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Abstract Medical image segmentation serves as a key component in Computer-Aided Diagnosis (CAD) 
systems across various imaging modalities. However, the task remains challenging because many images 
have low contrast and high lesion variability, and many clinical environments require efficient models. This 
study proposes CFCSE-Net, a U-Net-based model that builds upon X-UNet as a baseline for the CFGC and 
CSPF modules. This model incorporates a modified CFGC module with added Ghost Modules in the 
encoder, a CSPF module in the decoder, and Enhanced Parallel Attention (EPA) in the skip connections. 
The main contribution of this paper is the design of a lightweight architecture that combines multi-scale 
feature extraction with an attention mechanism to maintain low model complexity and increase 
segmentation accuracy. We train and evaluate CFCSE-Net on four public datasets: Kvasir-SEG, CVC-
ClinicDB, BUSI (resized to 256 × 256 pixels), and PH2 (resized to 320 × 320 pixels), with data augmentation 
applied. We report segmentation performance as the mean ± standard deviation of IoU, DSC, and accuracy 
across three random seeds. CFCSE-Net achieves 79.78% ± 1.99 IoU, 87.21% ± 1.72 DSC, and 96.70% ± 0.59 
accuracy on Kvasir-SEG, 88.11% ± 0.86 IoU, 93.42% ± 0.55 DSC, and 99.04% ± 0.09 accuracy on CVC-
ClinicDB, 69.33% ± 2.66 IoU, 78.80% ± 2.65 DSC, and 96.30% ± 0.51 accuracy on BUSI, and 92.27% ± 0.52 
IoU, 95.92% ± 0.30 DSC, and 98.06% ± 0.16 accuracy on PH2. Despite its strong performance, the model 
remains compact with 909,901 parameters and low computational cost, requiring 3.24 GFLOPs for 256 × 
256 inputs and 5.07 GFLOPs for 320 × 320 inputs. These results show that CFCSE-Net maintains stable 
performance on polyp, breast ultrasound, and skin lesion segmentation while it stays compact enough for 
CAD systems on hardware with low computational resources. 
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I. Introduction 

Medical image segmentation holds a crucial role in 
research, especially in the development of computer-
aided diagnosis (CAD) systems [1]. Advances in 
imaging technology enable researchers to create 
various methods that support clinical diagnosis, 
biomedical studies, and visual information analysis [2], 
[3]. In general, medical image segmentation separates 
anatomical structures and pathological regions across 
various image modalities, enabling physicians to 
analyze lesions more accurately and obtain reliable 
diagnostic information [4]. The manual process of 
medical image segmentation faces several challenges, 
such as low image contrast that makes object 
boundaries hard to identify, organ and lesion shapes 
vary, and differences in image quality caused by device 
and configuration variations [5]. These conditions 
increase the risk of errors in manual segmentation 

because medical personnel experience fatigue, 
subjective interpretation, and inconsistent skill levels 
[6]. Researchers, therefore, adopt deep learning, 
especially Convolutional Neural Networks (CNNs), to 
mitigate these problems. CNNs are able to capture 
complex image patterns automatically, make manual 
feature design less important, and produce better 
segmentation accuracy [7]. 

The U-Net architecture by [8] plays a central role in 
medical image segmentation. U-Net uses a U-shaped 
encoder–decoder structure that learns context and 
restores spatial detail even when the dataset has few 
annotations. The U-Net architecture has been 
extended to produce several variants, including U-
Net++, introduced in [9], which improves the 
connection path and has been shown to increase 
accuracy across various medical image modalities. 
However, this improvement requires high 
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computational resources. To address computational 
efficiency,  [10] proposed the Half-UNet with an 
asymmetric design that reduces redundancy in the 
decoder path and channel usage. This method 
combines multi-scale features from UNet3+ and uses 
ghost modules to increase efficiency while keeping a 
uniform number of channels at each level. Ghost 
modules produce additional feature maps through 
simple operations on the main feature map, which 
improves efficiency [11]. With this design, Half-UNet 
reduces the number of parameters by up to 98.6% 
while maintaining segmentation performance 
comparable to that of U-Net and its variants. 

Several recent works aim to improve medical image 
segmentation accuracy by using attention mechanisms 
that highlight important information while keeping the 
model efficient. The study in [12] proposes BRAU-
Net++, which combines the U-Net structure with Bi-
Former (Transformer Attention) and Selective Cross-
Channel Spatial Attention (SCCSA). This combination 
allows BRAU-Net++ to balance global and local 
information and reduce background interference. 
Furthermore, [13] introduces One-Point-Five U-Net, a 
segmentation framework based on the U-Net 
architecture that employs Enhanced Parallel Attention 
(EPA) to enable the network to capture global and local 
information in parallel under noisy conditions. Overall, 
attention mechanisms help the network remove 
complex noise and make it easier to detect weak or 
low-contrast tissue edges, so the segmentation results 
stay stable. 

Recent studies show that multi-scale processing 
increases segmentation accuracy by helping the model 
combine global context with fine local information. In 
this context, X-UNet [14] introduces a collaborative 
fusion framework that serves as the baseline 
architecture of this work. X-UNet integrates 
Collaborative Fusion with Global Context-Aware 
(CFGC) modules to extract multi-scale contextual 
information and Cross Split-Channel Progressive 
Fusion (CSPF) modules to align encoder and decoder 
features through channel splitting and progressive 
fusion. By explicitly coordinating global context 
extraction and progressive feature alignment, X-UNet 
improves information flow across network stages and 
enhances segmentation performance on diverse 
medical imaging datasets. However, the original X-
UNet relies on standard convolutions and uniform 
feature fusion, which may introduce parameter 
redundancy and limit efficiency when deployed in 
resource-constrained settings. In contrast to X-UNet, 
other context-aware approaches, such as CANet [15], 
introduce a context-aware network that uses two 
pyramidal pipelines with L-shaped designs to generate 
multi-resolution inputs and multi-scale convolutions 
with chained residual pooling. These components 

highlight important features, reduce noise, and improve 
feature fusion between the encoder and decoder. They 
also emphasize the importance of global context 
modeling in medical image segmentation. 

