Journal of Electronics, Electromedical Engineering, and Medical Informatics
Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 240-256 e-ISSN: 2656-8632

RESEARCH ARTICLE
Improving the Segmentation of Colorectal

Cancer from Histopathological Images Using a
Hybrid Deep Learning Pipeline: A Case Study

Fahima IDIRI'®, Farid MEZIANE?2®, Hakim BOUCHAL?

"Université de Bejaia, Faculté des Sciences Exactes, Laboratoire d’Informatique Médicale et des Environnements
Dynamiques et Intelligents (LIMED), Bejaia 06000, Algeria

2 University of Derby, Data Science Research Center, United Kingdom

3 Université de Bejaia, Faculté de Technologie, Laboratoire d’'Informatique Médicale et des Environnements
Dynamiques et Intelligents (LIMED), Bejaia 06000, Algeria

Corresponding author: Fahima IDIRI (e-mail: fahima.idiri@univ-bejaia.dz, ORCID), Author(s) Email: Farid
MEZIANE (e-mail: F.Meziane@derby.ac.uk, ORCID), Hakim BOUCHAL (e-mail hakim.bouchal@univ-bejaia.dz)

Abstract Early and precise diagnosis of colorectal cancer plays a crucial role in enhancing patients'
outcomes. Although histopathological assessment remains the reference standard for diagnosis, it is often
lengthy and subject to variability between pathologists. This study aims to develop and evaluate a hybrid
deep learning-based approach for the automated segmentation of Hematoxylin and Eosin-stained
colorectal histopathology images. The work investigates how preprocessing strategies and architectural
design choices influence the model’s ability to identify meaningful tissue patterns while preserving
computational efficiency. Furthermore, it demonstrates the integration of a deep learning-based
segmentation module into colorectal cancer diagnostic workflows. Several deep learning—based
segmentation models with varying architectural configurations were trained and evaluated using a publicly
available endoscopic biopsy histopathological hematoxylin and eosin image dataset. Preprocessing
procedures were applied to generate computationally efficient image representations, thereby improving
training stability and overall segmentation performance. The best-performing configuration achieved a
segmentation accuracy of 0.97, reflecting consistent and reliable performance across samples. It
accurately delineated cancerous tissue boundaries and effectively distinguished benign from malignant
regions, demonstrating sensitivity to fine morphological details relevant to diagnosis. Strong agreement
between predicted and expert-annotated regions confirmed the model’s reliability and alignment with
expert assessments. Minimal overfitting was observed, indicating stable training behavior and robust
generalization across different colorectal tissue types. In comparative evaluations, the model maintained
high accuracy across all cancer categories and outperformed existing state-of-the-art approaches. Overall,
these findings demonstrate the model’s robustness, efficiency, and adaptability, confirming that careful
architectural and preprocessing optimization can substantially enhance segmentation quality and
diagnostic reliability. The proposed approach can support pathologists by providing accurate tissue
segmentation, streamlining diagnostic procedures, and improving clinical decision-making. This study
underscores the value of optimized deep learning models as intelligent decision-support tools for efficient
and consistent colorectal cancer diagnosis.

Keywords Colorectal cancer; Histopathological Hematoxylin and Eosin Images; Deep Learning; intelligent
decision-support tools.

l. Introduction need for improved diagnostic, prognostic, and
Colorectal cancer (CRC), also referred to as bowel  {tréatment approaches to reduce the global burden of
cancer, constitutes a significant global oncological CRC. Colorectal cancer is primarily detected through

burden, with high incidence and mortality rates  Colonoscopic  examination  followed by a
worldwide [1]. Recent estimates suggest that, in 2024 histopathological evaluation. Pathological assessment
alone, approximately 2.2 million new cases of CRC is regarded as the gold standard for confirming whether

were diagnosed worldwide, with an associated 1.1 a lesion is benign or malignant. In conventional
million deaths [2]. These figures highlight the pressing practice, pathologists ~examine stained tissue

Manuscript received 5 August 2025; Revised 12 November 2025; Accepted 5 January 2026; Available online 14 January 2026
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v8i1.1158
Copyright © 2026 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0).
240


https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v8i1.1158
https://creativecommons.org/licenses/by-sa/4.0/
mailto:fahima.idiri@univ-bejaia.dz
https://orcid.org/0009-0000-3385-7914
mailto:F.Meziane@derby.ac.uk
https://orcid.org/0000-0001-9811-6914
mailto:hakim.bouchal@univ-bejaia.dz
https://orcid.org/0009-0000-3385-7914
https://orcid.org/0000-0001-9811-6914
https://orcid.org/0000-0002-6421-9672

Journal of Electronics, Electromedical Engineering, and Medical Informatics

Homepage: jeeemi.org; Vol. 8, No. 1, January 2026, pp: 240-256

e-ISSN: 2656-8632

specimens under a microscope to identify abnormal
cellular structures that are indicative of incipient
neoplastic lesions within limited histological regions
[3]. Digital pathology has emerged as a prominent
biomedical research field, largely supported by the
development of whole slide imaging (WSI) technology.
WSI enables digitization of entire histological slides at
high resolution, facilitating detailed examination of
tissue samples [4]. This approach has become
increasingly valuable in colonoscopy-based
pathological analysis [5]. The high resolution of WSIs
enables visualization of intricate morphological
features. However, their large file sizes make manual
inspection by pathologists both time-consuming and
labor-intensive.  Moreover, accurate diagnosis
demands significant expertise, posing a challenge for
healthcare facilities in resource-limited settings,
particularly in rural areas of developing countries,
where there is often a shortage of experienced
pathologists [5], [6]. To address these challenges, deep
learning-based methods have emerged as promising
tools in medical image analysis. These models have
demonstrated notable performance in many tasks [5],
[7]. It is important to recognize that extensive prior
research has examined the use of diverse deep
learning methods for CRC segmentation. The present
literature review prioritizes studies closely aligned with
our research objectives, notably [4], [8], [9],[10], and
[11], to compare and evaluate the performance of
different deep learning approaches for diagnosing
malignancies of the colon using H&E-stained
histological images.

