 0 5 20
I 250
]
= R4 0 4 152 3 0
3 200
g
t 150
F3 0 3 5 164 0
100
F4 0 0 0 0 50
Qe <& & & & ™ 0

Predicted label

Fig. 6. Confusion matrix ensemble test ResNet-50
with CBAM.

Count

Remaining errors are concentrated in the intermediate
stages (F1-F3), consistent with the known visual
ambiguity of adjacent METAVIR categories in B-mode
ultrasound. Specifically, the model yields FN = 6 for F1,
FN = 7 for F2, and FN = 8 for F3, showing that most
residual mistakes occur within the clinically challenging
mid-spectrum. False positives are also limited (FP =7
for F1, FP = 6 for F2, FP = 3 for F3), indicating that the
decision boundaries are not overly permissive for
intermediate classes. Importantly, predictions as F4
remain conservative, with only 5 false positives, while
maintaining FN = 0 for F4. Overall, the confusion matrix
supports the claim that the proposed model reduces
severe staging errors and keeps residual
misclassifications largely within the intermediate range,
which is clinically more plausible than extreme jumps.
Because the confusion matrix is computed from a logit-
level ensemble across five independently trained folds,
these behaviors reflect stable prediction tendencies
rather than a single favorable split.

Table 6. Fibrosis Stage Clinical Metrics.

Class FO F1 F2 F3 F4
Sens 1.000 0965 0956 0.953 1.000
Spec  1.000 0.993 0994 0.997 0.994
PPV 1.000 0959 0.962 0.982 0.985
NPV 1.000 0994 0.993 0.992 1.000
TP 423 167 152 164 340
FP 0 7 6 3 5
FN 0 6 7 8 0
TN 844 1087 1102 1092 922

Clinical Metrics every Class show in Table 6.
Beyond overall accuracy, stage wise clinical metrics
derived from the ensemble confusion matrix provide a
more meaningful assessment of diagnostic reliability
for liver fibrosis staging. Sensitivity values are high at
the extreme stages FO and F4 and remain high across
intermediate stages, indicating that the proposed
model consistently identifies fibrosis presence and
severity across the disease spectrum. Specificity
values exceeding 0.99 for all classes demonstrate a
low rate of false positives, while high positive and
negative predictive values further confirm the reliability
of class assignments at the individual stage level.
These values are consistent with the confusion matrix,
where false negatives are limited to intermediate
stages (FN = 6 - 8 for F1 - F3) and false positives
remain low across all classes (FP < 7). Clinically, such
errors are more likely to occur near staging boundaries
within the intermediate spectrum, reinforcing that the
model should be used as decision support alongside
clinical assessment rather than as a standalone
diagnosis.

The preservation of strong sensitivity and specificity
for stages F1-F3 is particularly important given the
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(d)
Fig. 7. GRAD-CAM visualization (a) FO, (b) F1, (c) F2, (d) F3, (e) F4.

known diagnostic ambiguity of intermediate fibrosis on
ultrasound imaging. These results indicate that the
proposed approach does not achieve high accuracy by
favoring majority classes, but instead maintains
balanced performance across all fibrosis stages. From
a clinical standpoint, this behavior reduces the
likelihood of systematic under staging or over staging
and supports the suitability of the model as a non-
invasive decision support tool for fibrosis assessment
and longitudinal monitoring.

Grad-CAM visualizations are presented in Fig. 7. To
provide insight into the internal decision making behavior
of the proposed model, Grad-CAM visualizations were
generated for representative test images across all
fibrosis stages. These Vvisualizations qualitatively
indicate that the CBAM-enhanced network produces
discriminative responses concentrated within the liver
parenchymal region inside the ultrasound sector, rather
than focusing on background areas or acquisition-
related artifacts. This observation is consistent across
fibrosis stages, including intermediate categories where
texture differences are subtle and spatially diffuse.

It is emphasized that these visualizations are
presented for qualitative transparency rather than
quantitative validation, as the dataset provides image-
level labels without pixel-level ground truth annotations.
Consequently, the attention maps are not interpreted as
precise lesion localization. Instead, they offer supporting
evidence that attention-based feature refinement guides
the network toward anatomically relevant regions during
classification, aligning model behavior with clinical
expectations while acknowledging known limitations of

(e)

Grad-CAM under large receptive fields and
heterogeneous ultrasound acquisition conditions.

