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Abstract Early and precise diagnosis of colorectal cancer plays a crucial role in enhancing patients' 

outcomes. Although histopathological assessment remains the reference standard for diagnosis, it is often 
lengthy and subject to variability between pathologists. This study aims to develop and evaluate a hybrid 
deep learning-based approach for the automated segmentation of Hematoxylin and Eosin-stained 
colorectal histopathology images. The work investigates how preprocessing strategies and architectural 
design choices influence the model’s ability to identify meaningful tissue patterns while preserving 
computational efficiency. Furthermore, it demonstrates the integration of a deep learning-based 
segmentation module into colorectal cancer diagnostic workflows. Several deep learning–based 
segmentation models with varying architectural configurations were trained and evaluated using a publicly 
available endoscopic biopsy histopathological hematoxylin and eosin image dataset. Preprocessing 
procedures were applied to generate computationally efficient image representations, thereby improving 
training stability and overall segmentation performance. The best-performing configuration achieved a 
segmentation accuracy of 0.97, reflecting consistent and reliable performance across samples. It 
accurately delineated cancerous tissue boundaries and effectively distinguished benign from malignant 
regions, demonstrating sensitivity to fine morphological details relevant to diagnosis. Strong agreement 
between predicted and expert-annotated regions confirmed the model’s reliability and alignment with 
expert assessments. Minimal overfitting was observed, indicating stable training behavior and robust 
generalization across different colorectal tissue types. In comparative evaluations, the model maintained 
high accuracy across all cancer categories and outperformed existing state-of-the-art approaches. Overall, 
these findings demonstrate the model’s robustness, efficiency, and adaptability, confirming that careful 
architectural and preprocessing optimization can substantially enhance segmentation quality and 
diagnostic reliability. The proposed approach can support pathologists by providing accurate tissue 
segmentation, streamlining diagnostic procedures, and improving clinical decision-making. This study 
underscores the value of optimized deep learning models as intelligent decision-support tools for efficient 
and consistent colorectal cancer diagnosis. 

Keywords Colorectal cancer; Histopathological Hematoxylin and Eosin Images; Deep Learning; intelligent 
decision‑support tools. 

I. Introduction  

Colorectal cancer (CRC), also referred to as bowel 
cancer, constitutes a significant global oncological 
burden, with high incidence and mortality rates 
worldwide [1]. Recent estimates suggest that, in 2024 
alone, approximately 2.2 million new cases of CRC 
were diagnosed worldwide, with an associated 1.1 

million deaths [2]. These figures highlight the pressing 

need for improved diagnostic, prognostic, and 
treatment approaches to reduce the global burden of 
CRC. Colorectal cancer is primarily detected through 
colonoscopic examination followed by a 
histopathological evaluation. Pathological assessment 
is regarded as the gold standard for confirming whether 
a lesion is benign or malignant. In conventional 
practice, pathologists examine stained tissue 
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specimens under a microscope to identify abnormal 
cellular structures that are indicative of incipient 
neoplastic lesions within limited histological regions  
[3]. Digital pathology has emerged as a prominent 
biomedical research field, largely supported by the 
development of whole slide imaging (WSI) technology. 
WSI enables digitization of entire histological slides at 
high resolution, facilitating detailed examination of 
tissue samples [4]. This approach has become 
increasingly valuable in colonoscopy-based 
pathological analysis [5]. The high resolution of WSIs 
enables visualization of intricate morphological 
features. However, their large file sizes make manual 
inspection by pathologists both time-consuming and 
labor-intensive. Moreover, accurate diagnosis 
demands significant expertise, posing a challenge for 
healthcare facilities in resource-limited settings, 
particularly in rural areas of developing countries, 
where there is often a shortage of experienced 
pathologists [5], [6]. To address these challenges, deep 
learning-based methods have emerged as promising 
tools in medical image analysis. These models have 
demonstrated notable performance in many tasks [5], 
[7]. It is important to recognize that extensive prior 
research has examined the use of diverse deep 
learning methods for CRC segmentation. The present 
literature review prioritizes studies closely aligned with 

our research objectives, notably [4], [8], [9],[10], and 

[11], to compare and evaluate the performance of 
different deep learning approaches for diagnosing 
malignancies of the colon using H&E-stained 
histological images.  

