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Abstract Continuous glucose monitoring systems currently generate alerts only after blood glucose 

thresholds are breached, limiting their utility for proactive diabetes management. Predicting postprandial 

glucose excursions before they occur requires determining the optimal amount of historical data and 

identifying which features contribute most to prediction accuracy. This study systematically evaluates how 

the length of the pre-meal observation window and feature composition affect machine-learning 

predictions of hyperglycemia events 60 minutes after eating. We analyzed 1,642 meal events from 45 adults 

wearing continuous glucose sensors, constructing features from pre-meal glucose trajectories, meal 

macronutrients, time of day, and health status. Four observation windows (15, 30, 45, 60 minutes) and three 

feature sets (all features, glucose-only, meal-only) were evaluated using Random Forest, XGBoost, and 

CatBoost with 5-fold group cross-validation. CatBoost with a 30-minute window achieved the best 

performance: 72.6% F1-macro, 79.6% accuracy, and 64.0% recall for hyperglycemia detection. Extending 

windows beyond 30 minutes did not yield consistent benefits, whereas 15-minute windows yielded 

comparable results. Glucose trajectory features alone retained 94% of full model performance (68.5% F1-

macro), whereas meal composition alone proved insufficient (59.4% F1-macro). These findings 

demonstrate that recent glucose history dominates short-term prediction, enabling practical real-time 

systems with minimal data requirements. A 30-minute observation window with glucose and meal features 

offers an effective balance between prediction accuracy and system responsiveness. 

Keywords Hyperglycemia, CGM, Window Length, Feature Composition, CatBoost. 

I. Introduction 

Diabetes affects over 537 million adults worldwide, with 
projections reaching 783 million by 2045 [1]. Elevated 
postprandial blood glucose contributes significantly to 
long-term complications [2][3], yet current monitoring 
approaches remain primarily reactive. Continuous 
glucose monitoring (CGM) technology samples 
interstitial glucose every 5 minutes, providing detailed 
trajectories of daily fluctuations [4][5]. However, 
commercial CGM systems typically alert users only 
after glucose exceeds predefined thresholds or when 
rates of change become concerning [6]. The inherent 
5-15-minute lag between blood and interstitial glucose 
measurements further delays these alerts, often 
arriving after problematic glucose excursions have 
already begun [7]. 

Machine learning offers a path toward predictive 
rather than reactive glucose management [8][9]. 
Gradient boosted decision tree algorithms, including 
XGBoost, CatBoost, and LightGBM, have 

demonstrated strong performance on structured 
biomedical data. Specifically, these tree-based 
ensembles are well-suited for this domain due to their 
ability to handle nonlinear relationships between 
glucose features and meal timing without extensive 
data scaling, and their robustness to overfitting relative 
to deep neural networks on tabular datasets with 
limited sample sizes  [10][11][12]. The success of these 
methods in diabetes prediction has been attributed to 
their ability to handle missing data gracefully and to 
provide interpretable feature-importance rankings 
[13][14]. Several studies have shown that combining 
CGM data with meal composition information can 
improve the accuracy of predictions of postprandial 
glucose responses [15][16]. These capabilities suggest 
the potential to build systems that warn users of 
impending glucose excursions before  planned meals, 
enabling informed food choices or preemptive 
interventions. Despite recent progress, two 
fundamental design questions remain inadequately 
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addressed. First, the optimal length of historical CGM 
data needed for reliable prediction remains an open 
research question. While prior studies have utilized 
observation windows ranging from 30 minutes to 
several hours [17][18], these selections are often 
arbitrary or strictly dataset-dependent. There is a lack 
of rigorous comparative frameworks that systematically 
evaluate the trade-off between observation duration 
and predictive accuracy within the same experimental 
setting. Consequently, it remains unclear whether 
longer windows genuinely improve model 
generalization or merely increase computational 
complexity and latency. While shorter windows reduce 
system latency and storage needs, they risk missing 
important pre-meal trends.  Therefore, establishing the 
minimal effective history that preserves predictive 
performance, particularly for the clinically relevant task 
of predicting events 60 minutes after eating, is crucial 
for developing responsive real-time systems, a gap that 
this study specifically aims to address. 

Second, the relative contribution of different data 
modalities, specifically the marginal benefit of adding 
detailed macronutrient data to recent glucose trends, 
remains debated in the literature, often due to a lack of 
comparative frameworks. While nutritional science 
establishes clear relationships between macronutrients 
and glucose response, computational studies report 
mixed results regarding whether meal composition 
features improve prediction beyond glucose 
trajectories alone [8][13][11]. The mixed results 
regarding meal composition in the current literature 
often stem from a lack of rigorous ablation experiments. 
Many studies report performance gains by adding 
features but fail to quantify the marginal utility of each 
modality. Understanding which features drive 
predictive performance has direct implications for 
system design, data collection requirements, and 
deployment feasibility in resource-constrained settings. 

Hyperglycemia prediction is inherently imbalanced, 
with normal postprandial outcomes substantially 

outnumbering hyperglycemic events. Without 
appropriate handling, machine learning models tend to 
favor the majority class, leading to poor sensitivity for 
detecting the clinically critical hyperglycemia events 
[19][20]. Cost-sensitive training and suitable validation 
schemes are therefore essential [21][22]. This research 
systematically addresses both design questions 
through controlled ablation experiments. We evaluate 
four pre-meal observation windows (15, 30, 45, and 60 
minutes) to determine the minimal effective history 
length for 60-minute-ahead prediction. We compare 
three feature configurations (all features, glucose-only, 
meal-only) to quantify the contribution of glucose 
trajectories versus meal composition. Three gradient-
boosting algorithms (Random Forest, XGBoost, 
CatBoost) are trained on 1,642 meal events from 45 
participants, using rigorous group cross-validation to 
assess generalization to unseen individuals. Class 
weighting addresses the inherent imbalance between 
normal and hyperglycemic outcomes without synthetic 
data generation. 

