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Medical image segmentation is a critical component in computer-aided diagnosis systems but many deep 

learning models still require large numbers of parameters and heavy computation. Classical CNN-based 

architectures such as U-Net and its variants achieve good accuracy, but are often too heavy for real 

deployment. Meanwhile, modern Transformer-based or Mamba-based models capture long-range 

information but typically increase model complexity. Because of these limitations, there is still a need for 

a lightweight segmentation model that can provide a good balance between accuracy and efficiency across 

different types of medical images. This paper proposes Half-MAFUNet, a lightweight architecture based on 

multi-scale adaptive fusion and designed as a simplified version of MAFUNet. The main contribution of this 

work is combining the efficient encoder structure of Half-UNet with advanced fusion and attention 

mechanisms. Half-MAFUNet integrates Hierarchy Aware Mamba (HAM) for global feature modelling, Multi-

Scale Adaptive Fusion (MAF) to combine global and local information, and two attention modules, Adaptive 

Channel Attention (ACA) and Adaptive Spatial Attention (ASA), to refine skip connections. In addition, this 

model incorporates Channel Atrous Spatial Pyramid Pooling (CASPP) to capture multi-scale receptive 

fields efficiently without increasing computational cost. Together, these components create a compact 

architecture that maintains strong representational power. The model is trained and evaluated on three 

public datasets: CVC-ClinicDB for colorectal polyp segmentation, BUSI for breast tumor segmentation, and 

ISIC-2018 for skin lesion segmentation. All images are resized to 256×256 pixels and processed using 

geometric and intensity-based augmentations. Half-MAFUNet achieves competitive performance, obtaining 

mean IoU around 84 85% and Dice/F1-Score around 90 92% across datasets, while using significantly fewer 

parameters and GFLOPs compared to U-Net, Att-UNet, UNeXt, MALUNet, LightM-UNet, VM-UNet, and UD-

Mamba. These results show that Half-MAFUNet provides accurate and efficient medical image 

segmentation, making it suitable for real-world deployment on devices with limited computational 

resources. 

Keywords Medical images segmentation; Deep learning; U-Net; Efficient Model 

I. Introduction 

Medical image segmentation is a crucial stage in 
computer-aided diagnosis and therapy. It enables 
clinicians to distinguish lesion areas from healthy tissue 
and to more clearly observe the position, size, and 
morphology of abnormalities. High-quality 
segmentation facilitates early disease detection, 
objective clinical assessment, and more effective 
treatment planning for various organs, including the 
colon, breast, and skin [1], [2]. In recent years, 
convolutional neural networks (CNNs) have shown 
strong performance in medical image segmentation [3], 
[4]. Many methods are developed based on the U-Net 
architecture, such as U-Net++, Attention U-Net, and 
other variants [5], [6]. These models achieve strong 
Dice and IoU performance but typically require a large 

number of parameters and incur substantial 
computational overhead. Moreover, because 
convolutional operations are inherently limited to local 
receptive fields, CNN-based architectures still struggle 
to capture long-range dependencies and 
comprehensive global context. Some works try to 
improve this limitation by using attention mechanisms 
or large-kernel convolutions [7], but these methods 
often make the network even heavier and more 
challenging to deploy in real systems. Vision 
Transformer-based methods and other self-attention 
models have also been applied to medical image 
segmentation [8]. They can capture global 
relationships among image tokens, but they typically 
require substantial memory and powerful GPU 
resources [9]. This presents a challenge for hospitals 
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or edge devices with limited hardware. Recently, 
selective state space models (SSMs), especially 
Mamba [10], have attracted attention as a new 
sequence modelling approach. Mamba employs a 
selective state-scanning approach that enables 
efficient modelling of long sequences while using 
relatively few parameters. Its vision variants, Vision 
Mamba and VMamba, extend this architecture to 
computer vision tasks, maintaining linear complexity 
with respect to input size and memory usage  [11]. 
Several models, such as VM-Unet [12], HC-Mamba 
[13], LightM-Unet [14], Ultralight VM-Unet [15], and 
Polyp-Mamba  [16] combine CNN and Mamba to 
integrate local texture and global context for 
segmentation. 

MAFUNet is one of the latest Mamba-based 
architectures for medical image segmentation [17]. It 
introduces HAM and MAF modules, together with ACA 
and ASA, to improve cross-level feature interaction and 
multi-scale representation [18]. MAFUNet achieves 
high segmentation performance with fewer parameters 
than many prior CNN and Transformer models. 
However, MAFUNet still uses a relatively deep 
symmetric decoder and moderate model size. As a 
result, the computational cost and memory usage 
remain high for devices with limited resources and for 
applications requiring fast inference on multi-organ 
datasets. This finding indicates that a gap remains 
between segmentation accuracy and model efficiency 
in current Mamba-based medical image segmentation 
methods. 

Accordingly, this work introduces Half-MAFUNet, a 
lightweight medical image segmentation architecture 
designed to reduce parameter count and computational 
cost while maintaining competitive accuracy, making it 
suitable for deployment on resource-constrained 
clinical hardware where heavier Mamba-based models 
are impractical. Half-MAFUNet leverages the 
asymmetric structure of Half-UNet, in which the 
decoder is intentionally simplified by using a lightweight 
decoding pathway rather than a fully symmetric 
decoder, thereby reducing the parameter count while 
preserving strong feature representations. The network 
integrates several existing modules, incorporating 
HAM [17] and MAF [17] to jointly exploit global context 
and local details, applying adaptive channel and spatial 
attention (ACA and ASA) [17] to selectively refine skip-
connected features that exhibit multi-scale and 
heterogeneous lesion characteristics, and to adopt 
CASPP [19] in the bottleneck to efficiently enlarge the 
receptive field through dilated convolutions without 
introducing substantial additional parameters or 
computational overhead. The goal of this study is to 
build a segmentation model that maintains high 
accuracy with substantially lower computational cost 
and model size, making it more suitable for deployment 

in real clinical settings and on resource-limited devices 
[17], [20]. 

The main contributions of this paper can be 
summarized in four aspects. First, we propose Half-
MAFUNet, a lightweight extension of MAFUNet that 
combines a Half-UNet-based architecture with Mamba 
and adaptive attention modules for efficient medical 
image segmentation. Second, we design an effective 
integration of HAM, MAF, CASPP, ACA, and ASA to 
enhance multi-scale global-local feature fusion and 
improve channel- and spatial-feature selection in skip 
connections. Third, we evaluate the proposed model 
using the same network architecture and training 
protocol on three representative public datasets, 
namely CVC-ClinicDB [21] for colorectal polyp 
segmentation, BUSI [22] for breast tumor 
segmentation, and ISIC-2018 [23] for skin lesion 
segmentation, to evaluate the generalization ability of 
the proposed model. Finally, we provide a detailed 
comparison of model complexity, including parameter 
count and GFLOPs, and show that Half-MAFUNet 
achieves competitive or better segmentation 
performance than several CNN-, Transformer-, and 
Mamba-based baselines while using fewer 
computational resources. 