Cheng et al. [8] developed a publicly available 
dataset, EBHI-Seg, consisting of 4,456 
histopathological images of colorectal tissue covering 
different stages of tumor progression. The dataset 
classified the images into six types: normal tissue, 
polyp, low-grade intraepithelial neoplasia, high-grade 
intraepithelial neoplasia, serrated adenoma, and 
adenocarcinoma. Each image was annotated with a 
corresponding ground-truth segmentation mask, 
allowing precise evaluation of segmentation models. 
The study evaluated the performance of several 
machine learning (ML) and deep learning (DL) 
approaches using this dataset. Conventional ML 
methods achieved a maximum Dice coefficient of 0.65, 
with Precision and Recall values of 0.70 and 0.90, 
respectively. In contrast, DL-based models 
outperformed traditional approaches, with the best-
performing model reaching a Dice score of 0.95 and 
both Precision and Recall attaining 0.90. Liu et al. [11] 
provided a recent review of DL methods used for 
segmenting colorectal cancer histopathology images. 
The review examines various types of models, 
including conventional convolutional neural networks 
(CNNs), U-Net-based architectures, and attention-

enhanced networks. The authors identified several key 
challenges in this field, such as variations in tissue 
staining, complex tissue structures, and class 
imbalance in the data. They further emphasize the 
advantages of employing pre-trained networks and 
data augmentation strategies to enhance segmentation 
performance. In addition, the review notes the growing 
interest in transformer-based models, which can 
capture more global image features and may improve 
results in future research. Sengupta et al. [4] 
systematically evaluated several U-Net variants to 
delineate colorectal adenocarcinoma regions in H&E-
stained histopathological images derived from the 
EBHI-Seg dataset. The study compared six 
architectures: U-Net, Attention U-Net, and U-Net 
models incorporating ResNet50, MobileNetV2, 
EfficientNet-B0, and DenseNet121 backbones. In 
extensive experiments on 795 images for binary 
segmentation of cancerous versus non-cancerous 
tissue, the authors reported that U-Net models with 
DenseNet121 and ResNet50 backbones achieved the 
best performance, attaining testing accuracies of 90.21 
and 89.81, with corresponding Dice coefficients of 
94.42 and 94.17, respectively. Their findings indicated 
that the choice of backbone architecture substantially 
influenced segmentation outcomes and provided a 
reliable benchmark for subsequent CNN-driven 
adenocarcinoma research. Xuan et al. [10] proposed 
MASK2TASKS, a DL approach that combines 
segmentation and classification tasks to improve 
performance in colorectal cancer histopathology image 
analysis. Their approach leverages segmentation 
masks to guide attention toward the most informative 
regions during the classification process. This joint 
learning strategy leads to better results in both 
segmentation and classification, as shown by improved 
accuracy and F1-score on their test datasets. The 
study demonstrated that combining these two tasks 
can help models better handle the complexity and 
variability of histopathology images. Sun and Sheng [9] 
proposed a Double-Level Fusion Domain Adapter 
Vision Transformer (DDViT) that integrates CNNs and 
ViTs through a hierarchical encoder-decoder 
architecture. DDViT introduces a Double-Level Fusion 
(DLF) module and employs a plug-in domain adapter 
within the transformer branch of a TransFuse-based 
encoder. The domain adapter uses domain-aware 
attention to modulate multi-head self-attention outputs, 
improving robustness across domains. Furthermore, 
DDViT leverages mutual knowledge distillation 
between a universal network and domain-specific 
branches, enhancing segmentation performance. 
Extensive experiments on the EBHI-Seg dataset 
demonstrated that DDViT achieved superior results 
compared with CNN-only and transformer-only models, 
confirming the effectiveness of this hybrid domain-
adaptive approach. 
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To build on these advancements, the core 
contributions of this paper can be stated as follows:  1) 
We conduct a systematic comparison of ResNet-50 
[12], ResNet-101 [12], and MobileNetV3_Large [13] 
backbones within a DeepLabV3 [14] segmentation 
framework on the EBHI-Seg dataset to identify the 
most effective feature extractor for CRC segmentation. 
2) We propose an efficient data preprocessing and 
augmentation strategy designed for histopathology 
images to enhance training stability, model robustness, 
and generalization. 3) We conduct an extensive binary 
segmentation evaluation across multiple tissue 
categories, providing quantitative metrics to validate 
the performance of the proposed approach. 4) We 
introduce a feasible workflow that incorporates 
segmentation techniques powered by deep learning 
into colorectal cancer diagnostic pipelines, supporting 
pathologists and enhancing diagnostic decision 
processes.  