This work makes three contributions to applied 
machine learning for glucose prediction. First, to 
provide empirical evidence on the minimal observation 
window required for reliable prediction, demonstrating 
that short pre-meal histories achieve performance 
comparable to extended observation periods. This 
enables low-latency prediction systems with reduced 
buffering requirements for real-time deployment. 
Second, through systematic feature ablation, we 
quantify the relative contributions of glucose 
trajectories and meal composition, revealing which 
data modalities drive predictive performance and which 
can be omitted without substantial loss of accuracy. 
Third, we evaluate design choices across three tree-
based models using rigorous group cross-validation, 
ensuring that the findings reflect true generalization to 
unseen individuals and yielding practical guidance for 
building reliable, low-latency hyperglycemia prediction 
systems. 

 
Fig. 1. The Research workflow of input window length and feature composition in postprandial 
hyperglycemia classification 
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II. Method 

This study examined the impact of input window length 
and feature composition on the classification of 
postprandial hyperglycemia using machine learning 
approaches. The research process starts from dataset 
loading, data preprocessing, experimental design, 
classification using three algorithms, and evaluation 
using several metrics. The research flow is shown in 
Fig. 1. 

A. Data Collection 

This study utilized the CGMacros dataset (version 
1.0.0), a publicly available multimodal dataset 
accessible via PhysioNet [23][24]. The complete 
dataset, along with its associated documentation, is 
publicly accessible at the following link: 
https://physionet.org/content/cgmacros/1.0.0/. This 
dataset was collected at the Sansum Diabetes 
Research Institute in Santa Barbara, California, and 
comprises data from 45 adults who were monitored 
continuously for 10 consecutive days in a free-living 
environment. Participants included 15 healthy 
individuals, 16 with prediabetes, and 14 with type 2 
diabetes, as determined by HbA1c measurements 
during initial screening. Although this research utilizes 
a secondary public dataset, the original data collection 
was conducted under approved ethical protocols (IRB 
approval), and all participant records were fully de-
identified to ensure privacy compliance before public 
release, adhering to the Health Insurance Portability 
and Accountability Act (HIPAA) Safe Harbor standards, 
negating the need for specific ethical approval for this 
secondary analysis. 

Each participant wore two blinded continuous 
glucose monitoring devices: the Abbott FreeStyle Libre 
Pro (15-minute sampling interval) and the Dexcom G6 
Pro (5-minute sampling interval). Participants also wore 
a Fitbit Sense activity tracker and logged all meals 
using a smartphone application. Meal documentation 
included photographs taken before and after 
consumption along with macronutrient estimates 
(carbohydrates, protein, fat, fiber, and calories). 
Breakfasts consisted of protein shakes with varying 
macronutrient compositions, lunches were ordered 
from a standardized restaurant chain (Chipotle 
Mexican Grill), and dinners comprised foods of the 
participant's own choice. To minimize interference from 
prior meals, participants were instructed to maintain at 
least 3 hours between consecutive meals and to 
consume only water or unsweetened coffee during 
those intervals. 

For this study, we focused exclusively on Dexcom 
G6 data due to its higher temporal resolution (5-minute 
sampling). The dataset provides preprocessed tabular 
files in which individual meal episodes have been 
identified and features engineered with respoect to 
meal onset times. After quality control procedures that 

excluded episodes with missing CGM readings or 
incomplete meal annotations, the final dataset 
comprised 1,642 meal events from all 45 participants. 
Each meal episode was classified into one of two 
outcome categories based on the maximum glucose 
concentration measured within 60 minutes post-meal 
(h60): normal (glucose ≤180 mg/dL) or 
hyperglycemia (glucose >180 mg/dL). The observed 
class distribution was 75.4% normal (1,238 events) and 
24.6% hyperglycemia (404 events), corresponding to a 
3.06:1 imbalance ratio. 

B. Feature Engineering and Input Windows 

This study focused exclusively on Dexcom G6 CGM 
readings because they have a higher temporal 
resolution (5-minute sampling interval) compared to the 
Abbott FreeStyle Libre Pro (15-minute sampling). Each 
sample in the preprocessed dataset represents a single 
meal event with features engineered relative to meal 
onset time (t=0). The primary prediction objective is 
binary classification of postprandial hyperglycemia, 
defined as a maximum glucose concentration 
exceeding 180 mg/dL within 60 minutes post-meal 
(h60). This threshold aligns with clinical standards for 
postprandial hyperglycemia as defined by the 
American Diabetes Association [25], and resulted in an 
observed class distribution of 75.4% normal outcomes 
(1,238 events) and 24.6% hyperglycemia (404 events), 
corresponding to a 3.06:1 imbalance ratio. 