Cheng et al. [8] developed a publicly available
dataset, EBHI-Seg, consisting of 4,456
histopathological images of colorectal tissue covering
different stages of tumor progression. The dataset
classified the images into six types: normal tissue,
polyp, low-grade intraepithelial neoplasia, high-grade
intraepithelial neoplasia, serrated adenoma, and
adenocarcinoma. Each image was annotated with a
corresponding ground-truth  segmentation mask,
allowing precise evaluation of segmentation models.
The study evaluated the performance of several
machine learning (ML) and deep learning (DL)
approaches using this dataset. Conventional ML
methods achieved a maximum Dice coefficient of 0.65,
with Precision and Recall values of 0.70 and 0.90,
respectively. In contrast, DL-based models
outperformed traditional approaches, with the best-
performing model reaching a Dice score of 0.95 and
both Precision and Recall attaining 0.90. Liu et al. [11]
provided a recent review of DL methods used for
segmenting colorectal cancer histopathology images.
The review examines various types of models,
including conventional convolutional neural networks
(CNNs), U-Net-based architectures, and attention-

enhanced networks. The authors identified several key
challenges in this field, such as variations in tissue
staining, complex tissue structures, and class
imbalance in the data. They further emphasize the
advantages of employing pre-trained networks and
data augmentation strategies to enhance segmentation
performance. In addition, the review notes the growing
interest in transformer-based models, which can
capture more global image features and may improve
results in future research. Sengupta et al. [4]
systematically evaluated several U-Net variants to
delineate colorectal adenocarcinoma regions in H&E-
stained histopathological images derived from the
EBHI-Seg dataset. The study compared six
architectures: U-Net, Attention U-Net, and U-Net
models incorporating ResNet50, MobileNetV2,
EfficientNet-BO, and DenseNet121 backbones. In
extensive experiments on 795 images for binary
segmentation of cancerous versus non-cancerous
tissue, the authors reported that U-Net models with
DenseNet121 and ResNet50 backbones achieved the
best performance, attaining testing accuracies of 90.21
and 89.81, with corresponding Dice coefficients of
94.42 and 94.17, respectively. Their findings indicated
that the choice of backbone architecture substantially
influenced segmentation outcomes and provided a
reliable benchmark for subsequent CNN-driven
adenocarcinoma research. Xuan et al. [10] proposed
MASK2TASKS, a DL approach that combines
segmentation and classification tasks to improve
performance in colorectal cancer histopathology image
analysis. Their approach leverages segmentation
masks to guide attention toward the most informative
regions during the classification process. This joint
learning strategy leads to better results in both
segmentation and classification, as shown by improved
accuracy and F1-score on their test datasets. The
study demonstrated that combining these two tasks
can help models better handle the complexity and
variability of histopathology images. Sun and Sheng [9]
proposed a Double-Level Fusion Domain Adapter
Vision Transformer (DDVIT) that integrates CNNs and
ViTs through a hierarchical encoder-decoder
architecture. DDVIT introduces a Double-Level Fusion
(DLF) module and employs a plug-in domain adapter
within the transformer branch of a TransFuse-based
encoder. The domain adapter uses domain-aware
attention to modulate multi-head self-attention outputs,
improving robustness across domains. Furthermore,
DDVIiT leverages mutual knowledge distillation
between a universal network and domain-specific
branches, enhancing segmentation performance.
Extensive experiments on the EBHI-Seg dataset
demonstrated that DDVIiT achieved superior results
compared with CNN-only and transformer-only models,
confirming the effectiveness of this hybrid domain-
adaptive approach.
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Fig. 1. DeepLabV3 architecture

To build on these advancements, the core
contributions of this paper can be stated as follows: 1)
We conduct a systematic comparison of ResNet-50
[12], ResNet-101 [12], and MobileNetV3_Large [13]
backbones within a DeeplLabV3 [14] segmentation
framework on the EBHI-Seg dataset to identify the
most effective feature extractor for CRC segmentation.
2) We propose an efficient data preprocessing and
augmentation strategy designed for histopathology
images to enhance training stability, model robustness,
and generalization. 3) We conduct an extensive binary
segmentation evaluation across multiple tissue
categories, providing quantitative metrics to validate
the performance of the proposed approach. 4) We
introduce a feasible workflow that incorporates
segmentation techniques powered by deep learning
into colorectal cancer diagnostic pipelines, supporting
pathologists and enhancing diagnostic decision
processes.

This study is structured as follows: Section Il
presents the proposed method, including the dataset,
data splitting, and data augmentation strategies.
Section Ill outlines the assessment criteria, reports the
accuracy of our approach, compares it with existing
methods, and illustrates representative segmentation
results. Section IV introduces a workflow that integrates
deep learning—based segmentation models into critical
stages of the histopathological diagnostic process.
Section V addresses the study’s limitations and
outlines avenues for future work. Finally, Section VI
concludes the study by restating the objectives and
summarizing the key findings.

Il. Method

A. Architecture

The DeeplLabV3 architecture comprises two key
components: a backbone that produces high-resolution
feature maps via atrous convolutions, and a
DeepLabV3 head that captures multi-scale features,
maps them to the desired number of segmentation
classes, and upsamples them to the original image
resolution [14]. Fig. 1 illustrates this architecture.

The modular nature of DeepLabV3 enables flexible
combination of its blocks to achieve the desired
performance. In our experiments, we used three
different pretrained backbones, namely: ResNet-50
[12], ResNet-101 [12] and MobileNetV3 Large [13].

We obtained different performance metrics, and
ResNet-101 achieved the best performance.

