Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 222-239 e-ISSN: 2656-8632

RESEARCH ARTICLE
HALF-MAFUNET: A Lightweight Architecture

Based on Multi-Scale Adaptive Fusion for

Medical Image Segmentation
Abiaz Fazel Maula Sandy, Heri Prasetyo

Department of Informatics, Universitas Sebelas Maret, Surakarta, Indonesia

Corresponding author: Heri Prasetyo. (e-mail: heri.prasetyo@staff.uns.ac.id), Author(s) Email: Abiaz Fazel
Maula Sandy (abiazfazel _ms@student.uns.ac.id)

Medical image segmentation is a critical component in computer-aided diagnosis systems but many deep
learning models still require large numbers of parameters and heavy computation. Classical CNN-based
architectures such as U-Net and its variants achieve good accuracy, but are often too heavy for real
deployment. Meanwhile, modern Transformer-based or Mamba-based models capture long-range
information but typically increase model complexity. Because of these limitations, there is still a need for
a lightweight segmentation model that can provide a good balance between accuracy and efficiency across
different types of medical images. This paper proposes Half-MAFUNet, a lightweight architecture based on
multi-scale adaptive fusion and designed as a simplified version of MAFUNet. The main contribution of this
work is combining the efficient encoder structure of Half-UNet with advanced fusion and attention
mechanisms. Half-MAFUNet integrates Hierarchy Aware Mamba (HAM) for global feature modelling, Multi-
Scale Adaptive Fusion (MAF) to combine global and local information, and two attention modules, Adaptive
Channel Attention (ACA) and Adaptive Spatial Attention (ASA), to refine skip connections. In addition, this
model incorporates Channel Atrous Spatial Pyramid Pooling (CASPP) to capture multi-scale receptive
fields efficiently without increasing computational cost. Together, these components create a compact
architecture that maintains strong representational power. The model is trained and evaluated on three
public datasets: CVC-ClinicDB for colorectal polyp segmentation, BUSI for breast tumor segmentation, and
ISIC-2018 for skin lesion segmentation. All images are resized to 256x256 pixels and processed using
geometric and intensity-based augmentations. Half-MAFUNet achieves competitive performance, obtaining
mean loU around 84 85% and Dice/F1-Score around 90 92% across datasets, while using significantly fewer
parameters and GFLOPs compared to U-Net, Att-UNet, UNeXt, MALUNet, LightM-UNet, VM-UNet, and UD-
Mamba. These results show that Half-MAFUNet provides accurate and efficient medical image
segmentation, making it suitable for real-world deployment on devices with limited computational
resources.
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I. Introduction number of parameters and incur substantial
computational overhead. Moreover, because

Medical image segmentation is a crucial stage in | ‘ ) T
convolutional operations are inherently limited to local

computer-aided diagnosis and therapy. It enables

clinicians to distinguish lesion areas from healthy tissue
and to more clearly observe the position, size, and
morphology of abnormalities. High-quality
segmentation facilitates early disease detection,
objective clinical assessment, and more effective
treatment planning for various organs, including the
colon, breast, and skin [1], [2]. In recent years,
convolutional neural networks (CNNs) have shown
strong performance in medical image segmentation [3],
[4]. Many methods are developed based on the U-Net
architecture, such as U-Net++, Attention U-Net, and
other variants [5], [6]. These models achieve strong
Dice and loU performance but typically require a large

receptive fields, CNN-based architectures still struggle
to  capture long-range dependencies  and
comprehensive global context. Some works try to
improve this limitation by using attention mechanisms
or large-kernel convolutions [7], but these methods
often make the network even heavier and more
challenging to deploy in real systems. Vision
Transformer-based methods and other self-attention
models have also been applied to medical image
segmentation [8]. They can capture global
relationships among image tokens, but they typically
require substantial memory and powerful GPU
resources [9]. This presents a challenge for hospitals
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or edge devices with limited hardware. Recently,
selective state space models (SSMs), especially
Mamba [10], have attracted attention as a new
sequence modelling approach. Mamba employs a
selective state-scanning approach that enables
efficient modelling of long sequences while using
relatively few parameters. Its vision variants, Vision
Mamba and VMamba, extend this architecture to
computer vision tasks, maintaining linear complexity
with respect to input size and memory usage [11].
Several models, such as VM-Unet [12], HC-Mamba
[13], LightM-Unet [14], Ultralight VM-Unet [15], and

Polyp-Mamba [16] combine CNN and Mamba to
integrate local texture and global context for
segmentation.

MAFUNet is one of the latest Mamba-based
architectures for medical image segmentation [17]. It
introduces HAM and MAF modules, together with ACA
and ASA, to improve cross-level feature interaction and
multi-scale representation [18]. MAFUNet achieves
high segmentation performance with fewer parameters
than many prior CNN and Transformer models.
However, MAFUNet still uses a relatively deep
symmetric decoder and moderate model size. As a
result, the computational cost and memory usage
remain high for devices with limited resources and for
applications requiring fast inference on multi-organ
datasets. This finding indicates that a gap remains
between segmentation accuracy and model efficiency
in current Mamba-based medical image segmentation
methods.

Accordingly, this work introduces Half-MAFUNet, a
lightweight medical image segmentation architecture
designed to reduce parameter count and computational
cost while maintaining competitive accuracy, making it
suitable for deployment on resource-constrained
clinical hardware where heavier Mamba-based models
are impractical. Half-MAFUNet leverages the
asymmetric structure of Half-UNet, in which the
decoder is intentionally simplified by using a lightweight
decoding pathway rather than a fully symmetric
decoder, thereby reducing the parameter count while
preserving strong feature representations. The network
integrates several existing modules, incorporating
HAM [17] and MAF [17] to jointly exploit global context
and local details, applying adaptive channel and spatial
attention (ACA and ASA) [17] to selectively refine skip-
connected features that exhibit multi-scale and
heterogeneous lesion characteristics, and to adopt
CASPP [19] in the bottleneck to efficiently enlarge the
receptive field through dilated convolutions without
introducing substantial additional parameters or
computational overhead. The goal of this study is to
build a segmentation model that maintains high
accuracy with substantially lower computational cost
and model size, making it more suitable for deployment

in real clinical settings and on resource-limited devices
[17], [20].