To investigate the minimal temporal context 
required for reliable prediction, we evaluated four pre-
meal observation windows: 15, 30, 45, and 60 minutes 
(denoted W15, W30, W45, W60). These specific 
intervals were chosen to capture distinct physiological 
phases of glucose dynamics: the 15-minute window 
captures the immediate rate of change, while 30-to 45-
minute windows encompass the typical onset of insulin 
action. Extending to 60 minutes aligns with the 
standard postprandial horizon, allowing the model to 
observe the full pre-meal trend stability. Each window 
𝑊of length 𝑤 minutes contains glucose measurements 

sampled at 5-minute intervals leading up to meal onset 
(t=0) expressed in Eq. (1) [23]: 

G(w) = GL(t−w), GL(t−w+5), … , GL(t−5), GLt0 (1) 

where the number of lag features is 𝑛 = 𝑤/5 + 1. Thus, 

W60 yields 13 historical measurements 
( GL𝑡−60, GL𝑡−55, … , GL𝑡−5 ) plus the current glucose 

reading at meal time (GL𝑡0), while W45, W30, and W15 

contain 10, 7, and 4 lag features, respectively. 
Correlation analysis revealed that recent glucose 
measurements exhibit the strongest association with 
hyperglycemia outcomes, with GL𝑡0 showing the 

highest correlation (0.458), followed by GL𝑡−5(0.451) 

and GL𝑡−10 (0.447). This monotonic decrease in 

correlation with temporal distance motivated our focus 
on compact observation windows. 
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Beyond raw glucose lags, each window 
incorporates two derived statistical features. The 
exponential moving average (GL_EMA) provides a 
smoothed representation of the glucose trajectory over 
the observation period, emphasizing recent 
measurements through exponential weighting. 
GL_EMA is computed iteratively as Eq. (2) [23]: 

𝐺𝐿_𝐸𝑀𝐴𝑡 = α ⋅ 𝐺𝐿𝑡 + (1 − α) ⋅ 𝐺𝐿_𝐸𝑀𝐴𝑡−1  (2) 

where α = 0.3 is the smoothing parameter that controls 
the weight assigned to recent observations relative to 
historical values. The linear slope (GL_slope) captures 
the directional trend of glucose change through least-
squares regression, as shown in Eq. (3) [23]: 

𝐺𝐿_𝑠𝑙𝑜𝑝𝑒 =
∑(𝑡𝑖−𝑡̅)(𝐺𝐿𝑖−𝐺𝐿)

∑(𝑡𝑖−𝑡̅)2       (3) 

where ti represents time points within the observation 
window, and the barred variables denote mean values. 
Negative slope values indicate declining glucose, while 
positive values indicate rising glucose prior to the meal. 
Across the dataset, GL_EMA exhibited a mean of 
126.6 mg/dL (SD=32.1), while GL_slope showed a 
slight average decline (-0.11 mg/dL per minute, 
SD=0.43), reflecting typical pre-meal glucose 
stabilization. Temporal context features encode meal 
timing through cyclical transformations and binary 
indicators. Hour of day is represented using sine and 
cosine functions to capture the circular nature of time 

as in Eq. (4) and Eq. (5) [23]. 

hour_sin  =   sin (
2𝜋 ⋅ hour

24
)        (4) 

hour_cos  =   cos (
2𝜋 ⋅ hour

24
)        (5) 

This encoding preserves the proximity between late 
evening (23:00) and early morning (01:00) hours, which 
linear hour encoding would misrepresent. Additionally, 
two binary meal-period indicators distinguish breakfast 
(is_morning: 06:00-11:59) and dinner (is_evening: 
18:00-23:59) periods, capturing circadian variations in 

insulin sensitivity that are known to affect the 
postprandial glucose response. 

Meal composition features quantify macronutrient 
content consumed at each meal: carbohydrates, 
protein, fat, fiber (all in grams), and total calories. 
These features remain constant across all window 
lengths as they describe the meal itself rather than pre-
meal history. Observed macronutrient distributions 
showed substantial variability (carbohydrates: 
mean=51.7g, SD=40.6g; protein: mean=29.0g, 
SD=25.6g; fat: mean=19.2g, SD=20.7g), reflecting the 
diverse meal types consumed during the 10-day 
monitoring period. Regarding health status, 
participants' diagnostic status (Healthy, Prediabetes, 
Type 2 Diabetes) was encoded as a categorical 
variable. This feature accounts for baseline metabolic 
differences (e.g., insulin resistance levels) that 
fundamentally alter glucose trajectories distinct from 
meal-specific responses. 

Table 1 summarizes the feature composition for 
each observation window configuration. Features were 
extracted from the preprocessed dataset with minimal 
transformation. Glucose-derived statistical features 
(EMA, slope) and cyclically-encoded temporal features 
were computed as specified in Eq. (2-5), while glucose 
lags and meal macronutrients retained their original 
scales. No normalization or standardization was 
applied. Columns that could leak information about the 
prediction target were systematically excluded, 
including participant identifiers, meal timestamps, and 
any glucose measurements beyond h60. This feature 
engineering approach balances simplicity with 
physiological relevance. The lag features capture 
glucose trajectory dynamics; statistical features 
summarize trends; temporal features account for 
circadian effects; meal features provide nutritional 
context; and demographic information reflects baseline 
metabolic state. The independent-window design 
enables direct comparison of observation-length 

Table 1. Feature composition by observation window 

Window Glucose Lags Statistical Temporal Meal Demographic Total 
Features 

W15 GL_t-15 to 
GL_t0 (4) 

GL_EMA, 
GL_slope (2) 

hour_sin, hour_cos, 
is_morning, 
is_evening (4) 

Carbs, Protein, Fat, 
Fiber, Calories (5) 

Diagnosis (1) 15 

W30 GL_t-30 to 
GL_t0 (7) 

GL_EMA, 
GL_slope (2) 

hour_sin, hour_cos, 
is_morning, 
is_evening (4) 

Carbs, Protein, Fat, 
Fiber, Calories (5) 

Diagnosis (1) 18 

W45 GL_t-45 to 
GL_t0 (10) 

GL_EMA, 
GL_slope (2) 

hour_sin, hour_cos, 
is_morning, 
is_evening (4) 

Carbs, Protein, Fat, 
Fiber, Calories (5) 

Diagnosis (1) 21 

W60 GL_t-60 to 
GL_t0 (13) 

GL_EMA, 
GL_slope (2) 

hour_sin, hour_cos, 
is_morning, 
is_evening (4) 

Carbs, Protein, Fat, 
Fiber, Calories (5) 

Diagnosis (1) 24 
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requirements without confounding factors from feature 
set differences. 

