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Abstract Medical image segmentation serves as a key component in Computer-Aided Diagnosis (CAD)
systems across various imaging modalities. However, the task remains challenging because many images
have low contrast and high lesion variability, and many clinical environments require efficient models. This
study proposes CFCSE-Net, a U-Net-based model that builds upon X-UNet as a baseline for the CFGC and
CSPF modules. This model incorporates a modified CFGC module with added Ghost Modules in the
encoder, a CSPF module in the decoder, and Enhanced Parallel Attention (EPA) in the skip connections.
The main contribution of this paper is the design of a lightweight architecture that combines multi-scale
feature extraction with an attention mechanism to maintain low model complexity and increase
segmentation accuracy. We train and evaluate CFCSE-Net on four public datasets: Kvasir-SEG, CVC-
ClinicDB, BUSI (resized to 256 x 256 pixels), and PH2 (resized to 320 x 320 pixels), with data augmentation
applied. We report segmentation performance as the mean * standard deviation of loU, DSC, and accuracy
across three random seeds. CFCSE-Net achieves 79.78% * 1.99 loU, 87.21% * 1.72 DSC, and 96.70% * 0.59
accuracy on Kvasir-SEG, 88.11% * 0.86 loU, 93.42% * 0.55 DSC, and 99.04% * 0.09 accuracy on CVC-
ClinicDB, 69.33% * 2.66 loU, 78.80% * 2.65 DSC, and 96.30% * 0.51 accuracy on BUSI, and 92.27% * 0.52
loU, 95.92% * 0.30 DSC, and 98.06% * 0.16 accuracy on PH2. Despite its strong performance, the model
remains compact with 909,901 parameters and low computational cost, requiring 3.24 GFLOPs for 256 x
256 inputs and 5.07 GFLOPs for 320 x 320 inputs. These results show that CFCSE-Net maintains stable
performance on polyp, breast ultrasound, and skin lesion segmentation while it stays compact enough for
CAD systems on hardware with low computational resources.
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l. Introduction
Medical image segmentation holds a crucial role in

because medical personnel experience fatigue,
subjective interpretation, and inconsistent skill levels

research, especially in the development of computer-
aided diagnosis (CAD) systems [1]. Advances in
imaging technology enable researchers to create
various methods that support clinical diagnosis,
biomedical studies, and visual information analysis [2],
[3]. In general, medical image segmentation separates
anatomical structures and pathological regions across
various image modalities, enabling physicians to
analyze lesions more accurately and obtain reliable
diagnostic information [4]. The manual process of
medical image segmentation faces several challenges,
such as low image contrast that makes object
boundaries hard to identify, organ and lesion shapes
vary, and differences in image quality caused by device
and configuration variations [5]. These conditions
increase the risk of errors in manual segmentation

[6]. Researchers, therefore, adopt deep learning,
especially Convolutional Neural Networks (CNNs), to
mitigate these problems. CNNs are able to capture
complex image patterns automatically, make manual
feature design less important, and produce better
segmentation accuracy [7].

The U-Net architecture by [8] plays a central role in
medical image segmentation. U-Net uses a U-shaped
encoder—decoder structure that learns context and
restores spatial detail even when the dataset has few
annotations. The U-Net architecture has been
extended to produce several variants, including U-
Net++, introduced in [9], which improves the
connection path and has been shown to increase
accuracy across various medical image modalities.
However, this improvement requires high
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computational resources. To address computational
efficiency, [10] proposed the Half-UNet with an
asymmetric design that reduces redundancy in the
decoder path and channel usage. This method
combines multi-scale features from UNet3+ and uses
ghost modules to increase efficiency while keeping a
uniform number of channels at each level. Ghost
modules produce additional feature maps through
simple operations on the main feature map, which
improves efficiency [11]. With this design, Half-UNet
reduces the number of parameters by up to 98.6%
while  maintaining  segmentation  performance
comparable to that of U-Net and its variants.

Several recent works aim to improve medical image
segmentation accuracy by using attention mechanisms
that highlight important information while keeping the
model efficient. The study in [12] proposes BRAU-
Net++, which combines the U-Net structure with Bi-
Former (Transformer Attention) and Selective Cross-
Channel Spatial Attention (SCCSA). This combination
allows BRAU-Net++ to balance global and local
information and reduce background interference.
Furthermore, [13] introduces One-Point-Five U-Net, a
segmentation framework based on the U-Net
architecture that employs Enhanced Parallel Attention
(EPA) to enable the network to capture global and local
information in parallel under noisy conditions. Overall,
attention mechanisms help the network remove
complex noise and make it easier to detect weak or
low-contrast tissue edges, so the segmentation results
stay stable.

Recent studies show that multi-scale processing
increases segmentation accuracy by helping the model
combine global context with fine local information. In
this context, X-UNet [14] introduces a collaborative
fusion framework that serves as the baseline
architecture of this work. X-UNet integrates
Collaborative Fusion with Global Context-Aware
(CFGC) modules to extract multi-scale contextual
information and Cross Split-Channel Progressive
Fusion (CSPF) modules to align encoder and decoder
features through channel splitting and progressive
fusion. By explicitly coordinating global context
extraction and progressive feature alignment, X-UNet
improves information flow across network stages and
enhances segmentation performance on diverse
medical imaging datasets. However, the original X-
UNet relies on standard convolutions and uniform
feature fusion, which may introduce parameter
redundancy and limit efficiency when deployed in
resource-constrained settings. In contrast to X-UNet,
other context-aware approaches, such as CANet [15],
introduce a context-aware network that uses two
pyramidal pipelines with L-shaped designs to generate
multi-resolution inputs and multi-scale convolutions
with chained residual pooling. These components

highlight important features, reduce noise, and improve
feature fusion between the encoder and decoder. They
also emphasize the importance of global context
modeling in medical image segmentation.