Empirically, the influence of CBAM is reflected in the
improved stability of the training process, the
consistency of the accuracy and loss curves, and the
final evaluation metrics. The learning curve
demonstrates that the model attains near-perfect
training accuracy and maintains high validation accuracy
without signs of overfitting. The small discrepancy
between the training and validation curves indicates that
the attention mechanism successfully guides the
network toward diagnostically informative features,
thereby strengthening generalization performance. In
addition to quantitative gains, CBAM improves the
interpretability of the feature extraction process by
encouraging the model to concentrate on clinically
meaningful tissue patterns. Previous studies have
similarly demonstrated that attention mechanisms
enhance model explainability by explicitly highlighting
salient anatomical regions, offering clinicians greater
transparency into deep learmning—based decision
processes [38]. Furthermore, ensemble evaluation on
the CBAM-enhanced ResNet-50 test set corroborated
these benefits, achieving an accuracy of 98.34%
alongside consistently high precision, recall, and F1-
scores across all fibrosis stages (FO—F4), as shown in
Table 7. These results collectively demonstrate that
incorporating CBAM significantly improves feature
extraction, increases sensitivity to fibrosis-related
texture patterns, and results in more accurate and
consistent classification performance in ultrasound-
based liver fibrosis assessment.

C. Analysis of Attention Mechanism
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The proposed approach outperforms previous
architectures in Table 7, showing that earlier models
trained on the same dataset, including VGGNet,
DenseNet, EfficientNet, ViT, and the baseline ResNet
50, achieve lower accuracy. We attribute the
improvement of the proposed method to three
complementary design choices. First, CBAM provides
sequential channel and spatial recalibration, which helps
preserve weak echotexture cues that can be diluted by
downsampling and uniform aggregation. Second, the
conservative augmentation strategy avoids introducing
unrealistic texture artifacts that can harm generalization
on heterogeneous ultrasound data. Third, logit
ensembling across independently trained fold models
reduces variance and stabilizes predictions, particularly
at borderline intermediate stages. Together, these
factors explain why the proposed approach achieves a
larger performance gain on this multi-center, multi-
vendor dataset. Furthermore, the precision, recall, and
F1-scores were consistently high across all fibrosis
stages, including the more challenging intermediate
categories. These results suggest that the inclusion of
channel-level and spatial attention mechanisms
enhance the model's ability to selectively attend to
diagnostically relevant information, thereby decreasing
misclassification commonly observed in fibrosis stages
F1 to F3. The ability to maintain strong performance
across all classes, rather than only at extreme stages
(FO and F4), is a significant advancement over earlier
CNN-based approaches. Similar improvements using
contrastive fusion ultrasound models have recently been
reported, where deep learning achieved stable staging
performance even under small sample and
heterogeneous image conditions, corroborating the
robustness of our attention-enhanced approach [26].
Comparable performance improvements have also
been documented in other medical classification tasks,
where  CBAM-based architectures  consistently
outperform standard CNN models in extracting
discriminative features from low contrast and
heterogeneous imaging data [39], [40].

IV. Discussion

This study presents a detailed evaluation of the
proposed ResNet-50 integrated with the CBAM and
compares its performance with several established
deep learning architectures reported in previous
studies. Based on the comparative results shown in
Table 7, earlier work by [24] demonstrated that
conventional CNN models, including VGGNet,
DenseNet, EfficientNet, and even Vision Transformer,
achieved varying accuracy levels for liver fibrosis
staging, with standard ResNet-50 yielding the highest
performance at 85.92%. Although this accuracy was
better than that of other architectures, their study also
highlighted that ResNet-50 struggled to reliably classify

intermediate  fibrosis stages (F1-F3), where
parenchymal texture differences are subtle and often
ambiguous in ultrasound images. These findings
indicate that conventional CNNs are still limited in
capturing fine-grained diagnostic features required for
precise fibrosis assessment [38].

The proposed approach outperforms previous
architectures in Table 7, showing that earlier models
trained on the same dataset, including VGGNet,
DenseNet, EfficientNet, ViT, and the baseline ResNet
50, achieve Ilower accuracy. We attribute the
improvement of the proposed method to three
complementary design choices. First, CBAM provides
sequential channel and spatial recalibration, which
helps preserve weak echotexture cues that can be
diluted by downsampling and uniform aggregation.
Second, the conservative augmentation strategy
avoids introducing unrealistic texture artifacts that can
harm generalization on heterogeneous ultrasound
data. Third, logit ensembling across independently
trained fold models reduces variance and stabilizes
predictions, particularly at borderline intermediate
stages. Together, these factors explain why the
proposed approach achieves a larger performance
gain on this multi-center, multi-vendor dataset.
Furthermore, the precision, recall, and F1-scores were
consistently high across all fibrosis stages, including
the more challenging intermediate categories. These
results suggest that the inclusion of channel-level and
spatial attention mechanisms enhances the model's
ability to selectively attend to diagnostically relevant
information, thereby decreasing misclassification
commonly observed in fibrosis stages F1 to F3. The
ability to maintain strong performance across all
classes, rather than only at extreme stages (FO and
F4), is a significant advancement over earlier CNN-
based approaches. Similar improvements using
contrastive fusion ultrasound models have recently
been reported, where deep learning achieved stable
staging performance even under small-sample and
heterogeneous image conditions, corroborating the
robustness of our attention-enhanced approach [26].
Comparable performance improvements have also
been documented in other medical classification tasks,
where CBAM-based architectures consistently
outperform standard CNN models in extracting
discriminative features from low contrast and
heterogeneous imaging data [39], [40].