C. Feature Sets and Experimental Design 

To quantify the relative contribution of different data 
modalities, we conducted three controlled ablation 
experiments. Each experiment systematically removed 
feature groups while maintaining consistent model 
training and evaluation procedures, enabling direct 
assessment of each modality's predictive value through 
performance-degradation analysis. 

Experiment 1 (All Features) served as the baseline, 
utilizing the complete feature set described in Section 
II.B. This configuration combines glucose trajectory 
features (lags, EMA, slope), meal composition 
(macronutrients), temporal indicators (cyclical time 
encoding, meal period flags), and participant diagnosis 
status. The all-features configuration was evaluated 
across all four observation windows (W15, W30, W45, 
W60) to establish the upper bound of performance for 
each temporal context. 

Experiment 2 (Glucose-Only) isolated physiological 
signals by retaining exclusively glucose-derived 
features: the lagged measurements (GL_t-X), the 
exponential moving average (GL_EMA), and the linear 
slope (GL_slope). All meal composition, temporal, and 
demographic features were excluded. This experiment 
tests whether recent glucose dynamics alone provide 
sufficient information for short-term postprandial 
prediction, or whether exogenous features 
substantially improve accuracy. The glucose-only 
configuration was similarly evaluated across all four 
window lengths to assess whether the importance of 
meal information varies with observation duration. 

Experiment 3 (Meal-Only) evaluated the converse 
scenario, incorporating only meal macronutrients 
(carbohydrates, protein, fat, fiber, calories), temporal 
features, and diagnosis status while excluding all 
glucose measurements. This configuration represents 
a pre-meal prediction scenario where no CGM data are 
available, testing whether nutritional composition and 
timing alone can reliably forecast the postprandial 
glucose response. Since meal composition features 
are static and do not depend on the pre-meal 
observation window length, this experiment was 
conducted using the dataset structure aligned with the 

validation folds of the other experiments. Note that no 
time-series glucose data were included in this 
configuration; the 'window' reference purely denotes 
the exclusion of glucose history. Table 2 summarizes 
the experimental design. All three experiments 
employed identical training procedures: Random 
Forest, XGBoost, and CatBoost algorithms with class 
weighting to address the 3.06:1 imbalance ratio, trained 
via 5-fold group cross-validation based on participant 
IDs. This ablation framework enabled isolation of each 
feature modality's contribution while controlling for 
algorithmic and validation differences. Data leakage 
was prevented by excluding participant identifiers, meal 
timestamps, exact event times, and any future glucose 
measurements beyond the 60-minute prediction 
horizon from all feature sets. 

D. Machine Learning Models 

Three tree-based ensemble algorithms were selected 
for comparative evaluation: Random Forest, XGBoost, 
and CatBoost. These models were chosen over 
distance-based algorithms (e.g., SVMs, k-NN) and 
Neural Networks for several reasons specific to 
structured biomedical data. First, tree-based 
ensembles are invariant to feature scaling and robust 
to the non-linear interactions between physiological 
signals and meal timing. Second, while Deep Learning 
excels in perceptual tasks, Gradient-Boosted Decision 
Trees (GBDT) consistently outperform Deep Learning 
on moderate-sized tabular datasets [10][11][12]. This 
study specifically compares Random Forest (a bagging 
technique) against XGBoost and CatBoost (boosting 
techniques) to evaluate the trade-off between variance 
reduction and bias reduction. Bagging builds 
independent trees to reduce variance, making it robust 
against noise, whereas boosting builds trees 
sequentially to correct prior errors, focusing on 
minimizing bias. All models were trained with class 
weighting to address the 3.06:1 imbalance ratio without 
synthetic data generation, which could introduce 
artifacts in time-series data [21].  

1. Random Forest  

Random Forest constructs an ensemble of decision 
trees trained on different random samples of data with 
randomly selected feature subsets [26][27][28]. Each 
tree is built using bootstrap sampling and evaluates 

Table 2. Experimental design description 

Experiment Feature Groups Included Windows Evaluated Purpose 

Experiment 1: All Features Glucose + Meal + Temporal + 
Diagnosis 

W15, W30, W45, 
W60 

Baseline  

Experiment 2: Glucose-Only Glucose lags, EMA, slope only W15, W30, W45, 
W60 

Isolate the physiological 
signal 

Experiment 3: Meal-Only Meal macros + Temporal + 
Diagnosis 

W15 (fixed) No CGM scenario 
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only a subset of available features at each split [29]. 
Final predictions aggregate individual tree outputs 
through majority voting as in Eq. (6) [29]: 

𝑦̂ = mode{ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥)}   (6) 

where ℎ𝑡(𝐱)represents the prediction of the 𝑡-th tree 

and 𝑇 = 100is the total number of trees. The ensemble 

approach reduces overfitting risk compared to single 
decision trees while maintaining computational 
efficiency and resistance to outliers [30][31]. Class 
weighting ('balanced') adjusts misclassification costs to 
emphasize the minority hyperglycemia class. 