Based on findings from prior studies, we propose an
improved model architecture, Collaborative Fusion with
Global Context-Aware and Cross-Split-Channel
Progressive Fusion with Enhanced Parallel Attention
Network (CFCSE-Net). The model aims to improve
accuracy by incorporating multi-scale features and an
attention mechanism, while maintaining computational
efficiency to keep the model lightweight. Building upon
the CFGC and CSPF modules of X-UNet, CFCSE-Net
incorporates three main modifications, including (1) the
encoder replaces regular convolution with a modified
CFGC module that includes a Ghost Module; (2) the
skip connections use Enhanced Parallel Attention
(EPA) to strengthen feature transfer from the encoder
to the CSPF; and (3) the decoder replaces regular
convolution with the CSPF module only to reduce
architectural complexity and focus the decoder on
progressive  feature fusion, while preserving
segmentation accuracy. This design is expected to be
lightweight, with a small parameter size and low
GFLOPs consumption, while still providing high
accuracy in medical image segmentation, thereby
supporting disease prevention and diagnosis more
effectively.

DATASET
COLLECTION

DATASET
COLLECTION

MODEL ARCHITECTURE
DESIGN
HYPERPARAMETER
TUNING

MODEL TRAINING

MODEL EVALUATION

MODEL'S
PERFORMANCE
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Fig. 1. Stages of the proposed research process.

Il. Methodology

Fig. 1 presents the overall workflow of this study. The
research process follows six main stages: (1) dataset
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collection, (2) dataset preprocessing, (3) model
architecture design, (4) hyperparameter tuning, (5)
model training, and (6) model evaluation.

A. Dataset Collection

This study uses four open-source medical image
datasets for the segmentation task. The Kvasir-SEG
offers 1,000 gastrointestinal endoscopy images with
different masks and resolutions [16]. The CVC-
ClinicDB has 612 colonoscopy images with a native
size of 288 x 368 pixels [17]. The Breast Ultrasound
Images (BUSI) dataset contains 780 breast ultrasound
images [18]; and this study uses 647 benign and
malignant images because the normal class does not
contain an ROIl. The PH? dataset provides 200
dermatoscopic images of skin lesions along with their
annotations [19].

B. Dataset Preprocessing

After data collection, this study splits each dataset into
training and testing sets with an 80:20 ratio. The study
repeats the splitting process using three different
random seeds to reduce split bias and ensure that the
reported performance does not depend on a single
favorable data  partition, thereby  improving
reproducibility and result stability across different data
splits. The study also standardizes the image sizes to
match the architectural input. This normalization
process prepares all datasets for stable training and
prevents scale differences from affecting feature
extraction. Images from Kvasir-SEG, CVC-ClinicDB,
and BUSI are resized to 256 x 256 pixels, whereas PH2
images are resized to 320 x 320 pixels due to their
higher native resolution and finer dermoscopic lesion
detail. For the other datasets, 256 x 256 offers a good
balance between spatial detail and computational
efficiency. Thus, input resolution is chosen based on
dataset-specific spatial characteristics rather than
treated as an independent experimental variable.

(a) (C)

ﬂ IS IE
(d)
Sl
(h)

Fig. 2. Examples of data augmentation results: (a)
original, (b) vertical flip, (c) horizontal flip, (d)
random rotation, (e) random brightness, (f) grid
distortion, (g) elastic deformation, and (h) CLAHE
contrast enhancement.

In the training set, the study applies data
augmentation eight times to increase sample variation
and reduce overfitting [20]. The augmentations include
horizontal and vertical flips, random rotations (90 °, 180
¢, 270 °), random brightness/contrast adjustments, grid
distortion, elastic deformation, and CLAHE contrast
enhancement. Specifically, each original image—mask
pair is transformed into eight variants (including the
original), each generated by applying a single
augmentation operation. This augmentation strategy
expands the visual variability of the dataset, improves
the stability of feature learning, and supports better
generalization during segmentation [21]. Fig. 2
provides examples of the augmentation results, and
Table 1 summarizes the dataset distribution.

Table 1. Split dataset distribution.

Training  Training Set
Dataset Set (Augmented) Test Set
Kvasir-
SEG 800 6400 200
CVC-
ClinicDB 489 3912 123
BUSI 517 4136 130
PH? 160 1280 40

C. Model Architecture Design

The proposed CFCSE-Net architecture is illustrated in
Fig. 3 and represents an extended version of the
standard U-Net framework through several structural
refinements. The network uses an encoder—decoder
structure and is based on the X-UNet architecture [14],
which integrates modified CFGC and CSPF modules.
CFCSE-Net applies a channel configuration of (16, 32,
64, 128, 256). On the encoder, the model uses the
CFGC module to extract multi-scale features and apply
global context weighting. The model also incorporates
Ghost Modules into the CFGC module to keep
informative feature representations while reducing
computational cost [11]. From each encoder block, the
model sends skip connections to the decoder before the
downsampling step. For every skip connection, the
model applies the Enhanced Parallel Attention (EPA)
mechanism to emphasize important channel and spatial
information while reducing noise. The model then sends
the refined skip features to the CSPF module on the
decoder path. In the decoder, CSPF aligns the incoming
features and fuses them channel-wise with its internal
representations. This process preserves boundary
details and global contextual cues and improves
segmentation accuracy. The conventional convolutional
blocks in the encoder are replaced with a modified
Collaborative Fusion with Global Context-Aware
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Fig. 3. Architecture of the proposed CFCSE-Net.

(CFGC) module with Ghost Modules, as shown in Fig. 4
(a). Compared to the original CFGC module in X-UNet
[14], the proposed CFGC in CFCSE-Net preserves the
original fusion and global context modelling scheme.
The model modifies only the convolutional operations to
improve parameter efficiency. The proposed CFGC
module replaces the original 3 x 3 and 7 x 7 depthwise
convolutions with 3x 3 and 7 x 7 Ghost depthwise
convolutions replaces the 1 x 1 standard convolution
with a 1 x 1 Ghost convolution, and replaces the final
3x 3 standard convoluton with a 3x3 Ghost
convolution. Both GhostDWConv and GhostConv follow
the Ghost Module principle, generating additional
feature maps from a small set of intrinsic features using
inexpensive linear operations. GhostDWConv is applied
during primary feature extraction to efficiently capture
multi-scale spatial patterns, whereas GhostConv
performs channel regulation and feature refinement after
multi-scale fusion. By integrating these Ghost Modules,
the CFGC module achieves significant reductions in
parameter count and computational cost without altering
its original fusion structure or global context modeling
capability.

