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Abstract EEG-based deception detection remains challenging due to three critical limitations: high inter-
subject variability, which restricts generalization, the black-box nature of deep learning models that
undermines forensic interpretability, and substantial computational overhead arising from high-
dimensional multi-channel EEG data. Although recent state-of-the-art approaches report accuracies of 82—
88%, they fail to provide the transparency required for legal and forensic admissibility. To address these
limitations, this study aims to develop an accurate, computationally efficient, and explainable EEG-based
deception detection framework suitable for real-world forensic applications. The primary contribution of
this work is a novel hybrid neuro-fuzzy architecture that jointly integrates intelligent channel selection,
complementary deep feature learning, and transparent fuzzy reasoning, enabling high performance without
sacrificing interpretability. The proposed framework follows a five-stage pipeline: (1) intelligent channel
selection using Type-2 fuzzy inference with ANFIS-based ranking and multi-objective evolutionary
optimization (MOEA/D), reducing EEG dimensionality from 64 to 14 channels (78.1% reduction); (2) dual-
path deep learning that combines EEGNet for spatial-temporal feature extraction with InceptionTime-Light
for multi-scale temporal representations; (3) a fuzzy attention mechanism to generate interpretable feature
importance weights; (4) an ANFIS-based classifier employing Takagi—Sugeno fuzzy rules for transparent
decision-making; and (5) triple-level interpretability through channel importance visualization, attention-
weighted features, and extractable linguistic rules. The framework is evaluated on two benchmark datasets,
such as LieWaves (27 subjects, 5-channel EEG) and the Concealed Information Test (CIT) dataset (79
subjects, 16-channel EEG). Experimental results demonstrate superior performance, achieving 93.8%
accuracy on LieWaves and 92.7% on the CIT dataset, representing an improvement of 5.3 % points over
the previous best-performing methods, while maintaining balanced sensitivity (92.4%) and specificity
(95.2%). In conclusion, this work establishes that neuro-fuzzy integration can simultaneously achieve high
classification accuracy, computational efficiency, and forensic-grade explainability, thereby advancing the
practical deployment of EEG-based deception detection systems in real-world forensic applications.

Keywords: EEG-based deception detection, Neuro-fuzzy framework, ANFIS, Explainable Al, Intelligent channel
selection, Brain fingerprinting

I. Introduction limitations, including vulnerability to deliberate
countermeasures, high false positive rates, and

Neurophysiological signal processing has revolutionized ¢ ) c ST S, C
inadequate theoretical foundations linking physiological

deception detection by enabling direct measurement of
the cognitive processes underlying truthful and
deceptive responses. Electroencephalography (EEG)
serves as a particularly valuable modality due to its
millisecond-level temporal precision and its capacity to
capture neural dynamics associated with concealed
information recognition and cognitive conflict during
deception [1]. Traditional lie detection methodologies
based on polygraph measurements of peripheral
physiological responses have demonstrated substantial

arousal to deceptive behavior [2]. While brain-based
approaches utilizing event-related potentials, particularly
the P300 component in concealed information
paradigms, have shown promise [3], they face significant
challenges, including poor single-trial reliability,
substantial inter-individual variability, and extensive
averaging requirements that preclude real-time forensic
application [4]. Recent advances have witnessed a
paradigm shift toward computational intelligence
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methods leveraging deep learning to automatically
extract discriminative patterns from EEG signals [5],[6].
Promising methodologies include spatial-temporal
frameworks with attention mechanisms [7], hybrid LSTM
architectures with custom pooling [8], neuro-fuzzy
models for cognitive state classification [9], and graph
neural networks for brain-computer interfaces [10]. The
LieWaves dataset with 27 subjects has facilitated
benchmarking [11], while deep convolutional neuro-
fuzzy inference systems have demonstrated enhanced
transparency through explainable fuzzy rules [12],[13].
Multimodal approaches combining EEG with fNIRS [14]
and functional brain network analysis [15],[16] have
shown promise but introduce deployment complexity.
Despite these advances, critical research gaps
persist. Comprehensive reviews have identified
challenges in neurophysiological lie detection [17],[18],
particularly regarding interpretability-accuracy tradeoffs
in forensic applications. Inter-subject variability in
electroencephalography signals presents a significant
challenge, stemming from diverse physiological and
cognitive factors. These include individual differences in
brain anatomy, scalp conductivity, neural response
latency, emotional regulation, and specific deception
strategies. For instance, while some individuals exhibit
prominent frontal theta activity during deception, others
may display dominant parietal or central responses.
Such variations induce substantial shifts in EEG patterns
even under identical experimental conditions, hindering
the reliable generalization of subject-independent
models. Consequently, models trained on one cohort
often perform poorly when applied to novel subjects.
While adaptive neuro-fuzzy inference systems (ANFIS)
combined with deep residual networks achieved
exceptional performance in pattern recognition [19], and
hybrid ANFIS-decision tree architectures attained 99%
accuracy in intrusion detection [20], their application to
deception detection remains underexplored. Multimodal
frameworks incorporating audio-visual cues [21] and
deep convolutional neuro-fuzzy models for depression
detection [22] demonstrate potential, yet computational
efficiency and model complexity limit practical
deployment. Cognitive approaches [23], fuzzy ensemble
methods [24], and ANFIS taxonomies [25] reveal
extensive cross-domain applications, yet deception
detection remains underrepresented, despite deep
learning paradigms [26] and multimodal attention
frameworks [27] showing promise. Advanced
techniques explored in related domains including
emotion recognition [28], CNN-based truth identification
[29], extreme learning machines for concealed
information tests [30], connectivity analysis [31], and
crow search optimization with ANFIS [32] alongside
brain complexity analysis [33] and comprehensive

surveys [34],[35] highlight critical gaps: Type-2 fuzzy
logic for uncertainty modeling remains underexplored;
synergistic DWT-FFT integration within neuro-fuzzy
frameworks requires investigation; cross-subject
generalization needs systematic evaluation; and
balancing interpretability with accuracy in forensic
systems demands further research.

To address these gaps, this research proposes a
novel hybrid neuro-fuzzy architecture integrating ANFIS
with deep convolutional neural networks for EEG-based
lie detection. The framework employs convolutional
layers for automated hierarchical feature extraction,
followed by adaptive fuzzy inference layers that
transform the learned representations into interpretable
rules. This design combines deep learning's pattern
recognition capabilities with fuzzy logic's transparency
and uncertainty handling, creating an explainable
classifier suitable for forensic applications.

