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Abstract Continuous glucose monitoring systems currently generate alerts only after blood glucose
thresholds are breached, limiting their utility for proactive diabetes management. Predicting postprandial
glucose excursions before they occur requires determining the optimal amount of historical data and
identifying which features contribute most to prediction accuracy. This study systematically evaluates how
the length of the pre-meal observation window and feature composition affect machine-learning
predictions of hyperglycemia events 60 minutes after eating. We analyzed 1,642 meal events from 45 adults
wearing continuous glucose sensors, constructing features from pre-meal glucose trajectories, meal
macronutrients, time of day, and health status. Four observation windows (15, 30, 45, 60 minutes) and three
feature sets (all features, glucose-only, meal-only) were evaluated using Random Forest, XGBoost, and
CatBoost with 5-fold group cross-validation. CatBoost with a 30-minute window achieved the best
performance: 72.6% F1-macro, 79.6% accuracy, and 64.0% recall for hyperglycemia detection. Extending
windows beyond 30 minutes did not yield consistent benefits, whereas 15-minute windows yielded
comparable results. Glucose trajectory features alone retained 94% of full model performance (68.5% F1-
macro), whereas meal composition alone proved insufficient (59.4% F1-macro). These findings
demonstrate that recent glucose history dominates short-term prediction, enabling practical real-time
systems with minimal data requirements. A 30-minute observation window with glucose and meal features
offers an effective balance between prediction accuracy and system responsiveness.

Keywords Hyperglycemia, CGM, Window Length, Feature Composition, CatBoost.

l. Introduction demonstrated strong performance on structured

Diabetes affects over 537 million adults worldwide, with biomedical data. Specifically, these tree-based
projections reaching 783 million by 2045 [1]. Elevated ~ ©nsembles are well-suited for this domain due to their
postprandial blood glucose contributes significantly to ~ @Pility to handle nonlinear relationships between
long-term complications [2][3], yet current monitoring ~ 9lucose features and meal timing without extensive
approaches remain primarily reactive. Continuous data scaling, and their robustness to overfitting relative

glucose monitoring (CGM) technology samples t_o _deep neurall networks on tabular datasets with
interstitial glucose every 5 minutes, providing detailed limited sample sizes [10][11][12]. The success of these
trajectories of daily fluctuations [4][5]. However, mef(hods._ln diabetes preFilc’_uon has been attributed to
commercial CGM systems typically alert users only thelr_ab|I|t_y to handle missing d_ata gracefully anq to
after glucose exceeds predefined thresholds or when ~ Provide interpretable feature-importance rankings
rates of change become concerning [6]. The inherent  [13][14]. Several studies have shown that combining

5-15-minute lag between blood and interstitial glucose =~ CGM data with meal composition information can

measurements further delays these alerts, often improve the accuracy of predictions of. _plostprandial
arriving after problematic glucose excursions have  9lucose responses [15][16]. These capabilities suggest
already begun [7]. the potential to build systems that warn users of

impending glucose excursions before planned meals,
enabling informed food choices or preemptive
interventions.  Despite  recent progress, two
fundamental design questions remain inadequately

Machine learning offers a path toward predictive
rather than reactive glucose management [8][9].
Gradient boosted decision tree algorithms, including
XGBoost, CatBoost, and LightGBM, have
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addressed. First, the optimal length of historical CGM
data needed for reliable prediction remains an open
research question. While prior studies have utilized
observation windows ranging from 30 minutes to
several hours [17][18], these selections are often
arbitrary or strictly dataset-dependent. There is a lack
of rigorous comparative frameworks that systematically
evaluate the trade-off between observation duration
and predictive accuracy within the same experimental
setting. Consequently, it remains unclear whether
longer windows genuinely improve  model
generalization or merely increase computational
complexity and latency. While shorter windows reduce
system latency and storage needs, they risk missing
important pre-meal trends. Therefore, establishing the
minimal effective history that preserves predictive
performance, particularly for the clinically relevant task
of predicting events 60 minutes after eating, is crucial
for developing responsive real-time systems, a gap that
this study specifically aims to address.

Second, the relative contribution of different data
modalities, specifically the marginal benefit of adding
detailed macronutrient data to recent glucose trends,
remains debated in the literature, often due to a lack of
comparative frameworks. While nutritional science
establishes clear relationships between macronutrients
and glucose response, computational studies report
mixed results regarding whether meal composition
features improve prediction beyond glucose
trajectories alone [8][13][11]. The mixed results
regarding meal composition in the current literature
often stem from a lack of rigorous ablation experiments.
Many studies report performance gains by adding
features but fail to quantify the marginal utility of each
modality. Understanding which features drive
predictive performance has direct implications for
system design, data collection requirements, and
deployment feasibility in resource-constrained settings.