The process begins with an input feature map X; €
REXHXW “where C, H, and W denote the channel, height,
and width dimensions. The CFGC module applies Ghost
depthwise convolutions with kernel sizes k € {3,7} to
extract multi-scale feature representations and produce
two output feature maps X, and X5, which correspond to
local and global receptive-field scales, respectively, as

illustrated in Fig. 4 (a). The 3 x 3 GhostDWConv
captures fine local spatial details with a limited receptive
field, while the 7 x7 GhostDWConv captures long-

range contextual and structural information. This
operation is defined in Eq. (1) [14].
X; = GhostDW Conv,, (X4), k € {3,7} (1)

The module then concatenates these multi-scale
features and applies a 1x1 Ghost convolution to
regulate the channel size and computational cost,
generating the fused feature map X,, as expressed in
Eq. (2) [14].

X, = GhostConv, 4, (Concat(X;,X3)) (2)

To capture structural patterns distributed along the
vertical (H) and horizontal (W) dimensions, CFGC
computes channel-wise average and max projections
from X, and X;. These are then combined into pairs of
directional descriptors H; and W,, which are further
fused using 3 x 3 convolutions and reshaped, as shown
in Egs. (3) and (4), following [14], where H and W
represent the aggregated vertical and horizontal
attention features.

H = Reshape (Convsys(Concat(Hy, Hy))) 3)
W = Reshape(Convsys(Concat(W,,W,)))  (4)

By performing matrix interactions between (H;, H,) and
(W, W,), the module approximates global spatial self-
attention and computes a set of global self-adjusting
weights I € R¥*H*W  as defined in Eq. (5) [14].

I e HeW) - oc X 2C (5)

WS exp (Hpw )’
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Fig. 4. Architecture of (a) Collaborative Fusion with Global Context-Aware (CFGC) module and (b) Cross

split-channel progressive fusion (CSPF) module.

The module applies a sigmoid function to normalize the
weights and generates a global response map E, as
shown in Eq. (6) [14], where E represents the spatial
attention response.

E = sigmoid(l) (6)
The response map then reweights X, through element-

wise calibration. The final output X’ is obtained via 3 x 3
Ghost convolution, as expressed in Eq. (7) [14].

X' = GhostConvsy;(X, * E) (7)

Through this design, CFGC effectively combines local
details (from 3 x 3 Ghost depthwise filters) and global
contextual cues (from 7 x 7 Ghost depthwise filters and
spatial weighting) while maintaining a low parameter
footprint. This enables the model to remain lightweight
yet capable of capturing long-range dependencies that
are crucial for segmenting ambiguous anatomical
boundaries and wide structural regions. On the
decoder side, the model replaces standard
convolutional blocks with the Cross Split-Channel
Progressive Fusion (CSPF) module, as illustrated in
Fig. 4 (b). CSPF progressively aligns and fuses
encoder—decoder features in the channel domain to
reduce semantic discrepancies and strengthen feature
consistency. The first step involves feeding the encoder
feature Y; and decoder feature Y,. Both feature maps
are evenly divided along the channel dimension,
resulting in four sub-features Y;,Y,,Ys, and Y;, where Y;
and Y, denote the split encoder features, while Y5 and
Y, denote the split decoder features. The cross-paired
groups (Y3, Ys) and (Y,, Y;), are concatenated and fused
using 1x1 convolutions to capture cross-level

correspondence, as described in Egs. (8) and (9),
following [14].
Y, = Convyy;(Concat(Ys, Ys)) (8)
Yg = Convyyq(Concat(Y,,Ys)) (9)

To make the fusion channel-aware, channel weighting
vectors are generated via global average pooling on Y;
and Y,, as defined in Eq. (10) [14], where 0, and 0, are
derived from the encoder and decoder features,
respectively.

0, = AveragePool(Y;), i €{1,2} (10)
These weighting vectors modulate Y, and Yz through
element-wise multiplication, producing calibrated feature
sets Z; and Z,, as expressed in Eq. (11) [14], where Z;
and Z, represent the channel-attended fused features.

Z1=Y; %0, Z; =Yg x 0, (11)
Finally, the calibrated features are concatenated and

compressed using a 1 x 1 convolution to yield the fused
output Z', as described in Eq. (12) [14].

Z' = Convyy, (Concat(Z,,Z5,)) (12)

With this mechanism, CSPF is able to align detailed
information from the encoder and context from the
decoder more adaptively on each channel. To further
reduce computational cost, the architecture incorporates
the Ghost Module within the CFGC block, with the
structure of the Ghost Module illustrated in Fig. 5. This
module is applied at several stages to enhance feature
extraction efficiency by lowering both parameter count
and computational load. Inspired by GhostNet [11], it
replaces standard convolution with two lightweight
operations: a pointwise convolution that generates the
primary features and a depthwise convolution that
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produces additional “ghost features.” This approach
enables the network to obtain rich feature
representations while maintaining significantly lower
computational complexity compared with conventional
convolutional layers.

Ghost Module
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Fig. 5. Architecture of Ghost Module.
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The network places the Enhanced Parallel Attention
(EPA) module in the skip-connection path to strengthen
important features before they enter the decoder stage.
The structure of the EPA module is illustrated in Fig. 6.
EPA has three parallel attention branches: Simple Pixel
Attention (SPA), Channel Attention (CA), and Pixel
Attention  (PA). CA captures (global channel
relationships, whereas SPA and PA emphasize spatial
information at fine spatial scales [22]. The outputs of the
three branches are stacked along the channel axis, and
the network sends them to a PWConv—ReLU-PWConv
block to obtain the required channel size. The model
also adds an identity shortcut to preserve original
information and maintain stable gradient flow. Through
this design, EPA highlights relevant features, reduces
noise, and improves segmentation accuracy.