The remainder of this paper is structured as follows. 
Section 2 reviews CNN, Transformer, and Mamba 
based medical image segmentation methods. Section 
3 describes the proposed Half-MAFUNet and the 
experimental setup (datasets, preprocessing, and 
training). Section 4 presents the results and ablation 
studies, followed by a discussion. Section 5 concludes 
the work and outlines future research directions. 

II. Method 

The methodology adopted in this study is illustrated in 
Fig. 1. The workflow is organized into five primary 
phases: (1) Dataset Preprocessing, (2) Model 
Architecture Design, (3) Hyperparameter Tuning, (4) 
Model Training, and (5) Model Evaluation. 

A. Dataset Preprocessing  

In this study, the CVC-ClinicDB, BUSI, and ISIC-2018 
datasets are utilized. The CVC-ClinicDB dataset [21] 
consists of 612 polyp images, each provided with a 
corresponding ground-truth mask at the original 
resolution of 288 × 368 pixels. BUSI [22] comprises 647 
breast ultrasound images with corresponding masks 
and varying resolutions. ISIC-2018 [23] provides 2,594 
dermoscopic images with lesion masks, also at varying 
resolutions. The first step was resizing all images and 
masks to 256 × 256 pixels. The datasets were 
subsequently split into training, validation, and test 
subsets in an 80%-10%-10% proportion, where the 
validation set was used during training to monitor 
convergence, adjust the learning rate, and prevent 
overfitting. The detailed number of dataset splits is 
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shown in Table 1. Data augmentation was then applied 
to the training set to enhance data diversity and 
mitigate overfitting. 

 

 

Fig. 1. Stages of Research Methods 

 
Table 1. Number of dataset splits 

Dataset 
Train 
Set 

Train Set 
(Augmented) 

Validation 
Set 

Test 
Set 

CVC-
ClinicDB 

490 2450 61 61 

BUSI 571 2585 65 65 

ISIC2018 2075 4150 259 260 

     

(a) 

     

(b) 

     

(c) 

Fig. 2. Augmentation result of dataset (a) CVC-
ClinicDB, (b) BUSI, and (c) ISIC-2018 

Baseline augmentations comprised simple geometric 
transforms: horizontal flip, vertical flip, and rotations. In 
addition to basic geometric augmentations, dataset-
specific augmentations were applied only to the training 
sets of BUSI and ISIC-2018 to improve robustness 
against modality-specific variations while avoiding 
information leakage. For BUSI, a pool of 
augmentations, including Gaussian blur, Gaussian 
noise, elastic transform, CLAHE, lesion-aware crop 
(LAC), and grid distortion, was defined to reflect 
common artifacts and intensity inconsistencies in 
ultrasound imaging. To balance data diversity and 
computational efficiency, each augmented sample was 
generated by randomly combining two to three 
transformations from this pool (e.g., horizontal flip with 
LAC and Gaussian blur), producing a limited number of 
representative variants per image. Similarly, for ISIC-
2018, random brightness, random contrast, Gaussian 
noise, and grid distortion were combined in the same 
manner to model illumination variability and acquisition 
differences in dermoscopic images. The examples 
shown in Fig. 2 illustrate representative combinations 
rather than an exhaustive list, and this strategy 
enhances intra-dataset generalization while avoiding 
excessive computational overhead and overfitting. 
Illustrative examples of the original and augmented 
images are provided in Fig. 2. 

B. Model Architecture Design 

The overall architecture of HALF-MAFUNet is shown in 
Fig. 3. The network follows a five-level U-shaped 
topology with a Half-U-Net backbone: the encoder 
extracts multi-scale features, while the decoder is 
deliberately lightweight to reduce parameters and 
memory. In line with half-decoder principles, the 
number of filters is unified across depth levels, and 
feature fusion in the decoder relies primarily on 
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element-wise addition rather than heavy 
concatenation, which keeps computation efficient and 
the design simple. At each encoder stage, features are 
first processed by the proposed MAF block and then 
passed to the next stage as well as to the skip pathway. 
ACA and ASA further refine the skip connections 
before lightweight upsampling reconstructs the final 
mask at the decoder side. A CASPP block is placed at 
the bottleneck to strengthen the multi-scale context 
[17].  

The MAF block, illustrated in Fig. 4, adaptively fuses 
local and global cues. The input feature map is split into 
two paths: a convolutional branch 𝑋𝐶 that focuses on 

texture and boundary detail, and a HAM branch 𝑋𝐻 that 

encodes global structure, which are respectively 
obtained as 𝑋𝐶 = 𝒟(𝑋) and 𝑋𝐻 = ℋ(𝑋) (Eqs. (1)-(2)). 

A channel attention weight 𝛼 is produced via global 

average pooling followed by two fully connected layers 
and a sigmoid activation, thereby dynamically 
balancing the contributions of the convolutional and 
HAM branches into hybrid features (Eq. (3)). To further 
enhance spatial selectivity, the hybrid features are 
integrated with convolutional features and refined using 
a spatial attention mechanism. The final fusion is 
performed in a spatially adaptive manner, such that 
regions dominated by spatial attention preserve 
convolutional details, whereas complementary regions 
draw from the channel-weighted global-local 

 
Fig. 3. Architecture of Half-MAFUNet 

 
Fig. 4. Multi-scale Adaptive Fusion 
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representation, resulting in the output formulation given 
in Eq. (4). This cascaded channel-spatial fusion 
improves the complementarity between local textures 
and global context with minimal computational 

overhead [17], [24]. 

𝑋𝐶 = 𝒟(𝑋) (1) 

𝑋𝐻 = ℋ(𝑋) (2) 

𝛼 = 𝜎 (𝑊2 (𝑊1 (𝐸(𝐻 ,𝑊)[𝑋𝐶 ∥ 𝑋𝐻]))) (3) 

Output = 𝛽 ⊗ 𝑋𝐶 + (1 − 𝛽) ⊗ (𝛼 ⊗ 𝑋𝐶 + (1 − 𝛼) ⊗ 𝑋𝐻) (4) 

Here, 𝑋 denotes the input feature map, 𝒟(⋅)  represents 

the convolutional branch that extracts local texture 
information, and ℋ denotes the hierarchy-aware 

Mamba (HAM) module used for global context 
modelling. 𝑋𝐶   and 𝑋𝐻  are the local and global s 

representations, respectively. The operator 𝐸(𝐻,𝑊)  

denotes spatial average pooling, while 𝑊1  and 𝑊2  are 

fully connected layers used to generate the channel 
attention weight 𝛼, with 𝜎(⋅)  indicating the sigmoid 

activation function. 𝛽  denotes the spatial attention 

weight obtained from the refined hybrid features. The 
symbols ∥ and ⊗  represent channel-wise 

concatenation and element-wise multiplication, 
respectively. The output corresponds to the spatially 
adaptive fusion of convolutional and hybrid global-local 
features.  