2. XGBoost 

XGBoost (Extreme Gradient Boosting) implements 
gradient boosting with decision trees, iteratively refining 
model boundaries to minimize loss functions [32]. The 
algorithm constructs the ensemble sequentially by 
adding weak learners as shown in Eq. (7) [32]: 

Fm(X) = Fm−1(X) + η ⋅ fm(X)   (7) 

where 𝐹𝑚(𝐗) represents the ensemble prediction at 

iteration 𝑚, 𝑓𝑚(𝐗)is the newly added weak learner, and 

𝜂 = 0.3 is the learning rate that controls step size and 

model complexity. The algorithm employs 
regularization techniques to reduce model complexity 
and prevent overfitting while maintaining superior 
predictive performance [33]. XGBoost handles sparse 
data and missing values effectively without extensive 
preprocessing, and supports parallel processing for 
computational efficiency [34]. The scale_pos_weight 
parameter (set to 3.06) addresses class imbalance by 
increasing the penalty for misclassifying minority class 
samples. 

3. CatBoost 

CatBoost (Categorical Boosting) employs ordered 
boosting and specialized categorical feature handling 
to eliminate prediction shift caused by target leakage in 

traditional gradient boosting [35]. The algorithm uses 
random permutations of the training data to compute 
unbiased gradient estimates. The formula is like in Eq. 
(8) [35]. 

𝑦𝑖̂ = ∑ ℎ𝑗(𝑥𝑖; σ𝑗)𝑚
𝑗=1     (8) 

where 𝜎𝑗 represents a random permutation of the 

training instances at iteration 𝑗 , ensuring that each 

model in the sequence is trained on data that has not 
been used to compute the target statistics. The 
algorithm processes categorical variables natively 
without manual encoding, capturing complex non-
linear relationships while maintaining model 
interpretability [36]. CatBoost's auto_class_weights 
parameter, set to ('Balanced' mode) adjusts for 
imbalanced outcomes without requiring manual ratio 
calculation. The framework has demonstrated strong 
performance across diverse applications, including 
medical diagnosis and risk assessment [18]. Table 3 
summarizes the hyperparameter configurations for all 
three algorithms. Default settings were used for most 
parameters to establish a baseline performance 
without extensive tuning, with class weighting as the 
primary strategy for mitigating imbalance. 

E. Experimental Setup and Evaluation Metrics  

The models were rigorously validated using 5-Fold 
Group Cross-Validation (GCV). This approach is critical 
in time-series and physiological data analysis, as it 
ensures that all data points from a single participant are 
retained within the same fold (training or testing), 
preventing data leakage and providing a more realistic 
estimate of the model's generalization performance on 
unseen individuals [37]. The folds were grouped by 
participant_id. This grouping strategy ensures that all 
meal events from a specific individual appear 
exclusively in either the training or the test set, but not 
in both. This strictly prevents data leakage and 

Table 3. Model hyperparameter settings 

Parameter Random Forest XGBoost CatBoost 

Trees/Iterations n_estimators=100 n_estimators=100 iterations=1000 

Tree Depth max_depth=None max_depth=6 depth=6 

Learning Rate N/A learning_rate=0.3 learning_rate=0.03 

Regularization N/A N/A l2_leaf_reg=3 

Sampling 
min_samples_split=2, 
min_samples_leaf=1 

subsample=1.0, 
colsample_bytree=1.0 

subsample=1.0, 
colsample_bylevel=1.0 

Class Imbalance class_weight='balanced' scale_pos_weight=3.06 auto_class_weights='Balanced' 

Loss Function gini (default) logloss (default) Logloss 

Feature Selection max_features='sqrt' N/A N/A 
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simulates a real-world clinical scenario in which the 
model must generalize to a new patient without having 
been trained on their specific historical data. 

To evaluate classification performance, the 
confusion matrix was used as a fundamental tool. It 
categorizes prediction outcomes into four types. True 
Positive (TP) and True Negative (TN) represent correct 
classifications, and False Positive (FP) and False 
Negative (FN) represent classification errors [26]. 
Based on these categories, four primary evaluation 
metrics were calculated using the following equations. 

a. Accuracy determines the percentage of correctly 

classified instances relative to the total number of 

samples in the dataset, with the formula as in Eq. 

(9) [31]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
       (9) 

b. Precision evaluates the reliability of positive 

classifications by calculating the ratio of true 

positives to the total number of instances predicted 

as positive, with the formula as in Eq. (10) [31]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (10) 

c. Recall, also known as Sensitivity, assesses the 

model's effectiveness in identifying all actual 

positive instances, with the formula as in Eq. (11) 
[31]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (11) 

d. The F1 Score represents the harmonic mean of 

precision and recall. It provides a comprehensive 

view of the trade-off between the two metrics, 

particularly when dealing with class-imbalanced 

datasets, with the formula as in Eq. (12) [31]. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (12) 

For this specific analysis, model performance was 
evaluated using metrics particularly relevant to 
imbalanced classification and clinical utility [21]. These 
included the F1-Macro Score, which provides a 
balanced measure across both normal and 
hyperglycemic classes; Recall for Class 1 
(hyperglycemic events), a crucial clinical metric to 
minimize false negatives; overall Accuracy; and 
Precision for Class 1. The model with the highest F1-
Macro score was selected as the best-performing 
model. This study comprehensively evaluated 27 
configurations combining three feature sets, four input 
window lengths, and three classification algorithms. All 
experiments were conducted in Python using the scikit-
learn, CatBoost, and XGBoost libraries, with 
reproducibility ensured by a fixed random seed of 42.  