B. Theoretical Background

Let D = {(x;,¥)}i=1,..n0 @

Eq. (1) denotes the training dataset, where x; €
RA*WXC rgpresents the i-th input histopathology image
patch with height H, width W, and C channels (with C=3
for RGB images).

y; € {0,1}*" is the corresponding binary ground truth
segmentation mask, where each pixel takes the value
1 for the target region and 0 for the background. The
variable N denotes the total number of (image, mask)
pairs in the dataset. The objective is to learn a
mapping, defined in Eq. (2):
MG: REXWXC _, [0'1]H><W’ (2)
that predicts a segmentation probability map ¥ for a
given input image x, where 8 represents the learnable
parameters.

The DeepLabV3 segmentation model is formulated as
a composition of three main components, as in Eq. (3):
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y = MG (x) = U(ASPP(Eb(x' HE); HA)' HU)! (3)
where Eq. (4)
E,: REXWXC _, ]RH'XW’XD (4)

is the Deep Convolutional Neural Network (DCNN)
encoder backbone network indexed by b responsible
for extracting multi-scale feature representations. The
ASPP module is defined in Eq. (5),

ASPP:RH'XW'XD _)RH’XW’XD’ 5)
the Atrous Spatial Pyramid Pooling module, applies
parallel atrous convolutions to capture contextual

information at multiple receptive field sizes. According
to Eq. (6), the decoder

U: RH'XW’XD’ N [0’1]wa’ (6)
performs feature refinement followed by bilinear
upsampling to recover the original spatial resolution.

The reduced feature-map height and width are given by
Eq. (7), Eq. (8) and Eq. (9)

H =H/s, (7)
And

W' =w/s, ®)
where s is the output stride, and

0= (95' 04, gu)' €))

represents the complete set of learnable parameters
associated with the encoder, ASPP module, and
decoder, respectively. Three pre-trained backbone
architectures are evaluated:

b € {ResNet50,ResNet101, MobileNetV3_Large},

Residual networks ResNet-50 and ResNet-101 use
identity (skip) connections to ease training in very deep
networks by learning residual mappings. A generic
residual block is written as in Eq. (10):

v =R(x,0) + S(x), (10)
where x; and y; are the input and output feature maps
of the block [, R(-, 8,) is the residual function (a small
stack of convolution, normalization and activation
layers) parameterized by 0,, S (-) is the skip mapping
(usually identity, or a learned linear projection when
shapes differ). After the addition, an activation may be
applied as in Eq. (11):

X1 = o), (11)
The Bottleneck residual block used in ResNet-50/101
reduces parameter  cost  while preserving
representational power. For block ¢ the residual
function is defined in Eq. (12):

R(x) = W, * o(BN(Wp * o(BNWy, + X)), (12)
where (Wy;*.) is a 1 x 1 convolution that reduces
dimensionality, (W, *.) is a 3 x 3 convolution (spatial
processing), and (W5, *.) is a 1 x 1 convolution that
restores dimensions. BN (.) is batch normalization and
o(.) is a ReLU. If the input and output channel-counts
or spatial sizes differ (e.g., due to stride), a projection
S (.) uses a1 x 1 convolution as in Eq. (13):

Sx)= W *x, (13)
is applied. The difference between ResNet-50 and

ResNet-101 is the number of bottleneck blocks in the
deeper stages:

ResNet-50 uses {3, 4, 6, 3} bottleneck blocks across
the four major stages, and ResNet-101 uses {3, 4, 23,
3} bottleneck blocks. Increasing the number of blocks
increases the network’s representational depth and
capacity for hierarchical feature extraction:

x =R, °R,_,°..°R; (x©), (14)
Eq. (14), Means starting from the input x(?, apply block
1, then block 2, ..., up to block L, where each R, (*)
denotes a residual block as in Eq. (10). According to
Eq. (15), MobileNetV3_Large encodes the input image
x through a sequence of inverted residual blocks that
use depthwise separable convolutions and a squeeze-
and-excitation (SE) attention mechanism.

fi = BN(Conv(a(BN(Conv¥ (fi-1))))), (15)

In this formulation, depthwise convolution with kernel
size k is denoted as (Conviy), k specifies the spatial
support of the depthwise convolution, d represents the
channel depth of the input tensor, and w denotes the
width applied by the pointwise 1x1 convolutions within
the inverted residual block. BN is a batch normalization,
o is a non-linear activation function, and f;_; is the
input feature map to the block. In some blocks,
MobileNetV3_Large integrates SE attention to improve
channel sensitivity. It helps the network learn which
channels are more important. The SE module works
like in Eq. (16) and Eq. (17) :

S = a(W,.c(W;.GAP(f))), (16)

fi=50U0, (17)
where GAP is the global average pooling operator,
W,and W, are learnable parameters, ¢ is the RelLU
activation, and © denotes channel-wise multiplication.

Finally, the encoded feature representation is
expressed as in Eq. (18):

Emobitenetv3 arge (¥) = f1 (18)
where EMob”eNemLargerepresents the entire encoder

function, f,is the feature map of the last block, which
passes to the segmentation head. The key innovation
in the DeepLabV3 model is the atrous (dilated)
convolution, which expands the receptive field without
increasing parameters. For a standard 2D convolution,
we use Eq. (19) [14] to compute the output at spatial
location (i,j) as:

y(i, ) = ZZw(m,n) x(i+mj+n), (19)

where w denotes the convolution kernel and x is the
input feature map. In contrast, atrous convolution
introduces a dilation rate r, and the operation becomes
as in Eq. (20) [14]:
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¥, ) = Z Z w(m,n) - x(i +rm,j +1n), (20)
where w is the convolution kernel and r controls the
spacing between the kernel elements. m and n
represent the spatial indices of the convolution kernel
along the height and width directions, respectively.
According to Eq. (21), Eq. (22), Eq. (23) and Eq. (24),
ASPP captures multi-scale contextual information by
applying parallel atrous convolutions with different
dilation rates [14]:

faspp = fo®Of ri®f r2®f 3D f car, (21)
where

folp) = Zq wo(q) - fe(), (22)
isa 1 x 1 convolution,

fri=2Zqwi(@) - fe(p +1iq), (23)

for i = {1,2,3} is the atrous convolution with rates r;, =
6, rz = 12, 1'3 = 18,

forr = 7 2 Fe (), (24)

is the global pooling that provides image-level features,
and f is the encoder output feature map. g indexes
the spatial positions of the convolution kernel, and p
denotes the current spatial location in the feature map
at which the convolution is being evaluated. The
concatenated features are then processed through an
1 x 1 convolution to reduce dimensionality. A Dice loss
adapted for class imbalance is deployed in this work, is
shown in Eq. (25) and Eq. (26) [15]:

20 Ppyp t €

L ice(A: ) =1- ~ ’ (25)
Dicely, ¥ S, 9%+ Ty Ve
where 3 = o(Mgy(x)), (26)

is the predicted probability map after sigmoid activation
g, p indexes all pixels in the image, and ¢ = 107 is a
smoothing constant to prevent division by zero. This
formulation uses squared terms in the denominator to
better handle class imbalance compared to standard
Dice loss. The parameters are optimized using the
Adam optimizer with the update rule provided in Eq.
(27) [16]:

m, =pm_+(1—p1)g.
{ v, = B + (1= B g7,

nim,;

0 =01 —— )
L o+
where g, =VyLpi. is the gradient at iteration t,
By = 0.9 and B, = 0.999 are momentum parameters,
n = 1072 is the internal learning rate, and m, and v,
are bias-corrected moment estimates. The learning
rate n is dynamically adjusted using a two-phase
strategy and calculated based on Eq. (28) [15], [16].
The first phase (epochs
t < Tswiten) has cosine annealing warm restarts

(27)

Nmax — Mmi t
Ny = Nppin + ———— (1 + cos (n ;ur», (28)

2 0
where t.,, is the current epoch with a restart cycle and
T, = 15. The second phase (epochs t > Tquiwcn) has
plateau-based reduction n, = n,_,y if validation loss
stagnates, where y = 0.1 is the reduction factor. The
switching epoch Tgiicn IS determined by monitoring
validation loss stagnation [15], [16]. At inference time,
the final binary prediction is obtained by evaluating the

decision rule specified in Eq.
(29):
M(xi’j) — {1 ifo (Mg (Xl])) =T (29)
0 otherwise;

where T = 0.5 is the classification threshold, My (x) is
the raw model output before activation for image x, o is
the sigmoid function, which converts the raw model
output to probabilities in [0,1]. x; ; is the pixel at position
(i, j) in the input image. M(x;;) is the final binary
prediction for that pixel (either 0 or 1).

C. The Dataset

1. Description of the dataset

The EBHI-Seg (Enteroscope Biopsy Histopathological
H&E Image Dataset for Image Segmentation Tasks,
available here), developed in 2022 by the Cancer
Hospital of China Medical University in Shenyang,
includes 2,228 histopathological images with
corresponding ground-truth segmentation masks,
covering six colorectal tumor stages [8]. The dataset is
categorized into six histological classes: Normal, Polyp,
Low-grade Intraepithelial Neoplasia (IN), High-grade
IN, Adenocarcinoma, and Serrated Adenoma [8]. All
images are stored in PNG format with a resolution of

224 x 224 pixels, and are uniformly categorized based

on the histopathological characteristics described

below:

1. Normal: Colorectal tissue sections exhibiting well-
organized tubular structures with no evidence of
pathological alterations, as observed under light
microscopy [8].

2. Polyp: These images display redundant mucosal
growths that maintain some  structural
resemblance to normal tissue but exhibit unique
histopathological features [8].

3. Low-grade Intraepithelial Neoplasia (IN): A
significant precancerous lesion characterized by
increased glandular branching, dense cellular
arrangements, and mild irregularities in luminal
morphology. Architectural disruption and nuclear
enlargement are moderate [8].

4. High-grade Intraepithelial Neoplasia (IN): A
severe precancerous lesion exhibiting
pronounced glandular distortion, marked nuclear
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Fig. 2. Samples from the EBHI-Seg dataset. (a) Normal class; (b) corresponding mask of (a); (c) Polyp
class; (d) corresponding mask of (c); (e) Low-grade IN; (f) corresponding mask of (e); (g) High-grade IN; (h)
corresponding mask of (g); (i) Serrated adenoma; (j) corresponding mask of (i); (k) Adenocarcinoma; (I)

corresponding mask of (k)

enlargement, and more extensive cellular atypia
compared to low-grade IN [8].

5. Adenocarcinoma: A malignant neoplasm of the
digestive tract, adenocarcinoma is typified by
irregular glandular structures, poorly defined
borders, and notably enlarged nuclei, complicating
histopathological assessment [8].

6. Serrated Adenoma: An uncommon lesion
representing roughly 1% of colonic polyps,
serrated adenomas are defined by their distinctive
serrated architectural patterns [8]

Representative sample images illustrate these classes

in Fig. 2.

2. Data splitting

During the experiments, the dataset was divided into
training, validation, and testing subsets with a 4:4:2

proportion. After splitting, the distribution of samples in
each class is presented in Table 1, where T. set and
V. set refer to the training and validating sets,
respectively.

3. Data augmentation

The limited availability of real-world histopathology data
poses a significant hurdle for training deep learning
models for colorectal cancer segmentation.

This limitation can lead to overfitting, where the model
memorizes specific training samples rather than
learning robust features for precise classification of
unseen images [17], [18]. To address this issue, data
augmentation techniques are applied to artificially
expand the training dataset and improve model

performance [19], [20]. Data augmentation involves
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(f)

generating new variations of existing images within the
dataset, simulating the natural variability observed in
real-world histopathology images [21], [22]. Data
augmentation in medical imaging must be applied
conservatively to preserve critical histological
structures. In this study, we employ carefully selected
augmentation techniques to enhance image variability
while maintaining diagnostic integrity across 1,200
histopathological images. We simulate lighting
variations by randomly adjusting brightness, contrast,
and saturation levels. Digital images are represented
as tensors of shape (height x width x color channels).
Augmenting in the color channel space offers an
efficient way to introduce realistic illumination
variability.