This study is structured as follows: Section II 
presents the proposed method, including the dataset, 
data splitting, and data augmentation strategies. 
Section III outlines the assessment criteria, reports the 
accuracy of our approach, compares it with existing 
methods, and illustrates representative segmentation 
results. Section IV introduces a workflow that integrates 
deep learning–based segmentation models into critical 
stages of the histopathological diagnostic process. 
Section V addresses the study’s limitations and 
outlines avenues for future work. Finally, Section VI 
concludes the study by restating the objectives and 
summarizing the key findings. 

 

II. Method  

A. Architecture   

The DeepLabV3 architecture comprises two key 
components: a backbone that produces high-resolution 
feature maps via atrous convolutions, and a 
DeepLabV3 head that captures multi-scale features, 
maps them to the desired number of segmentation 
classes, and upsamples them to the original image 
resolution [14]. Fig. 1 illustrates this architecture. 

The modular nature of DeepLabV3 enables flexible 
combination of its blocks to achieve the desired 
performance. In our experiments, we used three 
different pretrained backbones, namely: ResNet-50 
[12], ResNet-101 [12] and MobileNetV3_Large [13]. 
We obtained different performance metrics, and 
ResNet-101 achieved the best performance. 

B. Theoretical Background 

Let  𝑫 = {(𝒙𝑖 ,𝒚𝑖)}𝑖=1,…,𝑁 ,                                                       (1)  

Eq. (1) denotes the training dataset, where 𝒙𝑖 ∈
ℝ𝐻×𝑊×𝐶  represents the i-th input histopathology image 

patch with height H, width W, and C channels (with C=3 
for RGB images).  

𝒚𝑖 ∈ {0,1}
𝐻×𝑊 is the corresponding binary ground truth 

segmentation mask, where each pixel takes the value 
1 for the target region and 0 for the background. The 
variable N denotes the total number of (image, mask) 
pairs in the dataset.  The objective is to learn a 
mapping, defined in Eq. (2): 

𝑴𝜃 :ℝ
𝐻×𝑊×𝐶 → [0,1]𝐻×𝑊 ,                                                     (2) 

that predicts a segmentation probability map 𝒚̂ for a 

given input image 𝒙, where 𝜃 represents the learnable 

parameters. 

The DeepLabV3 segmentation model is formulated as 
a composition of three main components, as in Eq. (3): 

 

Fig.  1.  DeepLabV3 architecture 
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𝒚̂ = 𝑴𝜃(𝒙) = 𝑼(ASPP(𝑬𝑏(𝒙, 𝜃𝐸), 𝜃𝐴), 𝜃𝑈),                      (3)  
where Eq. (4) 

 𝑬𝑏 : ℝ
𝐻×𝑊×𝐶 → ℝ𝐻

′×𝑊′×𝐷,                                          (4)   

is the Deep Convolutional Neural Network (DCNN) 
encoder backbone network indexed by 𝑏 responsible 

for extracting multi-scale feature representations. The 
ASPP module is defined in Eq. (5), 

ASPP: ℝ𝐻
′×𝑊′×𝐷 → ℝ𝐻

′×𝑊′×𝐷′ ,                                            (5) 

the Atrous Spatial Pyramid Pooling module, applies 
parallel atrous convolutions to capture contextual 
information at multiple receptive field sizes. According 
to Eq. (6), the decoder 

 𝑼:ℝ𝐻
′×𝑊′×𝐷′ → [0,1]𝐻×𝑊 ,                                                  (6)  

performs feature refinement followed by bilinear 
upsampling to recover the original spatial resolution. 
The reduced feature-map height and width are given by 
Eq. (7), Eq. (8) and Eq. (9)   

𝐻′ = 𝐻/𝑠 ,                                                                                 (7)  

And 

 𝑊 ′ = 𝑊/𝑠 ,                                                                              (8)  

where 𝑠 is the output stride, and 

 𝜃 = (𝜃𝐸, 𝜃𝐴 , 𝜃𝑈),                                                                      (9)  

represents the complete set of learnable parameters 
associated with the encoder, ASPP module, and 
decoder, respectively.  Three pre-trained backbone 
architectures are evaluated: 