Based on findings from prior studies, we propose an 
improved model architecture, Collaborative Fusion with 
Global Context-Aware and Cross-Split-Channel 
Progressive Fusion with Enhanced Parallel Attention 
Network (CFCSE-Net). The model aims to improve 
accuracy by incorporating multi-scale features and an 
attention mechanism, while maintaining computational 
efficiency to keep the model lightweight. Building upon 
the CFGC and CSPF modules of X-UNet, CFCSE-Net 
incorporates three main modifications, including (1) the 
encoder replaces regular convolution with a modified 
CFGC module that includes a Ghost Module; (2) the 
skip connections use Enhanced Parallel Attention 
(EPA) to strengthen feature transfer from the encoder 
to the CSPF; and (3) the decoder replaces regular 
convolution with the CSPF module only to reduce 
architectural complexity and focus the decoder on 
progressive feature fusion, while preserving 
segmentation accuracy. This design is expected to be 
lightweight, with a small parameter size and low 
GFLOPs consumption, while still providing high 
accuracy in medical image segmentation, thereby 
supporting disease prevention and diagnosis more 
effectively. 

 
Fig. 1. Stages of the proposed research process. 

 

II. Methodology 

Fig. 1 presents the overall workflow of this study. The 
research process follows six main stages: (1) dataset 
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collection, (2) dataset preprocessing, (3) model 
architecture design, (4) hyperparameter tuning, (5) 
model training, and (6) model evaluation. 

A. Dataset Collection 

This study uses four open-source medical image 
datasets for the segmentation task. The Kvasir-SEG 
offers 1,000 gastrointestinal endoscopy images with 
different masks and resolutions [16]. The CVC-
ClinicDB has 612 colonoscopy images with a native 
size of 288 × 368 pixels [17]. The Breast Ultrasound 
Images (BUSI) dataset contains 780 breast ultrasound 
images [18]; and this study uses 647 benign and 
malignant images because the normal class does not 
contain an ROI. The PH2 dataset provides 200 
dermatoscopic images of skin lesions along with their 
annotations [19]. 

B. Dataset Preprocessing 

After data collection, this study splits each dataset into 
training and testing sets with an 80:20 ratio. The study 
repeats the splitting process using three different 
random seeds to reduce split bias and ensure that the 
reported performance does not depend on a single 
favorable data partition, thereby improving 
reproducibility and result stability across different data 
splits. The study also standardizes the image sizes to 
match the architectural input. This normalization 
process prepares all datasets for stable training and 
prevents scale differences from affecting feature 
extraction. Images from Kvasir-SEG, CVC-ClinicDB, 
and BUSI are resized to 256 × 256 pixels, whereas PH2 
images are resized to 320 × 320 pixels due to their 
higher native resolution and finer dermoscopic lesion 
detail. For the other datasets, 256 × 256 offers a good 
balance between spatial detail and computational 
efficiency. Thus, input resolution is chosen based on 
dataset-specific spatial characteristics rather than 
treated as an independent experimental variable.   

      

(a) (b) (c) 

      

(d) (e) (f) 

    

(g) (h) 

Fig. 2. Examples of data augmentation results: (a) 
original, (b) vertical flip, (c) horizontal flip, (d) 
random rotation, (e) random brightness, (f) grid 
distortion, (g) elastic deformation, and (h) CLAHE 
contrast enhancement. 

In the training set, the study applies data 
augmentation eight times to increase sample variation 
and reduce overfitting [20]. The augmentations include 
horizontal and vertical flips, random rotations (90 °, 180 
°, 270 °), random brightness/contrast adjustments, grid 
distortion, elastic deformation, and CLAHE contrast 
enhancement. Specifically, each original image–mask 
pair is transformed into eight variants (including the 
original), each generated by applying a single 
augmentation operation. This augmentation strategy 
expands the visual variability of the dataset, improves 
the stability of feature learning, and supports better 
generalization during segmentation [21]. Fig. 2 
provides examples of the augmentation results, and 
Table 1 summarizes the dataset distribution. 
 

Table 1. Split dataset distribution. 

Dataset 
Training 

Set 
Training Set 
(Augmented) 

Test Set 

Kvasir-
SEG 

800 6400 200 

CVC-
ClinicDB 

489 3912 123 

BUSI 517 4136 130 

PH2 160 1280 40 

 

C. Model Architecture Design 

The proposed CFCSE-Net architecture is illustrated in 
Fig. 3 and represents an extended version of the 
standard U-Net framework through several structural 
refinements. The network uses an encoder–decoder 
structure and is based on the X-UNet architecture [14], 
which integrates modified CFGC and CSPF modules. 
CFCSE-Net applies a channel configuration of (16, 32, 
64, 128, 256). On the encoder, the model uses the 
CFGC module to extract multi-scale features and apply 
global context weighting. The model also incorporates 
Ghost Modules into the CFGC module to keep 
informative feature representations while reducing 
computational cost [11]. From each encoder block, the 
model sends skip connections to the decoder before the 
downsampling step. For every skip connection, the 
model applies the Enhanced Parallel Attention (EPA) 
mechanism to emphasize important channel and spatial 
information while reducing noise. The model then sends 
the refined skip features to the CSPF module on the 
decoder path. In the decoder, CSPF aligns the incoming 
features and fuses them channel-wise with its internal 
representations. This process preserves boundary 
details and global contextual cues and improves 
segmentation accuracy. The conventional convolutional 
blocks in the encoder are replaced with a modified 
Collaborative Fusion with Global Context-Aware 
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(CFGC) module with Ghost Modules, as shown in Fig. 4 
(a). Compared to the original CFGC module in X-UNet 
[14], the proposed CFGC in CFCSE-Net preserves the 
original fusion and global context modelling scheme. 
The model modifies only the convolutional operations to 
improve parameter efficiency. The proposed CFGC 
module replaces the original 3 × 3 and 7 × 7 depthwise 

convolutions with 3 × 3 and 7 × 7 Ghost depthwise 
convolutions replaces the 1 × 1 standard convolution 

with a 1 × 1 Ghost convolution, and replaces the final 

3 × 3 standard convolution with a 3 × 3 Ghost 

convolution. Both GhostDWConv and GhostConv follow 
the Ghost Module principle, generating additional 
feature maps from a small set of intrinsic features using 
inexpensive linear operations. GhostDWConv is applied 
during primary feature extraction to efficiently capture 
multi-scale spatial patterns, whereas GhostConv 
performs channel regulation and feature refinement after 
multi-scale fusion. By integrating these Ghost Modules, 
the CFGC module achieves significant reductions in 
parameter count and computational cost without altering 
its original fusion structure or global context modeling 
capability.  