Hyperglycemia prediction is inherently imbalanced,

outnumbering  hyperglycemic  events.  Without
appropriate handling, machine learning models tend to
favor the majority class, leading to poor sensitivity for
detecting the clinically critical hyperglycemia events
[19][20]. Cost-sensitive training and suitable validation
schemes are therefore essential [21][22]. This research
systematically addresses both design questions
through controlled ablation experiments. We evaluate
four pre-meal observation windows (15, 30, 45, and 60
minutes) to determine the minimal effective history
length for 60-minute-ahead prediction. We compare
three feature configurations (all features, glucose-only,
meal-only) to quantify the contribution of glucose
trajectories versus meal composition. Three gradient-
boosting algorithms (Random Forest, XGBoost,
CatBoost) are trained on 1,642 meal events from 45
participants, using rigorous group cross-validation to
assess generalization to unseen individuals. Class
weighting addresses the inherent imbalance between
normal and hyperglycemic outcomes without synthetic
data generation.

This work makes three contributions to applied
machine learning for glucose prediction. First, to
provide empirical evidence on the minimal observation
window required for reliable prediction, demonstrating
that short pre-meal histories achieve performance
comparable to extended observation periods. This
enables low-latency prediction systems with reduced
buffering requirements for real-time deployment.
Second, through systematic feature ablation, we
quantify the relative contributions of glucose
trajectories and meal composition, revealing which
data modalities drive predictive performance and which
can be omitted without substantial loss of accuracy.
Third, we evaluate design choices across three tree-
based models using rigorous group cross-validation,
ensuring that the findings reflect true generalization to
unseen individuals and yielding practical guidance for
building reliable, low-latency hyperglycemia prediction

with  normal postprandial outcomes substantially systems.
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Fig. 1. The Research workflow of input window length and feature composition in postprandial

hyperglycemia classification
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Il. Method

This study examined the impact of input window length
and feature composition on the classification of
postprandial hyperglycemia using machine learning
approaches. The research process starts from dataset
loading, data preprocessing, experimental design,
classification using three algorithms, and evaluation
using several metrics. The research flow is shown in
Fig. 1.

A. Data Collection

This study utilized the CGMacros dataset (version
1.0.0), a publicly available multimodal dataset
accessible via PhysioNet [23][24]. The complete
dataset, along with its associated documentation, is
publicly accessible at the following link:
https://physionet.org/content/cgmacros/1.0.0/. This
dataset was collected at the Sansum Diabetes
Research Institute in Santa Barbara, California, and
comprises data from 45 adults who were monitored
continuously for 10 consecutive days in a free-living
environment. Participants included 15 healthy
individuals, 16 with prediabetes, and 14 with type 2
diabetes, as determined by HbA1c measurements
during initial screening. Although this research utilizes
a secondary public dataset, the original data collection
was conducted under approved ethical protocols (IRB
approval), and all participant records were fully de-
identified to ensure privacy compliance before public
release, adhering to the Health Insurance Portability
and Accountability Act (HIPAA) Safe Harbor standards,
negating the need for specific ethical approval for this
secondary analysis.

Each participant wore two blinded continuous
glucose monitoring devices: the Abbott FreeStyle Libre
Pro (15-minute sampling interval) and the Dexcom G6
Pro (5-minute sampling interval). Participants also wore
a Fitbit Sense activity tracker and logged all meals
using a smartphone application. Meal documentation
included photographs taken before and after
consumption along with macronutrient estimates
(carbohydrates, protein, fat, fiber, and calories).
Breakfasts consisted of protein shakes with varying
macronutrient compositions, lunches were ordered
from a standardized restaurant chain (Chipotle
Mexican Grill), and dinners comprised foods of the
participant's own choice. To minimize interference from
prior meals, participants were instructed to maintain at
least 3 hours between consecutive meals and to
consume only water or unsweetened coffee during
those intervals.

For this study, we focused exclusively on Dexcom
G6 data due to its higher temporal resolution (5-minute
sampling). The dataset provides preprocessed tabular
files in which individual meal episodes have been
identified and features engineered with respoect to
meal onset times. After quality control procedures that

excluded episodes with missing CGM readings or
incomplete meal annotations, the final dataset
comprised 1,642 meal events from all 45 participants.
Each meal episode was classified into one of two
outcome categories based on the maximum glucose
concentration measured within 60 minutes post-meal
(h60): normal (glucose <180 mg/dL) or
hyperglycemia (glucose >180 mg/dL). The observed
class distribution was 75.4% normal (1,238 events) and
24.6% hyperglycemia (404 events), corresponding to a
3.06:1 imbalance ratio.

B. Feature Engineering and Input Windows

This study focused exclusively on Dexcom G6 CGM
readings because they have a higher temporal
resolution (5-minute sampling interval) compared to the
Abbott FreeStyle Libre Pro (15-minute sampling). Each
sample in the preprocessed dataset represents a single
meal event with features engineered relative to meal
onset time (t=0). The primary prediction objective is
binary classification of postprandial hyperglycemia,
defined as a maximum glucose concentration
exceeding 180 mg/dL within 60 minutes post-meal
(h60). This threshold aligns with clinical standards for
postprandial hyperglycemia as defined by the
American Diabetes Association [25], and resulted in an
observed class distribution of 75.4% normal outcomes
(1,238 events) and 24.6% hyperglycemia (404 events),
corresponding to a 3.06:1 imbalance ratio.