To ensure reproducibility, all experiments were 
conducted with a consistent computational 
environment using Python 3.11.5. Key libraries 
included scikit-learn (v1.4.2), xgboost (v3.1.0), and 

catboost (v1.2.8), and the training process was 
performed on a Kaggle notebook.  

 

III. Result  

A. Experiment 1: All Features  

Experiment 1 evaluated the complete feature set. Table 

4 presents the results of postprandial hyperglycemia 

classification using all features. Across all models and 

windows, the CatBoost model with a 30-minute window 

(W30) achieved the highest overall performance, with an 

F1-Macro of 0.7263 and an overall accuracy of 0.8155. 

This model also achieved the highest recall for the 

hyperglycemia class (Class 1) at 0.6404. 

 

Table 4. Machine learning classification models' 
performance on experiment 1 

Window Model Acc F1-
Macro 

Rec 

W15 Random Forest 

XGBoost 

Catboost 

0.805 

0.794 

0.785 

0.690 

0.703 

0.715 

0.427 

0.528 

0.640 

W30 Random Forest 

XGBoost 

Catboost 

0.807 

0.793 

0.796 

0.684 

0.697 

0.726 

0.404 

0.507 

0.640 

W45 Random Forest 

XGBoost 

Catboost 

0.807 

0.796 

0.796 

0.683 

0.700 

0.722 

0.392 

0.506 

0.621 

W60 Random Forest 

XGBoost 

Catboost 

0.797 

0.795 

0.796 

0.661 

0.703 

0.720 

0.357 

0.518 

0.609 

 

However, the advantage over a 15‑minute window 

(W15) was modest. CatBoost showed minimal 

performance degradation with shorter windows, with F1-

Macro dropping only 1 percentage point from W30 to 

W15. When F1-Macro is averaged across the three 

algorithms, W15 and W30 become practically 

indistinguishable. A 15-minute pre-meal history already 

captures the most informative CGM dynamics. 

Extending the window to 30 minutes provides only a 

small performance gain at the cost of doubling the 

required history for real‑time deployment. In contrast, 

further extending the input history to 45 or 60 minutes 

did not yield consistent improvements and, in some 

cases, slightly degraded performance, suggesting 

diminishing returns beyond 30 minutes. These results 

indicate that W30 is the performance‑optimal choice, 

whereas W15 can be regarded as a near‑minimal input 

window that preserves most of the discriminative power 

while minimizing latency and buffering requirements. 
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B. Experiment 2: Glucose-Only Features 

Removing meal and temporal data moderately reduced 

performance, as shown in Table 5. The best Glucose-

Only model (CatBoost W30) achieved an F1-Macro of 

0.6848. The Recall_1 for CatBoost W30 in Experiment 2 

(0.6539) matched Experiment 1. However, Precision 

declined significantly (0.4666 in Exp 2 vs. 0.5394 in Exp 

1 for Class 1), resulting in more false positives. Meal 

data appears to help distinguish true physiological 

spikes from transient noise. A similar but slightly stronger 

pattern was observed in the Glucose‑Only setting: W30 

systematically improved F1-Macro by around 2 

percentage points over W15 across all three algorithms, 

while Recall_1 increased by less than 0.03. This 

reinforces that most of the predictive signal is already 

contained in the first 15 minutes of pre‑meal CGM 

history, with 30 minutes providing only incremental 

refinements. 

 

Table 5. Machine learning classification models' 
performance on experiment 2 

Window Model Acc F1-
Macro 

Rec 

W15 Random Forest 
XGBoost 
Catboost 

0.750 
0.721 
0.742 

0.602 
0.620 
0.673 

0.299 
0.445 
0.646 

W30 Random Forest 
XGBoost 
Catboost 

0.769 
0.748 
0.752 

0.624 
0.641 
0.685 

0.328 
0.443 
0.654 

W45 Random Forest 
XGBoost 
Catboost 

0.778 
0.750 
0.756 

0.639 
0.642 
0.679 

0.345 
0.441 
0.601 

W60 Random Forest 
XGBoost 
Catboost 

0.798 
0.761 
0.756 

0.667 
0.656 
0.679 

0.379 
0.454 
0.602 

C. Experiment 3: Meal-Only Features 

Models that relied exclusively on meal composition and 

timing data demonstrated substantially inferior 

performance, with the best-performing model (Random 

Forest) achieving an F1-Macro score of only 0.5937. 

Hyperglycemia recall reached only 0.42, indicating that 

nutritional data alone cannot provide reliable 

hyperglycemia risk monitoring without concurrent 

physiological measurements. This underscores the 

necessity of incorporating real-time glucose 

measurements for clinical safety applications. Table 6 

presents the classification performance on the Meal-

Only feature set. Feature ablation with W15 as baseline 

quantified the relative importance of each modality. 

Removing meal features from the complete feature set 

led to a 5.9% F1-Macro decline in CatBoost and a 12.8% 

decline in Random Forest, while removing glucose 

history resulted in an even more dramatic 18.8% F1-

Macro reduction for CatBoost. These findings confirm 

that glucose history constitutes the primary signal for 

hyperglycemia prediction, while meal information 

provides supplementary value (6-13% improvement) 

that enhances clinical reliability.  The best performing 

classification model for all experiments is shown in Fig. 

