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Abstract EEG-based deception detection remains challenging due to three critical limitations: high inter-

subject variability, which restricts generalization, the black-box nature of deep learning models that 

undermines forensic interpretability, and substantial computational overhead arising from high-

dimensional multi-channel EEG data. Although recent state-of-the-art approaches report accuracies of 82–

88%, they fail to provide the transparency required for legal and forensic admissibility. To address these 

limitations, this study aims to develop an accurate, computationally efficient, and explainable EEG-based 

deception detection framework suitable for real-world forensic applications. The primary contribution of 

this work is a novel hybrid neuro-fuzzy architecture that jointly integrates intelligent channel selection, 

complementary deep feature learning, and transparent fuzzy reasoning, enabling high performance without 

sacrificing interpretability. The proposed framework follows a five-stage pipeline: (1) intelligent channel 

selection using Type-2 fuzzy inference with ANFIS-based ranking and multi-objective evolutionary 

optimization (MOEA/D), reducing EEG dimensionality from 64 to 14 channels (78.1% reduction); (2) dual-

path deep learning that combines EEGNet for spatial–temporal feature extraction with InceptionTime-Light 

for multi-scale temporal representations; (3) a fuzzy attention mechanism to generate interpretable feature 

importance weights; (4) an ANFIS-based classifier employing Takagi–Sugeno fuzzy rules for transparent 

decision-making; and (5) triple-level interpretability through channel importance visualization, attention-

weighted features, and extractable linguistic rules. The framework is evaluated on two benchmark datasets, 

such as LieWaves (27 subjects, 5-channel EEG) and the Concealed Information Test (CIT) dataset (79 

subjects, 16-channel EEG). Experimental results demonstrate superior performance, achieving 93.8% 

accuracy on LieWaves and 92.7% on the CIT dataset, representing an improvement of 5.3 % points over 

the previous best-performing methods, while maintaining balanced sensitivity (92.4%) and specificity 

(95.2%). In conclusion, this work establishes that neuro-fuzzy integration can simultaneously achieve high 

classification accuracy, computational efficiency, and forensic-grade explainability, thereby advancing the 

practical deployment of EEG-based deception detection systems in real-world forensic applications. 

Keywords: EEG-based deception detection, Neuro-fuzzy framework, ANFIS, Explainable AI, Intelligent channel 
selection, Brain fingerprinting

I. Introduction

Neurophysiological signal processing has revolutionized 

deception detection by enabling direct measurement of 

the cognitive processes underlying truthful and 

deceptive responses. Electroencephalography (EEG) 

serves as a particularly valuable modality due to its 

millisecond-level temporal precision and its capacity to 

capture neural dynamics associated with concealed 

information recognition and cognitive conflict during 

deception [1]. Traditional lie detection methodologies 

based on polygraph measurements of peripheral 

physiological responses have demonstrated substantial 

limitations, including vulnerability to deliberate 

countermeasures, high false positive rates, and 

inadequate theoretical foundations linking physiological 

arousal to deceptive behavior [2].  While brain-based 

approaches utilizing event-related potentials, particularly 

the P300 component in concealed information 

paradigms, have shown promise [3], they face significant 

challenges, including poor single-trial reliability, 

substantial inter-individual variability, and extensive 

averaging requirements that preclude real-time forensic 

application [4]. Recent advances have witnessed a 

paradigm shift toward computational intelligence 
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methods leveraging deep learning to automatically 

extract discriminative patterns from EEG signals [5],[6]. 

Promising methodologies include spatial-temporal 

frameworks with attention mechanisms [7], hybrid LSTM 

architectures with custom pooling [8], neuro-fuzzy 

models for cognitive state classification [9], and graph 

neural networks for brain-computer interfaces [10]. The 

LieWaves dataset with 27 subjects has facilitated 

benchmarking [11], while deep convolutional neuro-

fuzzy inference systems have demonstrated enhanced 

transparency through explainable fuzzy rules [12],[13]. 

Multimodal approaches combining EEG with fNIRS [14] 

and functional brain network analysis [15],[16] have 

shown promise but introduce deployment complexity. 

Despite these advances, critical research gaps 

persist. Comprehensive reviews have identified 

challenges in neurophysiological lie detection [17],[18], 

particularly regarding interpretability-accuracy tradeoffs 

in forensic applications. Inter-subject variability in 

electroencephalography signals presents a significant 

challenge, stemming from diverse physiological and 

cognitive factors. These include individual differences in 

brain anatomy, scalp conductivity, neural response 

latency, emotional regulation, and specific deception 

strategies. For instance, while some individuals exhibit 

prominent frontal theta activity during deception, others 

may display dominant parietal or central responses. 

Such variations induce substantial shifts in EEG patterns 

even under identical experimental conditions, hindering 

the reliable generalization of subject-independent 

models. Consequently, models trained on one cohort 

often perform poorly when applied to novel subjects. 

While adaptive neuro-fuzzy inference systems (ANFIS) 

combined with deep residual networks achieved 

exceptional performance in pattern recognition [19], and 

hybrid ANFIS-decision tree architectures attained 99% 

accuracy in intrusion detection [20], their application to 

deception detection remains underexplored. Multimodal 

frameworks incorporating audio-visual cues [21] and 

deep convolutional neuro-fuzzy models for depression 

detection [22] demonstrate potential, yet computational 

efficiency and model complexity limit practical 

deployment. Cognitive approaches [23], fuzzy ensemble 

methods [24], and ANFIS taxonomies [25] reveal 

extensive cross-domain applications, yet deception 

detection remains underrepresented, despite deep 

learning paradigms [26] and multimodal attention 

frameworks [27] showing promise. Advanced 

techniques explored in related domains including 

emotion recognition [28], CNN-based truth identification 

[29], extreme learning machines for concealed 

information tests [30], connectivity analysis [31], and 

crow search optimization with ANFIS [32] alongside 

brain complexity analysis [33] and comprehensive 

surveys [34],[35] highlight critical gaps: Type-2 fuzzy 

logic for uncertainty modeling remains underexplored; 

synergistic DWT-FFT integration within neuro-fuzzy 

frameworks requires investigation; cross-subject 

generalization needs systematic evaluation; and 

balancing interpretability with accuracy in forensic 

systems demands further research. 

To address these gaps, this research proposes a 

novel hybrid neuro-fuzzy architecture integrating ANFIS 

with deep convolutional neural networks for EEG-based 

lie detection. The framework employs convolutional 

layers for automated hierarchical feature extraction, 

followed by adaptive fuzzy inference layers that 

transform the learned representations into interpretable 

rules. This design combines deep learning's pattern 

recognition capabilities with fuzzy logic's transparency 

and uncertainty handling, creating an explainable 

classifier suitable for forensic applications.  