Unlike Type-1 fuzzy logic, which assumes precise
and fixed membership functions, Type-2 fuzzy logic
explicity models uncertainty within the membership
functions themselves. This property is particularly
beneficial for EEG signals, which are inherently noisy,
non-stationary, and affected by measurement
imprecision and inter-subject variability. By incorporating
uncertainty bounds into fuzzy membership definitions,
Type-2 fuzzy inference provides enhanced robustness
against signal ambiguity and variability, making it more
suitable for EEG-based deception detection applications
where reliability and interpretability are critical.
Computational efficiency is achieved through lightweight
architectural design, intelligent channel reduction, and
fast-converging training strategies. The use of compact
convolutional kernels, reduced input dimensionality, and
metaheuristic-based channel optimization minimizes
computational overhead while preserving discriminative
power, enabling efficient training and inference suitable
for resource-constrained forensic environments.

Type-2 fuzzy membership functions enhance
robustness against signal variability, while optimized
configurations maintain computational efficiency. The
preprocessing  pipeline integrates independent
component analysis for artifact removal, common spatial
pattern filtering for channel selection, and multi-
resolution wavelet decomposition for time-frequency
features. The primary objective is to develop a
computationally  efficient, highly accurate, and
interpretable neuro-fuzzy framework that maintains
robust cross-subject performance while providing
transparent forensic-grade explanations. EEGNet and
InceptionTime-Light  were  chosen  for  their
complementary strengths in EEG signal modeling, with
EEGNet excelling at capturing spatio-temporal patterns
and InceptionTime-Light adeptly handling multi-scale
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temporal dependencies. This combined approach

enables our framework to leverage both localized spatial

features and global temporal structures, yielding richer,
more robust representations than either architecture
could achieve independently.

In forensic and legal contexts, the interpretability of a
deception detection system is not merely desirable but
fundamentally critical. Systems that rely on opaque
"black-box" models pose significant ethical and legal
challenges, as they prevent investigators, legal
professionals, and courts from comprehending the
underlying rationale for classifying a subject as
deceptive or truthful. Forensic evidence is generally
expected to meet rigorous criteria, including
transparency, reproducibility, explainability, and robust
resilience to cross-examination. Models lacking human-
interpretable reasoning risk being challenged on
grounds of inherent bias, reliability, or the fairness of
their inferences. Consequently, developing an
interpretable EEG-based deception-detection
framework is imperative, not only to ensure technical
robustness but also to achieve forensic admissibility and
facilitating  ethical  deployment in  real-world
investigations.

The key contributions are fourfold:

i) A novel three-stage fuzzy reasoning architecture
integrating Type-2 fuzzy channel assessment,
ANFIS ranking with MOEA/D optimization, and fuzzy
attention weighting for interpretable EEG-based lie
detection;

i) A dual-path deep learning framework combining
EEGNet and InceptionTime-Light through adaptive
fuzzy attention mechanisms, generating interpretable
feature importance weights;

iii) End-to-end hybrid neuro-fuzzy
alternating  optimization  with
preserving regularization; and

iv) Comprehensive validation across benchmark
datasets with ablation studies, cross-subject
evaluation, and forensic interpretability analysis.

In  existing EEG-based deception-detection
approaches, computational inefficiency largely stems
from processing high-dimensional, multi-channel EEG
signals with deep learning models with large parameter
spaces. Many state-of-the-art methods rely on full-
channel EEG configurations combined with deep
convolutional or recurrent architectures, resulting in
increased training time, higher memory consumption,
and longer inference latency. Such computational
demands pose practical limitations, particularly in
subject-independent settings where models must
generalize across diverse neural patterns. These
inefficiencies limit the feasibility of deploying EEG-based
deception-detection systems in real-time or resource-

training using
interpretability-

constrained forensic environments. Consequently,
reducing computational complexity while maintaining
classification accuracy remains a critical challenge in the
design of practical forensic-grade EEG analysis
frameworks.

Unlike existing EEG-based deception detection
approaches that primarily focus on improving
classification accuracy, this work emphasizes a
balanced integration of interpretability, computational
efficiency, and cross-subject generalization. The
proposed framework uniquely combines lightweight
deep temporal feature extraction with neuro-fuzzy
inference to produce explainable forensic decisions
while maintaining robustness across subjects. This
focus on transparency and efficiency distinguishes the
proposed approach from conventional black-box deep
learning models used in deception detection.

This paper is organized as follows: Section Il details
the datasets (LieWaves [36] and CIT [37]) and the
proposed framework, including Type-2 fuzzy channel
selection, ANFIS ranking with  multi-objective
optimization, fuzzy attention weighting, dual-path
(EEGNet—InceptionTime-Light) architecture, and ANFIS
classification. Section Il describes the experimental
setup, metrics, and comparative results with state-of-
the-art methods. Section IV discusses performance,
interpretability through fuzzy rule analysis, ablation
studies, and limitations. Section V concludes by
summarizing contributions and future directions for
interpretable EEG-based deception detection.

Il. Materials and Method
A. Dataset

The study utilized two benchmark EEG datasets, such
as LieWaves and the Concealed Information Test (CIT),
to evaluate the performance, scalability, and
interpretability of the proposed MI-ENFS framework.
Both datasets are widely used in EEG-based deception
detection research, offering diverse participant groups
and experimental conditions that enable comprehensive
validation across subjects and scenarios. Channel
selection was applied differently across datasets. The
use of both the LieWaves and Concealed Information
Test (CIT) datasets enables comprehensive validation of
the proposed framework across diverse experimental
conditions. LieWaves represents a low-channel, mock-
crime scenario suitable for lightweight model validation,
while CIT provides higher channel density, larger subject
diversity, and a more complex concealed information
paradigm. Together, these datasets allow assessment
of scalability, robustness, and generalization across
different EEG configurations and deception scenarios.
Table 1 provides information about datasets used for
experimentation.
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Table 1. Datasets used for Experimentation

Dataset Subjects Channels Sampling Rate Scenario Citation
LieWaves 27 5 128 Hz Mock crime (CIT) [36]
CIT 79 16 256 Hz Concealed Information Test [37]

B. Data Collection

Both datasets were acquired under controlled conditions

to evoke truthful and deceptive responses. In the

LieWaves dataset [36], participants were instructed to

tell the truth or deliberately lie while viewing visual and

auditory cues, with EEG recorded at 128 Hz using

standard electrode placements. In the CIT dataset [37],

subjects viewed critical, familiar, and neutral stimuli

within a concealed information test paradigm, with
continuous visual presentation to minimize habituation.