Hierarchy-Aware Mamba (HAM), ilustrated in Fig. 5, 
is designed to enhance feature representation by jointly 

modelling hierarchical local interactions and long-range 
dependencies with low computational overhead. Given 
an input feature tensor 𝑋 ∈ ℝ𝐵×𝐶×𝐻×𝑊, HAM first 

uniformly partitions the channel dimension into 𝑆sub-

features {𝑋𝑖}𝑖=1
𝑆 , where each sub-feature has 

dimensions 𝑋𝑖 ∈ ℝ𝐵×
𝐶
𝑆

×𝐻×𝑊
. A hierarchical processing 

flow is then constructed: at level 𝑖, the current sub-

feature is combined with the output from the previous 
level to preserve residual information. Each 
hierarchical feature is processed by a Mamba block, 
which captures long-range dependencies and 
produces a global feature representation 𝐺𝑖 =
ℳ𝑖(𝑇𝑖)(Eq. (5)), followed by a Channel Dynamic Gating 

Fusion (CDGF) unit to adaptively recalibrate channel 
responses [17]. To generate adaptive gating weights, 
global average pooling is applied to both the global 
feature 𝐺𝑖and the corresponding hierarchical input, and 

the resulting descriptors are passed through a sigmoid 
activation to obtain the gating vector 𝜃, as defined in 

Eq. (6). The hierarchically fused feature at each level is 
then computed by combining the gated global feature 
and the previous-level output, yielding 𝑋𝑖

′ as formulated 

in Eq. (7). This hierarchical residual mechanism allows 
the local branch to preserve fine-grained spatial details 
while inheriting contextual information from upper 
layers. Finally, the gated sub-features from all levels 
are concatenated along the channel dimension to form 
the HAM output, which is forwarded to subsequent 
modules, as expressed in Eq. (8) [17]. 

 
Fig. 5. Hierarchy Aware Mamba 
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𝐺𝑖 =  𝑀𝑖(𝑇𝑖) ∈  𝑅𝐵 × 𝐻 × 𝑊 ×
𝐶
𝑆 (5) 

𝜃 = {
𝜎 (AvgPool

1×1
(𝐺1) + AvgPool

1×1
(𝑋1)) , 𝑖 = 1,

𝜎 (AvgPool
1×1

(𝐺𝑖) + AvgPool
1×1

(𝑋𝑖
′)) , 𝑖 > 1,

(6)  

𝑋ᵢ′ =  𝐺ᵢ ⊗  𝜃 +  𝑋ᵢ−1′
⊗  𝜃 ∈  𝑅𝐵 ×

𝐶
𝑆× 𝐻 × 𝑊 (7) 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐶({𝑋ᵢ′}ᵢ=1𝑆) ∈  𝑅𝐵 × 𝐶 × 𝐻 × 𝑊 (8) 

where ℳ𝑖(⋅)  denotes the Mamba block at level 𝑖, 𝑇𝑖 

represents the serialized feature sequence, and 𝐺𝑖 is 

the corresponding global feature output. 𝜎(⋅)  denotes 

the sigmoid activation function, AvgPool 1×1(⋅)  is global 

average pooling, ⊗ indicates element-wise 

multiplication, and 𝑋𝑖
′  represents the hierarchically 

fused feature at the level 𝑖. The operator 𝒞 denotes 

channel-wise concatenation of all gated sub-features to 
form the final HAM output.  

Inside HAM, illustrated in Fig. 6, the Mamba block 
acts as a selective state-space model that scans the 
serialized feature sequence. It uses content-aware 
gates to control how much past information is kept or 
updated at each step, enabling efficient modelling of 
long-range dependencies with linear complexity in 
sequence length. This mechanism is realized through 
a dual-collaborative architecture consisting of a main 
branch and an auxiliary branch that process the input 
sequence in parallel. The main branch captures long-
range dependencies by applying a linear projection 
followed by convolution, SiLU activation, and a 
selective state-space model, producing Branch1(𝑋) as 

formulated in Eq. (9). In parallel, the auxiliary branch 
applies a lightweight linear transformation with SiLU 
activation to preserve the basic feature representation, 
yielding Branch2(𝑋) as defined in Eq. (10). The outputs 

of the two branches are then fused through element-
wise multiplication and mapped by a linear layer to 
obtain the final Mamba output, as expressed in Eq. 

(11). Compared with self-attention, this dual-branch 
selective fusion allows Mamba to provide global 
receptive fields with fewer parameters and more 
hardware-friendly computation, making it well suited for 
lightweight medical image segmentation [17]. 

Branch1(𝑋) = SSM (SiLU (Conv(Linear(𝑋)))) (9) 

Branch2(𝑋) = SiLU(Linear(𝑋)) (10) 

Mamba(𝑋) = Linear(Branch1(𝑋) ⊗ Branch2(𝑋)) (11) 

Throughout HALF-MAFUNet, convolutional blocks 
serve as basic local feature extractors, as illustrated in 
Fig. 7. In the encoder and decoder, each block typically 
consists of convolution, batch normalization, and ReLU 
activation. Standard or depthwise separable 
convolutions are employed at each stage to balance 
expressive power and efficiency. These blocks provide 
stable local feature representations that are later 
enhanced by HAM, MAF, ACA, ASA, and CASPP, 
forming the backbone of the network’s hierarchical 
feature hierarchy [17]. Channel Dynamic Gating Fusion 
(CDGF), illustrated in Fig. 6 operates on the outputs of 
each HAM level. Given the global gating vector 𝜃, 

CDGF scales the channels of each sub-feature and 
combines them in a level-aware manner. This 
mechanism allows the model to emphasize informative 
levels and suppress redundant responses when 
aggregating multi-level features. By integrating CDGF 
into HAM, HALF-MAFUNet can adaptively balance 
contributions from different depths, improving global-
local interaction without significantly increasing 
computation [17]. Spatial Dynamic Gating Fusion 
(SDGF), illustrated in Fig. 7, combines an original 
feature map with its spatially attended counterpart. It 
first extracts pooled statistics (for example, global 
average and max pooling) from both inputs to generate 
a spatial gate. This gate determines the extent to which 

 
Fig. 6. Architecture of Mamba and CDGF 

 
Fig. 7. Architecture of Conv block and SDGF 
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information should be drawn from the original feature 
and from the refined one at each spatial location. In this 
way, SDGF provides a flexible mechanism for 
suppressing noise while preserving important spatial 
structures, especially when applied after spatial 
attention modules  [17].  

Adaptive Channel Attention (ACA) on skips, as 
illustrated in Fig. 8, improves the representational 
quality of features transmitted through skip connections 
by dynamically recalibrating channel responses. For 
each level, ACA aggregates multi-level global context 
using adaptive average pooling at two spatial scales 
(e.g., 1 × 1and 2 × 2) to capture contextual information 

at different granularities, and the resulting pooled 
features are flattened and concatenated along the 

channel dimension to form the pooled descriptor 𝐹𝑘
pool

, 

as defined in Eq. (12). The pooled descriptors from all 
levels are then concatenated to construct a global 

feature representation 𝐹global (Eq. (13)), which is 

subsequently compressed through a linear layer to 
suppress redundant information, yielding the reduced 

feature 𝐹reduced (Eq. (14)). Based on this reduced 

representation, level-specific fully connected layers 
followed by sigmoid activation generate adaptive 
channel attention weights 𝛼𝑘 for each level, as 

formulated in Eq. (15). These weights are expanded 
and multiplied with the corresponding input feature 
maps to recalibrate informative channels, producing 
the channel-refined features 𝑇𝑘

′ (Eq. (16)). Finally, a 

light spatial gating term 𝜃, computed from the 

combined global pooling of the recalibrated and original 
features, is applied to stabilize the feature responses, 
and the refined skip feature delivered to the decoder is 
obtained as expressed in Eqs. (17)-(18) [17]. 