D. Hyperparameter Tuning

In this study, hyperparameter tuning is performed on
the  CVC-ClinicDB  dataset, which exhibits
representative variability in lesion size, shape, and
boundary clarity across the evaluated datasets. This

dataset presents sufficient complexity to reflect
common segmentation challenges while maintaining
stable training behavior, making it suitable for
identifying robust hyperparameter configurations. The
tuning process aims to determine the most effective
parameter combination that improves model
performance on the segmentation task [23]. It
evaluates key training components, including activation
functions, optimizers, and loss functions, using a
controlled empirical evaluation approach through
comparative experiments to observe their impact on
training stability and segmentation quality. During
hyperparameter tuning, one hyperparameter category
is varied at a time while others remain fixed.

The study tests several activation functions such as
RelLU, LeakyRelLU, ELU, SELU, and GELU, to analyze
their influence on the learning process. The study also
tests various optimizers, including Adam, NAdam,
AdamW, and RMSProp, to observe their convergence
behavior during training. In addition, the study
evaluates several loss functions, such as Binary Cross-
Entropy (BCE), Dice Loss, Tversky Loss, and the
combined BCE + Dice Loss, to determine the loss
formulation that produces stable and accurate
segmentation results. The selection of optimal
hyperparameters relies on quantitative performance
metrics, where configurations that produce higher Dice
Similarity Coefficient (DSC), Intersection over Union
(loU), and Accuracy (Acc) values indicate optimal
performance.

E. Model Training

The model training phase uses the optimal
hyperparameters obtained from the tuning process.
The training procedure takes the training data as input
and produces segmentation masks as output. This
work uses the CVC-ClinicDB dataset for
hyperparameter tuning and ablation studies because it
has reliable annotations and a moderate level of
difficulty. The training phase uses RGB medical images
as input and binary masks as output for all datasets. A
high-performance workstation with an NVIDIA RTX
A4000 GPU runs all experiments, and the PyTorch
framework handles model implementation and
optimization.

F. Model Evaluation

For evaluation, this study uses the test set of each
dataset to measure segmentation quality. The analysis
reports three main metrics: Intersection over Union
(loU), Dice Similarity Coefficient (DSC), and accuracy,
which compare model predictions with the ground truth
[24]. The study also checks computational efficiency
using the number of parameters and GFLOPs to
describe model size and computational cost. The
Intersection over Union (loU) metric in Eq. (13)
measures the overlap between the region the model
predicts as positive and the ground-truth region [25].
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Table 2. Comparison of the initial hyperparameters with the resulting optimal configuration.

Hyperparameter Initial Optimal

Batch Size 4 4

Seed 3 3

Epoch 100 100

mage Size ?;%?1;;2[?56, %(‘éajisr'l)SEG’ CVC- 256x256 (Kvasir-SEG, CVC-ClinicDB, & BUSI)
320x320 (PH?) 320x%320 (PH?)

Learing Rte g'l?rﬂgggf‘éa;i;f;EG' CVe- 0.0003 (Kvasir-SEG, CVC-ClinicDB, & PH2)
0.0005 (BUSI) 0.0005 (BUSI)

Cosine Annealing Delay ~ 0.00001 0.00001

Optimizer Adam NAdam

Activation Function RelLU RelLU

Loss Function BCE + DL BCE + DL

ToU = TP (13) A. 'Hyperparameter Tuning ' |
TP+ FP +FN This study performs hyperparameter tuning by testing

In this equation, TP denotes true positive pixels, FP several configuration choices, including different
denotes pixels that the model predicts as positive but optimizers, activation functions, and loss functions. The
belong to the negative class, and FN denotes positive CVC-ClinicDB dataset serves as the basis for tuning and

pixels that the model does not detect. The Dice identifies the most effective settings for model
coefficient in Eq. (14) quantifies the overlap between development. All experiments were run sequentially,
the predicted and ground-truth masks [25]. allowing each run to refine the previous configuration
2TP and progressively converge towards more optimal

DSC = P T FN (14)  settings. Table 2 presents a comparison between the

initial hyperparameters with the optimized values
derived incrementally throughout the overall successive
stages of the tuning process. The initial experiments
proportion of correctly predicted pixels [25]. determine the appropriate qptimizer to bal_ance model
TN + TP performance and compL_JtatlonaI complgxﬂy. Table 3

= (15) presents the results of this stage, and Fig. 7 compares
TN +TP+FN+FP the last 5 epochs. The study evaluates four optimizers
This equation uses TN to denote true-negative pixels, on the CVC-ClinicDB dataset: Adam, NAdam, AdamW,
i.e., pixels in the negative class that the model predicts and RMSProp. NAdam achieves the highest
as negative. This study calculates the number of  consistency in accuracy and is selected as the primary
trainable parameters using Eq. (16) [26]. optimizer for subsequent experiments. The second
Params = K, X K, X Cip, X Cout (16) experiment evaluates five activation functions, namely

Here, K denotes the kemnel size, C,, represents the ~ ReLU, LeakyRelLU, ELU, SELU, and GELU, while
number of input channels, and C,, refers to the keeping NAdam as the fixed optimizer. Table 3 shows

This metric emphasizes the balance between correctly
detected positive pixels and errors produced by FP and
FN. The accuracy metric in Eq. (15) calculates the

Acc

number of output channels. GFLOPs are defined in Eq. that the choice of activation function significantly affects
(17) to measure the computational workload of the  &ccuracy, although it does not change the total number
model [26]. of rfmodel parametth(-:‘_rs. thLU prov_i?es t?r? rggpeslt
2 performance, so this study uses it as the defau

GFLOPs = 2 X (K7 X Cin X Cout X Hout X Wour) (17)  activation function for later experiments. The last
10° ] experiment compares four loss functions under

Here, Hoy, and W,,, denote the output height and  mpalanced-class conditions in  medical image
width. GFLOPs indicate the number of operations for segmentation. These loss functions include Binary
one forward pass. Cross-Entropy (BCE), Dice Loss (DL), Tversky Loss

(TL), and a combined Binary Cross-Entropy and Dice
lll. Result
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Loss (BCE + DL). Table 3 shows that BCE + DL
achieves the highest accuracy; therefore, this study
adopts it as the loss function for training the proposed
model, as it integrates pixel-level supervision with
region-overlap optimization to enable stable and
discriminative feature learning.