Table 1. Detailed information of the EBHI-Seg
dataset

Class Types T. V.set Test Total
set set

Normal 30 30 16 76

Polyp 189 190 95 474

High-grade IN 74 74 38 186

Low-grade IN 254 255 130 639

Adenocarcinoma 318 318 159 795

Serrated Adenoma 23 23 12 58

() (h)

Fig. 3. Augmented samples. (a) Augmented image of the serrated adenoma class; (b) corresponding
mask of (a); (c) augmented image of the adenocarcinoma class; (d) corresponding mask of (c); (e)
augmented image of the low-grade IN class; (f) corresponding mask of (e); (g) augmented image of the
high-grade IN class; (h) corresponding mask of (g).

Basic transformations involve isolating a single-color
channel (R, G, or B) by retaining its matrix and setting
the others to zero, or applying linear intensity
operations to uniformly adjust brightness [23], [24],
[25]. To simulate focus variations, we apply a Gaussian
blur [21] with a kernel size randomly selected between
3 and 7 pixels, and a sigma value ranging from 0.1 to
3. Additionally, we randomly adjust image sharpness
to reflect variations in tissue texture and scanner
quality. These augmentations improve model
robustness and generalization without compromising
the morphological fidelity of the tissue. Representative
augmented samples are shown in Fig. 3.

D. Research implementation procedure

The proposed research methodology for CRC
segmentation using histopathology images comprises
the phases shown in the flowchart in Fig. 4: Collect
Dataset from Selected Sources. The first step involves
obtaining histopathology images. Partnerships with
hospitals or pathology laboratories is important to
obtain anonymized image data from colorectal cancer
cases and healthy controls. Alternatively, publicly
available datasets may be used to provide diversity and
meticulous annotation by experienced pathologists. In
our case, the EBHI-Seg publicly available dataset was
used. Separate the Dataset into Vital Sets. Three
important subsets should be created from the dataset:
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Fig. 4. The implementation procedure flowchart

a) Training Set: This portion constitutes the majority of
the dataset and is utilized to teach the model,
enabling it to recognize and extract distinguishing
patterns and features associated with colorectal
cancer from the images.

b) Validation Set: The validation set is employed during
training to tune model parameters and monitor
performance. It helps mitigate overfitting and
ensures the model generalizes well to unseen
samples.

c) Testing Set: This subset is held out for the final
assessment of the model, allowing evaluation of its
ability to generalize to completely new data.

Apply Data Augmentation to Necessary Classes. To
mitigate limited data availability and class imbalance,
data augmentation procedures are selectively
employed to underrepresented classes. This strategy
increases sample diversity and supports more effective
learning across all classes [21]. Join Augmented
Images into Training and Validating Sets. The newly
generated images are included in both the training and
validation sets, which increases the dataset size and
strengthens the model’'s generalization and resilience.

Select DeeplLabV3 as the model. DeeplLabV3 is
selected as the baseline model due to its proven
effectiveness in semantic segmentation tasks [26], [27].
Training and Validation of the Model with Different
Encoder Backbones. Training is performed on the
augmented dataset, and validation data are used to
assess performance and control overfitting. Pre-trained
ResNet-50 [12], ResNet-10 [12], and
MobileNetv3 Large [13] models are used as initial
backbone networks for the DeepLabV3 model. These
models were originally trained on the COCO train2017
dataset, allowing the encoder to benefit from previously
learned feature representations obtained from generic
image recognition tasks. These features are then fine-
tuned to adapt the model to the colorectal cancer
histopathology segmentation task. The mathematical
formulation of these machine learning models was
given in Section IL.A.1.

After training is completed, the model is assessed
using a held-out test set that was not seen during
training. Segmentation performance is evaluated using
accuracy and the Jaccard index to measure the
model’s effectiveness in identifying colorectal cancer
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Table 4. Performance comparison of segmentation models on Adenocarcinoma class across various

backbone architectures

Model Dice Jaccard Precision Recall Accuracy
DeeplLabV3 + ResNet-50 0.9645 0.9328 0.9720 0.9683 0.9599
DeeplLabV3 + ResNet-101 0.9721 0.9465 0.9826 0.9681 0.9671
DeeplLabV3 + MobileNetV3 Large 0.9468 0.9023 0.9643 0.9441 0.9390
U-Net 0.887 0.808 0.850 0.950 --
Seg-Net 0.865 0.775 0.792 0.977 --
MedT 0.735 0.595 0.662 0.864
Mask2Task - 0.830 - -- --
DDVIT 0.901 -- -- -- --
U-Net + Attention U-net 0.9463 0.8906 0.9071 0.9112 0.8687
U-Net + ResNet-50 0.9417 0.8363 0.9207 0.9389 0.8981
U-Net + MobileNet-V2 0.8895 0.7758 0.7477 0.9733 0.7456
U-Net + EfficientNet-BO 0.9011 0.7827 0.8884 0.9377 0.8716
U-Net + DenseNet21 0.9442 0.8373 0.9071 0.9366 0.9251
regions. This evaluation is performed across different Recall — TP (32)
encoder backbones, including ResNet-50, ResNet- TP + FN

101, and MobileNetv3_Large. Finally, the results are
visualized and analyzed by comparing overall
performance in terms of accuracy, Jaccard index,
precision, and recall.

Ill. Result
A. Evaluation Metrics

The objective evaluation of digital pathological image
segmentation algorithms is essential for validating their
robustness and ensuring their safe deployment in
clinical diagnostic settings. A diverse set of statistical
metrics is used to ensure a robust evaluation of model
performance, including accuracy, precision, recall,
Jaccard index, and Dice similarity coefficient.