𝐹𝑘
pool

= Flatten (AvgPool
1×1

(𝑇𝑘)) ⊕

Flatten (AvgPool
2×2

(𝑇𝑘)) (12)
 

𝐹global =∥𝑘=1
5 𝐹𝑘

pool (13) 

𝐹reduced = 𝑊𝑟(𝐹global) (14) 

𝛼𝑘 = 𝜎 (𝑊𝛼𝑘
(𝐹reduced)) (15) 

𝑇𝑘
′ = 𝛼𝑘 ⊗ 𝑇𝑘 (16) 

𝜃 = 𝜎 (AvgPool
1×1

(𝑇𝑘
′) + AvgPool

1×1
(𝑇𝑘)) (17) 

𝑇𝑘
output

= 𝑇𝑘
′ ⊗ 𝜃 + 𝑇𝑘 ⊗ 𝜃 (18) 

Here, 𝑇𝑘 ∈ ℝ𝐵×𝐶𝑘×𝐻𝑘×𝑊𝑘 denotes the input feature map 

at level 𝑘 of the skip connection. AvgPool
1×1

(⋅) and 

AvgPool
2×2

(⋅)  represent adaptive average pooling 

operations at different spatial scales, while flatten 

converts pooled features into channel descriptors. The 
operator ⊕  denotes channel-wise concatenation, and 

∥𝑘=1
5 (⋅)  indicates cross-level concatenation of pooled 

features. 𝑊𝑟 is a linear transformation used for 

dimensionality reduction, and 𝑊𝛼𝑘
 denotes level-

specific fully connected layers that generate the 
channel attention weights 𝛼𝑘. The sigmoid function 𝜎   
ensures that attention weights are normalized to the 
range [0, 1]. The symbol ⊗ denotes element-wise 
multiplication. The spatial gating term 𝜃stabilizes 

feature recalibration by jointly considering the original 

and channel-refined features, and 𝑇𝑘
output

 represents 

the final ACA-refined skip feature delivered to the 
decoder. 

Adaptive Spatial Attention (ASA) on skips, as shown 
in Fig. 9, complements ACA by emphasizing where to 
focus in the spatial domain. Given a feature map 𝐹𝑖, 

ASA first computes global average-pooled and max-

 

Fig. 8. Architecture of adaptive channel attention 

 
Fig. 9. Architecture of adaptive spatial attention 
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pooled summaries along the channel dimension to 
highlight informative spatial cues. These pooled 
features are then processed by two convolutional paths 
to extract spatial dependencies: a dilated convolution 
path with a kernel size of 7 × 7 and dilation rate 3 to 

enlarge the receptive field, and a standard 3 × 3 

convolution path to capture fine-grained local 
structures. The outputs of these two paths are fused to 
generate a spatial attention map 𝐴𝑖

𝑠 , as formulated in 

Eq. (19). The spatial attention map is subsequently 
applied to the input feature map to obtain the spatially 
refined feature 𝐹𝑖

′ (Eq. (20)). To further stabilize feature 

fusion, a spatial gating term 𝜃𝑖 is computed from the 

combined global average pooling of the original and 
spatially refined features, as defined in Eq. (21). Finally, 
Spatial Dynamic Gating Fusion (SDGF) is employed to 
adaptively combine the original feature 𝐹𝑖 and the 
spatially attended feature 𝐹𝑖

′ using the gating term, 

yielding the optimized skip feature for decoding, as 
expressed in Eq. (22) [17]. 

𝐴𝑖
𝑠 = 𝜎 (𝐶𝑑=3

7×7([𝐹avg; 𝐹max]) + 𝐶3×3([𝐹avg; 𝐹max])) (19) 

𝐹𝑖
′ = 𝐴𝑖

𝑠 ⊗ 𝐹𝑖 (20) 

𝜃𝑖 = 𝜎 (𝐹avg(𝐹𝑖) + 𝐹avg(𝐹𝑖
′)) (21) 

𝐹𝑖
output

= 𝐹𝑖 ⊗ 𝜃𝑖 + 𝐹𝑖
′ ⊗ 𝜃𝑖 (22) 

Here, 𝐹𝑖 ∈ ℝ𝐵×𝐶𝑖×𝐻𝑖×𝑊𝑖  denotes the input skip feature at 

level 𝑖. 𝐹avgand 𝐹max represent global average pooling 

and max pooling operations along the channel 

dimension, respectively. 𝐶𝑑=3
7×7 and 𝐶3×3 denote dilated 

and standard convolution operations used to capture 
large-scale and local spatial dependencies. The 
sigmoid function 𝜎 produces the spatial attention map 
𝐴𝑖

𝑠 , which modulates the input feature map to obtain the 

refined feature 𝐹𝑖
′. The spatial gating term 𝜃𝑖 is 

computed from pooled statistics of both original and 
refined features to stabilize feature fusion. The symbol 

⊗ denotes element-wise multiplication, and 𝐹𝑖
output

 

represents the final ASA-refined skip feature delivered 
to the decoder. 

The Channel Atrous Spatial Pyramid Pooling 
(CASPP) block, illustrated in Fig. 10, aims to capture 
rich multi-scale context without a substantial increase 
in computational cost. Starting from an input feature 
map with 𝐶inchannels, CASPP builds several parallel 

branches with different dilation rates (e.g., 1, 6, 12, and 
18). For rate 𝑟 = 1, a 1 × 1  convolution is used to 

preserve local detail, while for 𝑟 > 1, 3 × 3  dilated 
convolutions with padding 𝑝 = 𝑟  expand the receptive 

field and capture larger structural patterns. Each 
branch produces 𝐶br  feature channels, followed by 

batch normalization and ReLU activation to stabilize 
the responses. The outputs of all branches are 
concatenated along the channel dimension and then 
compressed by a 1 × 1 projection layer with batch 

normalization and ReLU, yielding an output with 𝐶out  
channels. Placed at the bottleneck of HALF-MAFUNet, 
CASPP provides a compact yet expressive 
representation that encodes lesion context at multiple 
scales, which is especially helpful for handling objects 
with highly variable sizes and shapes [19], [24], [25], 
[26]. 