B. Model Ablation

The ablation experiment examines how each
component of the CFCSE-Net architecture contributes
to performance by selectively removing or modifying
specific modules. The model integrates three main
modules: the CFGC Module, the CSPF Module, and the
EPA Module. The study evaluates seven configurations:
(1) U-Net baseline, (2) CFCSE-Net without CSPF and
EPA, (3) CFCSE-Net without CFGC and EPA, (4)
CFCSE-Net without CSPF, (5) CFCSE-Net without
CFGC, (6) CFCSE-Net without EPA, and (7) the full
CFCSE-Net as the proposed method.

Table 4 shows that each module provides a distinct
contribution to segmentation performance, while Table 5
provides a qualitative comparison of the ablation
variants by visually contrasting the predicted masks with

the input images and ground truth. Removing the CSPF
module (Ablation 4) reduces loU and DSC, which
indicates that CSPF improves feature representation
through progressive channel-split fusion in the decoder.
This fusion mechanism aligns and combines multi-scale
features more effectively, allowing the decoder to
recover fine-grained spatial details. Removing the
CFGC module (Ablation 5) results in a larger
performance drop, confirming that global context
information plays a critical role in guiding encoder
feature  extraction. By modeling long-range
dependencies, CFGC helps the network distinguish
target regions from complex backgrounds and improves
boundary consistency.

Removing the EPA module (Ablation 6) results in a
moderate performance decrease, indicating that EPA
enhances information flow across skip connections by
emphasizing relevant encoder features prior to fusion.
Configurations that remove two modules simultaneously
(Ablation 2 and Ablation 3) show more severe
performance degradation, which demonstrates that the
modules complement each other rather than operate

Table 3. Hyperparameter tuning results.

Hyperparameter loU/% DSC/% Accl% Parameter GFLOPs
Adam 86.07 91.73 98.91 909,901 3.24G
- NAdam 87.64 93.17 99.01 909,901 3.24G

Optimizer
AdamW 85.76 91.54 98.90 909,901 3.24G
RMSProp 83.94 90.59 98.51 909,901 3.24G
RelLU 88.04 93.31 99.02 909,901 3.24G
o LeakyRelLU 87.30 92.56 98.96 909,901 3.24G
Activation ELU 86.62 92.01 98.98 909,901 3.24G
SELU 85.36 91.63 98.80 909,901 3.24G
GELU 87.10 92.68 99.00 909,901 3.24G
BCE 86.28 91.93 98.90 909,901 3.24G
Loss DL 86.95 92.12 99.02 909,901 3.24G
Function Tversky Loss 85.92 91.60 98.89 909,901 3.24G
BCE + DL 88.04 93.31 99.02 909,901 3.24G
Optimizer R Activation Function Loss Function
- N _: 5‘:?,5;1“ °.°’5°' ‘ﬁ- ‘*-; Z;D j:“—/;

— - + bice
: 2 ool \//\ L e
065 0.0625 ] 0.045
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Fig. 7. The hyperparameter tuning results in the last 5 epochs are presented in graphs of: (a) optimizer, (b)
activation function, and (c) loss function.
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independently. Overall, the full CFCSE-Net model
achieves the best results with an loU of 88.04%, a DSC
of 93.31%, an accuracy of 99.02%, 0.90M parameters,
and a complexity of 3.24 GFLOPs. These results show
that the combination of CFGC, CSPF, and EPA offers
the best balance between segmentation accuracy and
computational cost.

C. Experiment Result

After the hyperparameter tuning stage and the ablation
study, this work selects the optimal parameter settings
and the most effective model variant. To improve
reproducibility and reduce potential bias from a single
data split, each dataset is evaluated using three random
train-test splits, and the final results are reported as the
mean and standard deviation of the performance
metrics. Table 2 lists the optimal hyperparameters,
which are consistently applied during training on the
Kvasir-SEG, CVC-ClinicDB, BUSI, and PH2 datasets.
Table 6 summarizes the quantitative performance of
CFCSE-Net across all evaluated datasets. The model
achieves an loU of 79.78% = 1.99 on Kvasir-SEG,
88.11% + 0.86 on CVC-ClinicDB, 69.33% + 2.66 on
BUSI, and 92.27% + 0.52 on PH2. Correspondingly, the
DSC values reach 87.21% + 1.72, 93.42% + 0.55,
78.80% * 2.65, and 95.92% =+ 0.30, while the accuracy
remains above 96% across all evaluated datasets. The
relatively small standard deviations indicate that the
proposed model exhibits stable and robust performance
across different random splits. In terms of efficiency,
CFCSE-Net maintains a lightweight design with

approximately 0.90 million parameters and low
computational complexity, requiring 3.24 GFLOPs for
most datasets and 5.07 GFLOPs for PH2, which has a
higher input resolution. These results demonstrate that
the proposed model achieves strong segmentation
accuracy while preserving computational efficiency
across different imaging modalities.

During training, this study tracks both training loss
and validation loss to analyze convergence behavior
and training stability, as shown in Fig. 8. The figure
illustrates representative loss curves from one of the
three random train—test splits for each dataset. For all
datasets, the training loss consistently decreases and
converges smoothly, indicating stable optimization. The
validation loss follows a similar trend and remains close
to the training loss, suggesting that the model does not
suffer from severe overfitting. Slight fluctuations in the
validation loss, particularly BUSI, reflect the higher
variability and complexity of ultrasound images rather
than unstable training. Overall, the loss curves confirm
that CFCSE-Net converges effectively and generalizes
well across different datasets. After training, the study
evaluates the trained model on each dataset's test set to
assess generalization performance. Table 6 reports the
quantitative test results, while Table 7 presents
qualitative visual comparisons between the predicted
segmentation masks and the ground-truth masks.
CFCSE-Net shows close alignment with the ground truth
on Kvasir-SEG, CVC-ClinicDB, and PH?, where clearer
boundaries, higher contrast, and more homogeneous

Table 4. Ablation Model Results.