The main contributions of this paper can be
summarized in four aspects. First, we propose Half-
MAFUNet, a lightweight extension of MAFUNet that
combines a Half-UNet-based architecture with Mamba
and adaptive attention modules for efficient medical
image segmentation. Second, we design an effective
integration of HAM, MAF, CASPP, ACA, and ASA to
enhance multi-scale global-local feature fusion and
improve channel- and spatial-feature selection in skip
connections. Third, we evaluate the proposed model
using the same network architecture and training
protocol on three representative public datasets,
namely CVC-ClinicDB [21] for colorectal polyp
segmentation, BUSI [22] for breast tumor
segmentation, and ISIC-2018 [23] for skin lesion
segmentation, to evaluate the generalization ability of
the proposed model. Finally, we provide a detailed
comparison of model complexity, including parameter
count and GFLOPs, and show that Half-MAFUNet
achieves competitive or better segmentation
performance than several CNN-, Transformer-, and
Mamba-based baselines while using fewer
computational resources.

The remainder of this paper is structured as follows.
Section 2 reviews CNN, Transformer, and Mamba
based medical image segmentation methods. Section
3 describes the proposed Half-MAFUNet and the
experimental setup (datasets, preprocessing, and
training). Section 4 presents the results and ablation
studies, followed by a discussion. Section 5 concludes
the work and outlines future research directions.

Il. Method

The methodology adopted in this study is illustrated in
Fig. 1. The workflow is organized into five primary
phases: (1) Dataset Preprocessing, (2) Model
Architecture Design, (3) Hyperparameter Tuning, (4)
Model Training, and (5) Model Evaluation.

A. Dataset Preprocessing

In this study, the CVC-ClinicDB, BUSI, and ISIC-2018
datasets are utilized. The CVC-ClinicDB dataset [21]
consists of 612 polyp images, each provided with a
corresponding ground-truth mask at the original
resolution of 288 x 368 pixels. BUSI [22] comprises 647
breast ultrasound images with corresponding masks
and varying resolutions. ISIC-2018 [23] provides 2,594
dermoscopic images with lesion masks, also at varying
resolutions. The first step was resizing all images and
masks to 256 x 256 pixels. The datasets were
subsequently split into training, validation, and test
subsets in an 80%-10%-10% proportion, where the
validation set was used during training to monitor
convergence, adjust the learning rate, and prevent
overfitting. The detailed number of dataset splits is
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shown in Table 1. Data augmentation was then applied
to the training set to enhance data diversity and
mitigate overfitting.

DATASET
PREPROCESSING

MODEL
ARCHITECTURE
DESIGN

HYPERPARAMETER
TUNING

MODEL TRAINING

UNDER PERFORM

MODEL
EVALUATION

MODEL'S
PERFORMANCE

OUT PERFORM

Fig. 1. Stages of Research Methods

Table 1. Number of dataset splits

Dataset Train Train Set Validation Test
atase Set (Augmented) Set Set
CVvC-

ClinicDB 490 2450 61 61
BUSI 571 2585 65 65

ISIC2018 2075 4150 259 260

(b)
(c)

Fig. 2. Augmentation result of dataset (a) CVC-
ClinicDB, (b) BUSI, and (c) ISIC-2018

Baseline augmentations comprised simple geometric
transforms: horizontal flip, vertical flip, and rotations. In
addition to basic geometric augmentations, dataset-
specific augmentations were applied only to the training
sets of BUSI and ISIC-2018 to improve robustness
against modality-specific variations while avoiding
information leakage. For BUSI, a pool of
augmentations, including Gaussian blur, Gaussian
noise, elastic transform, CLAHE, lesion-aware crop
(LAC), and grid distortion, was defined to reflect
common artifacts and intensity inconsistencies in
ultrasound imaging. To balance data diversity and
computational efficiency, each augmented sample was
generated by randomly combining two to three
transformations from this pool (e.g., horizontal flip with
LAC and Gaussian blur), producing a limited number of
representative variants per image. Similarly, for ISIC-
2018, random brightness, random contrast, Gaussian
noise, and grid distortion were combined in the same
manner to model illumination variability and acquisition
differences in dermoscopic images. The examples
shown in Fig. 2 illustrate representative combinations
rather than an exhaustive list, and this strategy
enhances intra-dataset generalization while avoiding
excessive computational overhead and overfitting.
lllustrative examples of the original and augmented
images are provided in Fig. 2.

B. Model Architecture Design

The overall architecture of HALF-MAFUNet is shown in
Fig. 3. The network follows a five-level U-shaped
topology with a Half-U-Net backbone: the encoder
extracts multi-scale features, while the decoder is
deliberately lightweight to reduce parameters and
memory. In line with half-decoder principles, the
number of filters is unified across depth levels, and
feature fusion in the decoder relies primarily on
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Fig. 3. Architecture of Half-MAFUNet
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Fig. 4. Multi-scale Adaptive Fusion

element-wise addition rather  than heavy
concatenation, which keeps computation efficient and
the design simple. At each encoder stage, features are
first processed by the proposed MAF block and then
passed to the next stage as well as to the skip pathway.
ACA and ASA further refine the skip connections
before lightweight upsampling reconstructs the final
mask at the decoder side. A CASPP block is placed at
the bottleneck to strengthen the multi-scale context
[17].

The MAF block, illustrated in Fig. 4, adaptively fuses
local and global cues. The input feature map is splitinto
two paths: a convolutional branch X, that focuses on
texture and boundary detail, and a HAM branch X that

encodes global structure, which are respectively
obtained as X, = D(X) and Xy = H(X) (Egs. (1)-(2)).
A channel attention weight a is produced via global
average pooling followed by two fully connected layers
and a sigmoid activation, thereby dynamically
balancing the contributions of the convolutional and
HAM branches into hybrid features (Eq. (3)). To further
enhance spatial selectivity, the hybrid features are
integrated with convolutional features and refined using
a spatial attention mechanism. The final fusion is
performed in a spatially adaptive manner, such that
regions dominated by spatial attention preserve
convolutional details, whereas complementary regions
draw from the channel-weighted global-local
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Fig. 5. Hierarchy Aware Mamba

representation, resulting in the output formulation given
in Eq. (4). This cascaded channel-spatial fusion
improves the complementarity between local textures

and global context with minimal computational
overhead [17], [24].
X: =D(X) €Y
Xy = H(X) (2)

a=o <W2 (ws (B e 1 XH]))) 3)

Output=F QX+ (1- Q@ (a®Xc+(1—a) ® Xy) (4)
Here, X denotes the input feature map, D(:) represents
the convolutional branch that extracts local texture
information, and H denotes the hierarchy-aware
Mamba (HAM) module used for global context
modelling. X, and X, are the local and global s
representations, respectively. The operator E(H.W)

denotes spatial average pooling, while W, and W, are
fully connected layers used to generate the channel
attention weight «, with o(-) indicating the sigmoid
activation function.  denotes the spatial attention
weight obtained from the refined hybrid features. The
symbols || and & represent channel-wise
concatenation and element-wise  multiplication,
respectively. The output corresponds to the spatially
adaptive fusion of convolutional and hybrid global-local
features.