 
Fig. 10. Architecture of CASPP 

C. Hyperparameter Tuning 

Next, hyperparameters are tuned to strike an 
appropriate trade-off between segmentation accuracy 
and computational efficiency. The initial 
hyperparameter choices and explored ranges are 
determined by common practices in lightweight medical 
image segmentation and prior related work, to ensure 
stable convergence while maintaining efficiency before 
detailed tuning is conducted. Hyperparameter selection 
directly affects both the convergence speed and the 
model’s ability to generalize to unseen test data. As 
summarized in Table 2, the initial configuration in this 
study uses a batch size of 8 and up to 100 training 
epochs to balance training stability and memory 
constraints, the Adam optimizer for its reliable 
convergence behavior, and an initial learning rate of 
0.001, which is widely adopted in segmentation tasks. 
The learning rate is reduced by a factor of 10 if the 
validation loss fails to improve for 10 consecutive 
epochs, thereby stabilizing the training process. Binary 
Cross Entropy (BCE) is adopted as the loss function 
due to its effectiveness in binary segmentation, and the 
network depth is fixed at five levels, consistent with the 
Half-U-Net design to preserve sufficient 
representational capacity. In addition, the attention 
ratio is set to 8, and the number of filters is set to 64 
channels at each stage of the encoder-decoder, as a 
compromise between model compactness and 
segmentation performance. These settings are then 
used as the default configuration for all subsequent 
training on the three datasets. 
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Table 2. Initial Hyperparameters 

Hyperparameter Value 

Batch Size 8 

Epoch 100 

Optimizer Adam 

Learning Rate 

0.001 (reduced to one-

tenth if the validation 

loss fails to improve for 

10 epochs.) 

Loss Function Binary Cross Entropy 

Depth 5 

Attention Ratio 8 

Filters 64 

D. Model Training 

Once the optimal hyperparameters are determined, the 
proposed HALF-MAFUNet is trained using the training 
portion of each dataset. The selected configuration 
strongly influences the final performance, with 256×256 
RGB medical images as input and a binary. 
Segmentation mask as the output. Optimization 
employs AdamW with a ReduceOnPlateau learning 
rate schedule and Binary Cross-Entropy loss. Model 
training is implemented in PyTorch on a high-
performance computer (HPC) system with GPU 
acceleration using an NVIDIA RTX A4000. 

E. Model Evaluation 

Model performance is assessed using several 

quantitative metrics to evaluate the quality of the 

segmentation results. In this study, we use mean 

Intersection over Union (mIoU), Dice coefficient (F1-

Score), Accuracy (Acc), Sensitivity (Sen), and Specificity 

(Spe). These metrics are widely used in medical image 

segmentation because they measure both the overlap 

between the predicted mask and the ground truth and 

the accuracy with which the model identifies positive and 

negative pixels. The formulas for each metric are shown 

in Eqs. (23)-(27).  

𝑚𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(23) 

𝐷𝑠𝑐 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(24) 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(25) 

𝑆𝑒𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(26) 

𝑆𝑝𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(27) 

In this work, TP (true positive) denotes the count of 

lesion pixels that the model correctly classifies as a 

lesion, while TN (true negative) represents the count of 

background pixels correctly identified as background. 

FP (false positive) is the number of background pixels 

that are mistakenly labeled as a lesion, and FN (false 

negative) is the number of lesion pixels that are wrongly 

labeled as background. In our experiments, these 

metrics are first computed for each test image and then 

averaged across all test images in the dataset. 

III. Result 

A. Hyperparameter Tuning 

In this study, hyperparameter tuning was performed by 

varying several key components of the HALF-MAFUNet 

model, including the optimizer, attention ratio, loss 

Table 3. Hyperparameter tuning test results 

Hyperparameter Params(M) FLOPs(G) mIoU(%) F1- Score(%) ACC(%) SEN(%) SPE(%) 

Optimizer 
Adam 0.5373 7.944 86.37 91.70 98.76 91.66 99.49 

AdamW 0.5373 7.944 88.68 93.38 98.94 96.75 99.17 

Attention 
Ratio 

4 0.5449 7.944 86.36 91.72 98.82 93.61 99.36 

8 0.5373 7.944 88.68 93.38 98.94 96.75 99.17 

16 0.5334 7.944 86.29 91.60 98.80 93.97 99.30 

Loss 
Function 

BCE 0.5373 7.944 86.05 91.45 98.75 92.76 99.37 

Dice Loss 0.5373 7.944 86.66 91.75 98.70 93.14 99.28 

BCE + Dice Loss 0.5373 7.944 88.68 93.38 98.94 96.75 99.17 

Depth 

3 0.3512 7.380 81.67 88.53 98.04 88.07 99.08 

4 0.4442 7.670 87.03 92.11 98.85 93.19 99.44 

5 0.5373 7.944 88.68 93.38 98.94 96.75 99.17 

Filters 

16 0.0390 0.682 74.16 82.47 97.48 81.53 99.13 

32 0.1368 2.049 81.61 88.48 98.37 89.75 99.26 

64 0.5373 7.944 88.68 93.38 98.94 96.75 99.17 
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function, network depth, and number of filters. To save 

time, all tuning experiments were only run on the CVC-

ClinicDB dataset. The process was conducted step by 

step: the initial setting in Table 2 was updated whenever 

a better configuration was found. The complete tuning 

results are shown in Table 3. 

For the optimizer, we compared Adam and AdamW 

while keeping other hyperparameters fixed. AdamW 

achieved the best overall performance, with an mIoU of 

88.68%, F1-Score of 93.38%, accuracy of 98.94%, 

sensitivity of 96.75%, and specificity of 99.17%, 

outperforming Adam in all metrics except specificity, 

which was slightly higher for Adam. Next, we evaluated 

the attention ratio with values of 4, 8, and 16. An 

attention ratio of 8 yielded the highest scores (mIoU 

88.68%, F1- Score 93.38%), while ratios 4 and 16 

produced lower performance, indicating that too small or 

too large attention bottlenecks reduce the effectiveness 

best attention modules. Different loss functions were 

then examined, including BCE, Dice Loss, and a 

combined trade-off, again achieving an mIoU of 88.68% 

and an F1-score of 93.38%, and slightly improving 

sensitivity compared to using BCE or Dice alone. This 

suggests that combining region-based and overlap-

based objectives helps the model learn more balanced 

foreground-background segmentation. We also 

analyzed the effect of network depth and filter size on 

performance, observing that increasing the depth from 3 

to 5 levels consistently improved segmentation accuracy 

of the BCE + Dice Loss. The hybrid loss achieved the  

with a depth of 5 achieving the best results (mIoU 

88.68%, F1-Score 93.38%) at a modest increase in 

parameters (from 0.3512M to 0.5373M) while reducing 

the number of filters to 16 or 32 substantially lowered 

parameters and GFLOPs but resulted in inferior 

segmentation performance; in contrast, using 64 filters 

provided the most favorable accuracy-efficiency trade-

off, maintaining an acceptable computational cost 

relative to existing CNN- and Mamba-based models 

while achieving competitive segmentation performance, 

and was therefore selected as the final configuration for 

all experiments. 

B. Model Ablation 

To comprehensively evaluate the contribution of the 
attention gate design in the proposed HALF-MAFUNet, 
several ablation experiments were carried out on three 
public datasets: CVC-ClinicDB, BUSI, and ISIC-2018. In 
all settings, the backbone, HAM, MAF, and CASPP 
blocks were intentionally kept unchanged to maintain a 
fixed architectural backbone and isolate the impact of 
different attention gate designs on the skip connections, 
ensuring that the observed performance differences 
originate solely from the attention mechanisms rather 
than changes in the core feature extraction or multi-scale 
context modeling modules. Four variants were tested: 
(1) Ablation 1, HALF-MAFUNet with an attention gate 
that uses only ACA (without ASA); (2) Ablation 2, HALF-
MAFUNet with an attention gate that uses only ASA 
(without ACA); (3) Ablation 3, HALF-MAFUNet with an 
attention gate that applies ASA first and then ACA; and 
(4) Ablation 4, HALF-MAFUNet with an attention gate 
that applies ACA first and then ASA, which is our 
proposed method. All variants exhibit similar 
computational complexity, with parameters of 
approximately 0.53M and FLOPs of approximately 
7.94G, so performance differences primarily arise from 
the attention design. 