To investigate the minimal temporal context
required for reliable prediction, we evaluated four pre-
meal observation windows: 15, 30, 45, and 60 minutes
(denoted W15, W30, W45, W60). These specific
intervals were chosen to capture distinct physiological
phases of glucose dynamics: the 15-minute window
captures the immediate rate of change, while 30-to 45-
minute windows encompass the typical onset of insulin
action. Extending to 60 minutes aligns with the
standard postprandial horizon, allowing the model to
observe the full pre-meal trend stability. Each window
W of length w minutes contains glucose measurements
sampled at 5-minute intervals leading up to meal onset
(t=0) expressed in Eq. (1) [23]:

G™ = GL(t—w), GL(t—w+5), -» GL(t—5), GL{O (1)

where the number of lag featuresis n = w/5 + 1. Thus,
W60 yields 13 historical measurements
(GL;—g0,GL;_55, -..,GL;_5 ) plus the current glucose
reading at meal time (GL,,), while W45, W30, and W15
contain 10, 7, and 4 lag features, respectively.
Correlation analysis revealed that recent glucose
measurements exhibit the strongest association with
hyperglycemia outcomes, with GL,, showing the
highest correlation (0.458), followed by GL;_5(0.451)
and GL,_,, (0.447). This monotonic decrease in
correlation with temporal distance motivated our focus
on compact observation windows.
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Beyond raw glucose lags, each window
incorporates two derived statistical features. The
exponential moving average (GL_EMA) provides a
smoothed representation of the glucose trajectory over
the observation period, emphasizing recent
measurements  through  exponential  weighting.
GL_EMA is computed iteratively as Eq. (2) [23]:

GLEMA; =a-GL;+(1—a)-GL_EMA;,_; (2)
where a = 0.3 is the smoothing parameter that controls
the weight assigned to recent observations relative to
historical values. The linear slope (GL_slope) captures
the directional trend of glucose change through least-
squares regression, as shown in Eq. (3) [23]:

_ X(t-0)(6L;i—GL)
GL_slope = W (3)
where f; represents time points within the observation
window, and the barred variables denote mean values.
Negative slope values indicate declining glucose, while
positive values indicate rising glucose prior to the meal.
Across the dataset, GL_EMA exhibited a mean of
126.6 mg/dL (SD=32.1), while GL_slope showed a
slight average decline (-0.11 mg/dL per minute,
SD=0.43), reflecting typical pre-meal glucose
stabilization. Temporal context features encode meal
timing through cyclical transformations and binary
indicators. Hour of day is represented using sine and
cosine functions to capture the circular nature of time

as in Eq. (4) and Eq. (5) [23].

hour_sin = sin (2212 4)
27 - hour
) ®)

This encoding preserves the proximity between late
evening (23:00) and early morning (01:00) hours, which
linear hour encoding would misrepresent. Additionally,
two binary meal-period indicators distinguish breakfast
(is_morning: 06:00-11:59) and dinner (is_evening:
18:00-23:59) periods, capturing circadian variations in

hour_cos = cos(

insulin sensitivity that are known to affect the
postprandial glucose response.

Meal composition features quantify macronutrient
content consumed at each meal: carbohydrates,
protein, fat, fiber (all in grams), and total calories.
These features remain constant across all window
lengths as they describe the meal itself rather than pre-
meal history. Observed macronutrient distributions
showed substantial  variability (carbohydrates:
mean=51.7g, SD=40.6g; protein: mean=29.0g,
SD=25.6g; fat: mean=19.2g, SD=20.79), reflecting the
diverse meal types consumed during the 10-day
monitoring  period. Regarding health  status,
participants' diagnostic status (Healthy, Prediabetes,
Type 2 Diabetes) was encoded as a categorical
variable. This feature accounts for baseline metabolic
differences (e.g., insulin resistance levels) that
fundamentally alter glucose trajectories distinct from
meal-specific responses.

Table 1 summarizes the feature composition for
each observation window configuration. Features were
extracted from the preprocessed dataset with minimal
transformation. Glucose-derived statistical features
(EMA, slope) and cyclically-encoded temporal features
were computed as specified in Eq. (2-5), while glucose
lags and meal macronutrients retained their original
scales. No normalization or standardization was
applied. Columns that could leak information about the
prediction target were systematically excluded,
including participant identifiers, meal timestamps, and
any glucose measurements beyond h60. This feature
engineering approach balances simplicity with
physiological relevance. The lag features capture
glucose ftrajectory dynamics; statistical features
summarize trends; temporal features account for
circadian effects; meal features provide nutritional
context; and demographic information reflects baseline
metabolic state. The independent-window design
enables direct comparison of observation-length

Table 1. Feature composition by observation window

Window Glucose Lags Statistical Temporal Meal Demographic Total
Features
W15 GL_t-15 to GL_EMA, hour_sin, hour_cos, Carbs, Protein, Fat, Diagnosis (1) 15
GL_t0 (4) GL_slope (2) is_morning, Fiber, Calories (5)
is_evening (4)
W30 GL_t-30 to GL_EMA, hour_sin, hour_cos, Carbs, Protein, Fat, Diagnosis (1) 18
GL_t0 (7) GL_slope (2) is_morning, Fiber, Calories (5)
is_evening (4)
W45 GL_t-45 to GL_EMA, hour_sin, hour_cos, Carbs, Protein, Fat, Diagnosis (1) 21
GL_t0 (10) GL_slope (2) is_morning, Fiber, Calories (5)
is_evening (4)
W60 GL_t-60 to GL_EMA, hour_sin, hour_cos, Carbs, Protein, Fat, Diagnosis (1) 24
GL_t0 (13) GL_slope (2) is_morning, Fiber, Calories (5)

is_evening (4)
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Table 2. Experimental design description

Experiment Feature Groups Included Windows Evaluated  Purpose
Experiment 1: All Features Glucose + Meal + Temporal + W15, W30, W45, Baseline
Diagnosis w60
Experiment 2: Glucose-Only Glucose lags, EMA, slope only W15, W30, W45, Isolate the physiological
W60 signal
Experiment 3: Meal-Only Meal macros + Temporal + W15 (fixed) No CGM scenario
Diagnosis

requirements without confounding factors from feature
set differences.