𝑏 ∈ {ResNet50,ResNet101,MobileNetV3_Large},                

Residual networks ResNet-50 and ResNet-101 use 
identity (skip) connections to ease training in very deep 
networks by learning residual mappings. A generic 
residual block is written as in Eq. (10):  

𝑦𝑙 = 𝑅(𝑥𝑙  , 𝜽𝑙) + 𝑆(𝑥𝑙 ),                                                 (10)    

where 𝑥𝑙 and 𝑦𝑙  are the input and output feature maps 

of the block 𝑙, 𝑅(·,  𝞱𝑙) is the residual function (a small 

stack of convolution, normalization and activation 
layers) parameterized by 𝞱𝑙, S (·) is the skip mapping 

(usually identity, or a learned linear projection when 
shapes differ). After the addition, an activation may be 
applied as in Eq. (11):  

 𝑥𝑙+1 =  𝜎(𝑦𝑙) ,                                                                        (11) 

The Bottleneck residual block used in ResNet-50/101 
reduces parameter cost while preserving 
representational power. For block ℓ the residual 
function is defined in Eq. (12): 

 𝑅(𝑥) = 𝑊3,𝑙 ∗  𝜎(𝐵𝑁(𝑊2,𝑙 ∗  𝜎(𝐵𝑁(𝑊1,𝑙 ∗ 𝑥)))),  (12) 
where (𝑊1,𝑙 ∗ . ) is a 1 × 1 convolution that reduces 

dimensionality, (𝑊2,𝑙 ∗ . ) is a 3 × 3 convolution (spatial 

processing), and (𝑊3,𝑙 ∗ . ) is a 1 × 1 convolution that 

restores dimensions. 𝐵𝑁(. ) is batch normalization and 

𝜎(. ) is a ReLU. If the input and output channel-counts 

or spatial sizes differ (e.g., due to stride), a projection 
𝑆 (. ) uses a 1 × 1 convolution as in Eq. (13): 

 𝑆 (𝑥) =  𝑊𝑠,𝑙 ∗ 𝑥 ,                                                               (13)  

is applied. The difference between ResNet-50 and 
ResNet-101 is the number of bottleneck blocks in the 
deeper stages: 

ResNet-50 uses {3, 4, 6, 3} bottleneck blocks across 
the four major stages, and ResNet-101 uses {3, 4, 23, 
3} bottleneck blocks. Increasing the number of blocks 
increases the network’s representational depth and 
capacity for hierarchical feature extraction: 

𝑥(𝐿) = 𝑅𝐿  ° 𝑅𝐿−1° … °𝑅1  (𝑥
(0)) ,                                 (14) 

Eq. (14), Means starting from the input 𝑥(0), apply block 

1, then block 2, ..., up to block L, where each 𝑅𝐿  (·) 

denotes a residual block as in Eq. (10). According to 
Eq. (15), MobileNetV3_Large encodes the input image 
𝑥 through a sequence of inverted residual blocks that 

use depthwise separable convolutions and a squeeze-
and-excitation (SE) attention mechanism.  

𝑓𝑙 = 𝐵𝑁(𝐶𝑜𝑛𝑣(𝜎(𝐵𝑁(𝐶𝑜𝑛𝑣𝑘,𝑘
𝑑𝑤  (𝑓𝑙−1))))),                    (15) 

In this formulation, depthwise convolution with kernel 

size 𝑘 is denoted as (𝐶𝑜𝑛𝑣𝑘,𝑘
𝑑𝑤), 𝑘 specifies the spatial 

support of the depthwise convolution, 𝑑 represents the 

channel depth of the input tensor, and 𝑤 denotes the 

width applied by the pointwise 1×1 convolutions within 
the inverted residual block. BN is a batch normalization, 
𝜎  is a non-linear activation function, and  𝑓𝑙−1 is the 

input feature map to the block. In some blocks, 
MobileNetV3_Large integrates SE attention to improve 
channel sensitivity. It helps the network learn which 
channels are more important. The SE module works 
like in Eq. (16) and Eq. (17) : 

 S = 𝜎(𝑊2.𝜎(𝑊1.𝐺𝐴𝑃(𝑓𝑙))),                                     (16) 

 𝑓𝑙
′ =   𝑆 ⊙ (𝑓𝑙),                                                                    (17)  

where 𝐺𝐴𝑃 is the global average pooling operator, 

𝑊1and 𝑊2 are learnable parameters, 𝜎 is the ReLU 

activation, and ⊙ denotes channel-wise multiplication. 