Unlike Type-1 fuzzy logic, which assumes precise 

and fixed membership functions, Type-2 fuzzy logic 

explicitly models uncertainty within the membership 

functions themselves. This property is particularly 

beneficial for EEG signals, which are inherently noisy, 

non-stationary, and affected by measurement 

imprecision and inter-subject variability. By incorporating 

uncertainty bounds into fuzzy membership definitions, 

Type-2 fuzzy inference provides enhanced robustness 

against signal ambiguity and variability, making it more 

suitable for EEG-based deception detection applications 

where reliability and interpretability are critical. 

Computational efficiency is achieved through lightweight 

architectural design, intelligent channel reduction, and 

fast-converging training strategies. The use of compact 

convolutional kernels, reduced input dimensionality, and 

metaheuristic-based channel optimization minimizes 

computational overhead while preserving discriminative 

power, enabling efficient training and inference suitable 

for resource-constrained forensic environments. 

Type-2 fuzzy membership functions enhance 

robustness against signal variability, while optimized 

configurations maintain computational efficiency. The 

preprocessing pipeline integrates independent 

component analysis for artifact removal, common spatial 

pattern filtering for channel selection, and multi-

resolution wavelet decomposition for time-frequency 

features. The primary objective is to develop a 

computationally efficient, highly accurate, and 

interpretable neuro-fuzzy framework that maintains 

robust cross-subject performance while providing 

transparent forensic-grade explanations. EEGNet and 

InceptionTime-Light were chosen for their 

complementary strengths in EEG signal modeling, with 

EEGNet excelling at capturing spatio-temporal patterns 

and InceptionTime-Light adeptly handling multi-scale 
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temporal dependencies. This combined approach 

enables our framework to leverage both localized spatial 

features and global temporal structures, yielding richer, 

more robust representations than either architecture 

could achieve independently. 

In forensic and legal contexts, the interpretability of a 

deception detection system is not merely desirable but 

fundamentally critical. Systems that rely on opaque 

"black-box" models pose significant ethical and legal 

challenges, as they prevent investigators, legal 

professionals, and courts from comprehending the 

underlying rationale for classifying a subject as 

deceptive or truthful. Forensic evidence is generally 

expected to meet rigorous criteria, including 

transparency, reproducibility, explainability, and robust 

resilience to cross-examination. Models lacking human-

interpretable reasoning risk being challenged on 

grounds of inherent bias, reliability, or the fairness of 

their inferences. Consequently, developing an 

interpretable EEG-based deception-detection 

framework is imperative, not only to ensure technical 

robustness but also to achieve forensic admissibility and 

facilitating ethical deployment in real-world 

investigations. 

The key contributions are fourfold: 

i) A novel three-stage fuzzy reasoning architecture

integrating Type-2 fuzzy channel assessment,

ANFIS ranking with MOEA/D optimization, and fuzzy

attention weighting for interpretable EEG-based lie

detection;

ii) A dual-path deep learning framework combining

EEGNet and InceptionTime-Light through adaptive

fuzzy attention mechanisms, generating interpretable

feature importance weights;

iii) End-to-end hybrid neuro-fuzzy training using

alternating optimization with interpretability-

preserving regularization; and

iv) Comprehensive validation across benchmark

datasets with ablation studies, cross-subject

evaluation, and forensic interpretability analysis.

In existing EEG-based deception-detection

approaches, computational inefficiency largely stems

from processing high-dimensional, multi-channel EEG

signals with deep learning models with large parameter

spaces. Many state-of-the-art methods rely on full-

channel EEG configurations combined with deep

convolutional or recurrent architectures, resulting in

increased training time, higher memory consumption,

and longer inference latency. Such computational

demands pose practical limitations, particularly in

subject-independent settings where models must

generalize across diverse neural patterns. These

inefficiencies limit the feasibility of deploying EEG-based

deception-detection systems in real-time or resource-

constrained forensic environments. Consequently, 

reducing computational complexity while maintaining 

classification accuracy remains a critical challenge in the 

design of practical forensic-grade EEG analysis 

frameworks. 

Unlike existing EEG-based deception detection 

approaches that primarily focus on improving 

classification accuracy, this work emphasizes a 

balanced integration of interpretability, computational 

efficiency, and cross-subject generalization. The 

proposed framework uniquely combines lightweight 

deep temporal feature extraction with neuro-fuzzy 

inference to produce explainable forensic decisions 

while maintaining robustness across subjects. This 

focus on transparency and efficiency distinguishes the 

proposed approach from conventional black-box deep 

learning models used in deception detection. 

This paper is organized as follows: Section II details 
the datasets (LieWaves [36] and CIT [37]) and the 
proposed framework, including Type-2 fuzzy channel 
selection, ANFIS ranking with multi-objective 
optimization, fuzzy attention weighting, dual-path 
(EEGNet–InceptionTime-Light) architecture, and ANFIS 
classification. Section III describes the experimental 
setup, metrics, and comparative results with state-of-
the-art methods. Section IV discusses performance, 
interpretability through fuzzy rule analysis, ablation 
studies, and limitations. Section V concludes by 
summarizing contributions and future directions for 
interpretable EEG-based deception detection. 

II. Materials and Method

A. Dataset

The study utilized two benchmark EEG datasets, such 
as LieWaves and the Concealed Information Test (CIT), 
to evaluate the performance, scalability, and 
interpretability of the proposed MI-ENFS framework. 
Both datasets are widely used in EEG-based deception 
detection research, offering diverse participant groups 
and experimental conditions that enable comprehensive 
validation across subjects and scenarios. Channel 
selection was applied differently across datasets. The 
use of both the LieWaves and Concealed Information 
Test (CIT) datasets enables comprehensive validation of 
the proposed framework across diverse experimental 
conditions. LieWaves represents a low-channel, mock-
crime scenario suitable for lightweight model validation, 
while CIT provides higher channel density, larger subject 
diversity, and a more complex concealed information 
paradigm. Together, these datasets allow assessment 
of scalability, robustness, and generalization across 
different EEG configurations and deception scenarios. 
Table 1 provides information about datasets used for 
experimentation.
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B. Data Collection

Both datasets were acquired under controlled conditions 
to evoke truthful and deceptive responses. In the 
LieWaves dataset [36], participants were instructed to 
tell the truth or deliberately lie while viewing visual and 
auditory cues, with EEG recorded at 128 Hz using 
standard electrode placements. In the CIT dataset [37], 
subjects viewed critical, familiar, and neutral stimuli 
within a concealed information test paradigm, with 
continuous visual presentation to minimize habituation.  