Hierarchy-Aware Mamba (HAM), ilustrated in Fig. 5,
is designed to enhance feature representation by jointly

modelling hierarchical local interactions and long-range
dependencies with low computational overhead. Given
an input feature tensor X € REXCXHXW HAM first
uniformly partitions the channel dimension into Ssub-
features {X;}5,, where each sub-feature has

dimensions X; € RE*SH*W A higrarchical processing
flow is then constructed: at level i, the current sub-
feature is combined with the output from the previous
level to preserve residual information. Each
hierarchical feature is processed by a Mamba block,
which captures long-range dependencies and
produces a global feature representation G; =
M;(T))(Eq. (5)), followed by a Channel Dynamic Gating
Fusion (CDGF) unit to adaptively recalibrate channel
responses [17]. To generate adaptive gating weights,
global average pooling is applied to both the global
feature G;and the corresponding hierarchical input, and
the resulting descriptors are passed through a sigmoid
activation to obtain the gating vector 0, as defined in
Eq. (6). The hierarchically fused feature at each level is
then computed by combining the gated global feature
and the previous-level output, yielding X; as formulated
in Eq. (7). This hierarchical residual mechanism allows
the local branch to preserve fine-grained spatial details
while inheriting contextual information from upper
layers. Finally, the gated sub-features from all levels
are concatenated along the channel dimension to form
the HAM output, which is forwarded to subsequent
modules, as expressed in Eq. (8) [17].
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C
Gi = Mi(Ti) € RBE*H*W>s (5)
o o (Angoolel(Gl) + Angoolel(Xl)), i=1,
o (AngooI G+ Angoolel(Xi’)), i>1,

1x1

X\=G®0+X7T®0eRSHW (7
Output = C({Xi'}i~15) € RE*CxHxW €))
where M;(-) denotes the Mamba block at level i, T;
represents the serialized feature sequence, and G; is
the corresponding global feature output. o(-) denotes
the sigmoid activation function, AvgPool ;. (-) is global
average pooling, @ indicates element-wise
multiplication, and X; represents the hierarchically
fused feature at the level i. The operator C denotes
channel-wise concatenation of all gated sub-features to
form the final HAM output.

Inside HAM, illustrated in Fig. 6, the Mamba block
acts as a selective state-space model that scans the
serialized feature sequence. It uses content-aware
gates to control how much past information is kept or
updated at each step, enabling efficient modelling of
long-range dependencies with linear complexity in
sequence length. This mechanism is realized through
a dual-collaborative architecture consisting of a main
branch and an auxiliary branch that process the input
sequence in parallel. The main branch captures long-
range dependencies by applying a linear projection
followed by convolution, SiLU activation, and a
selective state-space model, producing Branch,(X) as
formulated in Eq. (9). In parallel, the auxiliary branch
applies a lightweight linear transformation with SiLU
activation to preserve the basic feature representation,
yielding Branch,(X) as defined in Eq. (10). The outputs
of the two branches are then fused through element-
wise multiplication and mapped by a linear layer to
obtain the final Mamba output, as expressed in Eq.

(11). Compared with self-attention, this dual-branch
selective fusion allows Mamba to provide global
receptive fields with fewer parameters and more
hardware-friendly computation, making it well suited for
lightweight medical image segmentation [17].

Branch, (X) = SSM (SiLU (Conv(Linear(X)))) 9)

Branch, (X) = SiLU(Linear(X)) (10)
Mamba(X) = Linear(Branch, (X) ® Branch,(X)) (11)

Throughout HALF-MAFUNet, convolutional blocks
serve as basic local feature extractors, as illustrated in
Fig. 7. In the encoder and decoder, each block typically
consists of convolution, batch normalization, and ReLU
activation. Standard or depthwise separable
convolutions are employed at each stage to balance
expressive power and efficiency. These blocks provide
stable local feature representations that are later
enhanced by HAM, MAF, ACA, ASA, and CASPP,
forming the backbone of the network’s hierarchical
feature hierarchy [17]. Channel Dynamic Gating Fusion
(CDGF), illustrated in Fig. 6 operates on the outputs of
each HAM level. Given the global gating vector 6,
CDGEF scales the channels of each sub-feature and
combines them in a level-aware manner. This
mechanism allows the model to emphasize informative
levels and suppress redundant responses when
aggregating multi-level features. By integrating CDGF
into HAM, HALF-MAFUNet can adaptively balance
contributions from different depths, improving global-
local interaction without significantly increasing
computation [17]. Spatial Dynamic Gating Fusion
(SDGF), illustrated in Fig. 7, combines an original
feature map with its spatially attended counterpart. It
first extracts pooled statistics (for example, global
average and max pooling) from both inputs to generate
a spatial gate. This gate determines the extent to which
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information should be drawn from the original feature
and from the refined one at each spatial location. In this
way, SDGF provides a flexible mechanism for
suppressing noise while preserving important spatial
structures, especially when applied after spatial
attention modules [17].

Adaptive Channel Attention (ACA) on skips, as
illustrated in Fig. 8, improves the representational
quality of features transmitted through skip connections
by dynamically recalibrating channel responses. For
each level, ACA aggregates multi-level global context
using adaptive average pooling at two spatial scales
(e.g., 1 x 1and 2 x 2) to capture contextual information
at different granularities, and the resulting pooled
features are flattened and concatenated along the
channel dimension to form the pooled descriptor F°°,
as defined in Eq. (12). The pooled descriptors from all
levels are then concatenated to construct a global
feature representation F9°P3 (Eq. (13)), which is
subsequently compressed through a linear layer to
suppress redundant information, yielding the reduced
feature Freduced (Eq. (14)). Based on this reduced
representation, level-specific fully connected layers
followed by sigmoid activation generate adaptive
channel attention weights «;, for each level, as
formulated in Eq. (15). These weights are expanded
and multiplied with the corresponding input feature
maps to recalibrate informative channels, producing
the channel-refined features T, (Eq. (16)). Finally, a
light spatial gating term 6, computed from the
combined global pooling of the recalibrated and original
features, is applied to stabilize the feature responses,
and the refined skip feature delivered to the decoder is
obtained as expressed in Egs. (17)-(18) [17].