1. Accuracy. It represents the proportion of pixels
correctly classified by the model out of the total, serving
as an indicator of overall performance. In contrast, the
loss function captures the deviation between predictions
and ground-truth labels, with lower values indicating
better convergence and more reliable predictions [28].
Pixel-level predictions are categorized into four groups:
true positives (TP), representing correctly identified
cancerous pixels, true negatives (TN), corresponding to
correctly classified non-cancerous pixels, false positives
(FP), where non-cancerous pixels are incorrectly labeled
as cancerous, and false negatives (FN), denoting
cancerous pixels that are misclassified as non-
cancerous [8]. These quantities are then used to
compute the evaluation metrics defined in Eq. (30), Eq.
(31), Eq. (32):

A _ TP +TN 30
Uy = TPy TN +FP+FN S
Precision = TP+ FP (31)

2. The Jaccard coefficient, commonly known as
Intersection over Union (loU), is a standard metric used
to evaluate segmentation quality by measuring the
overlap between predicted regions and ground truth
annotations. As expressed in Eq. (33), it is computed
as the ratio of the shared area to the total combined
area of the two regions. Higher loU values indicate
greater consistency between the  predicted
segmentation and the reference mask. This metric is
particularly suitable for imbalanced datasets, as it
focuses on region overlap rather than being influenced
by dominant background pixels [8].

PNG

Jaccard = 50c (33)

3. Dice Coefficient, or Sarensen-Dice Index [4],
quantifies the similarity between predicted segmentation
masks and the reference annotations [8]. Calculated via
Eq. (34) and measures the overlap between predicted
and reference regions by comparing twice the
intersection to the total number of pixels in both. A higher
score denotes better segmentation performance. The
Dice Similarity Coefficient (DSC) is a spatial overlap
index that is generally more robust to class imbalance
than accuracy-based metrics, as it evaluates the shared
proportion of pixels rather than overall counts [8].

. 2X|PNG
Dice = [PNG]

(34)
|P|+|G|
where P is the predicted mask, and G is the ground truth
mask.
B. Experiments and Results

This research evaluated a binary semantic
segmentation task using DeeplLabV3 with three
backbones: ResNet-50, ResNet-101, and

MobileNetV3_Large. Each model underwent training for
40 epochs, employing a batch size of 4 for training, 8 for
validation, and optimized using the Adam algorithm with
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a learning rate of 1 x e~* . The experimental outcomes
for the entire dataset, with all classes combined, are
presented inTable 2 and Table 3.

Table 2. Assessment metrics with respect to the
validation set

Metrics ResNet-50 ResNet- MobilNet-

101 V3_Large
Epochs 40 40 40
Jaccard 0.9035 0.8985 0.8758
Dice 0.9478 0.9442 0.9321
Training 1h 34m 1h 34m 14m 09s
Time 11s 11s

Table 3. Assessment metrics with respect to test
set

Metrics ResNet-50 ResNet- MobilNet-
101 V3_Large
Epochs 40 40 40
Jaccard  0.9406 0.9464  0.9095
Dice 0.9693 0.9722 0.9525

Table 2 and Table 3 present the quantitative results of
the DeeplLabV3 model with three different backbone
architectures, ResNet-50, ResNet-101, and
MobileNetV3 Large, evaluated on both the validation
and test sets. On the validation set (Table 2) ResNet-50
achieved the highest Dice coefficient of 0.9478 and a
Jaccard index of 0.9035, slightly outperforming ResNet-
101 (Dice = 0.9442, Jaccard = 0.8985).
MobileNetV3_Large exhibited lower performance (Dice
= 0.9321, Jaccard = 0.8758), but with significantly
shorter training time (14 minutes vs. over 1 hour for the
others). This demonstrates that MobileNetV3_Large
offers a lightweight alternative when computational
efficiency is prioritized, even though there is some
sacrifice in segmentation accuracy. For the test set
(Table 3) ResNet-101 delivered the best overall
performance, achieving a Dice coefficient of 0.9722 and
a Jaccard index of 0.9464. ResNet-50 followed closely
(Dice = 09693, Jaccard = 0.9406), while
MobileNetV3_Large scored lower but still acceptable
(Dice = 0.9525, Jaccard = 0.9095). These results
suggest that ResNet-101, owing to its deeper
architecture, generalizes slightly better on unseen data.

C. Performance Comparison with Existing Works

This section presents an evaluation of DeeplLabV3
using ResNet-50, ResNet-101, and
MobileNetV3 Large  backbones, alongside a

comparison with existing studies conducted on the
same dataset, including U-Net [8], SegNet [8], MedT
[8], Mask2Tasks [10], DDVIT [9], U-Net + Attention U-
Net [4], U-Net + ResNet-50 [4], U-Net + MobileNet-V2
[4], U-Net + EfficientNet-B0O [4], U-Net + DenseNet21
[4]. Table 4 compares the proposed method with other
deep learning approaches for CRC segmentation
evaluated with the EBHI-Seg dataset. The symbol " -- "
denotes unavailable results, and the highest values in
each column are highlighted in bold. Additional per-
class segmentation results are provided in the
appendix.

The performance metrics in Table 4 demonstrate
the effectiveness of the proposed approach in
segmenting adenocarcinoma tissue using a ResNet-
101 backbone. The method achieves the highest
performance across nearly all metrics, with a Dice
coefficient of 0.9721, a Jaccard index of 0.9465, a
precision of 0.9826, and an accuracy of 0.9671,
significantly outperforming the baseline and competing
models. The elevated precision score (0.9826)
indicates the model's strong ability to correctly identify
true positive regions with minimal false positives.
Additionally, the recall (0.9681) is competitively high,
suggesting good sensitivity for  detecting
adenocarcinoma areas. Although Seg-Net achieves
the highest recall (0.977), it does so at the cost of lower
Dice and Jaccard scores. Among the U-Net variants,
Attention U-Net and U-Net with DenseNet21 show
strong results, with Dice scores of 0.9463 and 0.9442,
respectively. However, both fall short of our model in
terms of overlap-based metrics and precision. U-Net
with a ResNet-50 encoder performs decently but
demonstrates lower Jaccard and Dice indices than the
proposed ResNet-101-based model, highlighting the
benefits of deeper residual representations.