C. Data Processing

The preprocessing pipeline consisted of the following

steps:

i) Band-pass filtering (0.5-45 Hz) to remove high-
frequency noise and low-frequency drifts.

ii) Artifact removal using Independent Component
Analysis (ICA) to eliminate ocular and muscular
artifacts.

iii) Channel selection: For LieWaves, five electrodes
(AF3, T7, Pz, T8, AF4) were used as provided; for
CIT, 16 EEG channels (Fp1, Fp2, F3, F4, C3, C4, Cz,
P3, P4, Pz, O1, 02, T3 (T7), T4 (T8), T5 (P7), T6
(P8)) were used. For the CIT dataset, all available
channels were initially retained during preprocessing

to preserve full spatial information, followed by the
proposed Type-2 fuzzy and metaheuristic-based

channel selection process, which reduced
dimensionality to an optimized subset of 14
channels.

iv) Feature extraction: Spectral and temporal features
were derived using Discrete Wavelet Transform
(DWT) and Fast Fourier Transform (FFT), capturing
time—frequency dynamics of deceptive responses.
For DWT, Daubechies (db4) wavelets were
employed due to their effectiveness in capturing EEG
transients. Signals were decomposed into five levels
corresponding to standard EEG frequency bands.
Energy and entropy features were extracted from
each sub-band. FFT-based features were computed
by estimating power spectral density across delta
(0.5—4 Hz), theta (4—8 Hz), alpha (8—13 Hz), and beta
(13-30 Hz) bands, capturing stationary spectral
characteristics relevant to deceptive cognitive
processing.

v) Normalization: Min—max scaling was applied to
standardize features across participants and
sessions.

Input : RAW EEG Data|

Training Data

Testing Data

Feature Extraction

DWT+FFT

Fuzzy Variables:

Signal_Quality: {Poor, Fair, Good, Excellent}
Discriminative_Power: {Low, Medium, High}
Artifact_Level: {Clean, Moderate, Noisy}
Redundancy: {Independent, Partial, Redundant}

Fuzzy Rules (18-20 rules):

: ; EEGNet
Classification —
| ||nceptionT|meLigm Model|
Fuzzy Rule Generation
Defuzzification 3y
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Fig. 1. Flow of Proposed Framework
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D. Statistical Analysis

To ensure reliable and unbiased performance
evaluation, a subject-wise cross-validation strategy was
employed, ensuring that EEG recordings from the same
participant did not appear in both the training and testing
sets. This protocol prevents data leakage and provides
a realistic assessment of cross-subject generalization.
Model performance was quantified using standard
descriptive statistics, including mean and standard
deviation of accuracy, sensitivity, specificity, precision,
and F1-score across all validation folds. To statistically
validate the superiority of the proposed MI-ENFS
framework over baseline methods (e.g., ERP-P300,
CNN, LSTM, and fuzzy ensemble models), paired two-
tailed t-tests were conducted on fold-wise performance
scores. This test was selected because the same data
partitions were used across competing models, enabling
paired comparison of their results. Statistical
significance was assessed at a 95% confidence level (p
< 0.05). In addition to hypothesis testing, effect size was
measured using Cohen’s d to quantify the practical
significance of observed improvements beyond mere
statistical significance. Large effect sizes (d > 0.8)
indicate substantial performance gains of the proposed
framework. All statistical analyses were performed after
verifying consistency of metric distributions across folds,
ensuring the robustness and reliability of the reported
results.

E. Flow of Proposed Framework

Fig 1illustrates the flow of the proposed framework. The
proposed framework follows a multi-stage processing
pipeline designed to ensure accuracy, interpretability,
and efficiency. EEG signals are first preprocessed and
subjected to multi-domain feature extraction. Intelligent
channel selection is then performed using Type-2 fuzzy
inference and metaheuristic optimization. The selected
channels are processed through a dual-path deep
learning architecture, followed by fuzzy attention
weighting and ANFIS-based classification to generate
interpretable and reliable deception decisions.

F. Flow of Proposed-Integrated Explainable Neuro-
Fuzzy System

Fuzzy rule generation is driven by signal quality,
discriminative power, artifact level, and redundancy,
enabling transparent reasoning about channel
importance. The final defuzzified outputs are converted
into probabilistic estimates for truth and lie classes,
which are subsequently evaluated using standard
performance metrics. This structured design ensures
robust performance across training and testing data
while maintaining computational efficiency.

Fig. 2 illustrates the complete workflow of the
Metaheuristic-Integrated  Explainable Neuro-Fuzzy
System (MI-ENFS) designed for EEG-based deception
detection. The pipeline begins with Stage 1, where raw
EEG data undergo fuzzy channel selection through a
four-step process. Initially, multi-domain time,
frequency, and spatial-domain features are extracted

INPUT: Raw EEG [64 x 1000]

.
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Fig. 2. Pipeline of the Metaheuristic-Integrated Explainable Neuro-Fuzzy System (MI-ENFS)
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from each channel. These features are evaluated using
Type-2 fuzzy inference to quantify importance, followed
by ANFIS-based ranking to refine relevance scores.
Finally, a multi-objective metaheuristic optimization
(Binary BAT/PSO/MOEA) selects the optimal subset of
12-16 EEG channels that maximizes accuracy and
minimizes redundancy. In Stage 2, the selected EEG
data are processed through a dual-path deep learning
framework, where EEGNet captures temporal—spatial
dependencies while InceptionTime-Light extracts multi-
scale representations. Their outputs are concatenated
into a unified 256-dimensional deep feature vector.
Stage 3 introduces a fuzzy attention mechanism that
computes explainable importance weights for each
deep feature based on discriminative strength,
activation level, and reliability, generating interpretable
weighted features. Stage 4 performs ANFIS
classification, where fuzzification, rule inference,
normalization, and Takagi—Sugeno defuzzification
produce probabilistic outputs for truthful and deceptive
responses. Each rule can be linguistically expressed,
enhancing model transparency. Finally, Stage 5
ensures forensic interpretability by visualizing channel
importance (topomap), listing the most influential fuzzy
rules, and reporting a confidence index for each
decision. Collectively, the architecture balances high
accuracy, computational efficiency, and explainability,
providing a transparent and reliable framework suitable
for forensic EEG analysis.
G. Algorithm for Metaheuristic-Integrated
Explainable Neuro-Fuzzy System (MI-ENFS)
Algorithm 1: Metaheuristic - Integrated
Explainable Neuro-Fuzzy System (MI-ENFS)
(1) Input:
Raw EEG signals X € RACxT), number of
channels C = 64,
sampling frequency fs = 1000 Hz, class
labels y € {0,1},
metaheuristic  population size N,