Finally, the encoded feature representation is 
expressed as in Eq. (18): 

 𝐸𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉3𝐿𝑎𝑟𝑔𝑒(𝑥) =  𝑓𝐿  ,                                                (18) 

where 𝐸𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉3𝐿𝑎𝑟𝑔𝑒represents the entire encoder 

function, 𝑓𝐿is the feature map of the last block, which 

passes to the segmentation head. The key innovation 
in the DeepLabV3 model is the atrous (dilated) 
convolution, which expands the receptive field without 
increasing parameters. For a standard 2D convolution, 
we use Eq. (19) [14] to compute the output at spatial 
location (𝑖, 𝑗) as : 

𝒚(𝑖, 𝑗) =∑∑𝒘(𝑚,𝑛) ⋅ 𝒙(𝑖 + 𝑚, 𝑗 + 𝑛)

𝑛𝑚

,                  (19) 

where 𝒘 denotes the convolution kernel and 𝒙 is the 

input feature map. In contrast, atrous convolution 
introduces a dilation rate 𝑟, and the operation becomes 

as in Eq. (20) [14]: 
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𝒚(𝑖, 𝑗) =∑∑𝒘(𝑚, 𝑛) ⋅ 𝒙(𝑖 + 𝑟𝑚, 𝑗 + 𝑟𝑛)

𝑛𝑚

,              (20) 

where 𝒘 is the convolution kernel and 𝑟 controls the 

spacing between the kernel elements.  𝑚   and 𝑛 

represent the spatial indices of the convolution kernel 
along the height and width directions, respectively. 
According to Eq. (21), Eq. (22), Eq. (23) and Eq. (24), 
ASPP captures multi-scale contextual information by 
applying parallel atrous convolutions with different 
dilation rates [14]: 

𝒇ASPP = 𝒇0⨁𝒇𝑟1⨁𝒇𝑟2⨁𝒇𝑟3⨁𝒇GAP,                                (21) 

where 

 𝒇0(𝑝) = ∑ 𝑤0(𝑞)𝑞 ⋅ 𝒇𝐸(𝑝),                                                 (22)  

is a 1 × 1 convolution, 

 𝒇𝑟𝑖 = ∑ 𝑤𝑖(𝑞) ⋅ 𝒇𝐸(𝑝 + 𝑟𝑖𝑞)𝑞 ,                                          (23)  

for 𝑖 = {1,2,3} is the atrous convolution with rates 𝑟1 =
6, 𝑟2 = 12, 𝑟3 = 18, 

 𝒇GAP =
1

𝐻′𝑊′
∑ 𝒇𝐸(𝑝)𝑝 ,                                                       (24)  

is the global pooling that provides image-level features, 
and 𝒇𝐸 is the encoder output feature map. 𝑞 indexes 
the spatial positions of the convolution kernel, and 𝑝 

denotes the current spatial location in the feature map 
at which the convolution is being evaluated. The 
concatenated features are then processed through an 
1 × 1 convolution to reduce dimensionality. A Dice loss 

adapted for class imbalance is deployed in this work, is 
shown in Eq. (25) and Eq. (26) [15]: 

ℒDice(𝒚̂, 𝒚) = 1 −
2∑ 𝑦̂𝑝𝑦𝑝 + 𝜀𝑝

∑ 𝑦̂𝑝2𝑝 + ∑ 𝑦𝑝2𝑝 + 𝜀
,                                (25) 

where  𝒚̂ = 𝜎(𝑴𝜃(𝒙)),                                                        (26)  

is the predicted probability map after sigmoid activation 
𝜎, 𝑝 indexes all pixels in the image, and 𝜀 = 10−6 is a 

smoothing constant to prevent division by zero. This 
formulation uses squared terms in the denominator to 
better handle class imbalance compared to standard 
Dice loss. The parameters are optimized using the 
Adam optimizer with the update rule provided in Eq. 
(27) [16]: 

{
 
 

 
 
𝒎𝑡 = 𝛽1𝒎𝑡−1 + (1− 𝛽1)𝒈𝑡 ,

𝒗𝑡 = 𝛽2𝒗𝑡−1 + (1 − 𝛽2)𝒈𝑡
2,

𝜃𝑡 = 𝜃𝑡−1 −
𝑛𝒎̂𝑡

√𝒗̂𝑡 + 𝜀
,

(27) 

where 𝒈𝑡 = ∇𝜃ℒDice is the gradient at iteration 𝑡, 
𝛽1 = 0.9 and 𝛽2 = 0.999 are momentum parameters, 