Method loU/% DSC/% Accl/% Parameter GFLOPs
Ablation 1 87.48 92.70 99.00 1,944,049 6.93G
Ablation 2 86.49 92.26 98.89 1,122,225 4.50G
Ablation 3 87.66 92.86 99.00 1,444,289 3.87G
Ablation 4 85.95 91.46 98.88 1,213,101 5.08G
Ablation 5 84.15 90.60 98.66 748,013 2.92G
Ablation 6 87.77 93.19 99.00 819,025 2.66G
CFCSE-Net 88.04 93.31 99.02 909,901 3.24G

Table 5. Qualitative comparison of model ablation (a) input image, (b) ablation 1, (c) ablation 2, (d) ablation
3, (e) ablation 4, (f) ablation 5, (g) ablation 6, (h) CFCSE-net, (i) ground truth

(a) (b) (c) (d)

(¢ |

(f) (9) (h) (i)
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Table 6. Performance results obtained from all four datasets.

Dataset loU/% DSC/% Accl% Parameter GFLOPs
Kvasir-SEG 79.78 £+ 1.99 87.21+1.72 96.70 + 0.59
CVC-ClinicDB 88.11 £ 0.86 93.42+0.55 99.04 + 0.09 909.901 3.24G
BUSI 69.33 + 2.66 78.80 + 2.65 96.30 + 0.51
PH?2 92.27 £ 0.52 95.92 + 0.30 98.06 + 0.16 5.07G

Training and Validation Loss Training and Validation Loss

— Training Loss —— Training Loss
0 Validation Loss 04 Validation Loss

(a) (b)

Training and Validation Loss Training and Validation Less
0.40 — Training Loss —— Training Loss
Walidation Loss 0.35) Validation Loss
0.35
0.30

025
9

S ‘ 3
015 \
015
010 o “a
0.05{ ‘«—_&MR_‘_‘_‘_
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(c) (d)

Fig. 8. Training and validation loss curves for (a) Kvasir-SEG, (b) CVC-ClinicDB, (c) BUSI, and (d) PH2.

backgrounds allow the CFGC, CSPF, and EPA modules
to effectively capture global context and preserve
boundary details, resulting in smooth and accurate
segmentation. In contrast, on the BUSI dataset, although
the model successfully identifies the overall lesion
regions, minor boundary inaccuracies arise from
ultrasound-specific challenges, such as speckle noise,
low contrast, and heterogeneous tissue structures.
These qualitative observations are consistent with the
quantitative results and indicate that ultrasound-
adaptive feature enhancement could further improve
segmentation performance in future work.

IV. Discussion

This study introduces CFCSE-Net, a segmentation
architecture that improves accuracy while maintaining
computational efficiency. The model evaluates four
heterogeneous datasets and compares the results with
several well-established architectures, including U-Net
[8], U-Net++ [9], AttU-Net [27], TransUNet [28],
UCTransUNet [29], CANet [15], TransAttUNet [30],
BRAUNet++ [12], FDFUNet [31], and X-UNet [14],
which serves as the primary architectural baseline for
the CFGC and CSPF modules. Compared to X-UNet,
CFCSE-Net introduces targeted modifications to
enhance efficiency and feature utilization. In the
encoder, the model replaces standard convolutions in
the CFGC module with Ghost-based operations to
reduce parameter redundancy while preserving global
context modelling. Along the skip connections, the
model integrates the Enhanced Parallel Attention
(EPA) module to emphasize informative encoder
features before fusion. In the decoder, the architecture
relies solely on the CSPF module, without combining it
with CFGC, thereby reducing architectural complexity

and focusing the decoder on progressive channel-wise
feature fusion. The ablation results confirm that these
modifications collectively improve feature
representation, maintain segmentation accuracy, and
significantly ~ reduce parameter count and
computational cost compared to the original X-UNet
design.

The proposed CFCSE-Net achieves competitive
performance with significantly fewer parameters and
lower GFLOPs, as shown in Table 8. On the Kvasir-
SEG dataset with an input resolution of 256 x 256, the
model attains an loU of 79.78% %= 1.99, a DSC of
87.21% £ 1.72, and an accuracy of 96.70% % 0.59,
indicating stable performance across different data
splits. In addition, CFCSE-Net delivers the highest loU
and accuracy among the compared methods while
maintaining a lightweight design with only 0.90M
parameters and 3.24 GFLOPs. Although its DSC is
slightly lower than that of X-UNet [14] (87.41 + 1.62),
the proposed model remains substantially more
efficient than X-UNet (5.94M parameters, 10.72
GFLOPs). Despite the variability in polyp appearance,
the model maintains consistent segmentation
performance, offering an efficient alternative to more
computationally intensive methods for real-time,
resource-constrained applications.

For the CVC-ClinicDB dataset, Table 9 reports the
performance of the model. The model achieves an loU
of 88.11% + 0.86, a DSC of 93.42% £ 0.55, and an
accuracy of 99.04% + 0.09, demonstrating both high
segmentation accuracy and stable performance across
different data splits. The clearer texture and higher
contrast in this dataset allow the network to capture
object boundaries with better precision. Although its
DSC remains slightly below the score of X-UNet [14],
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Table 7. Predicted outputs across all four datasets.

Dataset Input Image Ground Truth Prediction verlay loU/DSC
Kvasir-SEG 96.20%/98.06%
e 96.12%198.02%
BUSI 90.71%/95.13%
PH2 94.97%/97.42%

Table 8. Quantitative comparisons of various methods on the Kvasir-SEG dataset.