The process begins with an input feature map 𝑋1 ∈
𝑅𝐶×𝐻×𝑊, where 𝐶, 𝐻, and 𝑊 denote the channel, height, 

and width dimensions. The CFGC module applies Ghost 
depthwise convolutions with kernel sizes 𝑘 ∈ {3,7} to 

extract multi-scale feature representations and produce 
two output feature maps 𝑋2 and 𝑋3, which correspond to 

local and global receptive-field scales, respectively, as 

illustrated in Fig. 4 (a). The 3 × 3 GhostDWConv 

captures fine local spatial details with a limited receptive 
field, while the 7 × 7 GhostDWConv captures long-

range contextual and structural information. This 
operation is defined in Eq. (1) [14]. 

𝑋𝑖 = 𝐺ℎ𝑜𝑠𝑡𝐷𝑊𝐶𝑜𝑛𝑣𝑘×𝑘(𝑋1), 𝑘 ∈ {3,7} (1)  

The module then concatenates these multi-scale 
features and applies a 1 × 1 Ghost convolution to 

regulate the channel size and computational cost, 
generating the fused feature map 𝑋4, as expressed in 

Eq. (2) [14]. 

𝑋4 = 𝐺ℎ𝑜𝑠𝑡𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝑋2, 𝑋3)) (2)  

To capture structural patterns distributed along the 
vertical (𝐻) and horizontal (𝑊) dimensions, CFGC 

computes channel-wise average and max projections 
from 𝑋2 and 𝑋3. These are then combined into pairs of 
directional descriptors 𝐻1 and 𝑊1, which are further 

fused using 3 × 3 convolutions and reshaped, as shown 

in Eqs. (3) and (4), following [14], where 𝐻 and 𝑊 

represent the aggregated vertical and horizontal 
attention features. 

𝐻 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐶𝑜𝑛𝑣3×3(𝐶𝑜𝑛𝑐𝑎𝑡(𝐻1, 𝐻2))) (3)  
𝑊 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐶𝑜𝑛𝑣3×3(𝐶𝑜𝑛𝑐𝑎𝑡(𝑊1, 𝑊2))) (4)  

By performing matrix interactions between (𝐻1, 𝐻2) and 

(𝑊1, 𝑊2), the module approximates global spatial self-

attention and computes a set of global self-adjusting 
weights 𝐼 ∈ 𝑅1×𝐻×𝑊, as defined in Eq. (5) [14]. 

𝐼𝑖,𝑗 =
exp (𝐻𝑖∗𝑊𝑗)

∑ exp (𝐻𝑖∗𝑊𝑗)′𝑛
𝑖=1

,     𝑛 = 2𝐶 × 2𝐶 (5)  

 
Fig. 3. Architecture of the proposed CFCSE-Net. 
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The module applies a sigmoid function to normalize the 
weights and generates a global response map 𝐸, as 

shown in Eq. (6) [14], where 𝐸 represents the spatial 

attention response. 

𝐸 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐼) (6)  

The response map then reweights 𝑋4 through element-

wise calibration. The final output 𝑋′ is obtained via 3 × 3 

Ghost convolution, as expressed in Eq. (7) [14]. 

𝑋′ = 𝐺ℎ𝑜𝑠𝑡𝐶𝑜𝑛𝑣3×3(𝑋4 ∗ 𝐸) (7)  

Through this design, CFGC effectively combines local 
details (from 3 × 3 Ghost depthwise filters) and global 

contextual cues (from 7 × 7 Ghost depthwise filters and 

spatial weighting) while maintaining a low parameter 
footprint. This enables the model to remain lightweight 
yet capable of capturing long-range dependencies that 
are crucial for segmenting ambiguous anatomical 
boundaries and wide structural regions. On the 
decoder side, the model replaces standard 
convolutional blocks with the Cross Split-Channel 
Progressive Fusion (CSPF) module, as illustrated in 
Fig. 4 (b). CSPF progressively aligns and fuses 
encoder–decoder features in the channel domain to 
reduce semantic discrepancies and strengthen feature 
consistency. The first step involves feeding the encoder 
feature 𝑌1 and decoder feature 𝑌2. Both feature maps 

are evenly divided along the channel dimension, 
resulting in four sub-features 𝑌3, 𝑌4 , 𝑌5, and 𝑌6, where 𝑌3 

and 𝑌4 denote the split encoder features, while 𝑌5 and 

𝑌6 denote the split decoder features. The cross-paired 

groups (𝑌3, 𝑌5) and (𝑌4, 𝑌6), are concatenated and fused 

using 1 × 1 convolutions to capture cross-level 

correspondence, as described in Eqs. (8) and (9), 
following [14].  

𝑌7 = 𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝑌3, 𝑌5)) (8)  
𝑌8 = 𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝑌4, 𝑌6)) (9)  

To make the fusion channel-aware, channel weighting 
vectors are generated via global average pooling on 𝑌1 

and 𝑌2, as defined in Eq. (10) [14], where 𝑂1 and 𝑂2 are 

derived from the encoder and decoder features, 
respectively. 

𝑂𝑖 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙(𝑌𝑖), 𝑖 ∈ {1,2} (10)  

These weighting vectors modulate 𝑌7 and 𝑌8 through 

element-wise multiplication, producing calibrated feature 
sets 𝑍1 and 𝑍2, as expressed in Eq. (11) [14], where 𝑍1 

and 𝑍2 represent the channel-attended fused features. 

𝑍1 = 𝑌7 ∗ 𝑂1, 𝑍2 = 𝑌8 ∗ 𝑂2 (11)  

Finally, the calibrated features are concatenated and 
compressed using a 1 × 1 convolution to yield the fused 

output 𝑍′, as described in Eq. (12) [14]. 

𝑍′ = 𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝑍1, 𝑍2)) (12)  

With this mechanism, CSPF is able to align detailed 
information from the encoder and context from the 
decoder more adaptively on each channel. To further 
reduce computational cost, the architecture incorporates 
the Ghost Module within the CFGC block, with the 
structure of the Ghost Module illustrated in Fig. 5. This 
module is applied at several stages to enhance feature 
extraction efficiency by lowering both parameter count 
and computational load. Inspired by GhostNet [11], it 
replaces standard convolution with two lightweight 
operations: a pointwise convolution that generates the 
primary features and a depthwise convolution that 

 
Fig. 4. Architecture of (a) Collaborative Fusion with Global Context-Aware (CFGC) module and (b) Cross 
split-channel progressive fusion (CSPF) module. 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1371
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 206-221                                        e-ISSN: 2656-8632 

 

Manuscript received 8 September 2025; Revised 10 December 2025; Accepted 20 December 2025; Available online 9 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1371 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 211               

produces additional “ghost features.” This approach 
enables the network to obtain rich feature 
representations while maintaining significantly lower 
computational complexity compared with conventional 
convolutional layers. 