As summarized in Table 4, the proposed attention 
order (Ablation 4) consistently achieves the best balance 

Table 4. Ablation experiment results 

Dataset Method Params(M) FLOPs(G) mIoU(%) F1- Score(%) ACC(%) SEN(%) SPE(%) 

CVC-
ClinicDB 

Ablation 1 0.5371 7.943 83.51 89.84 98.48 90.28 99.33 

Ablation 2 0.5296 7.944 87.66 92.84 99.00 94.53 99.46 

Ablation 3 0.5373 7.943 85.81 91.20 98.73 92.02 99.43 

Ablation 4 0.5373 7.944 88.68 93.38 98.94 96.75 99.17 

BUSI 

Ablation 1 0.5371 7.943 81.04 88.57 98.11 90.17 98.91 

Ablation 2 0.5296 7.944 81.01 88.64 98.20 91.87 98.84 

Ablation 3 0.5373 7.943 80.63 88.38 98.14 90.72 98.89 

Ablation 4 0.5373 7.944 83.83 90.50 98.37 92.42 98.97 

ISIC-2018 

Ablation 1 0.5371 7.943 79.68 87.34 94.51 84.06 97.47 

Ablation 2 0.5296 7.944 79.99 87.49 94.82 81.46 98.60 

Ablation 3 0.5373 7.943 78.31 86.10 94.10 78.59 98.48 

Ablation 4 0.5373 7.944 80.15 87.68 94.71 83.12 97.99 
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across all metrics. On the CVC-ClinicDB dataset, 
Ablation 4 obtains the highest mIoU of 88.68% and F1-
score of 93.38%, with accuracy of 98.94%, sensitivity of 
96.75%, and specificity of 99.17%. Compared with using 
only ACA (Ablation 1) or only ASA (Ablation 2), the dual-
module gate in Ablation 4 yields a clear improvement of 
approximately 5% mIoU and more than 3% F1-score 
over the plain ACA case. On the BUSI dataset, Ablation 
4 again achieves the best results, reaching an mIoU of 
83.83% and an F1-score of 90.50%, and also yields the 
highest sensitivity (92.42%) and specificity (98.97%) 
among all variants. These results show that combining 
channel and spatial attention in a cascaded manner is 
more effective than using a single attention type. 

On the ISIC-2018 dataset, Ablation 4 achieves the 
highest mIoU and F1-score, with values of 80.15% and 
87.68%, respectively. Although Ablation 2 slightly 
increases accuracy and specificity, the proposed 
configuration still provides the best overlap-based 

metrics, which are more important for lesion 
segmentation quality. Overall, the comparison indicates 
that both ACA and ASA are necessary, and that their 
application order plays a critical role: applying ACA first 
enables channel-wise filtering to suppress less, thereby 
more effectively refining lesion localization by focusing 
on spatially relevant regions, which ultimately yields 
more reliable segmentation results. Qualitative 
examples in Fig. 11 further confirm that Ablation 4 
produces lesion masks that are more complete and 
closer to the ground-truth boundaries than those of other 
ablation variants, particularly in challenging cases with 
irregular shapes or low contrast. 

C. Experimental Result  

Hyperparameter tuning and ablation experiments 

resulted in the optimal configuration of HALF-MAFUNet, 

whose quantitative performance is summarized in Table 

5. With only 0.54M parameters and 7.94 GFLOPs, the 

model achieves mIoU/F1-Scores of 88.68%/93.38% on 

 

CVC-ClinicDB 
      

      

BUSI 
      

      

ISIC-2018 
      

      

 (a) (b) (c) (d) (e) (f) 

Fig. 11. Qualitative comparison of model ablation: (a) input image, (b) ground truth, (c) ablation 1, (d) 
ablation 2, (e) ablation 3, (f) ablation 4 
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CVC-ClinicDB, 83.83%/90.50% on BUSI, and 

80.15%/87.68% on ISIC-2018, while accuracy, 

sensitivity, and specificity exceed 94% across all 

datasets. All results are obtained using predefined 

training, validation, and test sets without cross-

validation, and the robustness of the proposed model is 

evidenced by consistent performance across three 

datasets and stable convergence behavior during 

training. 

Table 6. Experiment Result 

Hyperparameter Value 

Batch Size 8 

Epoch 100 

Optimizer AdamW 

Learning Rate 

0.001 (reduced to one-

tenth if the validation 

loss fails to improve for 

10 epochs.) 

Loss Function BCE + Dice Loss 

Depth 5 

Attention Ratio 8 

Filters 64 

The best hyperparameter setting used to obtain these 
results is listed in Table 6. It uses a batch size of 8, 100 
training epochs, the AdamW optimizer, an initial learning 
rate of 0.001 with step decay if the validation loss does 

not improve for 10 epochs, BCE + Dice Loss, a network 
depth of 5, an attention ratio of 8, and 64 filters. With this 
setup, the proposed model is trained on three datasets: 
CVC-ClinicDB, BUSI, and ISIC-2018. Example results 
for images from each dataset are presented in Table 7, 
which compares the ground-truth masks with the 
predicted masks. These examples show that the 
proposed method can follow lesion edges and shapes 
quite well, with good completeness and smooth 
boundaries, informative feature maps, allowing the 
subsequent ASA.  

To further analyze the limitations of the proposed 

model, the challenging cases illustrated in Table 8 

provide additional insight into scenarios where 

segmentation performance degrades. For CVC-

ClinicDB, errors typically occur when polyps are very 

small or have low contrast with the surrounding mucosa, 

resulting in incomplete region coverage. In BUSI, strong 

speckle noise and ambiguous lesion boundaries in 

ultrasound images often lead to under-segmentation or 

boundary inaccuracies. Similarly, in ISIC-2018, lesions 

with irregular shapes, low color contrast, or 

heterogeneous textures remain challenging and can 

occasionally cause partial segmentation or shape 

distortion. As shown in Table 8, these failure patterns are 

closely related to modality-specific imaging 

characteristics rather than systematic weaknesses of 

the proposed architecture, highlighting directions for 

further improvement in handling low-contrast regions 

and complex lesion boundaries. 