C. Data Processing

The preprocessing pipeline consisted of the following 
steps: 
i) Band-pass filtering (0.5–45 Hz) to remove high-

frequency noise and low-frequency drifts.

ii) Artifact removal using Independent Component

Analysis (ICA) to eliminate ocular and muscular

artifacts.

iii) Channel selection: For LieWaves, five electrodes

(AF3, T7, Pz, T8, AF4) were used as provided; for

CIT, 16 EEG channels (Fp1, Fp2, F3, F4, C3, C4, Cz,

P3, P4, Pz, O1, O2, T3 (T7), T4 (T8), T5 (P7), T6

(P8)) were used. For the CIT dataset, all available

channels were initially retained during preprocessing

to preserve full spatial information, followed by the 

proposed Type-2 fuzzy and metaheuristic-based 

channel selection process, which reduced 

dimensionality to an optimized subset of 14 

channels. 

iv) Feature extraction: Spectral and temporal features

were derived using Discrete Wavelet Transform

(DWT) and Fast Fourier Transform (FFT), capturing

time–frequency dynamics of deceptive responses.

For DWT, Daubechies (db4) wavelets were

employed due to their effectiveness in capturing EEG

transients. Signals were decomposed into five levels

corresponding to standard EEG frequency bands.

Energy and entropy features were extracted from

each sub-band. FFT-based features were computed

by estimating power spectral density across delta

(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta

(13–30 Hz) bands, capturing stationary spectral

characteristics relevant to deceptive cognitive

processing.

v) Normalization: Min–max scaling was applied to

standardize features across participants and

sessions.

Fig. 1. Flow of Proposed Framework 

Table 1. Datasets used for Experimentation 

Dataset Subjects Channels Sampling Rate Scenario Citation 

LieWaves 27 5 128 Hz Mock crime (CIT) [36] 

CIT 79 16 256 Hz Concealed Information Test [37]

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1340
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 324-339  e-ISSN: 2656-8632 

Manuscript Received 10 October 2025; Revised 15 December 2025; Accepted 12 January 2026; Available online 18 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1340 

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0). 

328 

D. Statistical Analysis

To ensure reliable and unbiased performance 
evaluation, a subject-wise cross-validation strategy was 
employed, ensuring that EEG recordings from the same 
participant did not appear in both the training and testing 
sets. This protocol prevents data leakage and provides 
a realistic assessment of cross-subject generalization. 
Model performance was quantified using standard 
descriptive statistics, including mean and standard 
deviation of accuracy, sensitivity, specificity, precision, 
and F1-score across all validation folds. To statistically 
validate the superiority of the proposed MI-ENFS 
framework over baseline methods (e.g., ERP-P300, 
CNN, LSTM, and fuzzy ensemble models), paired two-
tailed t-tests were conducted on fold-wise performance 
scores. This test was selected because the same data 
partitions were used across competing models, enabling 
paired comparison of their results. Statistical 
significance was assessed at a 95% confidence level (p 
< 0.05). In addition to hypothesis testing, effect size was 
measured using Cohen’s d to quantify the practical 
significance of observed improvements beyond mere 
statistical significance. Large effect sizes (d > 0.8) 
indicate substantial performance gains of the proposed 
framework. All statistical analyses were performed after 
verifying consistency of metric distributions across folds, 
ensuring the robustness and reliability of the reported 
results. 

E. Flow of Proposed Framework

Fig 1 illustrates the flow of the proposed framework. The 
proposed framework follows a multi-stage processing 
pipeline designed to ensure accuracy, interpretability, 
and efficiency. EEG signals are first preprocessed and 
subjected to multi-domain feature extraction. Intelligent 
channel selection is then performed using Type-2 fuzzy 
inference and metaheuristic optimization. The selected 
channels are processed through a dual-path deep 
learning architecture, followed by fuzzy attention 
weighting and ANFIS-based classification to generate 
interpretable and reliable deception decisions.  

F. Flow of Proposed-Integrated Explainable Neuro-
Fuzzy System

Fuzzy rule generation is driven by signal quality, 
discriminative power, artifact level, and redundancy, 
enabling transparent reasoning about channel 
importance. The final defuzzified outputs are converted 
into probabilistic estimates for truth and lie classes, 
which are subsequently evaluated using standard 
performance metrics. This structured design ensures 
robust performance across training and testing data 
while maintaining computational efficiency. 

Fig. 2 illustrates the complete workflow of the 
Metaheuristic-Integrated Explainable Neuro-Fuzzy 
System (MI-ENFS) designed for EEG-based deception 
detection. The pipeline begins with Stage 1, where raw 
EEG data undergo fuzzy channel selection through a 
four-step process. Initially, multi-domain time, 
frequency, and spatial-domain features are extracted 

Fig. 2. Pipeline of the Metaheuristic-Integrated Explainable Neuro-Fuzzy System (MI-ENFS) 
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from each channel. These features are evaluated using 
Type-2 fuzzy inference to quantify importance, followed 
by ANFIS-based ranking to refine relevance scores. 
Finally, a multi-objective metaheuristic optimization 
(Binary BAT/PSO/MOEA) selects the optimal subset of 
12–16 EEG channels that maximizes accuracy and 
minimizes redundancy. In Stage 2, the selected EEG 
data are processed through a dual-path deep learning 
framework, where EEGNet captures temporal–spatial 
dependencies while InceptionTime-Light extracts multi-
scale representations. Their outputs are concatenated 
into a unified 256-dimensional deep feature vector. 
Stage 3 introduces a fuzzy attention mechanism that 
computes explainable importance weights for each 
deep feature based on discriminative strength, 
activation level, and reliability, generating interpretable 
weighted features. Stage 4 performs ANFIS 
classification, where fuzzification, rule inference, 
normalization, and Takagi–Sugeno defuzzification 
produce probabilistic outputs for truthful and deceptive 
responses. Each rule can be linguistically expressed, 
enhancing model transparency. Finally, Stage 5 
ensures forensic interpretability by visualizing channel 
importance (topomap), listing the most influential fuzzy 
rules, and reporting a confidence index for each 
decision. Collectively, the architecture balances high 
accuracy, computational efficiency, and explainability, 
providing a transparent and reliable framework suitable 
for forensic EEG analysis. 

G. Algorithm for Metaheuristic-Integrated 
Explainable Neuro-Fuzzy System (MI-ENFS) 

Algorithm 1:   Metaheuristic - Integrated 
Explainable Neuro-Fuzzy System (MI-ENFS) 
(1) Input:

Raw EEG signals X ∈ R^(C×T), number of

channels C = 64,

sampling frequency fs = 1000 Hz, class

labels y ∈ {0,1},

metaheuristic population size N, 

maximum iterations Tmax 

(2) Output:

 Predicted class ŷ ∈ {Truth, Lie}, 

class probabilities P(Truth), P(Lie), 

optimal channel subset Ch_opt, 

channel importance scores Ic 

(3) Initialization
(4) For each EEG channel c ∈ {1,2,…,C},

Apply band-pass filtering (0.5–45 Hz)
using Eq. (1)

(5) Normalize filtered EEG signals using Z
score normalization as defined in Eq. (2)
and Eq. (3)

(6) For each channel c, Compute DWT
approximation and detail coefficients
using Eq. (4)–Eq. (7)