 
Fig. 5. Architecture of Ghost Module. 

 
Fig. 6. Structure of the Enhanced Parallel Attention 
(EPA). 
 

The network places the Enhanced Parallel Attention 
(EPA) module in the skip-connection path to strengthen 
important features before they enter the decoder stage. 
The structure of the EPA module is illustrated in Fig. 6. 
EPA has three parallel attention branches: Simple Pixel 
Attention (SPA), Channel Attention (CA), and Pixel 
Attention (PA). CA captures global channel 
relationships, whereas SPA and PA emphasize spatial 
information at fine spatial scales [22]. The outputs of the 
three branches are stacked along the channel axis, and 
the network sends them to a PWConv–ReLU–PWConv 
block to obtain the required channel size. The model 
also adds an identity shortcut to preserve original 
information and maintain stable gradient flow. Through 
this design, EPA highlights relevant features, reduces 
noise, and improves segmentation accuracy. 

D. Hyperparameter Tuning 

In this study, hyperparameter tuning is performed on 
the CVC-ClinicDB dataset, which exhibits 
representative variability in lesion size, shape, and 
boundary clarity across the evaluated datasets. This 

dataset presents sufficient complexity to reflect 
common segmentation challenges while maintaining 
stable training behavior, making it suitable for 
identifying robust hyperparameter configurations. The 
tuning process aims to determine the most effective 
parameter combination that improves model 
performance on the segmentation task [23]. It 
evaluates key training components, including activation 
functions, optimizers, and loss functions, using a 
controlled empirical evaluation approach through 
comparative experiments to observe their impact on 
training stability and segmentation quality. During 
hyperparameter tuning, one hyperparameter category 
is varied at a time while others remain fixed. 

The study tests several activation functions such as 
ReLU, LeakyReLU, ELU, SELU, and GELU, to analyze 
their influence on the learning process. The study also 
tests various optimizers, including Adam, NAdam, 
AdamW, and RMSProp, to observe their convergence 
behavior during training. In addition, the study 
evaluates several loss functions, such as Binary Cross-
Entropy (BCE), Dice Loss, Tversky Loss, and the 
combined BCE + Dice Loss, to determine the loss 
formulation that produces stable and accurate 
segmentation results. The selection of optimal 
hyperparameters relies on quantitative performance 
metrics, where configurations that produce higher Dice 
Similarity Coefficient (DSC), Intersection over Union 
(IoU), and Accuracy (Acc) values indicate optimal 
performance. 

E. Model Training 

The model training phase uses the optimal 
hyperparameters obtained from the tuning process. 
The training procedure takes the training data as input 
and produces segmentation masks as output. This 
work uses the CVC-ClinicDB dataset for 
hyperparameter tuning and ablation studies because it 
has reliable annotations and a moderate level of 
difficulty. The training phase uses RGB medical images 
as input and binary masks as output for all datasets. A 
high-performance workstation with an NVIDIA RTX 
A4000 GPU runs all experiments, and the PyTorch 
framework handles model implementation and 
optimization. 

F. Model Evaluation 

For evaluation, this study uses the test set of each 
dataset to measure segmentation quality. The analysis 
reports three main metrics: Intersection over Union 
(IoU), Dice Similarity Coefficient (DSC), and accuracy, 
which compare model predictions with the ground truth 
[24]. The study also checks computational efficiency 
using the number of parameters and GFLOPs to 
describe model size and computational cost. The 
Intersection over Union (IoU) metric in Eq. (13) 
measures the overlap between the region the model 
predicts as positive and the ground-truth region [25]. 
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𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(13) 

In this equation, TP denotes true positive pixels, FP 
denotes pixels that the model predicts as positive but 
belong to the negative class, and FN denotes positive 
pixels that the model does not detect. The Dice 
coefficient in Eq. (14) quantifies the overlap between 
the predicted and ground-truth masks [25]. 

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(14)  

This metric emphasizes the balance between correctly 
detected positive pixels and errors produced by FP and 
FN. The accuracy metric in Eq. (15) calculates the 
proportion of correctly predicted pixels [25]. 

𝐴𝑐𝑐 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
(15) 

This equation uses TN to denote true-negative pixels, 
i.e., pixels in the negative class that the model predicts 
as negative. This study calculates the number of 
trainable parameters using Eq. (16) [26]. 

𝑃𝑎𝑟𝑎𝑚𝑠 = 𝐾ℎ × 𝐾𝑤 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 (16) 

Here, 𝐾 denotes the kernel size, 𝐶𝑖𝑛 represents the 

number of input channels, and 𝐶𝑜𝑢𝑡 refers to the 

number of output channels. GFLOPs are defined in Eq. 
(17) to measure the computational workload of the 
model [26]. 

𝐺𝐹𝐿𝑂𝑃𝑠 =
2 × (𝐾2 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝑊𝑜𝑢𝑡)

109
(17) 

Here, 𝐻𝑜𝑢𝑡 and 𝑊𝑜𝑢𝑡 denote the output height and 

width. GFLOPs indicate the number of operations for 
one forward pass. 
 

III. Result 

A. Hyperparameter Tuning 

This study performs hyperparameter tuning by testing 
several configuration choices, including different 
optimizers, activation functions, and loss functions. The 
CVC-ClinicDB dataset serves as the basis for tuning and 
identifies the most effective settings for model 
development. All experiments were run sequentially, 
allowing each run to refine the previous configuration 
and progressively converge towards more optimal 
settings. Table 2 presents a comparison between the 
initial hyperparameters with the optimized values 
derived incrementally throughout the overall successive 
stages of the tuning process. The initial experiments 
determine the appropriate optimizer to balance model 
performance and computational complexity. Table 3 
presents the results of this stage, and Fig. 7 compares 
the last 5 epochs. The study evaluates four optimizers 
on the CVC-ClinicDB dataset: Adam, NAdam, AdamW, 
and RMSProp. NAdam achieves the highest 
consistency in accuracy and is selected as the primary 
optimizer for subsequent experiments. The second 
experiment evaluates five activation functions, namely 
ReLU, LeakyReLU, ELU, SELU, and GELU, while 
keeping NAdam as the fixed optimizer. Table 3 shows 
that the choice of activation function significantly affects 
accuracy, although it does not change the total number 
of model parameters. ReLU provides the highest 
performance, so this study uses it as the default 
activation function for later experiments. The last 
experiment compares four loss functions under 
imbalanced-class conditions in medical image 
segmentation. These loss functions include Binary 
Cross-Entropy (BCE), Dice Loss (DL), Tversky Loss 
(TL), and a combined Binary Cross-Entropy and Dice 

Table 2. Comparison of the initial hyperparameters with the resulting optimal configuration. 