C. Feature Sets and Experimental Design

To quantify the relative contribution of different data
modalities, we conducted three controlled ablation
experiments. Each experiment systematically removed
feature groups while maintaining consistent model
training and evaluation procedures, enabling direct
assessment of each modality's predictive value through
performance-degradation analysis.

Experiment 1 (All Features) served as the baseline,
utilizing the complete feature set described in Section
II.B. This configuration combines glucose trajectory
features (lags, EMA, slope), meal composition
(macronutrients), temporal indicators (cyclical time
encoding, meal period flags), and participant diagnosis
status. The all-features configuration was evaluated
across all four observation windows (W15, W30, W45,
W60) to establish the upper bound of performance for
each temporal context.

Experiment 2 (Glucose-Only) isolated physiological
signals by retaining exclusively glucose-derived
features: the lagged measurements (GL _t-X), the
exponential moving average (GL_EMA), and the linear
slope (GL_slope). All meal composition, temporal, and
demographic features were excluded. This experiment
tests whether recent glucose dynamics alone provide
sufficient information for short-term postprandial
prediction, or whether exogenous features
substantially improve accuracy. The glucose-only
configuration was similarly evaluated across all four
window lengths to assess whether the importance of
meal information varies with observation duration.

Experiment 3 (Meal-Only) evaluated the converse
scenario, incorporating only meal macronutrients
(carbohydrates, protein, fat, fiber, calories), temporal
features, and diagnosis status while excluding all
glucose measurements. This configuration represents
a pre-meal prediction scenario where no CGM data are
available, testing whether nutritional composition and
timing alone can reliably forecast the postprandial
glucose response. Since meal composition features
are static and do not depend on the pre-meal
observation window length, this experiment was
conducted using the dataset structure aligned with the

validation folds of the other experiments. Note that no
time-series glucose data were included in this
configuration; the 'window' reference purely denotes
the exclusion of glucose history. Table 2 summarizes
the experimental design. All three experiments
employed identical training procedures: Random
Forest, XGBoost, and CatBoost algorithms with class
weighting to address the 3.06:1 imbalance ratio, trained
via 5-fold group cross-validation based on participant
IDs. This ablation framework enabled isolation of each
feature modality's contribution while controlling for
algorithmic and validation differences. Data leakage
was prevented by excluding participant identifiers, meal
timestamps, exact event times, and any future glucose
measurements beyond the 60-minute prediction
horizon from all feature sets.

D. Machine Learning Models

Three tree-based ensemble algorithms were selected
for comparative evaluation: Random Forest, XGBoost,
and CatBoost. These models were chosen over
distance-based algorithms (e.g., SVMs, k-NN) and
Neural Networks for several reasons specific to
structured biomedical data. First, tree-based
ensembles are invariant to feature scaling and robust
to the non-linear interactions between physiological
signals and meal timing. Second, while Deep Learning
excels in perceptual tasks, Gradient-Boosted Decision
Trees (GBDT) consistently outperform Deep Learning
on moderate-sized tabular datasets [10][11][12]. This
study specifically compares Random Forest (a bagging
technique) against XGBoost and CatBoost (boosting
techniques) to evaluate the trade-off between variance
reduction and bias reduction. Bagging builds
independent trees to reduce variance, making it robust
against noise, whereas boosting builds trees
sequentially to correct prior errors, focusing on
minimizing bias. All models were trained with class
weighting to address the 3.06:1 imbalance ratio without
synthetic data generation, which could introduce
artifacts in time-series data [21].

1. Random Forest

Random Forest constructs an ensemble of decision
trees trained on different random samples of data with
randomly selected feature subsets [26][27][28]. Each
tree is built using bootstrap sampling and evaluates
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Table 3. Model hyperparameter settings

Parameter Random Forest

XGBoost CatBoost

Trees/Iterations n_estimators=100

n_estimators=100

iterations=1000

Tree Depth max_depth=None max_depth=6 depth=6
Learning Rate N/A learning_rate=0.3 learning_rate=0.03
Regularization N/A N/A 12_leaf reg=3

min_samples_split=2,

Sampling min_samples_leaf=1

subsample=1.0,
colsample_bytree=1.0

subsample=1.0,
colsample_bylevel=1.0

Class Imbalance class_weight="balanced'

scale_pos_weight=3.06

auto_class_weights='Balanced'

Loss Function gini (default)

logloss (default)

Logloss

Feature Selection max_features='sqrt' N/A

N/A

only a subset of available features at each split [29].
Final predictions aggregate individual tree outputs
through majority voting as in Eq. (6) [29]:

¥ = mode{h, (x), hy(x), ..., hy(x)} (6)
where h,(x)represents the prediction of the t-th tree
and T = 100is the total number of trees. The ensemble
approach reduces overfitting risk compared to single
decision trees while maintaining computational
efficiency and resistance to outliers [30][31]. Class
weighting ('balanced') adjusts misclassification costs to
emphasize the minority hyperglycemia class.