(7) Compute FFT spectrum and power
spectral density using Eq. (8)

(8) Construct combined feature vector
F = [𝐴_𝑗, 𝐷_𝑗, 𝑃_𝑘] using Eq. (9)

(9) For each channel c, Compute signal
quality, discriminative power, and
redundancy. Evaluate Type-2 fuzzy
membership function using Eq. (10)

(10) Assign channel importance score Ic ∈
[0,1]

(11) Rank EEG channels using ANFIS based
on importance scores

(12) Initialize population of candidate channel
subsets. Set iteration counter t = 0

(13) DO
(14) FOR each candidate solution pj,
(15) Evaluate multi-objective fitness function

using Eq. (11)
(16) Update candidate position using

metaheuristic operators (MOEA/D / PSO /
BAT)

(17) END FOR
(18) Update global best solution
(19) t = t + 1
(20) WHILE t ≤ Tmax
(21) Select optimal channel subset Ch_opt

 where |Ch_opt| ∈ channels [12,16] 
(22) Train EEGNet and InceptionTime-Light

models using selected channels Ch_opt
(23) Compute ensemble probability using soft

voting as defined in Eq. (12)
(24) Assign final class label ŷ using decision

rule in Eq. (13)
(25) Evaluate model performance using

Accuracy, Sensitivity, Specificity, and F1-
score computed using Eq. (14)–Eq. (17)

(26) Return predicted class, probabilities,
selected channels, and interpretable
fuzzy rules.

Algorithm 1 illustrates the complete workflow of the 
proposed Metaheuristic-Integrated Explainable Neuro-
Fuzzy System (MI-ENFS) for EEG-based deception 
detection. The algorithm begins by preprocessing 
multi-channel EEG signals through filtering, 
normalization, and hybrid feature extraction using DWT 
and FFT. Channel relevance is quantified using Type-
2 fuzzy membership functions and ANFIS-based 
importance scoring, followed by metaheuristic 
optimization to identify an optimal subset of informative 
EEG channels. Deep learning models (EEGNet and 
InceptionTime-Light) are then trained on the selected 
channels, and their outputs are combined using a soft 
voting ensemble. Finally, the system produces 
interpretable predictions along with class probabilities, 
selected channels, and fuzzy rules, ensuring both high 
accuracy and explainability. 
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H. Mathematical model of Metaheuristic-Integrated
Explainable Neuro-Fuzzy System (MI-ENFS)

Let the raw EEG signal be represented as X ∈ ℝC×T, 
where C = 64 denotes the number of EEG channels, 
and T represents the number of temporal samples 
recorded at a sampling frequency of 1000 Hz. The 
objective of the MI-ENFS framework is to learn a 
mapping function f: X → Y, where Y ∈ {0, 1} 
corresponds to Truth (0) and Lie (1). 
Step 1: EEG Preprocessing 

a. Band-Pass Filtering (0.5–45 Hz)

The EEG signal is first filtered to retain cognitively

relevant frequency components while suppressing

noise and artifacts. This operation is modeled as a

linear time-invariant (LTI) system and is computed

using Eq. (1) as follows [11]:

This is modeled as a linear time-invariant (LTI) system.

yc [n] =  ∑ bk

M

k=0

 xc  [n − k]  −  ∑ am

A

m=1

 yc  [n − m]
(1) 

Here, xc [n]denotes the input EEG signal from channel
𝑐 at time index n while yc [n] represents filtered EEG
output. The terms bk and am denote the feed-forward 
FIR and feedback IIR filter coefficients, respectively. 
The parameter  M  indicates the order of the numerator, 
and A represents the order of the denominator of the 
filter. The band-pass filter ensures that:  0.5Hz ≤ f ≤ 
45Hz. This range is chosen to capture cognitive EEG 
rhythms (e.g., delta, theta, alpha, beta) while 
suppressing noise like DC drift and high-frequency 
artifacts. 
b. Normalization (Z-Score)

After filtering, normalization is applied to standardize
EEG data across subjects and sessions, ensuring the
model focuses on meaningful variations. For each EEG
channel c, the Z-score normalization is calculated using
Eq. (2) as follows [11]:

xc̃ [n] =  
xc [n] −  𝜇c 

𝜎c

(2) 

Here, xc [n] denotes the filtered EEG signal from
channel 𝑐. The parameters 𝜇c and 𝜎c represent the 
mean and standard deviation of the channel 𝑐, 
respectively. The normalized signal, denoted as xc̃ [n],
is obtained by transforming the original filtered signal to 
have zero mean and unit variance. 
c. Final Preprocessed EEG Signal

The final preprocessed signal for each channel can be
calculated using Eq. (3) as follows [11]:

xĉ [n] =  
yc [n] −  𝜇c 

𝜎c

(3) 

Here, yc [n] represents the band-pass filtered output for
channel 𝑐, while 𝜇c and  𝜎c denote the mean and 
standard deviation computed from this filtered signal. 
Step 2: Multi-Domain Feature Extraction 

a. Discrete Wavelet Transform (DWT)
The DWT decomposes EEG signals into approximation
(low-frequency) and detail (high-frequency)
coefficients. For a discrete EEG signal𝑥[𝑛], the
multilevel wavelet decomposition can be computed
using Eq. (4) and Eq. (5) as follows [11]:

𝐴𝑗 [𝑘]=  ∑ 𝑥[𝑛] ∅𝑗,𝑘(𝑛)

𝑛

 
 (4) 

 𝐷𝑗 [𝑘]   =   ∑ 𝑥[𝑛] 𝜑𝑗,𝑘  (𝑛)
𝑛

 (5) 

Here, ∅𝑗,𝑘(𝑛) denotes the scaling function, which

corresponds to the low-pass filter used in the wavelet 
decomposition, while 𝜑𝑗,𝑘  (𝑛) represents the wavelet

function associated with the high-pass filter. The 
coefficients 𝐴𝑗 [𝑘]   refer to the approximation 

coefficients at the decomposition level 𝑗, and 
𝐷𝑗 [𝑘]   represent the corresponding detail coefficients at 

the same level. 
The approximation and detail coefficients can be 
calculated using the convolution relations given in Eq. 
(6) and Eq. (7), respectively, as follows [11]:

𝐴𝑗 [𝑘]  =     ∑ 𝑥[𝑚] .  ℎ[2𝑘 − 𝑚] 
𝑚

(6) 

𝐷𝑗 [𝑘]  =     ∑ 𝑥[𝑚] .  𝑔[2𝑘 − 𝑚] 
𝑚

(7) 

Where ℎ[𝑛] and 𝑔[𝑛] are low-pass and high-pass filter 

kernels, respectively, and the value of 𝑛 is 2𝑘 − 𝑚. 
b. Fast Fourier Transform (FFT)
The FFT transforms the EEG time-series signal into the
frequency domain to capture spectral features. It can

be calculated using Eq. (8) as follows [29]:

𝑋[𝑘]  =   ∑ 𝑥[𝑛] .  𝑒−𝑗
2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

(8) 

Here, 𝑋[𝑘] denotes the frequency component at index 
𝑘, and 𝑁 represents the total number of samples in the 
signal. The term 𝑗 refers to the imaginary unit, defined 

as 𝑗 = √−1.  
The Power Spectral Density (PSD) is computed as: 
𝑃[𝑘] = x[𝑘]2 This highlights dominant frequency bands 
relevant for deception detection (e.g., theta, alpha, 
beta). 
Step 4: Feature Vector Combination (DWT + FFT) 
The final feature vector is a concatenation of both DWT 
and FFT features. It can be calculated using Eq. (9) as 
follows [11], [29]: 
𝐹 = [𝐴1, 𝐴2, … … . . 𝐴𝑗 , 𝐷1, 𝐷2, … … . . 𝐷𝑗 , 𝑃1 , 𝑃2, … … . . 𝑃𝑘 ] (9) 

Here, 𝐴 and 𝐷 denote the approximation and detail 
coefficients obtained from the discrete wavelet 
transform (DWT), while 𝑃 represents the spectral 
power features extracted using the fast Fourier 
transform (FFT). The combination of DWT and FFT 
offers a comprehensive spectral–temporal 
representation of deception-related neural activity. FFT 
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captures stable oscillatory behavior across canonical 
frequency bands, whereas DWT isolates transient 
changes linked to decision conflict, recognition, and 
response inhibition. By concatenating DWT coefficients 
across multiple decomposition levels with FFT-derived 
spectral power, the model gains access to both short-
term temporal fluctuations and global frequency 
patterns, improving discriminatory capability. 
Step 5: Type-2 Fuzzy Channel Assessment 
Each EEG channel is evaluated using Type-2 fuzzy 
inference based on signal quality, discriminative power, 
and redundancy. The interval-valued membership 

function is defined as in Eq (10): 

𝜇̃𝑚(𝑥) =  [𝜇𝑚
𝐿(𝑥)

, 𝜇𝑚
𝑈(𝑥)] (10) 

The resulting channel importance score 𝑰𝒄 ∈ [𝟎, 𝟏] 
reflects uncertainty in EEG measurements. 
Step 6: ANFIS Ranking and Metaheuristic Channel 

Selection 

Channel ranking is performed using ANFIS, followed by 
metaheuristic optimization to select an optimal subset 
of channels. The multi-objective optimization problem 

is defined as in Eq (11):      

𝐹 =  𝛼(1 −  𝐴𝑐𝑐) +  𝛽 (
|𝐶ℎ|

𝐶
)

+ 𝛾(𝑇𝑐𝑜𝑚𝑝) +  𝜂(𝑅)

(11) 

Step 7: Dual-Path Deep Learning and Ensemble 
Fusion 
Selected channels are processed through the EEGNet 
and InceptionTime-Light models. Their probabilistic 
outputs are combined using soft voting, computed 

using Eq. (12) as follows [27]: 

𝑃_𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝜔_1 𝑃_1 +  𝜔_2 𝑃_2 (12) 
Here  𝑃1 denotes the probability estimate produced by 
the FBC-EEGNet model, while 𝑃2 represents the 
corresponding probability output generated by the 
InceptionTime-Light classifier. 𝜔1, 𝜔2 are weights for 
each model. The final decision is obtained using 

threshold-based classification as shown in Eq. (13) as 

follows [27]: 

𝑦 ̂ = {
1, 𝑖𝑓 𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒   ≥ 0     (𝐺𝑢𝑖𝑙𝑡𝑦)
0, 𝑖𝑓 𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒    < 0     (𝐼𝑛𝑛𝑜𝑐𝑒𝑛𝑡)

 (13) 

Soft voting was selected because it combines 
probabilistic outputs, enabling the complementary 
strengths of FBC-EEGNet (high specificity) and 
InceptionTime-light (high sensitivity) to be exploited. 

Preliminary experiments demonstrated that hard voting 
and stacking introduced instability and reduced 
sensitivity, whereas soft voting achieved consistently 
balanced and robust classification across both 
datasets. 
Step 8: Performance Evaluation 
To assess the model's effectiveness, standard 
performance measures such as Accuracy, Sensitivity 
(Recall), and Specificity are employed. Each metric is 

calculated using Eqs. (14)–(17) as follows [23]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(15) 

Specificity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(16) 

F1 Score =  
2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(17) 

Here, TP denotes the number of true positives, FP 
represents the false positives, TN refers to the true 
negatives, and FN indicates the false negatives used 
for computing the evaluation metrics. These 
parameters summarize the model’s classification 
behavior across correctly and incorrectly identified 
samples. Together, they form the basis for deriving 
Accuracy, Sensitivity, Specificity, and other diagnostic 
performance measures that reflect the reliability of the 
proposed deception-detection model. 

III. Result

A. Experimental Setup and Implementation
The proposed EEGNet-ANFIS framework was
implemented in Python 3.9 using TensorFlow 2.12 and
scikit-fuzzy 0.4.2, running on NVIDIA RTX 3080 GPU
with Intel i9-10900K and 64GB RAM. Training utilized
Adam optimizer (lr=0.001, batch=32) with early
stopping (patience=15). The fuzzy channel selection
employed Type-2 inference with Gaussian
membership functions, while MOEA/D optimization
used a population size of 50, 100 generations, and
0.8/0.2 crossover/mutation probabilities. ANFIS
modules combined least-squares estimation with
gradient descent. Evaluation used 5-fold subject-
independent cross-validation, measuring accuracy,
sensitivity, specificity, precision, F1-score, and AUC.
Statistical significance was determined via paired t-
tests (p<0.05).
B. Classification Performance on LieWaves
Dataset

Table 2. Performance Metrics for CIT Dataset with SCR, RLL and Combined Parameters 

Condition Participants Accuracy (%) Sensitivity (%) Specificity (%) 

SCR 79 (39 guilty, 40 innocent) 93.1 91.8 94.4 

RLL 79 (39 guilty, 40 innocent) 92.3 90.6 94 

Combined 156 92.7 91.2 94.2 

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1340
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics 
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 324-339  e-ISSN: 2656-8632 

Manuscript Received 10 October 2025; Revised 15 December 2025; Accepted 12 January 2026; Available online 18 January 2026 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1340 

Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0 
International License (CC BY-SA 4.0). 