FP°° = Flatten (AngooIm(Tk)) ®

Flatten (AngooIm(Tk)) (12)

Fglobal =||2:1 kaool (13)

Freduced — VVr(FgIobal) (14)

= 0 (W, (Freoueed)) (15)

Ty = ar @ Ty (16)

=0 (AngooIm(T,g) + AngooIm(Tk)) a7
T =T/ Q0+ T, ® 6 (18)

Here, T, € REXCkxHiXWk denotes the input feature map
at level kof the skip connection. AvgPool, . (-)and
AvgPool, .(-) represent adaptive average pooling
operations at different spatial scales, while flatten
converts pooled features into channel descriptors. The
operator @ denotes channel-wise concatenation, and
-, (-) indicates cross-level concatenation of pooled
features. W, is a linear transformation used for
dimensionality reduction, and W,, denotes level-
specific fully connected layers that generate the
channel attention weights «a;. The sigmoid function ¢
ensures that attention weights are normalized to the
range [0, 1]. The symbol @ denotes element-wise
multiplication. The spatial gating term @stabilizes
feature recalibration by jointly considering the original
and channel-refined features, and T,?”tp“t represents
the final ACA-refined skip feature delivered to the
decoder.

Adaptive Spatial Attention (ASA) on skips, as shown
in Fig. 9, complements ACA by emphasizing where to
focus in the spatial domain. Given a feature map F;,
ASA first computes global average-pooled and max-
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pooled summaries along the channel dimension to
highlight informative spatial cues. These pooled
features are then processed by two convolutional paths
to extract spatial dependencies: a dilated convolution
path with a kernel size of 7 x 7 and dilation rate 3 to
enlarge the receptive field, and a standard 3 x 3
convolution path to capture fine-grained local
structures. The outputs of these two paths are fused to
generate a spatial attention map A7, as formulated in
Eq. (19). The spatial attention map is subsequently
applied to the input feature map to obtain the spatially
refined feature F; (Eq. (20)). To further stabilize feature
fusion, a spatial gating term 6, is computed from the
combined global average pooling of the original and
spatially refined features, as defined in Eq. (21). Finally,
Spatial Dynamic Gating Fusion (SDGF) is employed to
adaptively combine the original feature F; and the
spatially attended feature F; using the gating term,
yielding the optimized skip feature for decoding, as
expressed in Eq. (22) [17].

Ai=o (Cgé'z([Favg;Fmax]) + C3X3([EavgiFmax])) (19)

F/ =Ai ®F; (20)
;=0 (Févg (F) + Pévg (Fi’)) (21)
F™=F®6,+F ®8; (22)

Here, F; € RE*CixHxWi denotes the input skip feature at
level i. Fgand Fy.y represent global average pooling
and max pooling operations along the channel
dimension, respectively. /%3 and ¢**3 denote dilated
and standard convolution operations used to capture
large-scale and local spatial dependencies. The
sigmoid function ¢ produces the spatial attention map
A3, which modulates the input feature map to obtain the
refined feature F;. The spatial gating term 6, is
computed from pooled statistics of both original and

refined features to stabilize feature fusion. The symbol

. T . tput
® denotes element-wise multiplication, and F "™

represents the final ASA-refined skip feature delivered
to the decoder.

The Channel Atrous Spatial Pyramid Pooling
(CASPP) block, illustrated in Fig. 10, aims to capture
rich multi-scale context without a substantial increase
in computational cost. Starting from an input feature
map with C,channels, CASPP builds several parallel
branches with different dilation rates (e.g., 1, 6, 12, and
18). For rate r =1, a 1 x 1 convolution is used to
preserve local detail, while for r > 1, 3 x 3 dilated
convolutions with padding p = r expand the receptive
field and capture larger structural patterns. Each
branch produces C, feature channels, followed by
batch normalization and ReLU activation to stabilize
the responses. The outputs of all branches are
concatenated along the channel dimension and then
compressed by a 1x1 projection layer with batch

normalization and RelU, yielding an output with Cyy
channels. Placed at the bottleneck of HALF-MAFUNet,
CASPP provides a compact yet expressive
representation that encodes lesion context at multiple
scales, which is especially helpful for handling objects
with highly variable sizes and shapes [19], [24], [25],
[26].

CASPP ("Conv3x3

Padding=6

Dilation=6

RelLU and
BN

(Conv3x3 )

'Padding=12‘ N

——+—» Dilation=12 —)Concat

‘ ReLU and ,
BN )

(Conv3x3
Padding=18
» Dilation=18
RelLU and
BN

Fig. 10. Architecture of CASPP

C. Hyperparameter Tuning

Next, hyperparameters are tuned to strike an
appropriate trade-off between segmentation accuracy
and computational efficiency. The initial
hyperparameter choices and explored ranges are
determined by common practices in lightweight medical
image segmentation and prior related work, to ensure
stable convergence while maintaining efficiency before
detailed tuning is conducted. Hyperparameter selection
directly affects both the convergence speed and the
model’s ability to generalize to unseen test data. As
summarized in Table 2, the initial configuration in this
study uses a batch size of 8 and up to 100 training
epochs to balance training stability and memory
constraints, the Adam optimizer for its reliable
convergence behavior, and an initial learning rate of
0.001, which is widely adopted in segmentation tasks.
The learning rate is reduced by a factor of 10 if the
validation loss fails to improve for 10 consecutive
epochs, thereby stabilizing the training process. Binary
Cross Entropy (BCE) is adopted as the loss function
due to its effectiveness in binary segmentation, and the
network depth is fixed at five levels, consistent with the
Half-U-Net design to preserve sufficient
representational capacity. In addition, the attention
ratio is set to 8, and the number of filters is set to 64
channels at each stage of the encoder-decoder, as a
compromise between model compactness and
segmentation performance. These settings are then
used as the default configuration for all subsequent
training on the three datasets.
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Table 2. Initial Hyperparameters

Hyperparameter Value
Batch Size 8
Epoch 100
Optimizer Adam

0.001 (reduced to one-
tenth if the validation

Learning Rate loss fails to improve for

10 epochs.)
Loss Function Binary Cross Entropy
Depth 5
Attention Ratio 8
Filters 64

D. Model Training

Once the optimal hyperparameters are determined, the
proposed HALF-MAFUNet is trained using the training
portion of each dataset. The selected configuration
strongly influences the final performance, with 256x256
RGB medical images as input and a binary.
Segmentation mask as the output. Optimization
employs AdamW with a ReduceOnPlateau learning
rate schedule and Binary Cross-Entropy loss. Model
training is implemented in PyTorch on a high-
performance computer (HPC) system with GPU
acceleration using an NVIDIA RTX A4000.