Hyperparameter Initial Optimal 

Batch Size 4 4 

Seed 3 3 

Epoch 100 100 

Image Size 

256×256 (Kvasir-SEG, CVC-
ClinicDB, & BUSI) 

256×256 (Kvasir-SEG, CVC-ClinicDB, & BUSI) 

320×320 (PH2) 320×320 (PH2) 

Learning Rate 

0.0003 (Kvasir-SEG, CVC-
ClinicDB, & PH2) 

0.0003 (Kvasir-SEG, CVC-ClinicDB, & PH2) 

0.0005 (BUSI) 0.0005 (BUSI) 

Cosine Annealing Delay 0.00001 0.00001 

Optimizer Adam NAdam 

Activation Function ReLU ReLU 

Loss Function BCE + DL BCE + DL 
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Loss (BCE + DL). Table 3 shows that BCE + DL 
achieves the highest accuracy; therefore, this study 
adopts it as the loss function for training the proposed 
model, as it integrates pixel-level supervision with 
region-overlap optimization to enable stable and 
discriminative feature learning. 

B. Model Ablation 

The ablation experiment examines how each 
component of the CFCSE-Net architecture contributes 
to performance by selectively removing or modifying 
specific modules. The model integrates three main 
modules: the CFGC Module, the CSPF Module, and the 
EPA Module. The study evaluates seven configurations: 
(1) U-Net baseline, (2) CFCSE-Net without CSPF and 
EPA, (3) CFCSE-Net without CFGC and EPA, (4) 
CFCSE-Net without CSPF, (5) CFCSE-Net without 
CFGC, (6) CFCSE-Net without EPA, and (7) the full 
CFCSE-Net as the proposed method.  

Table 4 shows that each module provides a distinct 
contribution to segmentation performance, while Table 5 
provides a qualitative comparison of the ablation 
variants by visually contrasting the predicted masks with 

the input images and ground truth. Removing the CSPF 
module (Ablation 4) reduces IoU and DSC, which 
indicates that CSPF improves feature representation 
through progressive channel-split fusion in the decoder. 
This fusion mechanism aligns and combines multi-scale 
features more effectively, allowing the decoder to 
recover fine-grained spatial details. Removing the 
CFGC module (Ablation 5) results in a larger 
performance drop, confirming that global context 
information plays a critical role in guiding encoder 
feature extraction. By modeling long-range 
dependencies, CFGC helps the network distinguish 
target regions from complex backgrounds and improves 
boundary consistency. 

Removing the EPA module (Ablation 6) results in a 
moderate performance decrease, indicating that EPA 
enhances information flow across skip connections by 
emphasizing relevant encoder features prior to fusion. 
Configurations that remove two modules simultaneously 
(Ablation 2 and Ablation 3) show more severe 
performance degradation, which demonstrates that the 
modules complement each other rather than operate 

Table 3. Hyperparameter tuning results. 

Hyperparameter IoU/% DSC/% Acc/% Parameter GFLOPs 

Optimizer 

Adam 86.07 91.73 98.91 909,901 3.24G 

NAdam 87.64 93.17 99.01 909,901 3.24G 

AdamW 85.76 91.54 98.90 909,901 3.24G 

RMSProp 83.94 90.59 98.51 909,901 3.24G 

Activation 
Function 

ReLU 88.04 93.31 99.02 909,901 3.24G 

LeakyReLU 87.30 92.56 98.96 909,901 3.24G 

ELU 86.62 92.01 98.98 909,901 3.24G 

SELU 85.36 91.63 98.80 909,901 3.24G 

GELU 87.10 92.68 99.00 909,901 3.24G 

Loss 
Function 

BCE 86.28 91.93 98.90 909,901 3.24G 

DL 86.95 92.12 99.02 909,901 3.24G 

Tversky Loss 85.92 91.60 98.89 909,901 3.24G 

BCE + DL 88.04 93.31 99.02 909,901 3.24G 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Fig. 7. The hyperparameter tuning results in the last 5 epochs are presented in graphs of: (a) optimizer, (b) 

activation function, and (c) loss function. 
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independently. Overall, the full CFCSE-Net model 
achieves the best results with an IoU of 88.04%, a DSC 
of 93.31%, an accuracy of 99.02%, 0.90M parameters, 
and a complexity of 3.24 GFLOPs. These results show 
that the combination of CFGC, CSPF, and EPA offers 
the best balance between segmentation accuracy and 
computational cost.  

C. Experiment Result 

After the hyperparameter tuning stage and the ablation 
study, this work selects the optimal parameter settings 
and the most effective model variant. To improve 
reproducibility and reduce potential bias from a single 
data split, each dataset is evaluated using three random 
train-test splits, and the final results are reported as the 
mean and standard deviation of the performance 
metrics. Table 2 lists the optimal hyperparameters, 
which are consistently applied during training on the 
Kvasir-SEG, CVC-ClinicDB, BUSI, and PH2 datasets. 
Table 6 summarizes the quantitative performance of 
CFCSE-Net across all evaluated datasets. The model 
achieves an IoU of 79.78% ± 1.99 on Kvasir-SEG, 
88.11% ± 0.86 on CVC-ClinicDB, 69.33% ± 2.66 on 
BUSI, and 92.27% ± 0.52 on PH2. Correspondingly, the 
DSC values reach 87.21% ± 1.72, 93.42% ± 0.55, 
78.80% ± 2.65, and 95.92% ± 0.30, while the accuracy 
remains above 96% across all evaluated datasets. The 
relatively small standard deviations indicate that the 
proposed model exhibits stable and robust performance 
across different random splits. In terms of efficiency, 
CFCSE-Net maintains a lightweight design with 

approximately 0.90 million parameters and low 
computational complexity, requiring 3.24 GFLOPs for 
most datasets and 5.07 GFLOPs for PH2, which has a 
higher input resolution. These results demonstrate that 
the proposed model achieves strong segmentation 
accuracy while preserving computational efficiency 
across different imaging modalities. 