2. 

 

Table 6. Machine learning classification models' 
performance on experiment 3 

Model Acc F1-Macro Rec 

Random Forest 
XGBoost 
Catboost 

0.695 
0.644 
0.648 

0.594 
0.572 
0.581 

0.423 
0.508 
0.539 

IV. Discussion 

This study compared observation windows and feature 
sets for predicting postprandial hyperglycemia. The 
best configuration used a 30-minute pre-meal window 
(W30) with CatBoost and all features, achieving an F1-
Macro of 0.7263, an accuracy of approximately 0.80, 
and a hyperglycemia recall of approximately 0.64. 
Importantly, the 15-minute window (W15) yielded only 
a slight reduction in F1-Macro (0.7154 for CatBoost). 
To rigorously validate these performance differences, 
we conducted paired t-tests across the 5 validation 
folds. Comparing the best-performing window (W30) 
against the minimal window (W15) for CatBoost 
revealed no statistically significant difference (p=0.13 > 
0.05). This statistical equivalence is a crucial finding: it 
empirically demonstrates that a 15-minute pre-meal 
history captures most of the discriminative predictive 
signal. Longer windows (45 and 60 minutes) offered no 
systematic advantage and occasionally degraded 
performance. This phenomenon likely stems from 
"temporal noise," where the inclusion of glucose data 
from 45–60 minutes prior introduces physiological 
states that are less correlated with the immediate post-
meal response, increasing feature dimensionality and 

 
Fig. 2. The best model performance for every 
experiment setting 
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overfitting risk without adding informative signal. This 
introduces a clear trade‑off between accuracy and 

latency. A 30‑minute window is preferable when slightly 

higher F1-Macro and stability across models are 
prioritized. A 15-minute window suits real-time or 
resource-constrained applications, for example, during 
CGM warm‑up, in the presence of missing data, or on 

embedded devices, because it offers comparable 
sensitivity to hyperglycemia using only half as much 
pre‑meal history. Adopting W15 may be justified when 

a 1-3 percentage point F1-Macro reduction is 
acceptable in exchange for faster and lighter‑weight 

prediction. From a system engineering perspective, 
reducing the required input history from 60 to 30 
minutes translates into tangible benefits for embedded 
implementation. It effectively halves the memory 
allocation required for data buffering on 
microcontrollers and reduces the computational 
complexity of feature extraction. For battery-powered 
wearable devices, this reduction can lower the 
processor's duty cycle and reduce Bluetooth 
transmission payloads, thereby extending device 
operating life. 

Feature ablation confirmed that CGM history 
dominates short-term postprandial prediction. Glucose-
only models retained most of the discriminative 
performance of the full models (approx. 94%). 
However, the 'All Features' configuration, which 
integrated glucose history with meal composition, 
temporal context (time of day), and participant 
diagnosis, provided a consistent performance boost 
(approx. 4% in F1-Macro). This suggests that while 
glucose dynamics capture the immediate physiological 
state, non-glucose features provide critical contextual 
constraints. Specifically, temporal features likely help 
the model account for circadian variations in insulin 
sensitivity (e.g., morning vs. evening resistance), while 
diagnosis status sets a baseline risk probability for 
each user. In contrast, meal-only models using 
macronutrient composition and time-of-day features 
performed substantially worse, with the best model 
achieving an F1-Macro of approximately 0.59 and a 
hyperglycemia recall of approximately 0.42. This 
pattern aligns with other CGM-driven risk models, 
where CGM-derived indices alone achieve high 
discrimination [38][39]. Additional clinical or 
demographic features provide only modest incremental 
gain. In the postprandial setting, meal information 
improves precision and F1-Macro by approximately 6-
13%, but it is insufficient on its own for safety-relevant 
prediction. However, despite its lower accuracy, the 
Meal-Only model holds potential for specific 'cold-start' 
scenarios, such as newly diagnosed patients who have 
not yet been prescribed a CGM, or in resource-
constrained settings where CGM sensors are 
unaffordable. In these cases, a prediction based solely 

on dietary intake, while less precise, provides a 
baseline educational tool to estimate post-meal risk 
better than random chance. 

These findings align with recent comparisons of 
multivariate and univariate glucose forecasting. Nemat 
et al. reported that simply appending carbohydrate, 
insulin, and physical activity variables to CGM inputs 
did not systematically improve forecasting accuracy, 
and, in some cases, worsened performance, indicating 
that multivariate models require careful data fusion to 
extract value from additional modalities [40]. Simple 
concatenation of feature vectors often fails to capture 
the complex interdependencies between static inputs 
(meal composition) and dynamic time-series (glucose 
trends). While "careful fusion" in deep learning contexts 
often entails advanced architectures like multi-stream 
networks to align these modalities, our results suggest 
that for structured biomedical data, gradient-boosted 
trees offer a robust alternative. Tree-based models 
inherently handle this fusion by learning non-linear 
interactions between static and dynamic features at 
decision-split nodes, effectively integrating the 
modalities without the need for complex architectural 
engineering. Seo et al. used Random Forest models 
with CGM-derived features and mealtime 
announcements to predict 30-minute postprandial 
hypoglycemia and showed that adding structured, 
event-aligned information can improve performance in 
that risk domain [41]. In the present setting, meal 
composition and time-of-day features, when combined 
with pre-meal CGM history, yielded measurable gains 
in F1-Macro and reduced false positives, but without 
concurrent CGM measurements, they did not provide a 
sufficiently reliable signal for hyperglycemia risk 
estimation. 