2. XGBoost

XGBoost (Extreme Gradient Boosting) implements
gradient boosting with decision trees, iteratively refining
model boundaries to minimize loss functions [32]. The
algorithm constructs the ensemble sequentially by
adding weak learners as shown in Eq. (7) [32]:

Fm(x) = Fm—l(X) +n- fm(X) (7)
where E, (X) represents the ensemble prediction at
iteration m, f,,(X)is the newly added weak learner, and
n = 0.3 is the learning rate that controls step size and
model  complexity. The  algorithm  employs
regularization techniques to reduce model complexity
and prevent overfitting while maintaining superior
predictive performance [33]. XGBoost handles sparse
data and missing values effectively without extensive
preprocessing, and supports parallel processing for
computational efficiency [34]. The scale_pos_weight
parameter (set to 3.06) addresses class imbalance by
increasing the penalty for misclassifying minority class
samples.

3. CatBoost
CatBoost (Categorical Boosting) employs ordered

boosting and specialized categorical feature handling
to eliminate prediction shift caused by target leakage in

traditional gradient boosting [35]. The algorithm uses
random permutations of the training data to compute
unbiased gradient estimates. The formula is like in Eq.
(8) [35].

¥, = X1 by(xi; o)) (8)
where o; represents a random permutation of the
training instances at iteration j, ensuring that each
model in the sequence is trained on data that has not
been used to compute the target statistics. The
algorithm processes categorical variables natively
without manual encoding, capturing complex non-
linear relationships while maintaining model
interpretability [36]. CatBoost's auto_class_weights
parameter, set to ('‘Balanced’ mode) adjusts for
imbalanced outcomes without requiring manual ratio
calculation. The framework has demonstrated strong
performance across diverse applications, including
medical diagnosis and risk assessment [18]. Table 3
summarizes the hyperparameter configurations for all
three algorithms. Default settings were used for most
parameters to establish a baseline performance
without extensive tuning, with class weighting as the
primary strategy for mitigating imbalance.

E. Experimental Setup and Evaluation Metrics

The models were rigorously validated using 5-Fold
Group Cross-Validation (GCV). This approach is critical
in time-series and physiological data analysis, as it
ensures that all data points from a single participant are
retained within the same fold (training or testing),
preventing data leakage and providing a more realistic
estimate of the model's generalization performance on
unseen individuals [37]. The folds were grouped by
participant_id. This grouping strategy ensures that all
meal events from a specific individual appear
exclusively in either the training or the test set, but not
in both. This strictly prevents data leakage and

Manuscript 10 November 2025; Revised 5 January 2026; Accepted 12 January 2026; Available online 17 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1401

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

275


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1401
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 270-283

e-ISSN: 2656-8632

simulates a real-world clinical scenario in which the
model must generalize to a new patient without having
been trained on their specific historical data.

To evaluate classification performance, the
confusion matrix was used as a fundamental tool. It
categorizes prediction outcomes into four types. True
Positive (TP) and True Negative (TN) represent correct
classifications, and False Positive (FP) and False
Negative (FN) represent classification errors [26].
Based on these categories, four primary evaluation
metrics were calculated using the following equations.

a. Accuracy determines the percentage of correctly
classified instances relative to the total number of
samples in the dataset, with the formula as in Eq.
(9) [31].

TP+TN
Accuracy =

TP + TN + FP + FN )
b. Precision evaluates the reliability of positive

classifications by calculating the ratio of true
positives to the total number of instances predicted
as positive, with the formula as in Eq. (10) [31].

TP
TP+FP (10)

c. Recall, also known as Sensitivity, assesses the
model's effectiveness in identifying all actual
positive instances, with the formula as in Eq. (11)
[31].

Recall =

Precision =

TP (11)
TP+FN
d. The F1 Score represents the harmonic mean of
precision and recall. It provides a comprehensive
view of the trade-off between the two metrics,
particularly when dealing with class-imbalanced
datasets, with the formula as in Eq. (12) [31].

F1— Score = 2 X PrecissionXRecall (12)

Precission+Recall

For this specific analysis, model performance was
evaluated using metrics particularly relevant to
imbalanced classification and clinical utility [21]. These
included the F1-Macro Score, which provides a
balanced measure across both normal and
hyperglycemic classes; Recall for Class 1
(hyperglycemic events), a crucial clinical metric to
minimize false negatives; overall Accuracy; and
Precision for Class 1. The model with the highest F1-
Macro score was selected as the best-performing
model. This study comprehensively evaluated 27
configurations combining three feature sets, four input
window lengths, and three classification algorithms. All
experiments were conducted in Python using the scikit-
learn, CatBoost, and XGBoost libraries, with
reproducibility ensured by a fixed random seed of 42.