During training, this study tracks both training loss 
and validation loss to analyze convergence behavior 
and training stability, as shown in Fig. 8. The figure 
illustrates representative loss curves from one of the 
three random train–test splits for each dataset. For all 
datasets, the training loss consistently decreases and 
converges smoothly, indicating stable optimization. The 
validation loss follows a similar trend and remains close 
to the training loss, suggesting that the model does not 
suffer from severe overfitting. Slight fluctuations in the 
validation loss, particularly BUSI, reflect the higher 
variability and complexity of ultrasound images rather 
than unstable training. Overall, the loss curves confirm 
that CFCSE-Net converges effectively and generalizes 
well across different datasets. After training, the study 
evaluates the trained model on each dataset's test set to 
assess generalization performance. Table 6 reports the 
quantitative test results, while Table 7 presents 
qualitative visual comparisons between the predicted 
segmentation masks and the ground-truth masks. 
CFCSE-Net shows close alignment with the ground truth 
on Kvasir-SEG, CVC-ClinicDB, and PH2, where clearer 
boundaries, higher contrast, and more homogeneous 

Table 4. Ablation Model Results. 

Method IoU/% DSC/% Acc/% Parameter GFLOPs 

Ablation 1 87.48 92.70 99.00 1,944,049 6.93G 

Ablation 2 86.49 92.26 98.89 1,122,225 4.50G 

Ablation 3 87.66 92.86 99.00 1,444,289 3.87G 

Ablation 4 85.95 91.46 98.88 1,213,101 5.08G 

Ablation 5 84.15 90.60 98.66 748,013 2.92G 

Ablation 6 87.77 93.19 99.00 819,025 2.66G 

CFCSE-Net 88.04 93.31 99.02 909,901 3.24G 

 

Table 5. Qualitative comparison of model ablation (a) input image, (b) ablation 1, (c) ablation 2, (d) ablation 
3, (e) ablation 4, (f) ablation 5, (g) ablation 6, (h) CFCSE-net, (i) ground truth 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 
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backgrounds allow the CFGC, CSPF, and EPA modules 
to effectively capture global context and preserve 
boundary details, resulting in smooth and accurate 
segmentation. In contrast, on the BUSI dataset, although 
the model successfully identifies the overall lesion 
regions, minor boundary inaccuracies arise from 
ultrasound-specific challenges, such as speckle noise, 
low contrast, and heterogeneous tissue structures. 
These qualitative observations are consistent with the 
quantitative results and indicate that ultrasound-
adaptive feature enhancement could further improve 
segmentation performance in future work.  
 

IV. Discussion 

This study introduces CFCSE-Net, a segmentation 
architecture that improves accuracy while maintaining 
computational efficiency. The model evaluates four 
heterogeneous datasets and compares the results with 
several well-established architectures, including U-Net 
[8], U-Net++ [9], AttU-Net [27], TransUNet [28], 
UCTransUNet [29], CANet [15], TransAttUNet [30], 
BRAUNet++ [12], FDFUNet [31], and X-UNet [14], 
which serves as the primary architectural baseline for 
the CFGC and CSPF modules. Compared to X-UNet, 
CFCSE-Net introduces targeted modifications to 
enhance efficiency and feature utilization. In the 
encoder, the model replaces standard convolutions in 
the CFGC module with Ghost-based operations to 
reduce parameter redundancy while preserving global 
context modelling. Along the skip connections, the 
model integrates the Enhanced Parallel Attention 
(EPA) module to emphasize informative encoder 
features before fusion. In the decoder, the architecture 
relies solely on the CSPF module, without combining it 
with CFGC, thereby reducing architectural complexity 

and focusing the decoder on progressive channel-wise 
feature fusion. The ablation results confirm that these 
modifications collectively improve feature 
representation, maintain segmentation accuracy, and 
significantly reduce parameter count and 
computational cost compared to the original X-UNet 
design.  

The proposed CFCSE-Net achieves competitive 
performance with significantly fewer parameters and 
lower GFLOPs, as shown in Table 8. On the Kvasir-
SEG dataset with an input resolution of 256 × 256, the 
model attains an IoU of 79.78% ± 1.99, a DSC of 
87.21% ± 1.72, and an accuracy of 96.70% ± 0.59, 
indicating stable performance across different data 
splits. In addition, CFCSE-Net delivers the highest IoU 
and accuracy among the compared methods while 
maintaining a lightweight design with only 0.90M 
parameters and 3.24 GFLOPs. Although its DSC is 
slightly lower than that of X-UNet [14] (87.41 ± 1.62), 
the proposed model remains substantially more 
efficient than X-UNet (5.94M parameters, 10.72 
GFLOPs). Despite the variability in polyp appearance, 
the model maintains consistent segmentation 
performance, offering an efficient alternative to more 
computationally intensive methods for real-time, 
resource-constrained applications. 

For the CVC-ClinicDB dataset, Table 9 reports the 
performance of the model. The model achieves an IoU 
of 88.11% ± 0.86, a DSC of 93.42% ± 0.55, and an 
accuracy of 99.04% ± 0.09, demonstrating both high 
segmentation accuracy and stable performance across 
different data splits. The clearer texture and higher 
contrast in this dataset allow the network to capture 
object boundaries with better precision. Although its 
DSC remains slightly below the score of X-UNet [14], 

Table 6. Performance results obtained from all four datasets. 

Dataset IoU/% DSC/% Acc/% Parameter GFLOPs 

Kvasir-SEG 79.78 ± 1.99 87.21 ± 1.72 96.70 ± 0.59 

909.901 
3.24G CVC-ClinicDB 88.11 ± 0.86 93.42 ± 0.55 99.04 ± 0.09 

BUSI 69.33 ± 2.66 78.80 ± 2.65 96.30 ± 0.51 

PH2 92.27 ± 0.52 95.92 ± 0.30 98.06 ± 0.16 5.07G 

 

    

(a) (b) (c) (d) 

Fig. 8. Training and validation loss curves for (a) Kvasir-SEG, (b) CVC-ClinicDB, (c) BUSI, and (d) PH2. 
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the approach maintains high IoU and accuracy and 
uses a smaller number of parameters with lower 
computational cost. These results show that the 
method keeps high efficiency and adapts well to 
different polyp segmentation conditions. The results on 
the BUSI dataset are summarized in Table 10. 
Compared to other methods, BUSI presents a more 
challenging segmentation task due to the inherent 
characteristics of breast ultrasound images, including 
strong speckle noise, low contrast, heterogeneous 
tissue structures, and irregular lesion boundaries. 
These factors complicate accurate boundary 
localization and contribute to the lower IoU and DSC 
values observed on this dataset. Under these 
challenging conditions, the proposed CFCSE-Net 

achieves an IoU of 69.33% ± 2.66, a DSC of 78.80% ± 
2.65, and an accuracy of 96.30% ± 0.51, while 
maintaining a lightweight design with only 0.90M 
parameters and 3.24 GFLOPs. Although these results 
are slightly lower than X-UNet [14] (69.57% ± 1.30 IoU, 
80.34% ± 1.53 DSC, and 96.64% ± 0.21 accuracy), 
CFCSE-Net remains competitive while being 
substantially more efficient than X-UNet (5.94M 
parameters, 10.72 GFLOPs). This performance gap 
indicates that breast ultrasound segmentation may 
benefit from additional domain-specific enhancements, 
which remain a promising direction for future work. 