𝑛 = 10−2 is the internal learning rate, and 𝒎̂𝑡 and 𝒗̂𝑡 
are bias-corrected moment estimates. The learning 
rate 𝑛 is dynamically adjusted using a two-phase 

strategy and calculated based on Eq. (28) [15], [16]. 
The first phase (epochs 
𝑡 ≤ 𝑇switch) has cosine annealing warm restarts 

𝑛𝑡 = 𝑛min +
𝑛max − 𝑛min

2
⋅ (1 + cos (𝜋

𝑡cur
𝑇0
)),           (28) 

where 𝑡cur is the current epoch with a restart cycle and 

𝑇0 = 15. The second phase (epochs 𝑡 > 𝑇switch) has 

plateau-based reduction 𝑛𝑡 = 𝑛𝑡−1𝛾  if validation loss 

stagnates, where 𝛾 = 0.1 is the reduction factor. The 

switching epoch 𝑇switch is determined by monitoring 

validation loss stagnation [15], [16]. At inference time, 
the final binary prediction is obtained by evaluating the 
decision rule specified in Eq. 
(29):

𝑀̂(𝑥𝑖,𝑗) = {
1 if 𝜎 (𝑀𝜃(𝑥𝑖,𝑗)) ≥ 𝜏;

0 otherwise;
(29) 

where 𝜏 = 0.5 is the classification threshold,  𝑀𝜃(𝑥) is 

the raw model output before activation for image 𝑥, 𝜎 is 

the sigmoid function, which converts the raw model 
output to probabilities in [0,1]. 𝑥𝑖,𝑗 is the pixel at position 

(i, j) in the input image. 𝑀̂(𝑥𝑖,𝑗) is the final binary 

prediction for that pixel (either 0 or 1). 

C. The Dataset  

1.  Description of the dataset  

The EBHI-Seg (Enteroscope Biopsy Histopathological 
H&E Image Dataset for Image Segmentation Tasks, 
available here), developed in 2022 by the Cancer 
Hospital of China Medical University in Shenyang, 
includes 2,228 histopathological images with 
corresponding ground-truth segmentation masks, 
covering six colorectal tumor stages [8]. The dataset is 
categorized into six histological classes: Normal, Polyp, 
Low-grade Intraepithelial Neoplasia (IN), High-grade 
IN, Adenocarcinoma, and Serrated Adenoma [8]. All 
images are stored in PNG format with a resolution of 
224 × 224 pixels, and are uniformly categorized based 
on the histopathological characteristics described 
below: 

1. Normal: Colorectal tissue sections exhibiting well-

organized tubular structures with no evidence of 

pathological alterations, as observed under light 

microscopy [8]. 

2. Polyp: These images display redundant mucosal 
growths that maintain some structural 
resemblance to normal tissue but exhibit unique 
histopathological features [8]. 

3. Low-grade Intraepithelial Neoplasia (IN): A 
significant precancerous lesion characterized by 
increased glandular branching, dense cellular 
arrangements, and mild irregularities in luminal 
morphology. Architectural disruption and nuclear 
enlargement are moderate [8]. 

4. High-grade Intraepithelial Neoplasia (IN):  A 
severe precancerous lesion exhibiting 
pronounced glandular distortion, marked nuclear 
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enlargement, and more extensive cellular atypia 
compared to low-grade IN [8]. 

5. Adenocarcinoma: A malignant neoplasm of the 

digestive tract, adenocarcinoma is typified by 

irregular glandular structures, poorly defined 

borders, and notably enlarged nuclei, complicating 

histopathological assessment [8]. 

6. Serrated Adenoma: An uncommon lesion 

representing roughly 1% of colonic polyps, 

serrated adenomas are defined by their distinctive 

serrated architectural patterns  [8] 

Representative sample images illustrate these classes 
in Fig. 2.  

2.  Data splitting 

During the experiments, the dataset was divided into 
training, validation, and testing subsets with a 4:4:2 

proportion. After splitting, the distribution of samples in 

each class is presented in Table 1, where   T. set and 

V. set refer to the training and validating sets, 
respectively. 

3.  Data augmentation  

The limited availability of real-world histopathology data 
poses a significant hurdle for training deep learning 
models for colorectal cancer segmentation. 