E. Model Evaluation

Model performance is assessed using several
quantitative metrics to evaluate the quality of the
segmentation results. In this study, we use mean
Intersection over Union (mloU), Dice coefficient (F1-

Score), Accuracy (Acc), Sensitivity (Sen), and Specificity
(Spe). These metrics are widely used in medical image
segmentation because they measure both the overlap
between the predicted mask and the ground truth and
the accuracy with which the model identifies positive and
negative pixels. The formulas for each metric are shown
in Egs. (23)-(27).

TP
mloU = 1 b FP+ FN (23
2TP
Dse = orpyrP+FN (24)
TP +TN
AcC = TP TN+ FP+FN (25)
TP
Sen = o (26)
TN
SPe = INF FP @7

In this work, TP (true positive) denotes the count of
lesion pixels that the model correctly classifies as a
lesion, while TN (true negative) represents the count of
background pixels correctly identified as background.
FP (false positive) is the number of background pixels
that are mistakenly labeled as a lesion, and FN (false
negative) is the number of lesion pixels that are wrongly
labeled as background. In our experiments, these
metrics are first computed for each test image and then
averaged across all testimages in the dataset.

lll. Result
A. Hyperparameter Tuning

In this study, hyperparameter tuning was performed by
varying several key components of the HALF-MAFUNet
model, including the optimizer, attention ratio, loss

Table 3. Hyperparameter tuning test results

Hyperparameter Params(M) FLOPs(G) mloU(%) F1-Score(%) ACC(%) SEN(%) SPE(%)
Optimizer _A03M 0.5373 7.944 86.37 91.70 98.76 91.66 99.49
AdamW 0.5373 7.944 88.68 93.38 98.94 96.75 99.17
_ 0.5449 7.944 86.36 91.72 98.82 93.61 99.36
Atlt?ea”t}f” 8 0.5373 7.944 88.68 93.38 98.94 96.75 99.17
16 0.5334 7.944 86.29 91.60 98.80 93.97 99.30
BCE 0.5373 7.944 86.05 91.45 98.75 92.76 99.37
Fqu?;ison Dice Loss 0.5373 7.944 86.66 91.75 98.70 93.14 99.28
BCE + Dice Loss  0.5373 7.944 88.68 93.38 98.94 96.75 99.17
3 0.3512 7.380 81.67 88.53 98.04 88.07 99.08
Depth 4 0.4442 7.670 87.03 92.11 98.85 93.19 99.44
5 0.5373 7.944 88.68 93.38 98.94 96.75 99.17
16 0.0390 0.682 74.16 82.47 97.48 81.53 99.13
Filters 32 0.1368 2.049 81.61 88.48 98.37 89.75 99.26
64 0.5373 7.944 88.68 93.38 98.94 96.75 99.17
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Table 4. Ablation experiment results

Dataset Method Params(M) FLOPs(G) mloU(%) F1-Score(%) ACC(%) SEN(%) SPE(%)

Ablation 1  0.5371 7.943 83.51 89.84 98.48 90.28 99.33

cvc- Ablaton2  0.5296 7.944 87.66 92.84 99.00 94.53 99.46
ClinicDB  Aplaton3  0.5373 7.943 85.81 91.20 98.73 92.02 99.43
Ablation4  0.5373 7.944 88.68 93.38 98.94 96.75 99.17

Ablation 1 0.5371 7.943 81.04 88.57 98.11 90.17 98.91

BUSI Ablation 2 0.5296 7.944 81.01 88.64 98.20 91.87 98.84
Ablation 3 0.5373 7.943 80.63 88.38 98.14 90.72 98.89

Ablation4  0.5373 7.944 83.83 90.50 98.37 92.42 98.97

Ablation 1 0.5371 7.943 79.68 87.34 94.51 84.06 97.47

ISIC.2018 Ablation 2 0.5296 7.944 79.99 87.49 94.82 81.46 98.60
Ablation 3 0.5373 7.943 78.31 86.10 94.10 78.59 98.48

Ablation4  0.5373 7.944 80.15 87.68 94.71 83.12 97.99

function, network depth, and number of filters. To save
time, all tuning experiments were only run on the CVC-
ClinicDB dataset. The process was conducted step by
step: the initial setting in Table 2 was updated whenever
a better configuration was found. The complete tuning
results are shown in Table 3.

For the optimizer, we compared Adam and AdamW
while keeping other hyperparameters fixed. AdamW
achieved the best overall performance, with an mloU of
88.68%, F1-Score of 93.38%, accuracy of 98.94%,
sensitivity of 96.75%, and specificity of 99.17%,
outperforming Adam in all metrics except specificity,
which was slightly higher for Adam. Next, we evaluated
the attention ratio with values of 4, 8, and 16. An
attention ratio of 8 yielded the highest scores (mloU
88.68%, F1- Score 93.38%), while ratios 4 and 16
produced lower performance, indicating that too small or
too large attention bottlenecks reduce the effectiveness
best attention modules. Different loss functions were
then examined, including BCE, Dice Loss, and a
combined trade-off, again achieving an mloU of 88.68%
and an F1-score of 93.38%, and slightly improving
sensitivity compared to using BCE or Dice alone. This
suggests that combining region-based and overlap-
based objectives helps the model learn more balanced
foreground-background  segmentation. We also
analyzed the effect of network depth and filter size on
performance, observing that increasing the depth from 3
to 5 levels consistently improved segmentation accuracy
of the BCE + Dice Loss. The hybrid loss achieved the
with a depth of 5 achieving the best results (mloU
88.68%, F1-Score 93.38%) at a modest increase in
parameters (from 0.3512M to 0.5373M) while reducing
the number of filters to 16 or 32 substantially lowered

parameters and GFLOPs but resulted in inferior
segmentation performance; in contrast, using 64 filters
provided the most favorable accuracy-efficiency trade-
off, maintaining an acceptable computational cost
relative to existing CNN- and Mamba-based models
while achieving competitive segmentation performance,
and was therefore selected as the final configuration for
all experiments.