(7) Compute FFT spectrum and power
spectral density using Eq. (8)

(8)  Construct combined feature vector
F =1[A_,D_j,P_k] using Eq. (9)

(9) For each channel c, Compute signal
quality, discriminative  power, and
redundancy. Evaluate Type-2 fuzzy
membership function using Eq. (10)

(10) Assign channel importance score Ic €
(0,1]

(11) Rank EEG channels using ANFIS based
on importance scores

(12) Initialize population of candidate channel
subsets. Set iteration countert=0

(13) DO

(14) FOR each candidate solution pj,

(15) Evaluate multi-objective fitness function
using Eq. (11)

(16) Update candidate position  using
metaheuristic operators (MOEA/D / PSO /
BAT)

(17) END FOR

(18) Update global best solution

(19) t=t+1

(20) WHILE t £ Tmax

(21) Select optimal channel subset Ch_opt

where |Ch_opt| € channels [12,16]

(22) Train EEGNet and InceptionTime-Light
models using selected channels Ch_opt

(23) Compute ensemble probability using soft
voting as defined in Eq. (12)

(24) Assign final class label y using decision
rule in Eq. (13)

(25) Evaluate model performance using
Accuracy, Sensitivity, Specificity, and F1-
score computed using Eq. (14)-Eq. (17)

(26) Return predicted class, probabilities,
selected channels, and interpretable
fuzzy rules.

(2)

(6)

maximum iterations Tmax

Output:
Predicted class y € {Truth, Lie},

class probabilities P(Truth), P(Lie),

optimal channel subset Ch_opt,

channel importance scores Ic
Initialization
For each EEG channel ¢ € {1,2,...,C},
Apply band-pass filtering (0.5-45 Hz)
using Eq. (1)
Normalize filtered EEG signals using Z
score normalization as defined in Eqg. (2)
and Eq. (3)
For each channel ¢, Compute DWT
approximation and detail coefficients
using Eq. (4)-Eq. (7)

Algorithm 1 illustrates the complete workflow of the
proposed Metaheuristic-Integrated Explainable Neuro-
Fuzzy System (MI-ENFS) for EEG-based deception
detection. The algorithm begins by preprocessing
multi-channel EEG signals through filtering,
normalization, and hybrid feature extraction using DWT
and FFT. Channel relevance is quantified using Type-
2 fuzzy membership functions and ANFIS-based
importance scoring, followed by metaheuristic
optimization to identify an optimal subset of informative
EEG channels. Deep learning models (EEGNet and
InceptionTime-Light) are then trained on the selected
channels, and their outputs are combined using a soft
voting ensemble. Finally, the system produces
interpretable predictions along with class probabilities,
selected channels, and fuzzy rules, ensuring both high
accuracy and explainability.
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H. Mathematical model of Metaheuristic-Integrated
Explainable Neuro-Fuzzy System (MI-ENFS)

Let the raw EEG signal be represented as X € RCXT,
where C = 64 denotes the number of EEG channels,
and T represents the number of temporal samples
recorded at a sampling frequency of 1000 Hz. The
objective of the MI-ENFS framework is to learn a
mapping function f: X — Y, where Y € {0, 1}
corresponds to Truth (0) and Lie (1).

Step 1: EEG Preprocessing

a. Band-Pass Filtering (0.5-45 Hz)

The EEG signal is first filtered to retain cognitively
relevant frequency components while suppressing
noise and artifacts. This operation is modeled as a
linear time-invariant (LTI) system and is computed

using Eq. (1) as follows [11]:

This is modeled as a linear time-invariant (LTI) system.
A

M
Velnl= ) bexe =K = > anyc[i—ml
k=0

m=1
Here, x. [n]denotes the input EEG signal from channel
¢ at time index n while y, [n] represents filtered EEG
output. The terms by and a,, denote the feed-forward
FIR and feedback IIR filter coefficients, respectively.
The parameter M indicates the order of the numerator,
and A represents the order of the denominator of the
filter. The band-pass filter ensures that: 0.5Hz < f <
45Hz. This range is chosen to capture cognitive EEG
rhythms (e.g., delta, theta, alpha, beta) while
suppressing noise like DC drift and high-frequency
artifacts.
b. Normalization (Z-Score)
After filtering, normalization is applied to standardize
EEG data across subjects and sessions, ensuring the
model focuses on meaningful variations. For each EEG
channel c, the Z-score normalization is calculated using
Eqg. (2) as follows [11]:

Xc | —
7= Xl ke @
(o}

Here, x.[n]denotes the filtered EEG signal from
channel c. The parameters u. and o, represent the
mean and standard deviation of the channel c,
respectively. The normalized signal, denoted as X, [n],
is obtained by transforming the original filtered signal to
have zero mean and unit variance.
c. Final Preprocessed EEG Signal
The final preprocessed signal for each channel can be
calculated using Eq. (3) as follows [11]:

- yeIn]— p
X [n] = % 3)
C
Here, y. [n] represents the band-pass filtered output for
channel ¢, while y. and o, denote the mean and
standard deviation computed from this filtered signal.
Step 2: Multi-Domain Feature Extraction

a. Discrete Wavelet Transform (DWT)

The DWT decomposes EEG signals into approximation
(low-frequency) and detail (high-frequency)
coefficients. For a discrete EEG signalx[n], the
multilevel wavelet decomposition can be computed
using Eq. (4) and Eq. (5) as follows [11]:

Aj k)= Zx[n] Bk (m) (4)

Dy = . xlnl @y (n) (6)

n

Here, ©;,(n)denotes the scaling function, which
corresponds to the low-pass filter used in the wavelet
decomposition, while ¢;, (n) represents the wavelet
function associated with the high-pass filter. The
coefficients ~ A;y; refer to the approximation
coefficients at the decomposition level j, and
D; iy represent the corresponding detail coefficients at
the same level.