The improvements observed in this study suggest
that attention mechanisms play a crucial role in
enhancing feature representation in medical ultrasound
applications, where noise, variability, and subtle texture
patterns pose inherent challenges. The attention
modules guide the model to focus on areas within the
image that contain meaningful fibrosis-related
characteristics, while suppressing irrelevant or
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Table 7. Comparison of the proposed method with other methods with the same dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
F0: 0.863 FO0: 0.863 F0: 0.863
VGG F1:0.784 F1:0.775 F1:0.779
Net 83.17 F2:0.860 F2:0.750 F2: 0.801
[24] F3:0.738 F3:0.705 F3:0.721
F4:0.842 F4:0.916 F4:0.879
F0: 0.869 F0: 0.892 FO: 0.881
Dense F1:0.793 F1:0.818 F1:0.806
Net 84.17 F2:0.874 F2:0.750 F2:0.807
[24] F3:0.793 F3:0.666 F3:0.724
F4:0.836 F4:0.913 F4:0.873
F0: 0.880 F0: 0.875 F0: 0.878
Efficient F1:0.850 F1:0.818 F1:0.834
Net 85.17 F2:0.848 F2: 0.831 F2:0.839
[24] F3:0.785 F3:0.750 F3:0.672
F4:0.848 F4:0.895 F4:0.871
F0: 0.820 F0: 0.900 F0: 0.858
ViT F1:0.845 F1:0.787 F1:0.815
[24] 83.42 F2:0.875 F2:0.810 F2:0.842
F3:0.781 F3: 0.641 F3:0.704
F4:0.850 F4:0.876 F4:0.863
F0: 0.874 F0: 0.897 F0: 0.886
F1:0.831 F1:0.831 F1:0.831
Res[';j]t’so 85.92 F2: 0.921 F2: 0.790 F2: 0.850
F3:0.754 F3:0.750 F3:0.752
F4:0.878 F4:0.907 F4:0.892
F0: 1.000 F0: 1.000 F0: 1.000
F1:0.959 F1:0.965 F1:0.962
Proposed Method 98.34 F2:0.962 F2: 0.956 F2: 0.959
F3:0.982 F3:0.953 F3:0.967
F4:0.985 F4:1.000 F4:0.992

misleading features. This selective focus contributes
not only to increased accuracy but also to improved
stability, as reflected by the consistent training and
validation curves. These trends align with previous
studies suggesting that employing attention-based
deep learning techniques can considerably boost
model effectiveness in tasks involving visually
ambiguous or low contrast patterns [41].

Robustness under class imbalance. The dataset is
imbalanced, with FO and F4 accounting for more than
half of the samples. We mitigate this by stratified
splitting, stratified 5-fold training, and reporting macro
averaged metrics that treat all stages equally.
Importantly, improvements from CBAM are not limited
to majority classes. The baseline ResNet 50 yields F1

scores of 0.786 for F1, 0.830 for F2, and 0.824 for F3,
whereas ResNet 50 plus CBAM reaches 0.962, 0.959,
and 0.967 for these stages, respectively. This
consistent gain suggests that attention-based
recalibration improves representation of intermediate
stages rather than simply amplifying recognition of the
easiest classes. The superior performance of the
proposed model also indicates its potential suitability
for clinical decision support systems. With high
accuracy and low variance across classes, the ResNet-
50 + CBAM architecture demonstrates robustness
even when ultrasound images exhibit subtle or
overlapping fibrosis patterns. Such improvements are
particularly important because accurate staging of
intermediate fibrosis levels is critical for determining
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treatment strategies and monitoring disease
progression. Therefore, the enhanced performance
achieved in this study confirms that incorporating
CBAM effectively addresses the limitations of earlier
methods and offers a more reliable solution for fibrosis
classification.