Table 5. Experiment result 

Dataset Params(M) FLOPs(G) mIoU(%) 
F1- 

Score(%) 
ACC(%) SEN(%) SPE(%) 

CVC-ClinicDB 0.5373 7.944 88.68% 93.38% 98.94% 96.75% 99.17% 

BUSI 0.5373 7.944 83.83% 90.50% 98.37% 92.42% 98.97% 

ISIC-2018 0.5373 7.944 80.15% 87.68% 94.71% 83.12% 97.99% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Fig. 12. Training and validation loss on dataset: (a) CVC-ClinicDB, (b) BUSI, (c) ISIC-2018 
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During training, we tracked both training and validation 

losses to assess convergence and monitor potential 

overfitting. As shown in Fig. 12, the loss curves gradually 

decreased and then stabilized as the number of epochs 

increased, indicating smooth convergence under the 

selected hyperparameters. No severe divergence or 

strong overfitting trend was observed, suggesting that 

the chosen configuration provides a good balance 

between model capacity and regularization across all 

three medical image segmentation tasks. 

IV. Discussion 

This study proposes HALF-MAFUNet, a lightweight 

medical image segmentation architecture that balances 

segmentation accuracy and computational efficiency 

across different imaging modalities. As summarized in 

Table 7. Experiment result 

Dataset 
Input 
Image 

Ground 
Truth 

Predicted 
Image 

Overlay 
F1- Score / 

IoU (%) 

CVC-
ClinicDB 

    

95.05 / 
90.57 

    

97.73 / 
95.56 

    

97.82 / 
95.74 

BUSI 

    

94.58 / 
89.73 

    

96.57 / 
93.37 

    

95.77 / 
91.88 

ISIC-2018 

    

95.27 / 
90.96 

    

92.61 / 
85.24 

    

92.50 / 
87.80 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1357
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 222-239                                        e-ISSN: 2656-8632 

 

Manuscript received 12 September 2025; Revised 15 November 2025; Accepted 5 January 2026; Available online 12 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1357 

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 235               

Tables 9-11, the model achieves consistently high mIoU, 

F1-score, accuracy, sensitivity, and specificity on CVC-

ClinicDB, BUSI, and ISIC-2018 while using only about 

0.54 million parameters and 7.94 GFLOPs. The best 

results are obtained on CVC-ClinicDB (mIoU 88.68%, 

F1-Score 93.38%), followed by BUSI (mIoU 83.83%, F1-

Score 90.50%) and ISIC-2018 (mIoU 80.15%, F1-Score 

87.68%). Variations in performance across datasets can 

be attributed to the distinct characteristics of each 

imaging modality. CVC-ClinicDB images generally 

exhibit more precise lesion boundaries and relatively 

homogeneous backgrounds, which facilitate accurate 

polyp segmentation.  

In contrast, BUSI ultrasound images are characterized 

by strong speckle noise and ambiguous lesion 

boundaries, which often lead to boundary inaccuracies 

or partial under-segmentation. Similarly, ISIC-2018 

dermoscopic images present greater challenges due to 

substantial variations in color, texture, illumination 

conditions, and lesion shapes, which may result in 

incomplete region coverage or shape distortion. These 

failure patterns are primarily driven by modality-specific 

imaging properties rather than systematic weaknesses 

of the proposed model, and they highlight directions for 

future improvements in handling low-contrast regions 

and complex lesion boundaries. 

Table 9 shows that on CVC-ClinicDB, HALF-
MAFUNet achieves the highest mIoU and F1-score 
among all compared methods while using far fewer 
parameters than classic CNN models such as U-Net 
and Att-UNet, and even fewer than recent Mamba-
based MAFUNet and UD-Mamba. At the same time, 
the model attains very high accuracy (98.94%), 
sensitivity (96.75%), and specificity (99.17%), 
indicating that it can detect most polyp pixels while 
keeping false positives low. This suggests that the 

combination of Half-UNet backbone, HAM, MAF, 
CASPP, and ACA ASA attention can compensate for 
the reduced decoder size and still outperform heavier 
architectures. 

As shown in Table 10, BUSI, HALF-MAFUNet again 
achieves the best mIoU and F1-Score (83.83% and 
90.50%), outperforming U-Net, UNeXt, MALUNet, 
LightM-UNet, and other recent architectures. 
Sensitivity reaches 92.42%, which is important for 
detecting breast tumors that often exhibit blurred 
boundaries on ultrasound images, while accuracy and 
specificity remain above 98%. Compared to other 
lightweight competitors with similar parameter budgets, 
such as MALUNet or Ultralight VM-UNet, this 
improvement can be attributed to the explicit modeling 
of global context through HAM and the adaptive global-
local feature fusion enabled by MAF, which helps 
mitigate the strong noise and boundary ambiguity 
commonly present in ultrasound images. In addition, 
the attention gate on skip connections further refines 
feature selection, allowing the decoder to focus on 
more informative representations despite its lightweight 
design. These results indicate that the proposed model 
can generalize well from colonoscopy to ultrasound 
images without changing the architecture. 

As shown in Table 11 for ISIC-2018, HALF-MAFUNet 
obtains slightly lower mIoU and F1-Score than the 
heavier UD-Mamba and MAFUNet models, yet it still 
achieves competitive performance with mIoU 80.15% 
and F1-Score 87.68%. While skin lesion images exhibit 
high variability in color, texture, and lesion shape, the 
combination of global context modeling, adaptive 
fusion, and selective attention allows HALF-MAFUNet 
to maintain robust performance with significantly fewer 
parameters. Considering that HALF-MAFUNet uses 
18-60 times fewer parameters than many Transformer- 
and Mamba-based competitors, these results highlight 
a favorable trade-off between segmentation quality and 

Table 8. Challenging experiment result 

Dataset 
Input 
Image 

Ground 
Truth 

Predicted 
Image 

Overlay 
F1- Score / 

IoU (%) 

CVC-
ClinicDB 

    

18.85 / 
10.41 

BUSI 

    

32.76 / 
19.59 

ISIC-2018 

    

49.02 / 
33.27 
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model complexity, especially when compared with 
other lightweight architectures that rely primarily on 
local convolutional features. Several limitations should 
be noted. The experiments are conducted on three 
public datasets with fixed train-validation-test splits, 
which may not fully represent the diversity of clinical 
data across hospitals, devices, and patient populations. 
In addition, the main hyperparameter search was 

performed on CVC-ClinicDB and subsequently applied 
to BUSI and ISIC-2018, so dataset-specific tuning 
might further improve performance. Finally, although 
the model is lightweight, GPU support is still desirable 
for fast training and inference; very low-power devices 
may require extra optimization. Despite these 
limitations, the results imply that combining a compact 
Half-U-Net backbone with HAM, MAF, CASPP, and an 

Table 9. Quantitative comparison with previous methods on dataset CVC-ClinicDB 

Model Year Params(M) FLOPs(G) mIoU(%) F1- Score(%) ACC(%) SEN(%) SPE(%) 

U-Net [5] 2015 31.03 54.73 83.53 90.96 98.36 88.23 99.42 
Att-UNet [18] 2018 34.88 66.63 84.35 91.39 98.44 89.83 99.31 
UNeXt [27] 2022 1.47 0.57 70.15 81.87 96.87 77.13 98.88 

MALUNet [28] 2022 0.18 0.08 74.71 85.09 97.29 82.07 98.87 
UTNetV2 [6] 2022 12.80 15.50 84.98 91.79 98.48 91.34 99.20 

FocalUNETR [29] 2023 26.91 16.28 82.83 90.46 98.24 90.02 99.05 
LightM-UNet [14] 2024 0.19 0.66 70.94 82.61 96.71 82.81 98.17 