B. Model Ablation

To comprehensively evaluate the contribution of the
attention gate design in the proposed HALF-MAFUNEet,
several ablation experiments were carried out on three
public datasets: CVC-ClinicDB, BUSI, and ISIC-2018. In
all settings, the backbone, HAM, MAF, and CASPP
blocks were intentionally kept unchanged to maintain a
fixed architectural backbone and isolate the impact of
different attention gate designs on the skip connections,
ensuring that the observed performance differences
originate solely from the attention mechanisms rather
than changes in the core feature extraction or multi-scale
context modeling modules. Four variants were tested:
(1) Ablation 1, HALF-MAFUNet with an attention gate
that uses only ACA (without ASA); (2) Ablation 2, HALF-
MAFUNet with an attention gate that uses only ASA
(without ACA); (3) Ablation 3, HALF-MAFUNet with an
attention gate that applies ASA first and then ACA; and
(4) Ablation 4, HALF-MAFUNet with an attention gate
that applies ACA first and then ASA, which is our
proposed method. All variants exhibit similar
computational complexity, with parameters of
approximately 0.53M and FLOPs of approximately
7.94G, so performance differences primarily arise from
the attention design.

As summarized in Table 4, the proposed attention
order (Ablation 4) consistently achieves the best balance
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Fig. 11. Qualitative comparison of model ablation: (a) input image, (b) ground truth, (c) ablation 1, (d)

ablation 2, (e) ablation 3, (f) ablation 4

across all metrics. On the CVC-ClinicDB dataset,
Ablation 4 obtains the highest mloU of 88.68% and F1-
score of 93.38%, with accuracy of 98.94%, sensitivity of
96.75%, and specificity of 99.17%. Compared with using
only ACA (Ablation 1) or only ASA (Ablation 2), the dual-
module gate in Ablation 4 yields a clear improvement of
approximately 5% mloU and more than 3% F1-score
over the plain ACA case. On the BUSI dataset, Ablation
4 again achieves the best results, reaching an mloU of
83.83% and an F1-score of 90.50%, and also yields the
highest sensitivity (92.42%) and specificity (98.97%)
among all variants. These results show that combining
channel and spatial attention in a cascaded manner is
more effective than using a single attention type.

On the ISIC-2018 dataset, Ablation 4 achieves the
highest mloU and F1-score, with values of 80.15% and
87.68%, respectively. Although Ablation 2 slightly
increases accuracy and specificity, the proposed
configuration still provides the best overlap-based

metrics, which are more important for lesion
segmentation quality. Overall, the comparison indicates
that both ACA and ASA are necessary, and that their
application order plays a critical role: applying ACA first
enables channel-wise filtering to suppress less, thereby
more effectively refining lesion localization by focusing
on spatially relevant regions, which ultimately yields
more reliable segmentation results. Qualitative
examples in Fig. 11 further confirm that Ablation 4
produces lesion masks that are more complete and
closer to the ground-truth boundaries than those of other
ablation variants, particularly in challenging cases with
irregular shapes or low contrast.

C. Experimental Result

Hyperparameter tuning and ablation experiments
resulted in the optimal configuration of HALF-MAFUNet,
whose quantitative performance is summarized in Table
5. With only 0.54M parameters and 7.94 GFLOPs, the
model achieves mloU/F1-Scores of 88.68%/93.38% on
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Table 5. Experiment result

F1-
Dataset Params(M) FLOPs(G) mloU(%) Score(%) ACC(%) SEN(%) SPE(%)
CVC-ClinicDB 0.5373 7.944 88.68% 93.38% 98.94% 96.75% 99.17%
BUSI 0.5373 7.944 83.83% 90.50% 98.37% 92.42% 98.97%
ISIC-2018 0.5373 7.944 80.15% 87.68% 94.71% 83.12% 97.99%
08 084 | 06
il | gool | i | |
03 \ 04 4 I\\ o ;
(a) (c)
Fig. 12. Training and validation loss on dataset: (a) CVC-ClinicDB, (b) BUSI, (c) ISIC-2018
CVC-ClinicDB, 83.83%/90.50% on BUSI, and not improve for 10 epochs, BCE + Dice Loss, a network
80.15%/87.68% on ISIC-2018, while accuracy, depth of 5, an attention ratio of 8, and 64 filters. With this

sensitivity, and specificity exceed 94% across all
datasets. All results are obtained using predefined
training, validation, and test sets without cross-
validation, and the robustness of the proposed model is
evidenced by consistent performance across three
datasets and stable convergence behavior during
training.

Table 6. Experiment Result

Hyperparameter Value
Batch Size 8
Epoch 100
Optimizer AdamWw

0.001 (reduced to one-
tenth if the validation
loss fails to improve for
10 epochs.)

BCE + Dice Loss

Learning Rate

Loss Function

Depth 5
Attention Ratio 8
Filters 64

The best hyperparameter setting used to obtain these
results is listed in Table 6. It uses a batch size of 8, 100
training epochs, the AdamW optimizer, an initial learning
rate of 0.001 with step decay if the validation loss does

setup, the proposed model is trained on three datasets:
CVC-ClinicDB, BUSI, and ISIC-2018. Example results
for images from each dataset are presented in Table 7,
which compares the ground-truth masks with the
predicted masks. These examples show that the
proposed method can follow lesion edges and shapes
quite well, with good completeness and smooth
boundaries, informative feature maps, allowing the
subsequent ASA.

To further analyze the limitations of the proposed
model, the challenging cases illustrated in Table 8
provide additional insight into scenarios where
segmentation performance degrades. For CVC-
ClinicDB, errors typically occur when polyps are very
small or have low contrast with the surrounding mucosa,
resulting in incomplete region coverage. In BUSI, strong
speckle noise and ambiguous lesion boundaries in
ultrasound images often lead to under-segmentation or
boundary inaccuracies. Similarly, in ISIC-2018, lesions
with irregular shapes, low color contrast, or
heterogeneous textures remain challenging and can
occasionally cause partial segmentation or shape
distortion. As shown in Table 8, these failure patterns are
closely related to  modality-specific  imaging
characteristics rather than systematic weaknesses of
the proposed architecture, highlighting directions for
further improvement in handling low-contrast regions
and complex lesion boundaries.
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Table 7. Experiment result

Ground
Truth

Input

Dataset
Image

Predicted
Image

F1-Score /

Overlay loU (%)

95.05/
90.57

CvC-
ClinicDB

97.73/
95.56

97.82/
95.74

94.58 /
89.73

BUSI

96.57 /
93.37

95.77/
91.88

A

95.27/
90.96

I1SIC-2018

92.61/
85.24

d

8@ o y=r -

ol X

™

92.50/
87.80
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| fi\:" .
v

During training, we tracked both training and validation
losses to assess convergence and monitor potential
overfitting. As shown in Fig. 12, the loss curves gradually
decreased and then stabilized as the number of epochs
increased, indicating smooth convergence under the
selected hyperparameters. No severe divergence or
strong overfitting trend was observed, suggesting that
the chosen configuration provides a good balance

between model capacity and regularization across all
three medical image segmentation tasks.