 This limitation can lead to overfitting, where the model 
memorizes specific training samples rather than 
learning robust features for precise classification of 
unseen images [17], [18]. To address this issue, data 
augmentation techniques are applied to artificially 
expand the training dataset and improve model 

performance [19], [20]. Data augmentation involves 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

 
Fig.  2. Samples from the EBHI-Seg dataset. (a) Normal class; (b) corresponding mask of (a); (c) Polyp 
class; (d) corresponding mask of (c); (e) Low-grade IN; (f) corresponding mask of (e); (g) High-grade IN; (h) 
corresponding mask of (g); (i) Serrated adenoma; (j) corresponding mask of (i); (k) Adenocarcinoma; (l) 
corresponding mask of (k) 
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generating new variations of existing images within the 
dataset, simulating the natural variability observed in 

real-world histopathology images [21], [22]. Data 

augmentation in medical imaging must be applied 
conservatively to preserve critical histological 
structures. In this study, we employ carefully selected 
augmentation techniques to enhance image variability 
while maintaining diagnostic integrity across 1,200 
histopathological images. We simulate lighting 
variations by randomly adjusting brightness, contrast, 
and saturation levels. Digital images are represented 
as tensors of shape (height × width × color channels). 
Augmenting in the color channel space offers an 
efficient way to introduce realistic illumination 
variability.  

Table 1. Detailed information of the EBHI-Seg 
dataset 

Class Types T. 
set 

V. set Test 
set 

Total 

Normal 30 30 16 76 

Polyp 189 190 95 474 

High-grade IN 74 74 38 186 

Low-grade IN 254 255 130 639 

Adenocarcinoma 318 318 159 795 

Serrated Adenoma 23 23 12 58 

 Basic transformations involve isolating a single-color 
channel (R, G, or B) by retaining its matrix and setting 
the others to zero, or applying linear intensity 
operations to uniformly adjust brightness [23], [24], 
[25]. To simulate focus variations, we apply a Gaussian 
blur [21] with a kernel size randomly selected between 
3 and 7 pixels, and a sigma value ranging from 0.1 to 
3.  Additionally, we randomly adjust image sharpness 
to reflect variations in tissue texture and scanner 
quality. These augmentations improve model 
robustness and generalization without compromising 
the morphological fidelity of the tissue. Representative 
augmented samples are shown in Fig. 3.  

D. Research implementation procedure 

The proposed research methodology for CRC 
segmentation using histopathology images comprises 
the phases shown in the flowchart in Fig. 4: Collect 
Dataset from Selected Sources. The first step involves 
obtaining histopathology images. Partnerships with 
hospitals or pathology laboratories is important to 
obtain anonymized image data from colorectal cancer 
cases and healthy controls. Alternatively, publicly 
available datasets may be used to provide diversity and 
meticulous annotation by experienced pathologists. In 
our case, the EBHI-Seg publicly available dataset was 
used. Separate the Dataset into Vital Sets. Three 
important subsets should be created from the dataset: 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig.  3.  Augmented samples. (a) Augmented image of the serrated adenoma class; (b) corresponding 
mask of (a); (c) augmented image of the adenocarcinoma class; (d) corresponding mask of (c); (e) 
augmented image of the low-grade IN class; (f) corresponding mask of (e); (g) augmented image of the 
high-grade IN class; (h) corresponding mask of (g). 
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a) Training Set: This portion constitutes the majority of 
the dataset and is utilized to teach the model, 
enabling it to recognize and extract distinguishing 
patterns and features associated with colorectal 
cancer from the images. 

b) Validation Set: The validation set is employed during 
training to tune model parameters and monitor 
performance. It helps mitigate overfitting and 
ensures the model generalizes well to unseen 
samples. 

c) Testing Set: This subset is held out for the final 
assessment of the model, allowing evaluation of its 
ability to generalize to completely new data. 

Apply Data Augmentation to Necessary Classes. To 
mitigate limited data availability and class imbalance, 
data augmentation procedures are selectively 
employed to underrepresented classes. This strategy 
increases sample diversity and supports more effective 
learning across all classes [21]. Join Augmented 
Images into Training and Validating Sets. The newly 
generated images are included in both the training and 
validation sets, which increases the dataset size and 
strengthens the model’s generalization and resilience. 