Ultralight VM-Unet [15] 2024 0.05 0.06 73.47 84.24 97.26 80.12 99.02 
VM-UNet [12] 2024 22.04 4.11 84.31 91.37 98.43 90.18 99.27 
U-KAN [30] 2025 9.38 6.89 84.92 91.67 98.50 91.50 99.19 

UD-Mamba [31] 2025 19.12 5.91 84.83 91.73 98.51 90.98 99.23 
MAFUNet [17] 2025 9.61 7.43 85.07 91.85 98.53 89.90 99.40 

Half-MAFUNet 
Proposed 

Model 
0.53 7.944 88.68 93.38 98.94 96.75 99.17 

 
Table 10. Quantitative comparison with previous methods on dataset BUSI 

Model Year Params(M) FLOPs(G) mIoU(%) F1- Score(%) ACC(%) SEN(%) SPE(%) 

U-Net [5] 2015 31.03 54.73 66.93 79.65 96.50 81.79 97.92 
Att-UNet [18] 2018 34.88 66.63 67.51 80.11 96.75 75.93 98.78 
UNeXt [27] 2022 1.47 0.57 66.11 79.16 96.61 74.83 98.74 

MALUNet [28] 2022 0.18 0.08 62.12 75.42 95.63 77.79 97.32 
UTNetV2 [6] 2022 12.80 15.50 70.92 82.39 97.10 81.12 98.64 

FocalUNETR [29] 2023 26.91 16.28 68.57 80.79 96.93 76.18 98.95 
LightM-UNet [14] 2024 0.19 0.66 65.41 78.47 96.47 79.45 98.07 

Ultralight VM-Unet [15] 2024 0.05 0.06 62.78 76.51 95.93 78.26 97.65 
VM-UNet [12] 2024 22.04 4.11 69.29 81.36 96.81 80.30 98.44 
U-KAN [30] 2025 9.38 6.89 70.40 82.04 97.10 80.42 98.70 

UD-Mamba [31] 2025 19.12 5.91 71.17 82.71 97.31 81.60 98.55 
MAFUNet [17] 2025 9.61 7.43 71.68 83.12 97.19 82.45 98.61 

Half-MAFUNet 
Proposed 

Model 
0.53 7.944 83.83 90.50 98.37 92.42 98.97 

 
Table 11. Quantitative comparison with previous methods on dataset ISIC-2018 

Model Year Params(M) FLOPs(G) mIoU(%) F1- Score(%) ACC(%) SEN(%) SPE(%) 

U-Net [5] 2015 31.03 54.73 77.86 87.55 94.05 85.86 96.69 
Att-UNet [18] 2018 34.88 66.63 78.43 87.91 94.13 87.60 96.23 
UNeXt [27] 2022 1.47 0.57 79.50 88.58 94.59 86.18 97.29 

MALUNet [28] 2022 0.18 0.08 80.25 89.04 94.62 89.74 96.19 
UTNetV2 [6] 2022 12.80 15.50 78.97 88.25 94.32 87.60 96.48 

FocalUNETR [29] 2023 26.91 16.28 80.37 89.12 94.92 88.66 96.84 
LightM-UNet [14] 2024 0.19 0.66 79.24 88.42 94.58 84.95 97.68 

Ultralight VM-Unet [15] 2024 0.05 0.06 78.59 88.01 94.30 85.95 96.98 
VM-UNet [12] 2024 22.04 4.11 81.35 89.71 94.91 91.12 96.13 
U-KAN [30] 2025 9.38 6.89 80.09 88.94 94.60 89.22 96.33 

UD-Mamba [31] 2025 19.12 5.91 81.94 89.15 94.60 89.55 96.26 
MAFUNet [17] 2025 9.61 7.43 81.43 89.77 95.24 88.89 97.19 

Half-MAFUNet 
Proposed 

Model 
0.53 7.944 80.15 87.68 94.71 83.12 97.99 

 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1357
https://creativecommons.org/licenses/by-sa/4.0/
file:///G:/My%20Drive/UNS/Smt%207/Skripsi/02.%20Paper/1357-Article%20Text-7026-1-18-20260109.docx%23ref17
file:///G:/My%20Drive/UNS/Smt%207/Skripsi/02.%20Paper/1357-Article%20Text-7026-1-18-20260109.docx%23ref17
file:///G:/My%20Drive/UNS/Smt%207/Skripsi/02.%20Paper/1357-Article%20Text-7026-1-18-20260109.docx%23ref17


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 222-239                                        e-ISSN: 2656-8632 

 

Manuscript received 12 September 2025; Revised 15 November 2025; Accepted 5 January 2026; Available online 12 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1357 

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0).  

 237               

ACA-ASA attention gate is an effective strategy for 
building accurate yet efficient medical image 
segmentation models. This design can be adapted to 
other organs and modalities where both performance 
and resource constraints are critical. From a practical 
viewpoint, HALF-MAFUNet’s small parameter count 
and strong accuracy suggest that it can be integrated 
into computer-aided diagnosis systems running on mid-
range GPUs or high-end CPUs in hospitals. Accurate 
segmentation of colorectal polyps, breast tumors, and 
skin lesions can support earlier detection, more 
consistent lesion measurement, and better treatment 
planning. Future work will build on the current findings 
by further reducing parameters and FLOPs through 
more efficient block designs or lightweight attention 
variants, while preserving segmentation accuracy. In 
addition, the model will be evaluated on more diverse 
datasets and multi-center clinical data to better assess 
its robustness and generalization, and will be 
integrated into practical computer-aided diagnosis 
systems for real-world deployment. 

 

V. Conclusion 

This study proposed HALF-MAFUNet, a lightweight 

medical image segmentation model designed to 

maintain high accuracy while reducing computational 

cost for practical deployment. The model is built on a 

Half-U-Net backbone and integrates HAM, MAF, 

CASPP, and a dual-attention gate comprising ACA and 

ASA to better fuse global and local features and refine 

skip connections. Using the optimal hyperparameters 

(AdamW optimizer, BCE + Dice loss, depth 5, attention 

ratio 8, and 64 filters), HALF-MAFUNet achieved strong 

results on three datasets with only about 0.54 million 

parameters and 7.94 GFLOPs. The model obtained an 

mIoU/F1- Score of 88.68% / 93.38% on CVC-ClinicDB, 

83.83% / 90.50% on BUSI, and 80.15% / 87.68% on 

ISIC-2018, showing that it can accurately segment 

colorectal polyps, breast tumors, and skin lesions with 

low computational complexity. Ablation studies further 

showed that combining ACA and ASA, with ACA applied 

first, then ASA, provides the best performance among all 

attention configurations. Future work will extend this 

study by evaluating HALF-MAFUNet on larger, 

multicenter clinical datasets to further assess its 

robustness and generalization across diverse imaging 

conditions. Building on the observed efficiency-accuracy 

trade-off, subsequent research will explore more 

compact block designs and lightweight attention variants 

to further reduce parameters and FLOPs, and will also 

investigates their integration into practical computer-

aided diagnosis systems for real-world clinical 

deployment. 
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