The approximation and detail coefficients can be
calculated using the convolution relations given in Eq.
(6) and Eq. (7), respectively, as follows [11]:

Ajpg= » x[m]. h[2k —m] (6)
Dig = ) xlml. g[zk—m] (7)

Where h[n] and g[n] are low-pass and high-pass filter
kernels, respectively, and the value of n is 2k — m.
b. Fast Fourier Transform (FFT)
The FFT transforms the EEG time-series signal into the
frequency domain to capture spectral features. It can
be calculated using Eq. (8) as follows [29]:
N-1 o
XK = ) xln]. e/ W (8)
n=0

Here, X[k] denotes the frequency component at index
k, and N represents the total number of samples in the
signal. The term j refers to the imaginary unit, defined
asj=+v-1.
The Power Spectral Density (PSD) is computed as:
P[k] = x[k]? This highlights dominant frequency bands
relevant for deception detection (e.g., theta, alpha,
beta).
Step 4: Feature Vector Combination (DWT + FFT)
The final feature vector is a concatenation of both DWT
and FFT features. It can be calculated using Eq. (9) as
follows [11], [29]:
F =[Ay,Ag oc..Aj,D1, Dy, e .. Dj, P, Py, e P ] (9)
Here, A and D denote the approximation and detall
coefficients obtained from the discrete wavelet
transform (DWT), while P represents the spectral
power features extracted using the fast Fourier
transform (FFT). The combination of DWT and FFT
offers a comprehensive spectral-temporal
representation of deception-related neural activity. FFT
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captures stable oscillatory behavior across canonical
frequency bands, whereas DWT isolates transient
changes linked to decision conflict, recognition, and
response inhibition. By concatenating DWT coefficients
across multiple decomposition levels with FFT-derived
spectral power, the model gains access to both short-
term temporal fluctuations and global frequency
patterns, improving discriminatory capability.

Step 5: Type-2 Fuzzy Channel Assessment

Each EEG channel is evaluated using Type-2 fuzzy
inference based on signal quality, discriminative power,
and redundancy. The interval-valued membership
function is defined as in Eq (10):

finco = |1, 10| (10)
The resulting channel importance score Ic € [0,1]
reflects uncertainty in EEG measurements.
Step 6: ANFIS Ranking and Metaheuristic Channel
Selection
Channel ranking is performed using ANFIS, followed by
metaheuristic optimization to select an optimal subset
of channels. The multi-objective optimization problem
is defined as in Eq (11):
|Chl| (1)
F =a(l — Acc)+ B o

+ ¥(Teomp) + n(R)
Step 7: Dual-Path Deep Learning and Ensemble
Fusion
Selected channels are processed through the EEGNet
and InceptionTime-Light models. Their probabilistic
outputs are combined using soft voting, computed
using Eq. (12) as follows [27]:

P_ensemble = w_1P_1 + w_2P_2 (12)
Here P, denotes the probability estimate produced by
the FBC-EEGNet model, while P, represents the
corresponding probability output generated by the
InceptionTime-Light classifier. w1, w2 are weights for
each model. The final decision is obtained using
threshold-based classification as shown in EQ. (13) as

follows [27]:
o {1' if Pensemble = 0 (Guilty) (13)
Y o, if Popsempe <0 (Imnocent)

Soft voting was selected because it combines

probabilistic outputs, enabling the complementary

strengths of FBC-EEGNet (high specificity) and

InceptionTime-light (high sensitivity) to be exploited.

Preliminary experiments demonstrated that hard voting
and stacking introduced instability and reduced
sensitivity, whereas soft voting achieved consistently
balanced and robust classification across both
datasets.

Step 8: Performance Evaluation

To assess the model's effectiveness, standard
performance measures such as Accuracy, Sensitivity
(Recall), and Specificity are employed. Each metric is
calculated using Egs. (14)—(17) as follows [23]:

p i TP +TN (14)
Ay = TP Y FP+FN+TN
Sensitivity = L (15)
TP+ FP
o (16)
Specificity TP+ FN
2 * (Recall * Precision) (17)

F1S =
core Recall + Precision

Here, TP denotes the number of true positives, FP
represents the false positives, TN refers to the true
negatives, and FN indicates the false negatives used
for computing the evaluation metrics. These
parameters summarize the model’s classification
behavior across correctly and incorrectly identified
samples. Together, they form the basis for deriving
Accuracy, Sensitivity, Specificity, and other diagnostic
performance measures that reflect the reliability of the
proposed deception-detection model.

lll. Result

A. Experimental Setup and Implementation

The proposed EEGNet-ANFIS framework was
implemented in Python 3.9 using TensorFlow 2.12 and
scikit-fuzzy 0.4.2, running on NVIDIA RTX 3080 GPU
with Intel i9-10900K and 64GB RAM. Training utilized
Adam optimizer (Ir=0.001, batch=32) with early
stopping (patience=15). The fuzzy channel selection
employed Type-2 inference with  Gaussian
membership functions, while MOEA/D optimization
used a population size of 50, 100 generations, and
0.8/0.2 crossover/mutation probabilities. ANFIS
modules combined least-squares estimation with
gradient descent. Evaluation used 5-fold subject-
independent cross-validation, measuring accuracy,
sensitivity, specificity, precision, F1-score, and AUC.
Statistical significance was determined via paired t-
tests (p<0.05).

B. Classification
Dataset

Performance on LieWaves

Table 2. Performance Metrics for CIT Dataset with SCR, RLL and Combined Parameters

Condition Participants Accuracy (%) Sensitivity (%)  Specificity (%)
SCR 79 (39 guilty, 40 innocent) 93.1 91.8 94.4
RLL 79 (39 guilty, 40 innocent) 92.3 90.6 94
Combined 156 92.7 91.2 94.2
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Using the LieWaves dataset, the proposed
Metaheuristic-Integrated Explainable Neuro-Fuzzy
System (MI-ENFS) achieved an impressive 93.8%
accuracy, demonstrating its strong ability to
differentiate between truthful and deceptive EEG
responses. The model obtained a sensitivity of 92.4%,
effectively detecting deceptive trials, and a specificity
of 95.2%, accurately recognizing truthful responses
while minimizing false alarms. The F1-score of 93.0%
indicates a well-balanced trade-off between precision
and recall, ensuring reliable classification across both
categories. Furthermore, the AUC value of 0.938
highlights the model's excellent discriminative
capability and stable performance, confirming that the
proposed MI-ENFS framework provides accurate,
consistent, and explainable results.