Transformer-based approaches yield mixed
outcomes. MedT exhibits weak performance (Dice =
0.735, Jaccard = 0.595), likely due to its high data
demands and lack of strong inductive biases. DDViT
shows moderate capability (Dice = 0.901).

The Mask2Tasks model, which focuses on multi-task
learning, reports only the Jaccard index (0.830). While
this value is superior to that of some CNN baselines, it
still lags behind our model by a significant margin.
Furthermore, this table reinforces the influence of the
encoder backbone. U-Net with MobileNet-V2, despite
achieving high recall (0.9733), exhibits low precision
(0.7477). U-Net with EfficientNet-B0 provides balanced
results but still falls short of the proposed method’s
overall performance. The model utilizing the ResNet-
101 backbone exhibits superior segmentation
performance for adenocarcinoma, benefiting from both
deeper feature extraction and better generalization,
outperforming both traditional CNN architectures and
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Fig. 5. Ground truth and segmentation results for some colorectal tissue classes using DeepLabV3 with
different backbones. (a—c) ground truth masks for low-grade IN, high-grade IN, and serrated adenoma; (d—
f) results with ResNet-50; (g—i) results with ResNet-101; (j—I) results with MobileNetV3-Large backbones.

recent transformer-driven approaches across nearly all
metrics.

Our proposed approach demonstrates a strong
balance of accuracy, robustness, and clinical
relevance. It precisely delineates cancerous tissue
boundaries and effectively distinguishes benign from
malignant regions with high sensitivity. The strong
agreement between predicted regions and those
delineated by experts confirms its reliability, while
minimal overfitting reflects stable training behavior and
solid generalization across diverse colorectal tissue
types. By outperforming leading approaches for all
cancer categories, the model demonstrates both
efficiency and adaptability. These strengths highlight its
suitability as a reliable decision-support tool for
improving diagnostic accuracy in colorectal cancer
histopathology.

D. Segmentation Results Images

Qualitative results presented in Fig. 5 demonstrate that
all DeepLabV3-based architectures effectively
delineate cancerous and non-cancerous regions in
colorectal histopathological images. The outputs
produced by the three variants exhibit strong visual
agreement with expert-labeled regions, confirming the
capacity of the models to capture relevant tissue
morphology. Among the evaluated models, the
DeeplLabV3-ResNet-101 configuration exhibited the
most precise boundary localization and preserved fine
glandular structures more effectively than the other
versions. The DeeplLabV3-ResNet-50 model achieved
comparable results. However, it occasionally produced
smoother boundaries, while the MobileNetV3 Large
backbone, despite its faster inference, showed slight
degradation in boundary precision, particularly in areas
with complex glandular morphology. These visual
outcomes align with the quantitative results reported in
Tables 2 and 3. The strong performance of
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DeepLabV3-ResNet-101  stems from its deep
hierarchical architecture and the Atrous Spatial
Pyramid Pooling (ASPP) module, which together
enable multi-level contextual understanding and
precise discrimination of epithelial, stromal, and
glandular  regions, effectively capturing the
heterogeneous textures and glandular variability
characteristic of colorectal tissue. In contrast, the
lightweight MobileNetV3_Large backbone
demonstrates that efficient models can still achieve
acceptable segmentation quality while substantially
reducing computational cost, rendering it suitable for
immediate processing scenarios or resource-limited
applications.

IV. Discussion

This study investigated how different backbone
networks within the DeeplLabV3 framework affect
segmentation performance in colorectal
histopathological images. The models were tested
using ResNet-50, ResNet-101, and
MobileNetV3_Large encoders to analyze differences in
accuracy and boundary delineation for various tissue
classes. With DeepLabV3-ResNet-101 as the baseline,
all alternative models showed varying degrees of
performance decline. Accordingly, Tables 5 and 6
present the percentage changes of the other
backbones relative to the DeeplLabV3-ResNet-101
baseline, providing a quantitative comparison of their
evaluation on the validation and test sets.

Table 5. Percentage differences in validation set
metrics compared to the DeepLabV3-ResNet-101
baseline

ResNet-101 remains the most robust backbone,
achieving consistently high performance across both
validation and test sets. ResNet-50 offers a reasonable
trade-off with slight reductions in some metrics,
whereas MobileNetV3_Large demonstrates that
efficiency gains may come at the expense of accuracy
in histopathological segmentation.

Table 6. Percentage differences in test set metrics
compared to the DeepLabV3-ResNet-101 baseline

Metrics ResNet-50 MobilNetV3_Large
(%)

Jaccard -0.61% -3.90%

Dice -0.30% —2.03%

Metrics ResNet-50 MobilNetV3_Large
(%)

Jaccard +0.56% —2.53%

Dice +0.38% -1.28%

On the validation set, ResNet-50 shows slight
improvements in some metrics, with a Jaccard gain of
+0.56% and a Dice gain of +0.38%, suggesting it
generalizes reasonably  well. In contrast,
MobileNetV3_Large exhibits decreases (Jaccard —
2.53%, Dice —1.28%), reflecting its limited capacity to
capture complex features. Test-set results further
highlight differences in generalization. ResNet-50
shows minor declines (Jaccard —0.61%, Dice —0.30%),
indicating slightly reduced performance on completely
unseen images compared to the baseline.
MobileNetV3 Large experiences more substantial
drops (Jaccard —3.90%, Dice —2.03%), confirming that
while it is computationally efficient, it struggles to
maintain segmentation accuracy on more challenging
data. Overall, the results emphasize that DeeplLabV3-