The results on the PH2 dataset are summarized in 
Table 11. Our model obtains the best scores for all 
evaluation metrics, with an IoU of 92.27% ± 0.52, a 

Table 7. Predicted outputs across all four datasets. 

Dataset Input Image Ground Truth Prediction Overlay IoU/DSC 

Kvasir-SEG 

    

96.20%/98.06% 

CVC-
ClinicDB 

    

96.12%/98.02% 

BUSI 

    

90.71%/95.13% 

PH2 

    

94.97%/97.42% 

 
Table 8. Quantitative comparisons of various methods on the Kvasir-SEG dataset. 

Method 
Kvasir-SEG 

Params GFLOPs 
IoU/% DSC/% Acc/% 

U-Net [8] 75.55 ± 1.98 85.27 ± 1.59 95.63 ± 0.41 7.77M 13.75G 

U-Net++ [9] 76.71 ± 2.22 86.07 ± 1.71 95.91 ± 0.37 9.16M 34.65G 

AttUNet [27] 77.06 ± 1.71 86.27 ± 1.25 95.92 ± 0.31 8.73M 16.74G 

TransUNet [28] 77.76 ± 1.43 86.84 ± 1.05 96.08 ± 0.21 105.32M 32.14G 

UCTransUNet [29] 77.50 ± 2.51 86.59 ± 1.95 95.99 ± 0.55 66.49M 43.01G 

CANet [15] 77.30 ± 0.52 86.31 ± 0.54 95.96 ± 0.10 24.12M 25.32G 

TransAttUNet [30] 78.45 ± 2.23 87.26 ± 1.64 96.21 ± 0.45 25.97M 88.57G 

BRAUNet++ [12] 75.79 ± 2.02 85.50 ± 1.61 95.66 ± 0.32 62.63M 22.33G 

FDFUNet [31] 78.37 ± 2.38 87.17 ± 1.78 96.19 ± 0.53 20.95M 10.48G 

X-UNet [14] 78.65 ± 2.19 87.41 ± 1.62 96.24 ± 0.34 5.94M 10.72G 

Proposed Method 79.78 ± 1.99 87.21 ± 1.72 96.70 ± 0.59 0.90M 3.24G 
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DSC of 95.92% ± 0.30, and an accuracy of 98.06% ± 
0.16. The low standard deviation values indicate highly 
consistent predictions across different data splits, 
demonstrating the robustness of the proposed model. 
Even with an input resolution of 320 × 320 pixels, the 
network stays efficient and uses only 0.90M 
parameters and 5.07 GFLOPs. Several transformer-
based models perform poorly on this dataset because 
the training set contains only a small number of images. 
In contrast, the proposed approach maintains strong 
and stable results, indicating robust performance under 
data-constrained conditions. Across all four datasets, 
the proposed method uses the fewest parameters and 
GFLOPs among the compared models. It achieves the 
highest IoU and accuracy on Kvasir-SEG and CVC-
ClinicDB, and it achieves the best overall performance 
on PH2. However, it performs slightly below X-UNet on 
BUSI for IoU, DSC, and accuracy. BUSI images 
contain strong speckle noise and low contrast, which 
can blur lesion boundaries and reduce overlap metrics. 
This gap suggests that BUSI segmentation needs 
additional ultrasound-specific enhancements to better 
handle noise and irregular boundaries.  

Although CFCSE-Net shows competitive accuracy 
with substantially fewer parameters and GFLOPs than 

many existing methods, several limitations should be 
noted. The model uses only four benchmark datasets, 
so it does not demonstrate generalization to other 
imaging modalities or to real clinical data. Some 
datasets, especially PH2, contain limited samples, so 
the model may show different robustness on larger 
cohorts even with augmentation. The model also trains 
and tests only on individual 2D images after acquisition, 
so it does not evaluate real-time video conditions such 
as motion blur, frame-to-frame variation, and latency 
constraints. These limitations affect the interpretation of 
the results, because the reported metrics may change 
in broader clinical settings and continuous workflows. 
Therefore, the current findings mainly support 
performance on the selected benchmarks and offline 
2D segmentation. 

Despite these limitations, the balance between 
accuracy and efficiency shows the practical relevance 
of the proposed architecture for deployment in 
resource-constrained environments. With 
approximately 0.90 million parameters and low 
computational cost (3.24 GFLOPs for 256 × 256 inputs 
and 5.07 GFLOPs for 320 × 320 inputs), CFCSE-Net 
supports computer-aided diagnosis (CAD) systems on 
edge devices and low-power clinical workstations, 

Table 9. Quantitative comparisons of various methods on the CVC-ClinicDB dataset. 

Method 
CVC-ClinicDB 

Params GFLOPs 
IoU/% DSC/% Acc/% 

U-Net [8] 84.88 ± 0.75 91.56 ± 0.50 98.49 ± 0.12 7.77M 13.75G 

U-Net++ [9] 86.48 ± 0.13 92.60 ± 0.09 98.67 ± 0.04 9.16M 34.65G 

AttUNet [27] 86.22 ± 0.46 92.45 ± 0.29 98.65 ± 0.02 8.73M 16.74G 

TransUNet [28] 86.95 ± 0.65 92.91 ± 0.40 98.73 ± 0.05 105.32M 32.14G 

UCTransUNet [29] 87.47 ± 0.50 93.22 ± 0.31 98.77 ± 0.12 66.49M 43.01G 

CANet [15] 86.88 ± 0.75 92.86 ± 0.48 98.72 ± 0.13 24.12M 25.32G 

TransAttUNet [30] 87.66 ± 0.36 93.33 ± 0.25 98.79 ± 0.10 25.97M 88.57G 

BRAUNet++ [12] 86.12 ± 0.37 92.40 ± 0.26 98.62 ± 0.08 62.63M 22.33G 

FDFUNet [31] 87.81 ± 0.14 93.42 ± 0.09 98.84 ± 0.07 20.95M 10.48G 

X-UNet [14] 87.90 ± 0.14 93.49 ± 0.07 98.84 ± 0.06 5.94M 10.72G 

Proposed Method 88.11 ± 0.86 93.42 ± 0.55 99.04 ± 0.09 0.90M 3.24G 

 
Table 10. Quantitative comparisons of various methods on the BUSI dataset. 