To ensure reproducibility, all experiments were
conducted with a consistent computational
environment using Python 3.11.5. Key libraries
included scikit-learn (v1.4.2), xgboost (v3.1.0), and

catboost (v1.2.8), and the training process was
performed on a Kaggle notebook.

lll. Result
A. Experiment 1: All Features

Experiment 1 evaluated the complete feature set. Table
4 presents the results of postprandial hyperglycemia
classification using all features. Across all models and
windows, the CatBoost model with a 30-minute window
(W30) achieved the highest overall performance, with an
F1-Macro of 0.7263 and an overall accuracy of 0.8155.
This model also achieved the highest recall for the
hyperglycemia class (Class 1) at 0.6404.

Table 4. Machine learning classification models'
performance on experiment 1

Window Model Acc F1- Rec
Macro

W15 Random Forest 0.805 0.690 0.427
XGBoost 0.794 0.703 0.528
Catboost 0.785 0.715 0.640

W30 Random Forest 0.807 0.684 0.404
XGBoost 0.793 0.697 0.507
Catboost 0.796 0.726 0.640

W45 Random Forest 0.807 0.683 0.392
XGBoost 0.796 0.700 0.506
Catboost 0.796 0.722 0.621

W60 Random Forest 0.797 0.661 0.357
XGBoost 0.795 0.703 0.518
Catboost 0.796 0.720 0.609

However, the advantage over a 15-minute window
(W15) was modest. CatBoost showed minimal
performance degradation with shorter windows, with F1-
Macro dropping only 1 percentage point from W30 to
W15. When F1-Macro is averaged across the three
algorithms, W15 and W30 become practically
indistinguishable. A 15-minute pre-meal history already
captures the most informative CGM dynamics.
Extending the window to 30 minutes provides only a
small performance gain at the cost of doubling the
required history for real-time deployment. In contrast,
further extending the input history to 45 or 60 minutes
did not yield consistent improvements and, in some
cases, slightly degraded performance, suggesting
diminishing returns beyond 30 minutes. These results
indicate that W30 is the performance-optimal choice,
whereas W15 can be regarded as a near-minimal input
window that preserves most of the discriminative power
while minimizing latency and buffering requirements.
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B. Experiment 2: Glucose-Only Features

Removing meal and temporal data moderately reduced
performance, as shown in Table 5. The best Glucose-
Only model (CatBoost W30) achieved an F1-Macro of
0.6848. The Recall_1 for CatBoost W30 in Experiment 2
(0.6539) matched Experiment 1. However, Precision
declined significantly (0.4666 in Exp 2 vs. 0.5394 in Exp
1 for Class 1), resulting in more false positives. Meal
data appears to help distinguish true physiological
spikes from transient noise. A similar but slightly stronger
pattern was observed in the Glucose-Only setting: W30
systematically improved F1-Macro by around 2
percentage points over W15 across all three algorithms,
while Recall_1 increased by less than 0.03. This
reinforces that most of the predictive signal is already
contained in the first 15 minutes of pre-meal CGM
history, with 30 minutes providing only incremental
refinements.

Table 5. Machine learning classification models’
performance on experiment 2

that glucose history constitutes the primary signal for
hyperglycemia prediction, while meal information
provides supplementary value (6-13% improvement)
that enhances clinical reliability. The best performing
classification model for all experiments is shown in Fig.
2.

Table 6. Machine learning classification models'
performance on experiment 3

Model Acc F1-Macro Rec

Random Forest  0.695 0.594 0.423
XGBoost 0.644 0.572 0.508
Catboost 0.648 0.581 0.539

Window  Model Acc F1- Rec
Macro

W15 Random Forest 0.750 0.602 0.299
XGBoost 0.721 0.620 0.445
Catboost 0.742 0.673 0.646

W30 Random Forest 0.769 0.624 0.328
XGBoost 0.748 0.641 0.443
Catboost 0.752 0.685 0.654

W45 Random Forest 0.778 0.639 0.345
XGBoost 0.750 0.642 0.441
Catboost 0.756 0.679 0.601

W60 Random Forest 0.798 0.667 0.379
XGBoost 0.761 0.656 0.454
Catboost 0.756 0.679 0.602

C. Experiment 3: Meal-Only Features

Models that relied exclusively on meal composition and
timing data demonstrated substantially inferior
performance, with the best-performing model (Random
Forest) achieving an F1-Macro score of only 0.5937.
Hyperglycemia recall reached only 0.42, indicating that
nutritional data alone cannot provide reliable
hyperglycemia risk monitoring without concurrent
physiological measurements. This underscores the
necessity of incorporating real-time  glucose
measurements for clinical safety applications. Table 6
presents the classification performance on the Meal-
Only feature set. Feature ablation with W15 as baseline
quantified the relative importance of each modality.
Removing meal features from the complete feature set
led to a 5.9% F1-Macro decline in CatBoostand a 12.8%
decline in Random Forest, while removing glucose
history resulted in an even more dramatic 18.8% F1-
Macro reduction for CatBoost. These findings confirm