C. Classification Performance on CIT Dataset

On the larger, more diverse CIT dataset, the proposed
framework achieved 92.7% accuracy, demonstrating
excellent scalability and generalization capability. The
5.3% points improvement over the previous best
method (Fuzzy Ensemble: 87.4%) is consistent with
performance on LieWaves. Table 2 shows
performance metrics for the CIT Dataset with SCR,
RLL, and Combined Parameters. Using the Concealed
Information Test (CIT) dataset, which comprises a
larger and more diverse group of participants, the
proposed Metaheuristic-Integrated Explainable Neuro-
Fuzzy System (MI-ENFS) achieved an accuracy of
92.7%, confirming its scalability and robustness across
broader subject variations. The model outperformed
the previous best-performing approach (Fuzzy
Ensemble: 87.4%) by 5.3 percentage points, consistent

with results on the LieWaves dataset. The sensitivity of
91.2% highlights the model's effectiveness at
identifying deceptive subjects, while the specificity of
94.2% demonstrates its ability to correctly recognize
truthful responses with minimal false detections. The
F1-score of 91.8% indicates a strong balance between
precision and recall, and an AUC of 0.927 further
validates the model's discriminative reliability for
forensic EEG-based deception detection.

Additionally, when evaluated across different
experimental conditions on the CIT dataset, such as
Skin Conductance Response (SCR), Respiration Line
Length (RLL), and their combined multimodal
parameters, the proposed framework consistently
achieved high performance. Specifically, the model
attained 93.1% accuracy for SCR and 92.3% accuracy
for RLL, while the combined condition yielded an
overall accuracy of 92.7%, with 91.2% sensitivity and
94.2% specificity. These results demonstrate that the
proposed MI-ENFS framework not only generalizes
effectively across modalities but also delivers stable,
interpretable, and forensic-grade accuracy in detecting
deceptive behavior using the CIT dataset.

D. Channel Selection Analysis

The fuzzy channel selection module identified an
optimal subset of 14 channels from the original 64-
channel configuration, achieving 78.1% dimensionality
reduction. Table 3 highlights channel selection analysis
with a fuzzy approach. The top-ranked channels
include Fz (0.947), Pz (0.935), Cz (0.921), F3 (0.898),
and F4 (0.892), aligning with neuroscientific
understanding of deception-related brain regions. The
framework achieved an average cross-dataset

Table 3. 14 Channels Selected during Experimentation

Rank Channel Location Importance Functional Role
Score
1 Fz Frontal Midline 0.947 Executive control, response inhibition
2 Pz Parietal Midline 0.935 P300 generation, attention allocation
3 Cz Central Midline 0.921 Conflict monitoring, motor preparation
4 F3 Left Frontal 0.898 Working memory, cognitive load
5 F4 Right Frontal 0.892 Emotional processing, deception
6 P3 Left Parietal 0.876 Memory retrieval, recognition
7 P4 Right Parietal 0.871 Spatial attention, vigilance
8 C3 Left Central 0.854 Sensorimotor integration
9 C4 Right Central 0.848 Response preparation
10 FCz Frontal-Central 0.832 Error monitoring, conflict detection
11 CPz Central-Parietal 0.815 Sensory-motor integration
12 FC1 Left Frontal-Central 0.793 Cognitive control
13 FC2 Right Frontal-Central 0.788 Attentional regulation
14 CP1 Left Central-Parietal 0.771 Multimodal integration
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accuracy of 80.6% (79.4-81.7%), significantly
outperforming baselines (67.0-73.7%). The ANFIS
classification module generated 20 interpretable
Takagi-Sugeno  fuzzy  rules. Example: "IF
(Frontal_Theta is HIGH) AND (Central_Beta is HIGH)
AND (Parietal_Alpha is LOW) THEN Lie".

Table 4 presents a comparative evaluation of various
channel selection strategies used in the proposed
EEG-based deception detection framework. The
results show that the Fuzzy Selection method achieved
the best overall performance, attaining an accuracy of
93.8% with the lowest standard deviation (1.5%),
indicating both high precision and stability. It also
offered the most efficient computation, reducing
training time to 33.5 minutes and inference latency to
43 ms, with a smaller model size of 13.2 MB. In
contrast, traditional methods such as random,
correlation-based, and PCA-based selection achieved
lower accuracies (81.7-87.3%) and  higher
computation times. These findings confirm that the
fuzzy logic—driven selection effectively identifies the
most informative EEG channels while maintaining
optimal speed and memory efficiency. Furthermore, the
78.1% reduction in input dimensionality from 64 to 14
channels demonstrates the framework’s capability to
minimize redundant features without degrading
accuracy. This efficient channel optimization also
enhances model interpretability, as the selected
electrodes correspond to well-established frontal and
parietal regions linked to cognitive conflict and
deception processing.

E. Statistical Significance Test (Paired t-test)

Table 5 illustrates the results of the paired t-test,
demonstrating that MI-ENFS achieves statistically
significant performance gains over CNN, LSTM-NCP,
and Fuzzy Ensemble baselines across the LieWaves
and CIT datasets (p < 0.01). The large effect sizes
(Cohen’s d > 1.8) indicate a strong and practically
meaningful improvement, thereby confirming the
robustness and superiority of the proposed MI-ENFS
framework.

F. Interpretability and Explainability Metrics

Table 6 illustrates the interpretability analysis of
different EEG-based deception detection models. The
proposed MI-ENFS framework outperforms all baseline
approaches by generating 20 fuzzy rules with the
highest rule coverage (94.2%), fidelity (0.93), and
consistency index (0.95), demonstrating its strong
alignment between model decisions and human-
understandable reasoning. In contrast, conventional
deep models such as CNN and LSTMNCP provide no
extractable rules, limiting explainability despite
reasonable accuracy. The results confirm that
integrating fuzzy logic and ANFIS reasoning
substantially enhances interpretability  while
maintaining high predictive reliability. The following
tables show the performance evaluation of different
datasets. Table 7 presents a comprehensive
comparative evaluation of the proposed EEGNet—
ANFIS hybrid framework against existing EEG-based
deception detection methods on the LieWaves dataset.
Traditional approaches such as ERP-P300 analysis
and CNN-based models exhibit limited accuracy and
weaker sensitivity—specificity balance, highlighting their