332 

Using the LieWaves dataset, the proposed 
Metaheuristic-Integrated Explainable Neuro-Fuzzy 
System (MI-ENFS) achieved an impressive 93.8% 
accuracy, demonstrating its strong ability to 
differentiate between truthful and deceptive EEG 
responses. The model obtained a sensitivity of 92.4%, 
effectively detecting deceptive trials, and a specificity 
of 95.2%, accurately recognizing truthful responses 
while minimizing false alarms. The F1-score of 93.0% 
indicates a well-balanced trade-off between precision 
and recall, ensuring reliable classification across both 
categories. Furthermore, the AUC value of 0.938 
highlights the model’s excellent discriminative 
capability and stable performance, confirming that the 
proposed MI-ENFS framework provides accurate, 
consistent, and explainable results.  
C. Classification Performance on CIT Dataset

On the larger, more diverse CIT dataset, the proposed 
framework achieved 92.7% accuracy, demonstrating 
excellent scalability and generalization capability. The 
5.3% points improvement over the previous best 
method (Fuzzy Ensemble: 87.4%) is consistent with 
performance on LieWaves. Table 2 shows 
performance metrics for the CIT Dataset with SCR, 
RLL, and Combined Parameters. Using the Concealed 
Information Test (CIT) dataset, which comprises a 
larger and more diverse group of participants, the 
proposed Metaheuristic-Integrated Explainable Neuro-
Fuzzy System (MI-ENFS) achieved an accuracy of 
92.7%, confirming its scalability and robustness across 
broader subject variations. The model outperformed 
the previous best-performing approach (Fuzzy 
Ensemble: 87.4%) by 5.3 percentage points, consistent 

with results on the LieWaves dataset. The sensitivity of 
91.2% highlights the model’s effectiveness at 
identifying deceptive subjects, while the specificity of 
94.2% demonstrates its ability to correctly recognize 
truthful responses with minimal false detections. The 
F1-score of 91.8% indicates a strong balance between 
precision and recall, and an AUC of 0.927 further 
validates the model’s discriminative reliability for 
forensic EEG-based deception detection. 

Additionally, when evaluated across different 
experimental conditions on the CIT dataset, such as 
Skin Conductance Response (SCR), Respiration Line 
Length (RLL), and their combined multimodal 
parameters, the proposed framework consistently 
achieved high performance. Specifically, the model 
attained 93.1% accuracy for SCR and 92.3% accuracy 
for RLL, while the combined condition yielded an 
overall accuracy of 92.7%, with 91.2% sensitivity and 
94.2% specificity. These results demonstrate that the 
proposed MI-ENFS framework not only generalizes 
effectively across modalities but also delivers stable, 
interpretable, and forensic-grade accuracy in detecting 
deceptive behavior using the CIT dataset. 

D. Channel Selection Analysis

The fuzzy channel selection module identified an 
optimal subset of 14 channels from the original 64-
channel configuration, achieving 78.1% dimensionality 
reduction. Table 3 highlights channel selection analysis 
with a fuzzy approach. The top-ranked channels 
include Fz (0.947), Pz (0.935), Cz (0.921), F3 (0.898), 
and F4 (0.892), aligning with neuroscientific 
understanding of deception-related brain regions. The 
framework achieved an average cross-dataset 

Table 3.  14 Channels Selected during Experimentation 

Rank Channel Location 
Importance 

Score 
Functional Role 

1 Fz Frontal Midline 0.947 Executive control, response inhibition 

2 Pz Parietal Midline 0.935 P300 generation, attention allocation 

3 Cz Central Midline 0.921 Conflict monitoring, motor preparation 

4 F3 Left Frontal 0.898 Working memory, cognitive load 

5 F4 Right Frontal 0.892 Emotional processing, deception 

6 P3 Left Parietal 0.876 Memory retrieval, recognition 

7 P4 Right Parietal 0.871 Spatial attention, vigilance 

8 C3 Left Central 0.854 Sensorimotor integration 

9 C4 Right Central 0.848 Response preparation 

10 FCz Frontal-Central 0.832 Error monitoring, conflict detection 

11 CPz Central-Parietal 0.815 Sensory-motor integration 

12 FC1 Left Frontal-Central 0.793 Cognitive control 

13 FC2 Right Frontal-Central 0.788 Attentional regulation 

14 CP1 Left Central-Parietal 0.771 Multimodal integration 
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accuracy of 80.6% (79.4-81.7%), significantly 
outperforming baselines (67.0-73.7%). The ANFIS 
classification module generated 20 interpretable 
Takagi-Sugeno fuzzy rules. Example: "IF 
(Frontal_Theta is HIGH) AND (Central_Beta is HIGH) 
AND (Parietal_Alpha is LOW) THEN Lie".

Table 4 presents a comparative evaluation of various 
channel selection strategies used in the proposed 
EEG-based deception detection framework. The 
results show that the Fuzzy Selection method achieved 
the best overall performance, attaining an accuracy of 
93.8% with the lowest standard deviation (1.5%), 
indicating both high precision and stability. It also 
offered the most efficient computation, reducing 
training time to 33.5 minutes and inference latency to 
43 ms, with a smaller model size of 13.2 MB. In 
contrast, traditional methods such as random, 
correlation-based, and PCA-based selection achieved 
lower accuracies (81.7–87.3%) and higher 
computation times. These findings confirm that the 
fuzzy logic–driven selection effectively identifies the 
most informative EEG channels while maintaining 
optimal speed and memory efficiency. Furthermore, the 
78.1% reduction in input dimensionality from 64 to 14 
channels demonstrates the framework’s capability to 
minimize redundant features without degrading 
accuracy. This efficient channel optimization also 
enhances model interpretability, as the selected 
electrodes correspond to well-established frontal and 
parietal regions linked to cognitive conflict and 
deception processing.  
E. Statistical Significance Test (Paired t-test)

Table 5 illustrates the results of the paired t-test, 
demonstrating that MI-ENFS achieves statistically 
significant performance gains over CNN, LSTM-NCP, 
and Fuzzy Ensemble baselines across the LieWaves 
and CIT datasets (p < 0.01). The large effect sizes 
(Cohen’s d > 1.8) indicate a strong and practically 
meaningful improvement, thereby confirming the 
robustness and superiority of the proposed MI-ENFS 
framework.