IV. Discussion

This study proposes HALF-MAFUNet, a lightweight
medical image segmentation architecture that balances
segmentation accuracy and computational efficiency
across different imaging modalities. As summarized in
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Table 8. Challenging experiment result

Dataset Input Ground Predicted Overla F1- Score /
Image Truth Image v loU (%)
CvC- 18.85/
ClinicDB 10.41
32.76 /
BUSI
19.59
49.02 /
ISIC-201
SIC-2018 33.27

Tables 9-11, the model achieves consistently high mloU,
F1-score, accuracy, sensitivity, and specificity on CVC-
ClinicDB, BUSI, and ISIC-2018 while using only about
0.54 million parameters and 7.94 GFLOPs. The best
results are obtained on CVC-ClinicDB (mloU 88.68%,
F1-Score 93.38%), followed by BUSI (mloU 83.83%, F1-
Score 90.50%) and 1SIC-2018 (mloU 80.15%, F1-Score
87.68%). Variations in performance across datasets can
be attributed to the distinct characteristics of each
imaging modality. CVC-ClinicDB images generally
exhibit more precise lesion boundaries and relatively
homogeneous backgrounds, which facilitate accurate
polyp segmentation.

In contrast, BUSI ultrasound images are characterized
by strong speckle noise and ambiguous lesion
boundaries, which often lead to boundary inaccuracies
or partial under-segmentation. Similarly, 1SIC-2018
dermoscopic images present greater challenges due to
substantial variations in color, texture, illumination
conditions, and lesion shapes, which may result in
incomplete region coverage or shape distortion. These
failure patterns are primarily driven by modality-specific
imaging properties rather than systematic weaknesses
of the proposed model, and they highlight directions for
future improvements in handling low-contrast regions
and complex lesion boundaries.

Table 9 shows that on CVC-ClinicDB, HALF-
MAFUNet achieves the highest mloU and F1-score
among all compared methods while using far fewer
parameters than classic CNN models such as U-Net
and Att-UNet, and even fewer than recent Mamba-
based MAFUNet and UD-Mamba. At the same time,
the model attains very high accuracy (98.94%),
sensitivity  (96.75%), and specificity (99.17%),
indicating that it can detect most polyp pixels while
keeping false positives low. This suggests that the

combination of Half-UNet backbone, HAM, MAF,
CASPP, and ACA ASA attention can compensate for
the reduced decoder size and still outperform heavier
architectures.

As shown in Table 10, BUSI, HALF-MAFUNet again
achieves the best mloU and F1-Score (83.83% and
90.50%), outperforming U-Net, UNeXt, MALUNZet,
LightM-UNet, and other recent architectures.
Sensitivity reaches 92.42%, which is important for
detecting breast tumors that often exhibit blurred
boundaries on ultrasound images, while accuracy and
specificity remain above 98%. Compared to other
lightweight competitors with similar parameter budgets,
such as MALUNet or Ultralight VM-UNet, this
improvement can be attributed to the explicit modeling
of global context through HAM and the adaptive global-
local feature fusion enabled by MAF, which helps
mitigate the strong noise and boundary ambiguity
commonly present in ultrasound images. In addition,
the attention gate on skip connections further refines
feature selection, allowing the decoder to focus on
more informative representations despite its lightweight
design. These results indicate that the proposed model
can generalize well from colonoscopy to ultrasound
images without changing the architecture.

As shown in Table 11 for ISIC-2018, HALF-MAFUNet
obtains slightly lower mloU and F1-Score than the
heavier UD-Mamba and MAFUNet models, yet it still
achieves competitive performance with mloU 80.15%
and F1-Score 87.68%. While skin lesion images exhibit
high variability in color, texture, and lesion shape, the
combination of global context modeling, adaptive
fusion, and selective attention allows HALF-MAFUNet
to maintain robust performance with significantly fewer
parameters. Considering that HALF-MAFUNet uses
18-60 times fewer parameters than many Transformer-
and Mamba-based competitors, these results highlight
a favorable trade-off between segmentation quality and
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Table 9. Quantitative comparison with previous methods on dataset CVC-ClinicDB

Model Year Params(M) FLOPs(G) mloU(%) F1-Score(%) ACC(%) SEN(%) SPE(%)
U-Net [5] 2015 31.03 54.73 83.53 90.96 98.36 88.23 99.42
Att-UNet [18] 2018 34.88 66.63 84.35 91.39 98.44 89.83 99.31
UNeXt [27] 2022 1.47 0.57 70.15 81.87 96.87 7713 98.88
MALUNet [28] 2022 0.18 0.08 74.71 85.09 97.29 82.07 98.87
UTNetV2 [6] 2022 12.80 15.50 84.98 91.79 98.48 91.34 99.20
FocalUNETR [29] 2023 26.91 16.28 82.83 90.46 98.24 90.02 99.05
LightM-UNet [14] 2024 0.19 0.66 70.94 82.61 96.71 82.81 98.17
Ultralight VM-Unet [15] 2024 0.05 0.06 73.47 84.24 97.26 80.12 99.02
VM-UNet [12] 2024 22.04 4.1 84.31 91.37 98.43 90.18 99.27
U-KAN [30] 2025 9.38 6.89 84.92 91.67 98.50 91.50 99.19
UD-Mamba [31] 2025 19.12 5.91 84.83 91.73 98.51 90.98 99.23
MAFUNet [17] 2025 9.61 7.43 85.07 91.85 98.53 89.90 99.40
Half.MAFUNet ~ FToP9%ed 53 7.044  88.68 93.38 9894 9675  99.17