In summary, the comparative findings show that the
proposed model not only surpasses existing
approaches in accuracy but also demonstrates
stronger generalization and interpretability. The
consistent results across all fibrosis stages reinforce
that CBAM provides meaningful enhancements to the
feature extraction process. Overall, these results
position the ResNet-50 + CBAM model as a promising
architecture for future research and potential clinical
applications in ultrasound-based liver fibrosis
assessment. Although the findings are positive, several
constraints should be noted. Primarily, the data were
collected from a relatively small number of institutions,
which may constrain the generalizability of the
proposed model across diverse ultrasound devices and
clinical environments. Second, the evaluation was
conducted on retrospective data; real-time prospective
testing is still required. Third, the model relies solely on
B-mode ultrasound without integrating clinical variables
that may improve staging accuracy. Considering recent
successes in fusion-based ultrasound approaches,
future work may benefit from integrating contrast-
enhanced ultrasound or combining ultrasound with
elastography or other modalities to enhance staging
reliability [26].

Despite these limitations, the high accuracy and
consistent performance demonstrated by the proposed
model indicate strong potential for its integration into
routine clinical workflows as a reliable decision support
tool for radiologists and hepatologists. The model’s
ability to maintain robust classification results across all
fibrosis stages suggests that the incorporation of
attention mechanisms effectively enhances feature
representation and reduces diagnostic variability
commonly encountered in ultrasound-based liver
assessment. This feature is highly advantageous in
medical settings, where accurate and standardized
assessment is required, informed clinical decision
making. This indicates that the proposed approach
may support more consistent fibrosis evaluation in
clinical practice. Overall, these findings confirm that
attention based deep learning architectures provide
substantial advancements in ultrasound-based liver
fibrosis assessment by improving sensitivity to subtle
and heterogeneous texture patterns. The
demonstrated effectiveness of the proposed approach
highlights the potential of attention mechanisms to
address limitations of conventional convolutional
neural networks. Consequently, this study may serve
as a foundation for future research aimed at developing

clinically reliable, interpretable, and non-invasive
diagnostic systems, as well as facilitating the broader
adoption of artificial intelligence-assisted tools in
hepatology practice. As a result, this study can guide
and inform future investigations on attention-based
models in medical ultrasound analysis. Furthermore,
this study provides a reference for integrating attention
mechanisms into deep learning architectures. Future
studies should prioritize external multi-center validation
and standardized reporting to assess whether the
observed improvements remain consistent across
different ultrasound devices, acquisition protocols, and
clinical populations.

As summarized in Table 7, the proposed method
achieves the highest accuracy (98.34%) compared with
the previously reported architectures evaluated on the
same dataset setting in [24]. The improvement is
accompanied by consistently high precision, recall, and
F1-scores across stages, indicating that the
performance gain is not limited to the majority classes.
This suggests that the attention-based feature
refinement and the proposed evaluation protocol
contribute to more reliable separation of the clinically
challenging intermediate stages (F1-F3), where
conventional CNN backbones tend to show higher
confusion. Overall, these results highlight that
integrating CBAM with a robust validation scheme
enhances both classification accuracy and clinical
reliability for liver fibrosis staging.

V. Conclusion

The present study demonstrates the successful
application of a deep learning framework for classifying
liver fibrosis stages (FO—F4) from ultrasound images by
enhancing the ResNet-50 architecture with the CBAM.
The integration of channel and spatial attention
addressed the limitations of conventional CNNs,
particularly in recognizing subtle textural variations in
intermediate fibrosis stages (F1-F3). Using stratified 5-
fold validation and ensemble averaging of logits from five
trained models, the proposed system demonstrated
highly stable performance throughout training, as
evidenced by consistent accuracy and loss curves
without signs of overfitting. The final evaluation on the
test set showed that the CBAM-enhanced ResNet-50
achieved an accuracy of 98.34%, accompanied by
exhibiting consistently high precision, recall, and F1-
scores across all classes of fibrosis, with confirmation
from the confusion matrix further confirming excellent
classification capability, especially for classes FO and
F4, which were recognized with perfect accuracy. These
results indicate that CBAM substantially strengthens
ResNet-50's feature extraction, improves model
generalization, and enhances the reliability of automated
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liver fibrosis staging from ultrasound images.
Notwithstanding the strong results obtained, further
investigations are required to confirm the robustness
and generalizability of the proposed approach. Future
work should prioritize external validation on additional
multi-center datasets and ultrasound devices to evaluate
performance stability across different acquisition
settings. In addition, exploring clinically plausible
augmentation strategies beyond horizontal flipping and
comparing alternative attention modules under the same
training and evaluation protocol may provide deeper
insight into improving ultrasound-based liver fibrosis
staging.
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