This work complements prior postprandial-specific 
modeling that has focused either on hypoglycemia 
alone or on longer input windows and mechanistic 
features. Cui et al. proposed a unified LSTM model that 
jointly predicts postprandial hyperglycemia and 
hypoglycemia using a one-hour CGM history and 
achieved strong classification performance on the 
OhioT1DM dataset, highlighting the benefit of treating 
the postprandial regime separately from nocturnal or 
fasting periods because of distributional shifts in 
glucose trajectories [42]. The present analysis extends 
this approach to shorter pre-meal windows and 
traditional gradient-boosted tree models on a different 
dataset that includes explicit meal composition. 
Lifestyle-centric frameworks such as GlucoLens 
integrate CGM with detailed food logs and wearable-
derived activity measures to predict postprandial AUC 
and hyperglycemia and to generate counterfactual 
explanations for behavioral interventions [43]. Together 
with prospective protocols that model individual 
postprandial responses from diet, CGM, and rich 
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clinical covariates [44], these studies suggest that meal 
and behavioral variables play a larger role in long-term 
AUC or personalized dietary guidance. For 60-minute 
hyperglycemia prediction, CGM history remains the 
dominant predictor. 

The most clinically relevant metric, hyperglycemia 
recall, reached approximately two-thirds in the best 
configuration, with an acceptable overall F1-Macro 
despite class imbalance. This performance reflects the 
impact of the class weighting strategy (3.06:1), which 
deliberately prioritized sensitivity (Recall) over 
precision to minimize dangerous False Negatives 
(missed hyperglycemia). While this trade-off results in 
more False Positives (alarms for events that do not 
occur), in a decision-support context, this is preferable 
to missing a high-risk event. This sensitivity level does 
not yet support stand-alone therapeutic automation but 
may enable risk stratification, triage, and patient-facing 
alerts that prompt closer postprandial monitoring. The 
finding that a 30-minute pre-meal window is sufficient 
and that the required inputs are limited to CGM and 
basic meal information facilitates integration into 
existing CGM platforms or mobile decision support 
tools. The sharp performance degradation for meal-
only models indicates that prediction systems require 
CGM data. 

Several limitations should be noted. The analysis 
relies on a single dataset with a fixed 60-minute 
prediction horizon, derived from Dexcom G6 data. 
Consequently, the established 30-minute optimal 
window is specific to this configuration. It is plausible 
that different prediction horizons (e.g., 30 or 90 
minutes) or sensors with different lag times (e.g., Flash 
Glucose Monitoring) might exhibit different optimal 
history lengths. Future studies should examine this 
potential variability to determine whether the window 
size must scale linearly with the prediction horizon. 
Additionally, the study used a binary definition of 
hyperglycemia at 180 mg/dL without modelling episode 
duration or severity and without external validation. 
Insulin dosing, physical activity, sleep, and other 
behavioral factors were not considered, despite their 
known influence on postprandial dynamics [40][43][44]. 
Hyperparameter tuning was limited, and deep learning 
models were not evaluated. 

Future work should validate these findings on 
independent cohorts with different dietary patterns and 
sensor technologies. Additional directions include 
exploring behavioral and clinical covariates, comparing 
lightweight sequence models, and extending to multi-
horizon or joint hyperglycemia-hypoglycemia 
prediction. Incorporating explainability techniques such 
as SHAP (Shapley Additive exPlanations) is a critical 
next step for clinical adoption. Beyond black-box 
prediction, explainability would allow the system to 
inform the patient why a spike is predicted, for instance, 

by distinguishing whether the risk is driven by the 
specific meal composition (high carb) or the time of day 
(morning resistance). This transparency would 
empower patients to make targeted behavioral 
adjustments rather than reacting to generic alerts. 

 

V. Conclusion 

This study systematically evaluated how observation 

window length and feature composition affect machine-

learning predictions of postprandial hyperglycemia. 

Through controlled ablation experiments on 1,642 meal 

events from 45 participants, we established three key 

findings. First, short pre-meal observation windows yield 

performance comparable to that of extended histories. 

The optimal 30-minute window (72.6% F1-macro, 64.0% 

recall) outperformed the 15-minute window by only 1.5 

percentage points, while 45- and 60-minute windows 

provided no consistent advantage. This demonstrates 

that recent glucose dynamics capture sufficient 

information for reliable 60-minute-ahead prediction, 

enabling low-latency systems with minimal buffering 

requirements. Second, systematic feature ablation 

revealed that glucose-trajectory features dominate 

predictive performance. Glucose-only models retained 

94% of full model performance (68.5% F1-macro), 

whereas meal-only models achieved just 82% (59.4% 

F1-macro). This quantifies the relative contributions of 

different data modalities and indicates that glucose 

history is essential, whereas meal composition provides 

complementary but secondary value. Third, this study 

employed rigorous group cross-validation, separating 

participants between training and test sets, ensuring 

predictions generalize to unseen individuals rather than 

exploiting person-specific patterns. This validation 

strategy provides realistic performance estimates for 

deployment scenarios where systems encounter new 

users. Combined with our window and feature findings, 

these results yield actionable guidelines: 15-30-minute 

observation windows balance accuracy and 

responsiveness; glucose features are essential; and 

meal features enhance but are not sufficient on their 

own. Future work should validate these patterns across 

sensors and extend to multi-horizon prediction with 

explainable AI methods. 
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