Table 10. Quantitative comparison with previous methods on dataset BUSI

Model Year Params(M) FLOPs(G) mloU(%) F1-Score(%) ACC(%) SEN(%) SPE(%)
U-Net [5] 2015 31.03 54.73 66.93 79.65 96.50 81.79 97.92
Att-UNet [18] 2018 34.88 66.63 67.51 80.11 96.75 75.93 98.78
UNeXt [27] 2022 1.47 0.57 66.11 79.16 96.61 74.83 98.74
MALUNet [28] 2022 0.18 0.08 62.12 75.42 95.63 77.79 97.32
UTNetV2 [6] 2022 12.80 15.50 70.92 82.39 97.10 81.12 98.64
FocalUNETR [29] 2023 26.91 16.28 68.57 80.79 96.93 76.18 98.95
LightM-UNet [14] 2024 0.19 0.66 65.41 78.47 96.47 79.45 98.07
Ultralight VM-Unet [15] 2024 0.05 0.06 62.78 76.51 95.93 78.26 97.65
VM-UNet [12] 2024 22.04 4.1 69.29 81.36 96.81 80.30 98.44
U-KAN [30] 2025 9.38 6.89 70.40 82.04 97.10 80.42 98.70
UD-Mamba [31] 2025 19.12 5.91 71.17 82.71 97.31 81.60 98.55
MAFUNet [17] 2025 9.61 7.43 71.68 83.12 97.19 82.45 98.61
HallMAFUNet ~ F'oP9%ed 53 7.944  83.83 90.50 98.37 9242 9897

Table 11. Quantitative comparison with previous methods on dataset ISIC-2018

Model Year Params(M) FLOPs(G) mloU(%) F1-Score(%) ACC(%) SEN(%) SPE(%)
U-Net [5] 2015 31.03 54.73 77.86 87.55 94.05 85.86 96.69
Att-UNet [18] 2018 34.88 66.63 78.43 87.91 94.13 87.60 96.23
UNeXt [27] 2022 1.47 0.57 79.50 88.58 94.59 86.18 97.29
MALUNet [28] 2022 0.18 0.08 80.25 89.04 94.62 89.74 96.19
UTNetV2 [6] 2022 12.80 15.50 78.97 88.25 94.32 87.60 96.48
FocalUNETR [29] 2023 26.91 16.28 80.37 89.12 94.92 88.66 96.84
LightM-UNet [14] 2024 0.19 0.66 79.24 88.42 94.58 84.95 97.68
Ultralight VM-Unet [15] 2024 0.05 0.06 78.59 88.01 94.30 85.95 96.98
VM-UNet [12] 2024 22.04 4.1 81.35 89.71 94.91 91.12 96.13
U-KAN [30] 2025 9.38 6.89 80.09 88.94 94.60 89.22 96.33
UD-Mamba [31] 2025 19.12 5.91 81.94 89.15 94.60 89.55 96.26
MAFUNet [17] 2025 9.61 7.43 81.43 89.77 95.24 88.89 97.19
Half-MAFUNet Proposed 0.53 7.944 80.15 87.68 94.71 83.12 97.99

Model

model complexity, especially when compared with
other lightweight architectures that rely primarily on
local convolutional features. Several limitations should
be noted. The experiments are conducted on three
public datasets with fixed train-validation-test splits,
which may not fully represent the diversity of clinical
data across hospitals, devices, and patient populations.
In addition, the main hyperparameter search was

performed on CVC-ClinicDB and subsequently applied
to BUSI and ISIC-2018, so dataset-specific tuning
might further improve performance. Finally, although
the model is lightweight, GPU support is still desirable
for fast training and inference; very low-power devices
may require extra optimization. Despite these
limitations, the results imply that combining a compact
Half-U-Net backbone with HAM, MAF, CASPP, and an

Manuscript received 12 September 2025; Revised 15 November 2025; Accepted 5 January 2026; Available online 12 January 2026

Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1357

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0

International License (CC BY-SA 4.0).

236


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1357
https://creativecommons.org/licenses/by-sa/4.0/
file:///G:/My%20Drive/UNS/Smt%207/Skripsi/02.%20Paper/1357-Article%20Text-7026-1-18-20260109.docx%23ref17
file:///G:/My%20Drive/UNS/Smt%207/Skripsi/02.%20Paper/1357-Article%20Text-7026-1-18-20260109.docx%23ref17
file:///G:/My%20Drive/UNS/Smt%207/Skripsi/02.%20Paper/1357-Article%20Text-7026-1-18-20260109.docx%23ref17

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 222-239

e-ISSN: 2656-8632

ACA-ASA attention gate is an effective strategy for
building accurate yet efficient medical image
segmentation models. This design can be adapted to
other organs and modalities where both performance
and resource constraints are critical. From a practical
viewpoint, HALF-MAFUNet's small parameter count
and strong accuracy suggest that it can be integrated
into computer-aided diagnosis systems running on mid-
range GPUs or high-end CPUs in hospitals. Accurate
segmentation of colorectal polyps, breast tumors, and
skin lesions can support earlier detection, more
consistent lesion measurement, and better treatment
planning. Future work will build on the current findings
by further reducing parameters and FLOPs through
more efficient block designs or lightweight attention
variants, while preserving segmentation accuracy. In
addition, the model will be evaluated on more diverse
datasets and multi-center clinical data to better assess
its robustness and generalization, and will be
integrated into practical computer-aided diagnosis
systems for real-world deployment.

V. Conclusion

This study proposed HALF-MAFUNet, a lightweight
medical image segmentation model designed to
maintain high accuracy while reducing computational
cost for practical deployment. The model is built on a
Half-U-Net backbone and integrates HAM, MAF,
CASPP, and a dual-attention gate comprising ACA and
ASA to better fuse global and local features and refine
skip connections. Using the optimal hyperparameters
(AdamW optimizer, BCE + Dice loss, depth 5, attention
ratio 8, and 64 filters), HALF-MAFUNet achieved strong
results on three datasets with only about 0.54 million
parameters and 7.94 GFLOPs. The model obtained an
mloU/F1- Score of 88.68% / 93.38% on CVC-ClinicDB,
83.83% / 90.50% on BUSI, and 80.15% / 87.68% on
ISIC-2018, showing that it can accurately segment
colorectal polyps, breast tumors, and skin lesions with
low computational complexity. Ablation studies further
showed that combining ACA and ASA, with ACA applied
first, then ASA, provides the best performance among all
attention configurations. Future work will extend this
study by evaluating HALF-MAFUNet on larger,
multicenter clinical datasets to further assess its
robustness and generalization across diverse imaging
conditions. Building on the observed efficiency-accuracy
trade-off, subsequent research will explore more
compact block designs and lightweight attention variants
to further reduce parameters and FLOPs, and will also
investigates their integration into practical computer-
aided diagnosis systems for real-world clinical
deployment.
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