F. Interpretability and Explainability Metrics
Table 6 illustrates the interpretability analysis of
different EEG-based deception detection models. The
proposed MI-ENFS framework outperforms all baseline
approaches by generating 20 fuzzy rules with the
highest rule coverage (94.2%), fidelity (0.93), and
consistency index (0.95), demonstrating its strong
alignment between model decisions and human-
understandable reasoning. In contrast, conventional
deep models such as CNN and LSTMNCP provide no
extractable rules, limiting explainability despite
reasonable accuracy. The results confirm that
integrating fuzzy logic and ANFIS reasoning
substantially enhances interpretability while
maintaining high predictive reliability.  The following
tables show the performance evaluation of different
datasets. Table 7 presents a comprehensive
comparative evaluation of the proposed EEGNet–
ANFIS hybrid framework against existing EEG-based
deception detection methods on the LieWaves dataset.
Traditional approaches such as ERP-P300 analysis
and CNN-based models exhibit limited accuracy and
weaker sensitivity–specificity balance, highlighting their

Table 4. Performance Evaluation by Proposed System 

Configuration Channels 
Accuracy 

(%) 
Std Dev 

Training 
Time 
(min) 

Inference 
Time 
(ms) 

Model Size 
(MB) 

All Channels (No Selection) 64 85.2 2.4 58.3 124 24.6 

Random Selection 14 81.7 3.1 41.5 48 15.8 

Correlation-Based Selection 14 86.8 2.6 39.7 45 15.2 

PCA-Based Selection 14 87.3 2.5 40.2 46 15.4 

Fuzzy Selection (Proposed) 14 93.8 1.5 33.5 43 13.2 

Table 5. Statistical Significance Test (Paired t-test) 

Comparison Dataset p-Value Significance 
Cohen’s d 

(Effect Size) 

MI-ENFS vs CNN LieWaves < 0.001 Significant 2.31 

MI-ENFS vs LSTM-NCP LieWaves < 0.001 Significant 2.05 

MI-ENFS vs Fuzzy Ensemble CIT 0.002 Significant 1.87 
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difficulty in capturing complex deception-related neural 
patterns. Recent hybrid and fuzzy-based models, 
including LSTMNCP, Type-2 Fuzzy-GCN, and Fuzzy 
Ensemble methods, demonstrate gradual performance 
improvements; however, they still fall short of achieving 
optimal discrimination and robustness. The proposed 
framework shows clear, consistent performance across 
its architectural variants. Single-path deep models 
(EEGNet-only and InceptionTime-only) outperform 
prior baselines, indicating the effectiveness of 
specialized temporal and spatial feature learning. 
Further improvement is observed with the dual-path 
architecture, confirming the complementary nature of 
EEGNet and InceptionTime-Light. The full framework, 
integrating fuzzy attention and ANFIS-based 
reasoning, achieves the highest accuracy (93.8%) and 
AUC (0.938), along with well-balanced sensitivity 
(92.4%) and specificity (95.2%). These results 
demonstrate that the neuro-fuzzy integration not only 
enhances classification accuracy but also stabilizes 
decision boundaries, making the proposed approach 
more reliable and suitable for forensic-grade EEG-
based deception detection.  

Table 8 presents a comparative performance 

analysis of existing EEG-based deception detection 
methods and the proposed framework on the larger 
and more heterogeneous CIT dataset. Conventional 
approaches such as ERP-P300 analysis and CNN-
based models exhibit relatively lower accuracy and 
reduced sensitivity, reflecting their limited ability to 
generalize across diverse subjects. More advanced 
hybrid methods, including LSTMNCP, Type-2 Fuzzy-
GCN, and Fuzzy Ensemble approaches, show 

progressive improvements; however, their 
performance remains constrained by suboptimal 
discrimination and variability in decision boundaries. 
The proposed framework demonstrates consistent 
performance gains across all architectural 
configurations. Single-path deep models (EEGNet-only 
and InceptionTime-only) outperform existing baselines, 
confirming the effectiveness of specialized temporal 
and spatial feature extraction for CIT-based deception 
detection. The dual-path configuration further 
enhances accuracy and AUC, highlighting the 
complementary strengths of EEGNet and 
InceptionTime-Light. The full EEGNet–ANFIS 
framework achieves the highest accuracy (92.7%) and 
AUC (0.927), along with balanced sensitivity (91.2%) 
and specificity (94.2%). These results indicate strong 
robustness to inter-subject variability and confirm the 
framework’s improved generalization capability, 
making it well-suited for large-scale and forensic-grade 
EEG-based deception detection applications. 

IV. Discussion

The present study introduces a Metaheuristic-

Integrated Explainable Neuro-Fuzzy System (MI-
ENFS) that demonstrates significant improvements in 
classification accuracy, robustness, and interpretability 
for EEG-based deception detection. The results reveal 
that the proposed framework achieved 93.8% accuracy 
on the LieWaves dataset and 92.7% on the CIT 
dataset, outperforming traditional CNNs, LSTMs, and 
fuzzy ensemble methods by 5–17 percentage points. 
These results indicate that combining dual-path deep 

Table 6. Interpretability and Explainability Metrics

Method Extractable Rules Rule Coverage (%) Fidelity Score 
Consistency 

Index 

CNN Baseline 0 0 0.42 0.68 

LSTMNCP 0 0 0.38 0.65 

Type-2 Fuzzy-GCN 15 72.3 0.76 0.81 

Fuzzy Ensemble 18 78.5 0.82 0.85 
Proposed MI-ENFS 20 94.2 0.93 0.95 

Table 7. Comparative Performance evaluation with existing research for 27 Subjects LieWaves Dataset 

Method 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Precision 

(%) 
F1-Score 

(%) 
AUC 

ERP-P300 Analysis [11] 76.3 73.5 79.1 74.2 73.8 0.763 

CNN Baseline [30] 82.5 80.2 84.8 81.5 80.8 0.825 

LSTMNCP [13] 85.7 83.8 87.6 84.9 84.3 0.857 

Type-2 Fuzzy-GCN [7] 87.2 85.4 89 86.7 86 0.872 

Fuzzy Ensemble [24] 88.5 86.9 90.1 88.2 87.5 0.885 

Proposed (EEGNet only) 89.8 88.3 91.3 89.6 88.9 0.898 

Proposed (InceptionTime only) 90.2 88.7 91.7 90.1 89.4 0.902 

Proposed (Dual-Path w/o Fuzzy) 91.5 90.1 92.9 91.3 90.7 0.915 
Proposed (Full Framework) 93.8 92.4 95.2 93.6 93 0.938 
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learning with fuzzy inference enhances the model's 
discriminative and interpretive capacities. Specifically, 
integrating EEGNet and InceptionTime-Light 
architectures enabled the extraction of spatial–
temporal and multi-scale representations, while the 
ANFIS-based reasoning mechanism transformed 
these deep features into transparent fuzzy rules, 
resulting in improved interpretability without sacrificing 
accuracy. When compared with prior research, the 
proposed MI-ENFS framework exhibits superior 
performance. Earlier studies, such as Baghel et al. 
(2020) [29] using CNN and Dodia et al. (2020) [30] 
employing ELM with BAT optimization, reported 

accuracies of 82.5% and 84.1%, respectively. Similarly, 
the Fuzzy Ensemble approach by Bablani et al. (2021) 
[24] achieved 88.5%, and the Type-2 Fuzzy + GCN
model by Rahmani et al. (2024) [7] reached 87.2%. The
proposed model outperforms existing benchmarks
while offering rule-based interpretability, unlike
conventional black-box deep learning approaches. The
results, therefore, establish MI-ENFS as a balanced
model that maintains high predictive accuracy while
providing forensic transparency, addressing one of the
major gaps in the existing literature. In interpreting the
findings, the superior sensitivity (92.4%) and specificity
(95.2%) on the LieWaves dataset suggest that the
model effectively differentiates between deceptive and
truthful EEG responses while minimizing false alarms.