Table 4. Performance Evaluation by Proposed System

Accurac Training  Inference Model Size
Configuration Channels Y std Dev Time Time
(%) : (MB)
(min) (ms)
All Channels (No Selection) 64 85.2 2.4 58.3 124 24.6
Random Selection 14 81.7 3.1 41.5 48 15.8
Correlation-Based Selection 14 86.8 2.6 39.7 45 15.2
PCA-Based Selection 14 87.3 2.5 40.2 46 154
Fuzzy Selection (Proposed) 14 93.8 15 33.5 43 13.2
Table 5. Statistical Significance Test (Paired t-test)
Comparison Dataset p-Value Significance (I(E:f?:;nssiz((je)
MI-ENFS vs CNN LieWaves < 0.001 Significant 2.31
MI-ENFS vs LSTM-NCP LieWaves <0.001 Significant 2.05
MI-ENFS vs Fuzzy Ensemble CIT 0.002 Significant 1.87
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difficulty in capturing complex deception-related neural
patterns. Recent hybrid and fuzzy-based models,
including LSTMNCP, Type-2 Fuzzy-GCN, and Fuzzy
Ensemble methods, demonstrate gradual performance
improvements; however, they still fall short of achieving
optimal discrimination and robustness. The proposed
framework shows clear, consistent performance across
its architectural variants. Single-path deep models
(EEGNet-only and InceptionTime-only) outperform
prior baselines, indicating the effectiveness of
specialized temporal and spatial feature learning.
Further improvement is observed with the dual-path
architecture, confirming the complementary nature of
EEGNet and InceptionTime-Light. The full framework,
integrating fuzzy attention and ANFIS-based
reasoning, achieves the highest accuracy (93.8%) and
AUC (0.938), along with well-balanced sensitivity
(92.4%) and specificity (95.2%). These results
demonstrate that the neuro-fuzzy integration not only
enhances classification accuracy but also stabilizes
decision boundaries, making the proposed approach
more reliable and suitable for forensic-grade EEG-
based deception detection.

Table 8 presents a comparative performance

progressive improvements; however, their
performance remains constrained by suboptimal
discrimination and variability in decision boundaries.
The proposed framework demonstrates consistent
performance gains across all  architectural
configurations. Single-path deep models (EEGNet-only
and InceptionTime-only) outperform existing baselines,
confirming the effectiveness of specialized temporal
and spatial feature extraction for CIT-based deception
detection. The dual-path configuration further
enhances accuracy and AUC, highlighting the
complementary  strengths of EEGNet and
InceptionTime-Light.  The  full EEGNet-ANFIS
framework achieves the highest accuracy (92.7%) and
AUC (0.927), along with balanced sensitivity (91.2%)
and specificity (94.2%). These results indicate strong
robustness to inter-subject variability and confirm the
framework’s improved generalization capability,
making it well-suited for large-scale and forensic-grade
EEG-based deception detection applications.

IV. Discussion

The present study introduces a Metaheuristic-

Table 6. Interpretability and Explainability Metrics

Consistency

Method Extractable Rules Rule Coverage (%) Fidelity Score Index

CNN Baseline 0 0 0.42 0.68
LSTMNCP 0 0 0.38 0.65
Type-2 Fuzzy-GCN 15 72.3 0.76 0.81
Fuzzy Ensemble 18 78.5 0.82 0.85
Proposed MI-ENFS 20 94.2 0.93 0.95

Table 7. Comparative Performance evaluation with existing research for 27 Subjects LieWaves Dataset

Accuracy Sensitivity Specificity Precision

F1-Score

Method (%) (%) (%) (%) (%) AYC

ERP-P300 Analysis [11] 76.3 73.5 79.1 74.2 73.8 0.763
CNN Baseline [30] 82.5 80.2 84.8 81.5 80.8 0.825
LSTMNCP [13] 85.7 83.8 87.6 84.9 84.3 0.857

Type-2 Fuzzy-GCN [7] 87.2 85.4 89 86.7 86 0.872
Fuzzy Ensemble [24] 88.5 86.9 90.1 88.2 87.5 0.885
Proposed (EEGNet only) 89.8 88.3 91.3 89.6 88.9 0.898
Proposed (InceptionTime only) 90.2 88.7 91.7 90.1 89.4 0.902
Proposed (Dual-Path w/o Fuzzy) 91.5 90.1 92.9 91.3 90.7 0.915
Proposed (Full Framework) 93.8 92.4 95.2 93.6 93 0.938

analysis of existing EEG-based deception detection
methods and the proposed framework on the larger
and more heterogeneous CIT dataset. Conventional
approaches such as ERP-P300 analysis and CNN-
based models exhibit relatively lower accuracy and
reduced sensitivity, reflecting their limited ability to
generalize across diverse subjects. More advanced
hybrid methods, including LSTMNCP, Type-2 Fuzzy-
GCN, and Fuzzy Ensemble approaches, show

Integrated Explainable Neuro-Fuzzy System (Ml-
ENFS) that demonstrates significant improvements in
classification accuracy, robustness, and interpretability
for EEG-based deception detection. The results reveal
that the proposed framework achieved 93.8% accuracy
on the LieWaves dataset and 92.7% on the CIT
dataset, outperforming traditional CNNs, LSTMs, and
fuzzy ensemble methods by 5-17 percentage points.
These results indicate that combining dual-path deep
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learning with fuzzy inference enhances the model's
discriminative and interpretive capacities. Specifically,
integrating EEGNet and InceptionTime-Light
architectures enabled the extraction of spatial—
temporal and multi-scale representations, while the
ANFIS-based reasoning mechanism transformed
these deep features into transparent fuzzy rules,
resulting in improved interpretability without sacrificing
accuracy. When compared with prior research, the
proposed MI-ENFS framework exhibits superior
performance. Earlier studies, such as Baghel et al.
(2020) [29] using CNN and Dodia et al. (2020) [30]
employing ELM with BAT optimization, reported

Similarly, strong performance across modalities in the
CIT dataset (SCR: 93.1%, RLL: 92.3%) demonstrates
that the proposed framework generalizes well across
varied physiological conditions. The AUC values
exceeding 0.93 further confirm the reliability and
consistency of classification boundaries between the
two cognitive states, reinforcing the system’s
robustness in real-world forensic applications. Despite
these encouraging results, several limitations must be
acknowledged. First, both datasets were acquired
under controlled laboratory conditions, which may not
fully represent spontaneous deception in real forensic
contexts. Second, the current model operates in an

Table 8. Comparative Performance evaluation with existing research for 79Subjects CIT Dataset