Best Performance per Experiment Type
1.0

o
o

0.7263

0.6848

0.5937

e
o

F1 Macro Score
o
IS

i
N

0.0
EXP1_AllFeatures
W30 + CatBoost

EXP2_GlucoseOnly
W30 + CatBoost

Experiment Type

Fig. 2. The best model performance for every
experiment setting

EXP3_MealOnly
W15 + RandomForest

IV. Discussion

This study compared observation windows and feature
sets for predicting postprandial hyperglycemia. The
best configuration used a 30-minute pre-meal window
(W30) with CatBoost and all features, achieving an F1-
Macro of 0.7263, an accuracy of approximately 0.80,
and a hyperglycemia recall of approximately 0.64.
Importantly, the 15-minute window (W15) yielded only
a slight reduction in F1-Macro (0.7154 for CatBoost).
To rigorously validate these performance differences,
we conducted paired t-tests across the 5 validation
folds. Comparing the best-performing window (W30)
against the minimal window (W15) for CatBoost
revealed no statistically significant difference (p=0.13 >
0.05). This statistical equivalence is a crucial finding: it
empirically demonstrates that a 15-minute pre-meal
history captures most of the discriminative predictive
signal. Longer windows (45 and 60 minutes) offered no
systematic advantage and occasionally degraded
performance. This phenomenon likely stems from
"temporal noise," where the inclusion of glucose data
from 45-60 minutes prior introduces physiological
states that are less correlated with the immediate post-
meal response, increasing feature dimensionality and

Manuscript 10 November 2025; Revised 5 January 2026; Accepted 12 January 2026; Available online 17 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1401

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

277


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1401
https://creativecommons.org/licenses/by-sa/4.0/

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 270-283

e-ISSN: 2656-8632

overfitting risk without adding informative signal. This
introduces a clear trade-off between accuracy and
latency. A 30-minute window is preferable when slightly
higher F1-Macro and stability across models are
prioritized. A 15-minute window suits real-time or
resource-constrained applications, for example, during
CGM warm-up, in the presence of missing data, or on
embedded devices, because it offers comparable
sensitivity to hyperglycemia using only half as much
pre-meal history. Adopting W15 may be justified when
a 1-3 percentage point F1-Macro reduction is
acceptable in exchange for faster and lighter-weight
prediction. From a system engineering perspective,
reducing the required input history from 60 to 30
minutes translates into tangible benefits for embedded
implementation. It effectively halves the memory
allocation required for data buffering on
microcontrollers and reduces the computational
complexity of feature extraction. For battery-powered
wearable devices, this reduction can lower the
processor's duty cycle and reduce Bluetooth
transmission payloads, thereby extending device
operating life.

Feature ablation confirmed that CGM history
dominates short-term postprandial prediction. Glucose-
only models retained most of the discriminative
performance of the full models (approx. 94%).
However, the 'All Features' configuration, which
integrated glucose history with meal composition,
temporal context (time of day), and participant
diagnosis, provided a consistent performance boost
(approx. 4% in F1-Macro). This suggests that while
glucose dynamics capture the immediate physiological
state, non-glucose features provide critical contextual
constraints. Specifically, temporal features likely help
the model account for circadian variations in insulin
sensitivity (e.g., morning vs. evening resistance), while
diagnosis status sets a baseline risk probability for
each wuser. In contrast, meal-only models using
macronutrient composition and time-of-day features
performed substantially worse, with the best model
achieving an F1-Macro of approximately 0.59 and a
hyperglycemia recall of approximately 0.42. This
pattern aligns with other CGM-driven risk models,
where CGM-derived indices alone achieve high
discrimination  [38][39]. Additional clinical or
demographic features provide only modest incremental
gain. In the postprandial setting, meal information
improves precision and F1-Macro by approximately 6-
13%, but it is insufficient on its own for safety-relevant
prediction. However, despite its lower accuracy, the
Meal-Only model holds potential for specific 'cold-start'
scenarios, such as newly diagnosed patients who have
not yet been prescribed a CGM, or in resource-
constrained settings where CGM sensors are
unaffordable. In these cases, a prediction based solely

on dietary intake, while less precise, provides a
baseline educational tool to estimate post-meal risk
better than random chance.

These findings align with recent comparisons of
multivariate and univariate glucose forecasting. Nemat
et al. reported that simply appending carbohydrate,
insulin, and physical activity variables to CGM inputs
did not systematically improve forecasting accuracy,
and, in some cases, worsened performance, indicating
that multivariate models require careful data fusion to
extract value from additional modalities [40]. Simple
concatenation of feature vectors often fails to capture
the complex interdependencies between static inputs
(meal composition) and dynamic time-series (glucose
trends). While "careful fusion" in deep learning contexts
often entails advanced architectures like multi-stream
networks to align these modalities, our results suggest
that for structured biomedical data, gradient-boosted
trees offer a robust alternative. Tree-based models
inherently handle this fusion by learning non-linear
interactions between static and dynamic features at
decision-split nodes, effectively integrating the
modalities without the need for complex architectural
engineering. Seo et al. used Random Forest models
with CGM-derived features and mealtime
announcements to predict 30-minute postprandial
hypoglycemia and showed that adding structured,
event-aligned information can improve performance in
that risk domain [41]. In the present setting, meal
composition and time-of-day features, when combined
with pre-meal CGM history, yielded measurable gains
in F1-Macro and reduced false positives, but without
concurrent CGM measurements, they did not provide a
sufficiently reliable signal for hyperglycemia risk
estimation.