A. Integration of Deep
Segmentation into Clinical
Colorectal Cancer Diagnosis

The integration of DL into digital pathology workflows
holds transformative potential for enhancing colorectal
cancer diagnosis and segmentation. DL-based models,
notably those employing convolutional neural networks
(CNNs) [29], [30], [31] and transformer architectures
[32], [33], enable automated, accurate segmentation of
histopathological whole-slide images (WSIs), as
demonstrated in the Experiments and Results section.
However, to achieve real-world clinical impact, these
models must be embedded within comprehensive
diagnostic pipelines that support and augment the
expertise of pathologists. Incorporating DL systems
into the clinical workflow yields several critical benefits.
First, they streamline efficiency by significantly
shortening slide interpretation time, thus accelerating
the diagnostic workflow [34]. Second, they enhance
accuracy by detecting subtle morphological features
that may be overlooked by human observers,
contributing to more precise and reproducible
assessments [35]. Third, DL integration facilitates
scalability, enabling high-throughput analysis of large
datasets, which is particularly advantageous in large-
scale clinical studies and screening programs [36].
Finally, these systems increase consistency by
minimizing inter- and intra-observer variability,
supporting standardized diagnostic outcomes [37].
Beyond colorectal cancer, the proposed pipeline
demonstrates strong generalizability. Although initially
validated using the EBHI-Seg dataset, its modular and
adaptable architecture supports retraining or fine-
tuning with other histopathological datasets. This
flexibility allows for application across a broad range of
cancer types and tissue structures, enhancing the utility
of DL-based tools in diverse clinical contexts.

B. Proposed Workflow Integration

Learning-Based
Workflow for
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Inspired by [34], [38] [39] and [40], we propose a
workflow, illustrated in Fig. 6, that incorporates DL-
based segmentation models at critical stages of the
histopathological diagnostic process:

1. Slide Acquisition and Preprocessing.
Histopathological slides are digitized using high-
resolution scanners. Basic preprocessing steps
such as stain normalization, artifact removal, and
tiling into manageable patches are performed to
prepare the data for automated analysis [41].

2. Deep Learning-Based Segmentation. A DL
segmentation model (e.g., DeepLabV3 based on
ResNet-101) is applied to delineate cancerous
tissue from surrounding normal or dysplastic
regions. This identifies regions of interest (ROIs),
such as glandular structures, tumor boundaries, and
stromal invasion zones.

3. Pathologist-Guided Review with CAD Assistance.
The segmented regions are overlaid on the original
WSI and displayed within a computer-aided
diagnosis (CAD) interface. Pathologists can interact
with predictions, verify or modify masks, and make
informed decisions based on visual and quantitative
cues.

4. Quantitative Reporting and Decision Support. The
segmentation output is further processed to derive
metrics such as tumor burden, gland density, or
invasion depth. These outputs aid in staging,
prognosis, and treatment planning.

5. Post-Diagnosis Archiving and Model Feedback.
Verified annotations and reports are archived.
Pathologists' corrections can be used for continual
learning to improve model performance.

_
==\
(===
Whole Slide Preprocessing Pathologist Diagnostic
Image Acquisition & Deep Learning Review & Report
Segmentation Verification Generation

Fig. 6. Integration of the proposed deep learning—
based segmentation model into the colorectal
cancer diagnostic workflow.

While the proposed approach demonstrates strong
segmentation performance and clear clinical potential,
it is important to acknowledge its current limitations and
highlight avenues for future research. Although the
EBHI-Seg dataset provides a valuable benchmark for
colorectal cancer segmentation, its relatively limited
size and single-institution origin may restrict the
generalizability of our findings. Variations in staining
protocols, scanner types, and patient demographics
across different clinical centers can influence model

performance. Expanding training and validation to
include multi-center datasets will be essential to ensure
broader applicability.
The best-performing configuration in this study,
DeepLabV3 with a ResNet-101 backbone, requires
substantial computational resources, which may pose
challenges for deployment in resource-limited clinical
environments. While we explored more efficient
architectures such as  MobileNetV3, further
optimization and model compression techniques are
needed to balance accuracy with practicality.

Our current work focuses primarily on colorectal cancer

segmentation. The model's performance on other

cancer types or more challenging pre-cancerous
lesions remains untested. Extending the evaluation to

a broader range of pathological conditions would yield

a better understanding of the reliability and versatility of

the proposed pipeline.

To overcome these limitations, future research will

concentrate on:

1. Conducting extensive, multi-institutional validation
studies to assess the model’s robustness across
different patient populations and clinical settings.

2. Integrating the model into forward-looking clinical
studies to evaluate its impact in actual clinical

settings on diagnostic accuracy, pathologist
workflow, and reporting times.
3. exploring lightweight and efficient network

architectures and compression strategies to support
deployment in varied healthcare environments.

V. Conclusion

This study aimed to evaluate the effectiveness of deep
learning-based semantic segmentation models for
computer-aided diagnosis of colorectal cancer (CRC) in
histopathological images, with particular focus on
evaluating backbone architectures and their impact on
performance. Our results show that the DeeplLabV3
architecture, particularly when paired with ResNet-50 or
ResNet-101 backbones, achieves a segmentation
accuracy of 0.97, effectively delineating glandular
structures and reliably distinguishing benign from
malignant tissue regions. The model demonstrated
consistent performance across evaluation metrics,
confirming its robustness, stability, and strong
generalization capability. Rigorous dataset
preprocessing and targeted data augmentation further
enhanced segmentation accuracy and model
convergence. Moreover, the multi-class evaluation
across key colorectal tissue categories provided a more
clinically relevant and fine-grained analysis than
previous studies, highlighting the model’s potential utility
in supporting diagnostic processes.
Upcoming studies will concentrate on large-scale
validation across multi-center datasets and exploration
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of advanced architectures to further optimize
performance. Additionally, prospective validation
through real-world clinical trials will be undertaken to
strengthen the practical utility and clinical relevance of
the proposed method. Ultimately, the integration of deep
learning into CRC diagnostic workflows could support
more consistent, efficient, and timely clinical decision-
making in pathology practice.
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