Kvasir-SEG

Method 1oU/% DSC/% Accl% Params GFLOPs
U-Net [8] 75.55 + 1.98 85.27 + 1.59 95.63 + 0.41 7.77TM 13.75G
U-Net++ [9] 76.71 £ 2.22 86.07 + 1.71 95.91 + 0.37 9.16M 34.65G
AttUNet [27] 77.06 + 1.71 86.27 + 1.25 95.92 + 0.31 8.73M 16.74G
TransUNet [28] 77.76 £+ 1.43 86.84 + 1.05 96.08 + 0.21 105.32M 32.14G
UCTransUNet [29] 77.50 + 2.51 86.59 + 1.95 95.99 + 0.55 66.49M 43.01G
CANet [15] 77.30 £ 0.52 86.31 + 0.54 95.96 + 0.10 24.12M 25.32G
TransAttUNet [30] 78.45 + 2.23 87.26 + 1.64 96.21 + 0.45 25.97M 88.57G
BRAUNet++ [12] 75.79 + 2.02 85.50 + 1.61 95.66 + 0.32 62.63M 22.33G
FDFUNet [31] 78.37 + 2.38 87.17 +1.78 96.19 + 0.53 20.95M 10.48G
X-UNet [14] 78.65 + 2.19 87.41 1+ 1.62 96.24 + 0.34 5.94M 10.72G
Proposed Method 79.78 £ 1.99 87.21+1.72 96.70 + 0.59 0.90M 3.24G

the approach maintains high loU and accuracy and
uses a smaller number of parameters with lower
computational cost. These results show that the
method keeps high efficiency and adapts well to
different polyp segmentation conditions. The results on
the BUSI dataset are summarized in Table 10.
Compared to other methods, BUSI presents a more
challenging segmentation task due to the inherent
characteristics of breast ultrasound images, including
strong speckle noise, low contrast, heterogeneous
tissue structures, and irregular lesion boundaries.
These factors complicate accurate boundary
localization and contribute to the lower loU and DSC
values observed on this dataset. Under these
challenging conditions, the proposed CFCSE-Net

achieves an loU of 69.33% £ 2.66, a DSC of 78.80% +
2.65, and an accuracy of 96.30% = 0.51, while
maintaining a lightweight design with only 0.90M
parameters and 3.24 GFLOPSs. Although these results
are slightly lower than X-UNet [14] (69.57% % 1.30 loU,
80.34% + 1.53 DSC, and 96.64% + 0.21 accuracy),
CFCSE-Net remains competitive while being
substantially more efficient than X-UNet (5.94M
parameters, 10.72 GFLOPs). This performance gap
indicates that breast ultrasound segmentation may
benefit from additional domain-specific enhancements,
which remain a promising direction for future work.
The results on the PH? dataset are summarized in
Table 11. Our model obtains the best scores for all
evaluation metrics, with an loU of 92.27% + 0.52, a
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Table 9. Quantitative comparisons of various methods on the CVC-ClinicDB dataset.

CVC-ClinicDB

Method 10U/% DSC/% Accl% Params GFLOPs
U-Net [8] 84.88 + 0.75 91.56 + 0.50 98.49 + 0.12 7.77TM 13.75G
U-Net++ [9] 86.48 + 0.13 92.60 + 0.09 98.67 + 0.04 9.16M 34.65G
AttUNet [27] 86.22 + 0.46 92.45 + 0.29 98.65 + 0.02 8.73M 16.74G
TransUNet [28] 86.95 + 0.65 92.91+£0.40 98.73 £ 0.05 105.32M 32.14G
UCTransUNet [29] 87.47 £ 0.50 93.22 + 0.31 98.77 £ 0.12 66.49M 43.01G
CANet [15] 86.88 + 0.75 92.86 + 0.48 98.72 £+ 0.13 24.12M 25.32G
TransAttUNet [30] 87.66 + 0.36 93.33+0.25 98.79 £ 0.10 25.97M 88.57G
BRAUNet++ [12] 86.12 + 0.37 92.40 + 0.26 98.62 + 0.08 62.63M 22.33G
FDFUNet [31] 87.81+0.14 93.42 £ 0.09 98.84 + 0.07 20.95M 10.48G
X-UNet [14] 87.90+£0.14 93.49 * 0.07 98.84 + 0.06 5.94M 10.72G
Proposed Method 88.11 + 0.86 93.42 £ 0.55 99.04 * 0.09 0.90M 3.24G

Table 10. Quantitative comparisons of various methods on the BUSI dataset.
BUSI

Method 1oUI% DSC/% Accl% Params GFLOPs
U-Net [8] 63.25 + 1.07 75.42 £ 1.04 96.19 + 0.30 7.77TM 13.75G
U-Net++ [9] 64.40 + 0.92 76.57 £ 0.88 96.27 + 0.28 9.16M 34.65G
AttUNet [27] 65.27 + 1.46 77.05+1.53 96.43 £ 0.26 8.73M 16.74G
TransUNet [28] 66.05 + 2.23 77.61+2.34 96.02 + 0.06 105.32M 32.14G
UCTransUNet [29] 67.17 £1.20 78.47 £+ 1.64 96.26 + 0.26 66.49M 43.01G
CANEet [15] 68.52 + 1.20 79.49 £ 1.60 96.61 + 0.22 24.12M 25.32G
TransAttUNet [30] 67.56 + 1.41 78.99 + 143 96.42 £ 0.25 25.97M 88.57G
BRAUNet++ [12] 66.67 + 1.37 78.21+1.54 96.20 £ 0.34 62.63M 22.33G
FDFUNet [31] 68.12 + 0.36 79.28 £ 0.65 96.48 £ 0.28 20.95M 10.48G
X-UNet [14] 69.57 £ 1.30 80.34 £ 1.53 96.64 * 0.21 5.94M 10.72G
Proposed Method 69.33 + 2.66 78.80 + 2.65 96.30 £ 0.51 0.90M 3.24G