This work complements prior postprandial-specific
modeling that has focused either on hypoglycemia
alone or on longer input windows and mechanistic
features. Cui et al. proposed a unified LSTM model that
jointly predicts postprandial hyperglycemia and
hypoglycemia using a one-hour CGM history and
achieved strong classification performance on the
OhioT1DM dataset, highlighting the benefit of treating
the postprandial regime separately from nocturnal or
fasting periods because of distributional shifts in
glucose trajectories [42]. The present analysis extends
this approach to shorter pre-meal windows and
traditional gradient-boosted tree models on a different
dataset that includes explicit meal composition.
Lifestyle-centric frameworks such as GlucolLens
integrate CGM with detailed food logs and wearable-
derived activity measures to predict postprandial AUC
and hyperglycemia and to generate counterfactual
explanations for behavioral interventions [43]. Together
with prospective protocols that model individual
postprandial responses from diet, CGM, and rich
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clinical covariates [44], these studies suggest that meal
and behavioral variables play a larger role in long-term
AUC or personalized dietary guidance. For 60-minute
hyperglycemia prediction, CGM history remains the
dominant predictor.

The most clinically relevant metric, hyperglycemia
recall, reached approximately two-thirds in the best
configuration, with an acceptable overall F1-Macro
despite class imbalance. This performance reflects the
impact of the class weighting strategy (3.06:1), which
deliberately prioritized sensitivity (Recall) over
precision to minimize dangerous False Negatives
(missed hyperglycemia). While this trade-off results in
more False Positives (alarms for events that do not
occur), in a decision-support context, this is preferable
to missing a high-risk event. This sensitivity level does
not yet support stand-alone therapeutic automation but
may enable risk stratification, triage, and patient-facing
alerts that prompt closer postprandial monitoring. The
finding that a 30-minute pre-meal window is sufficient
and that the required inputs are limited to CGM and
basic meal information facilitates integration into
existing CGM platforms or mobile decision support
tools. The sharp performance degradation for meal-
only models indicates that prediction systems require
CGM data.

Several limitations should be noted. The analysis
relies on a single dataset with a fixed 60-minute
prediction horizon, derived from Dexcom G6 data.
Consequently, the established 30-minute optimal
window is specific to this configuration. It is plausible
that different prediction horizons (e.g., 30 or 90
minutes) or sensors with different lag times (e.g., Flash
Glucose Monitoring) might exhibit different optimal
history lengths. Future studies should examine this
potential variability to determine whether the window
size must scale linearly with the prediction horizon.
Additionally, the study used a binary definition of
hyperglycemia at 180 mg/dL without modelling episode
duration or severity and without external validation.
Insulin dosing, physical activity, sleep, and other
behavioral factors were not considered, despite their
known influence on postprandial dynamics [40][43][44].
Hyperparameter tuning was limited, and deep learning
models were not evaluated.

Future work should validate these findings on
independent cohorts with different dietary patterns and
sensor technologies. Additional directions include
exploring behavioral and clinical covariates, comparing
lightweight sequence models, and extending to multi-
horizon or joint  hyperglycemia-hypoglycemia
prediction. Incorporating explainability techniques such
as SHAP (Shapley Additive exPlanations) is a critical
next step for clinical adoption. Beyond black-box
prediction, explainability would allow the system to
inform the patient why a spike is predicted, for instance,

by distinguishing whether the risk is driven by the
specific meal composition (high carb) or the time of day
(morning resistance). This transparency would
empower patients to make targeted behavioral
adjustments rather than reacting to generic alerts.

V. Conclusion

This study systematically evaluated how observation
window length and feature composition affect machine-
learning predictions of postprandial hyperglycemia.
Through controlled ablation experiments on 1,642 meal
events from 45 participants, we established three key
findings. First, short pre-meal observation windows yield
performance comparable to that of extended histories.
The optimal 30-minute window (72.6% F1-macro, 64.0%
recall) outperformed the 15-minute window by only 1.5
percentage points, while 45- and 60-minute windows
provided no consistent advantage. This demonstrates
that recent glucose dynamics capture sufficient
information for reliable 60-minute-ahead prediction,
enabling low-latency systems with minimal buffering
requirements. Second, systematic feature ablation
revealed that glucose-trajectory features dominate
predictive performance. Glucose-only models retained
94% of full model performance (68.5% F1-macro),
whereas meal-only models achieved just 82% (59.4%
F1-macro). This quantifies the relative contributions of
different data modalities and indicates that glucose
history is essential, whereas meal composition provides
complementary but secondary value. Third, this study
employed rigorous group cross-validation, separating
participants between training and test sets, ensuring
predictions generalize to unseen individuals rather than
exploiting person-specific patterns. This validation
strategy provides realistic performance estimates for
deployment scenarios where systems encounter new
users. Combined with our window and feature findings,
these results yield actionable guidelines: 15-30-minute
observation windows balance accuracy and
responsiveness; glucose features are essential; and
meal features enhance but are not sufficient on their
own. Future work should validate these patterns across
sensors and extend to multi-horizon prediction with
explainable Al methods.
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