Similarly, strong performance across  modalities in the 
CIT dataset (SCR: 93.1%, RLL: 92.3%) demonstrates 
that the proposed framework generalizes well across 
varied physiological conditions. The AUC values 
exceeding 0.93 further confirm the reliability and 
consistency of classification boundaries between the 
two cognitive states, reinforcing the system’s 
robustness in real-world forensic applications. Despite 
these encouraging results, several limitations must be 
acknowledged. First, both datasets were acquired 
under controlled laboratory conditions, which may not 
fully represent spontaneous deception in real forensic 
contexts. Second, the current model operates in an 

offline setting; achieving real-time adaptability would 
require additional optimization for latency and 
hardware integration. Third, variability arising from 
EEG device differences and session-to-session drift 
can still affect cross-subject generalization. 
Furthermore, while the proposed fuzzy attention 
improves interpretability, it increases computational 
complexity during training. Future work will focus on 
domain adaptation, lightweight model compression, 
and the integration of additional modalities, such as 
fNIRS and physiological signals, to enhance ecological 
validity. The implications of this study are twofold. From 
a scientific perspective, it demonstrates that 
explainable hybrid intelligence combining 
metaheuristic optimization, deep learning, and fuzzy 

Table 9. Comparative Analysis of Existing and Proposed Framework 

Method Year Dataset Approach Accuracy 

Baghel et al. [29] 2020 Custom CNN 82.5% 

Dodia et al. [30] 2020 CIT ELM + BAT 84.1% 

Bablani et al. [24] 2021 Multiple Fuzzy Ensemble 88.5% 

AlArfaj & Mahmoud [16] 2022 Custom CNN + LSTM 85.3% 

Alakuş & Turkoglu [13] 2023 LieWaves LSTMNCP 85.7% 

Rahmani et al. [7] 2024 Multiple Type-2 Fuzzy + GCN 87.2% 

Proposed Framework 2025 LieWaves EEGNet-ANFIS Hybrid 93.80% 

Proposed Framework 2025 CIT EEGNet-ANFIS Hybrid 92.70% 

Table 8. Comparative Performance evaluation with existing research for 79Subjects CIT Dataset 

Method 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
Precision 

(%) 
F1-Score 

(%) 
AUC 

ERP-P300 Analysis [22] 74.8 71.2 78.4 72.9 72 0.748 

CNN Baseline [30] 81.3 78.9 83.7 80.1 79.5 0.813 

LSTMNCP [13] 84.2 82.1 86.3 83.5 82.8 0.842 

Type-2 Fuzzy-GCN [7] 85.9 83.8 88 85.2 84.5 0.859 

Fuzzy Ensemble [24] 87.4 85.6 89.2 86.9 86.2 0.874 

Proposed (EEGNet only) 88.9 87.2 90.6 88.5 87.8 0.889 

Proposed (InceptionTime only) 89.5 87.8 91.2 89.1 88.4 0.895 

Proposed (Dual-Path w/o Fuzzy) 90.8 89.3 92.3 90.5 89.9 0.908 
Proposed (Full Framework) 92.7 91.2 94.2 92.5 91.8 0.927 
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logic can achieve high accuracy while retaining 
interpretability, paving the way for more trustworthy 
neural decoding systems. From an application 
standpoint, the ability to extract linguistic rules and 
visualize channel importance enhances forensic 
admissibility, making MI-ENFS a promising step toward 
transparent, evidence-based lie detection frameworks 
suitable for legal, clinical, and security domains.  

Table 9 summarizes the chronological 
advancement of EEG-based deception detection 
methods from 2020 to 2025. Early models such as 
CNN and ELM + BAT achieved moderate accuracies 
below 85%, while later neuro-fuzzy and hybrid 
approaches improved interpretability and performance. 
The Type-2 Fuzzy + GCN (2024) reached 87.2%, 
marking a significant step toward explainable 
intelligence. The proposed EEGNet–ANFIS hybrid 
framework (2025) outperforms all prior methods, 
achieving 93.8% accuracy on LieWaves and 92.7% on 
CIT, establishing a new benchmark for accuracy and 
interpretability in EEG-based deception detection. 
Notably, this improvement is achieved consistently 
across heterogeneous datasets, demonstrating strong 
cross-dataset generalization and robustness.  

Despite the strong performance of the proposed MI-
ENFS framework, certain limitations exist. The 
experiments were conducted on benchmark datasets 
collected under controlled laboratory conditions, which 
may not fully reflect spontaneous or real-world forensic 
deception scenarios [17], [18]. Inter-session variability, 
electrode placement differences, and device-
dependent noise can still affect cross-subject 
generalization [16], [34]. In addition, the current 
framework operates in an offline mode, and real-time 
deployment would require further optimization of 
latency and computational efficiency. The results 
demonstrate that integrating deep learning with Type-2 
fuzzy logic and ANFIS reasoning can achieve high 
accuracy while preserving interpretability, addressing a 
key challenge in EEG-based deception detection [17], 
[18]. The ability to extract fuzzy rules and channel-level 
explanations supports the development of transparent 
and trustworthy forensic decision-support systems [12], 
[18]. This framework provides a foundation for future 
extensions toward adaptive, multimodal, and 
explainable neuro-AI systems in forensic and cognitive 
neuroscience applications [14], [21]. 

V. Conclusion
This study presented an optimized neuro-fuzzy deep
learning framework that effectively integrates Type-2
fuzzy inference, dual-path CNN architectures, and
adaptive neuro-fuzzy reasoning for interpretable EEG-
based deception detection. By combining EEGNet’s
spatial-temporal learning with InceptionTime-Light’s
multi-scale feature extraction, the proposed system
achieved high discriminative power while maintaining

computational efficiency. The incorporation of Type-2 
fuzzy channel selection and ANFIS-based ranking 
significantly reduced dimensionality, improving 
processing speed without compromising accuracy. 
Furthermore, the fuzzy attention mechanism and 
Takagi-Sugeno ANFIS classifier enabled transparent 
decision-making through interpretable linguistic rules 
and visual channel importance. Experimental 
evaluation on the LieWaves and CIT datasets 
demonstrated consistent superiority over existing 
methods, achieving 93.8% and 92.7% accuracy, 
respectively, along with balanced sensitivity and 
specificity. The model’s interpretability, supported by 
rule-based reasoning and attention visualization, 
enhances its suitability for forensic and cognitive 
neuroscience applications where explainability is 
critical. Overall, this work establishes that neuro-fuzzy 
integration can overcome the trade-off between 
accuracy, interpretability, and efficiency in EEG-based 
deception detection.  Future research will extend this 
framework toward real-time adaptive systems, cross-
subject generalization, and multimodal fusion with 
fNIRS or physiological signals to further enhance 
robustness and practical deployment in a forensic 
environment. 
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