DSC of 95.92% + 0.30, and an accuracy of 98.06% *
0.16. The low standard deviation values indicate highly
consistent predictions across different data splits,
demonstrating the robustness of the proposed model.
Even with an input resolution of 320 x 320 pixels, the
network stays efficient and uses only 0.90M
parameters and 5.07 GFLOPs. Several transformer-
based models perform poorly on this dataset because
the training set contains only a small number of images.
In contrast, the proposed approach maintains strong
and stable results, indicating robust performance under
data-constrained conditions. Across all four datasets,
the proposed method uses the fewest parameters and
GFLOPs among the compared models. It achieves the
highest loU and accuracy on Kvasir-SEG and CVC-
ClinicDB, and it achieves the best overall performance
on PH?. However, it performs slightly below X-UNet on
BUSI for loU, DSC, and accuracy. BUSI images
contain strong speckle noise and low contrast, which
can blur lesion boundaries and reduce overlap metrics.
This gap suggests that BUSI segmentation needs
additional ultrasound-specific enhancements to better
handle noise and irregular boundaries.

Although CFCSE-Net shows competitive accuracy
with substantially fewer parameters and GFLOPs than

many existing methods, several limitations should be
noted. The model uses only four benchmark datasets,
so it does not demonstrate generalization to other
imaging modalities or to real clinical data. Some
datasets, especially PH?, contain limited samples, so
the model may show different robustness on larger
cohorts even with augmentation. The model also trains
and tests only on individual 2D images after acquisition,
so it does not evaluate real-time video conditions such
as motion blur, frame-to-frame variation, and latency
constraints. These limitations affect the interpretation of
the results, because the reported metrics may change
in broader clinical settings and continuous workflows.
Therefore, the current findings mainly support
performance on the selected benchmarks and offline
2D segmentation.

Despite these limitations, the balance between
accuracy and efficiency shows the practical relevance
of the proposed architecture for deployment in
resource-constrained environments. With
approximately 0.90 million parameters and low
computational cost (3.24 GFLOPs for 256 x 256 inputs
and 5.07 GFLOPs for 320 x 320 inputs), CFCSE-Net
supports computer-aided diagnosis (CAD) systems on
edge devices and low-power clinical workstations,
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Table 11. Quantitative comparisons of various methods on the PH? dataset.

PH?2

Method 1o0U/% DSCI% Accl% Params GFLOPs
U-Net [8] 90.15 + 0.46 94.78 + 0.26 96.47 + 0.16 7.77M 21.49G
U-Net++ [9] 90.46 + 0.68 94.96 + 0.39 96.60 + 0.08 9.16M 54.14G
AttUNet [27] 90.09 + 0.56 94.74 + 0.31 96.40 + 0.16 8.73M 26.16G
TransUNet [28] 91.21 + 0.05 95.38 + 0.02 96.82 + 0.02 105.32M 50.21G
UCTransUNet [29] 90.44 + 0.85 94.94 + 0.49 96.48 + 0.66 66.49M 67.19G
CANet [15] 91.03 + 0.54 95.28 + 0.30 96.87 + 0.24 24.12M 39.56G
TransAttUNet [30] 90.27 + 0.22 94.86 + 0.12 96.57 + 0.18 25.97M 138.38G
BRAUNet++ [12] 90.69 + 0.26 95.09 + 0.14 96.67 + 0.07 62.63M 34.89G
FDFUNet [31] 91.38 + 0.33 9548 + 0.17 96.98 + 0.26 23.24M 16.38G
X-UNet [14] 91.49 + 0.09 95.55 + 0.05 97.09 + 0.13 5.94M 16.74G
Proposed Method 92.27 + 0.52 95.92 + 0.30 98.06 £ 0.16 0.90M 5.07G

where memory usage, inference latency, and energy
efficiency are critical. This design enables faster
inference and supports near-real-time feedback in
clinical workflows such as endoscopy and ultrasound
examination. Future work should further evaluate the
approach on additional imaging modalities and real-
time clinical scenarios, including extensions to
volumetric 3D data through separable or pseudo-3D
convolutional operations and selective attention along
spatial or depth dimensions, as well as video-based
segmentation using lightweight temporal feature reuse
or frame-to-frame refinement strategies, while
preserving the core lightweight design of CFCSE-Net.

V. Conclusion

This study proposes CFCSE-Net, a U-Net-based
architecture with a modified Collaborative Fusion with
Global Context-Aware (CFGC) module with added
Ghost Modules in the encoder, Cross Split-Channel
Progressive Fusion (CSPF) modules in the decoder, and
Enhanced Parallel Attention (EPA) along the skip
connections. The goal is to improve segmentation
accuracy while keeping computational cost low for use
in resource-constrained CAD systems. Extensive
experiments conducted on four benchmark datasets
using multiple random data splits demonstrate both
strong performance and high stability. The model
achieves mean loU, DSC, and accuracy values of
79.78% + 1.99, 87.21% + 1.72, and 96.70% + 0.59 on
Kvasir-SEG; 88.11% £ 0.86, 93.42% % 0.55, and 99.04%
1 0.09 on CVC-ClinicDB; 69.33% + 2.66, 78.80% + 2.65,
and 96.30% £ 0.51 on BUSI; and 92.27% £ 0.52, 95.92%
1 0.30, and 98.06% + 0.16 on PH2. The relatively low
standard deviations across all datasets indicate
consistent performance across different data splits and
confirm the robustness of the proposed approach. The
model maintains a lightweight structure with about 0.90
million parameters and a computational cost of 3.24
GFLOPs for 256 x 256 inputs and 5.07 GFLOPs for 320
x 320 inputs. These results show that the combination of

multi-scale feature extraction and attention mechanism
improves segmentation performance while preserving
efficiency. In the future, CFCSE-Net may be extended to
other imaging modalities such as CT, MRI, and 3D
volumetric data, adapt the model for real-time video
segmentation in endoscopic procedures, explore semi-
supervised or self-supervised learning to use unlabeled
data, and apply model compression and quantization so
that deployment on edge devices in clinical settings
becomes more practical.
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