Method 
BUSI 

Params GFLOPs 
IoU/% DSC/% Acc/% 

U-Net [8] 63.25 ± 1.07 75.42 ± 1.04 96.19 ± 0.30 7.77M 13.75G 

U-Net++ [9] 64.40 ± 0.92 76.57 ± 0.88 96.27 ± 0.28 9.16M 34.65G 

AttUNet [27] 65.27 ± 1.46 77.05 ± 1.53 96.43 ± 0.26 8.73M 16.74G 

TransUNet [28] 66.05 ± 2.23 77.61 ± 2.34 96.02 ± 0.06 105.32M 32.14G 

UCTransUNet [29] 67.17 ± 1.20 78.47 ± 1.64 96.26 ± 0.26 66.49M 43.01G 

CANet [15] 68.52 ± 1.20 79.49 ± 1.60 96.61 ± 0.22 24.12M 25.32G 

TransAttUNet [30] 67.56 ± 1.41 78.99 ± 1.43 96.42 ± 0.25 25.97M 88.57G 

BRAUNet++ [12] 66.67 ± 1.37 78.21 ± 1.54 96.20 ± 0.34 62.63M 22.33G 

FDFUNet [31] 68.12 ± 0.36 79.28 ± 0.65 96.48 ± 0.28 20.95M 10.48G 

X-UNet [14] 69.57 ± 1.30 80.34 ± 1.53 96.64 ± 0.21 5.94M 10.72G 

Proposed Method 69.33 ± 2.66 78.80 ± 2.65 96.30 ± 0.51 0.90M 3.24G 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1371
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 206-221                                        e-ISSN: 2656-8632 

 

Manuscript received 8 September 2025; Revised 10 December 2025; Accepted 20 December 2025; Available online 9 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1371 
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 218               

where memory usage, inference latency, and energy 
efficiency are critical. This design enables faster 
inference and supports near-real-time feedback in 
clinical workflows such as endoscopy and ultrasound 
examination. Future work should further evaluate the 
approach on additional imaging modalities and real-
time clinical scenarios, including extensions to 
volumetric 3D data through separable or pseudo-3D 
convolutional operations and selective attention along 
spatial or depth dimensions, as well as video-based 
segmentation using lightweight temporal feature reuse 
or frame-to-frame refinement strategies, while 
preserving the core lightweight design of CFCSE-Net. 
 

V. Conclusion 

This study proposes CFCSE-Net, a U-Net-based 

architecture with a modified Collaborative Fusion with 

Global Context-Aware (CFGC) module with added 

Ghost Modules in the encoder, Cross Split-Channel 

Progressive Fusion (CSPF) modules in the decoder, and 

Enhanced Parallel Attention (EPA) along the skip 

connections. The goal is to improve segmentation 

accuracy while keeping computational cost low for use 

in resource-constrained CAD systems. Extensive 

experiments conducted on four benchmark datasets 

using multiple random data splits demonstrate both 

strong performance and high stability. The model 

achieves mean IoU, DSC, and accuracy values of 

79.78% ± 1.99, 87.21% ± 1.72, and 96.70% ± 0.59 on 

Kvasir-SEG; 88.11% ± 0.86, 93.42% ± 0.55, and 99.04% 

± 0.09 on CVC-ClinicDB; 69.33% ± 2.66, 78.80% ± 2.65, 

and 96.30% ± 0.51 on BUSI; and 92.27% ± 0.52, 95.92% 

± 0.30, and 98.06% ± 0.16 on PH2. The relatively low 

standard deviations across all datasets indicate 

consistent performance across different data splits and 

confirm the robustness of the proposed approach. The 

model maintains a lightweight structure with about 0.90 

million parameters and a computational cost of 3.24 

GFLOPs for 256 × 256 inputs and 5.07 GFLOPs for 320 

× 320 inputs. These results show that the combination of 

multi-scale feature extraction and attention mechanism 

improves segmentation performance while preserving 

efficiency. In the future, CFCSE-Net may be extended to 

other imaging modalities such as CT, MRI, and 3D 

volumetric data, adapt the model for real-time video 

segmentation in endoscopic procedures, explore semi-

supervised or self-supervised learning to use unlabeled 

data, and apply model compression and quantization so 

that deployment on edge devices in clinical settings 

becomes more practical. 
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Table 11. Quantitative comparisons of various methods on the PH2 dataset. 

Method 
PH2 

Params GFLOPs 
IoU/% DSC/% Acc/% 

U-Net [8] 90.15 ± 0.46 94.78 ± 0.26 96.47 ± 0.16 7.77M 21.49G 

U-Net++ [9] 90.46 ± 0.68 94.96 ± 0.39 96.60 ± 0.08 9.16M 54.14G 

AttUNet [27] 90.09 ± 0.56 94.74 ± 0.31 96.40 ± 0.16 8.73M 26.16G 

TransUNet [28] 91.21 ± 0.05 95.38 ± 0.02 96.82 ± 0.02 105.32M 50.21G 

UCTransUNet [29] 90.44 ± 0.85 94.94 ± 0.49 96.48 ± 0.66 66.49M 67.19G 

CANet [15] 91.03 ± 0.54 95.28 ± 0.30 96.87 ± 0.24 24.12M 39.56G 

TransAttUNet [30] 90.27 ± 0.22 94.86 ± 0.12 96.57 ± 0.18 25.97M 138.38G 

BRAUNet++ [12] 90.69 ± 0.26 95.09 ± 0.14 96.67 ± 0.07 62.63M 34.89G 

FDFUNet [31] 91.38 ± 0.33 95.48 ± 0.17 96.98 ± 0.26 23.24M 16.38G 

X-UNet [14] 91.49 ± 0.09 95.55 ± 0.05 97.09 ± 0.13 5.94M 16.74G 

Proposed Method 92.27 ± 0.52 95.92 ± 0.30 98.06 ± 0.16 0.90M 5.07G 
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pipeline and evaluation protocol to ensure 

reproducibility. 
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