Accuracy Sensitivity Specificity Precision F1-Score
Method (%) (%) (%) (%) O
ERP-P300 Analysis [22] 74.8 71.2 78.4 72.9 72 0.748
CNN Baseline [30] 81.3 78.9 83.7 80.1 79.5 0.813
LSTMNCP [13] 84.2 82.1 86.3 83.5 82.8 0.842
Type-2 Fuzzy-GCN [7] 85.9 83.8 88 85.2 84.5 0.859
Fuzzy Ensemble [24] 87.4 85.6 89.2 86.9 86.2 0.874
Proposed (EEGNet only) 88.9 87.2 90.6 88.5 87.8 0.889
Proposed (InceptionTime only) 89.5 87.8 91.2 89.1 88.4 0.895
Proposed (Dual-Path w/o Fuzzy) 90.8 89.3 92.3 90.5 89.9 0.908
Proposed (Full Framewaork) 92.7 91.2 94.2 92.5 91.8 0.927

accuracies of 82.5% and 84.1%, respectively. Similarly,
the Fuzzy Ensemble approach by Bablani et al. (2021)
[24] achieved 88.5%, and the Type-2 Fuzzy + GCN
model by Rahmani et al. (2024) [7] reached 87.2%. The
proposed model outperforms existing benchmarks
while offering rule-based interpretability, unlike
conventional black-box deep learning approaches. The
results, therefore, establish MI-ENFS as a balanced
model that maintains high predictive accuracy while
providing forensic transparency, addressing one of the
major gaps in the existing literature. In interpreting the
findings, the superior sensitivity (92.4%) and specificity
(95.2%) on the LieWaves dataset suggest that the
model effectively differentiates between deceptive and
truthful EEG responses while minimizing false alarms.

offline setting; achieving real-time adaptability would
require additional optimization for latency and
hardware integration. Third, variability arising from
EEG device differences and session-to-session drift
can still affect cross-subject generalization.
Furthermore, while the proposed fuzzy attention
improves interpretability, it increases computational
complexity during training. Future work will focus on
domain adaptation, lightweight model compression,
and the integration of additional modalities, such as
fNIRS and physiological signals, to enhance ecological
validity. The implications of this study are twofold. From
a scientific perspective, it demonstrates that
explainable hybrid intelligence combining
metaheuristic optimization, deep learning, and fuzzy

Table 9. Comparative Analysis of Existing and Proposed Framework

Method Year Dataset Approach Accuracy

Baghel et al. [29] 2020 Custom CNN 82.5%
Dodia et al. [30] 2020 CIT ELM + BAT 84.1%
Bablani et al. [24] 2021 Multiple Fuzzy Ensemble 88.5%
AlArfaj & Mahmoud [16] 2022 Custom CNN + LSTM 85.3%
Alakus & Turkoglu [13] 2023 LieWaves LSTMNCP 85.7%
Rahmani et al. [7] 2024 Multiple Type-2 Fuzzy + GCN 87.2%
Proposed Framework 2025 LieWaves EEGNet-ANFIS Hybrid 93.80%
Proposed Framework 2025 CIT EEGNet-ANFIS Hybrid 92.70%
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logic can achieve high accuracy while retaining
interpretability, paving the way for more trustworthy
neural decoding systems. From an application
standpoint, the ability to extract linguistic rules and
visualize channel importance enhances forensic
admissibility, making MI-ENFS a promising step toward
transparent, evidence-based lie detection frameworks
suitable for legal, clinical, and security domains.

Table 9 summarizes the  chronological
advancement of EEG-based deception detection
methods from 2020 to 2025. Early models such as
CNN and ELM + BAT achieved moderate accuracies
below 85%, while later neuro-fuzzy and hybrid
approaches improved interpretability and performance.
The Type-2 Fuzzy + GCN (2024) reached 87.2%,
marking a significant step toward explainable
intelligence. The proposed EEGNet—ANFIS hybrid
framework (2025) outperforms all prior methods,
achieving 93.8% accuracy on LieWaves and 92.7% on
CIT, establishing a new benchmark for accuracy and
interpretability in EEG-based deception detection.
Notably, this improvement is achieved consistently
across heterogeneous datasets, demonstrating strong
cross-dataset generalization and robustness.

Despite the strong performance of the proposed MI-
ENFS framework, certain limitations exist. The
experiments were conducted on benchmark datasets
collected under controlled laboratory conditions, which
may not fully reflect spontaneous or real-world forensic
deception scenarios [17], [18]. Inter-session variability,
electrode placement differences, and device-
dependent noise can still affect cross-subject
generalization [16], [34]. In addition, the current
framework operates in an offline mode, and real-time
deployment would require further optimization of
latency and computational efficiency. The results
demonstrate that integrating deep learning with Type-2
fuzzy logic and ANFIS reasoning can achieve high
accuracy while preserving interpretability, addressing a
key challenge in EEG-based deception detection [17],
[18]. The ability to extract fuzzy rules and channel-level
explanations supports the development of transparent
and trustworthy forensic decision-support systems [12],
[18]. This framework provides a foundation for future
extensions toward adaptive, multimodal, and
explainable neuro-Al systems in forensic and cognitive
neuroscience applications [14], [21].

V. Conclusion

This study presented an optimized neuro-fuzzy deep
learning framework that effectively integrates Type-2
fuzzy inference, dual-path CNN architectures, and
adaptive neuro-fuzzy reasoning for interpretable EEG-
based deception detection. By combining EEGNet’s
spatial-temporal learning with InceptionTime-Light's
multi-scale feature extraction, the proposed system
achieved high discriminative power while maintaining

computational efficiency. The incorporation of Type-2
fuzzy channel selection and ANFIS-based ranking
significantly  reduced dimensionality, improving
processing speed without compromising accuracy.
Furthermore, the fuzzy attention mechanism and
Takagi-Sugeno ANFIS classifier enabled transparent
decision-making through interpretable linguistic rules
and visual channel importance. Experimental
evaluation on the LieWaves and CIT datasets
demonstrated consistent superiority over existing
methods, achieving 93.8% and 92.7% accuracy,
respectively, along with balanced sensitivity and
specificity. The model’s interpretability, supported by
rule-based reasoning and attention visualization,
enhances its suitability for forensic and cognitive
neuroscience applications where explainability is
critical. Overall, this work establishes that neuro-fuzzy
integration can overcome the trade-off between
accuracy, interpretability, and efficiency in EEG-based
deception detection. Future research will extend this
framework toward real-time adaptive systems, cross-
subject generalization, and multimodal fusion with
fNIRS or physiological signals to further enhance
robustness and practical deployment in a forensic
environment.
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