Select DeepLabV3 as the model. DeepLabV3 is 
selected as the baseline model due to its proven 
effectiveness in semantic segmentation tasks [26], [27]. 
Training and Validation of the Model with Different 
Encoder Backbones. Training is performed on the 
augmented dataset, and validation data are used to 
assess performance and control overfitting. Pre-trained 

ResNet-50 [12], ResNet-10 [12], and 

MobileNetv3_Large [13] models are used as initial 
backbone networks for the DeepLabV3 model. These 
models were originally trained on the COCO train2017 
dataset, allowing the encoder to benefit from previously 
learned feature representations obtained from generic 
image recognition tasks. These features are then fine-
tuned to adapt the model to the colorectal cancer 
histopathology segmentation task. The mathematical 
formulation of these machine learning models was 
given in Section II.A.1.  

After training is completed, the model is assessed 
using a held-out test set that was not seen during 
training. Segmentation performance is evaluated using 
accuracy and the Jaccard index to measure the 
model’s effectiveness in identifying colorectal cancer 

 
Fig. 4. The implementation procedure flowchart 
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regions. This evaluation is performed across different 
encoder backbones, including ResNet-50, ResNet-
101, and MobileNetv3_Large. Finally, the results are 
visualized and analyzed by comparing overall 
performance in terms of accuracy, Jaccard index, 
precision, and recall. 

 

III. Result  

A.  Evaluation Metrics  

The objective evaluation of digital pathological image 
segmentation algorithms is essential for validating their 
robustness and ensuring their safe deployment in 
clinical diagnostic settings. A diverse set of statistical 
metrics is used to ensure a robust evaluation of model 
performance, including accuracy, precision, recall, 
Jaccard index, and Dice similarity coefficient. 

1. Accuracy. It represents the proportion of pixels 

correctly classified by the model out of the total, serving 

as an indicator of overall performance. In contrast, the 

loss function captures the deviation between predictions 

and ground-truth labels, with lower values indicating 

better convergence and more reliable predictions [28]. 
Pixel-level predictions are categorized into four groups: 

true positives (TP), representing correctly identified 

cancerous pixels, true negatives (TN), corresponding to 

correctly classified non-cancerous pixels, false positives 

(FP), where non-cancerous pixels are incorrectly labeled 

as cancerous, and false negatives (FN), denoting 

cancerous pixels that are misclassified as non-

cancerous [8]. These quantities are then used to 

compute the evaluation metrics defined in Eq. (30), Eq. 

(31), Eq. (32): 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (30) 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (31) 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (32) 

2. The Jaccard coefficient, commonly known as 
Intersection over Union (IoU), is a standard metric used 
to evaluate segmentation quality by measuring the 
overlap between predicted regions and ground truth 
annotations. As expressed in Eq. (33), it is computed 
as the ratio of the shared area to the total combined 
area of the two regions. Higher IoU values indicate 
greater consistency between the predicted 
segmentation and the reference mask. This metric is 
particularly suitable for imbalanced datasets, as it 
focuses on region overlap rather than being influenced 

by dominant background pixels [8]. 

Jaccard =  
𝑃∩𝐺

𝑃∪𝐺
                                    (33) 

3. Dice Coefficient, or Sørensen–Dice Index [4], 

quantifies the similarity between predicted segmentation 

masks and the reference annotations [8]. Calculated via 

Eq. (34) and measures the overlap between predicted 

and reference regions by comparing twice the 

intersection to the total number of pixels in both. A higher 

score denotes better segmentation performance. The 

Dice Similarity Coefficient (DSC) is a spatial overlap 

index that is generally more robust to class imbalance 

than accuracy-based metrics, as it evaluates the shared 

proportion of pixels rather than overall counts [8].  

Dice =  
2×|𝑃∩𝐺|

|𝑃|+|𝐺|
      (34) 

where P is the predicted mask, and G is the ground truth 

mask. 

B. Experiments and Results  

This research evaluated a binary semantic 
segmentation task using DeepLabV3 with three 
backbones: ResNet-50, ResNet-101, and 
MobileNetV3_Large. Each model underwent training for 
40 epochs, employing a batch size of 4 for training, 8 for 
validation, and optimized using the Adam algorithm with 

Table 4. Performance comparison of segmentation models on Adenocarcinoma class across various 
backbone architectures 

Model  Dice Jaccard Precision Recall Accuracy 

DeepLabV3 + ResNet-50 0.9645 0.9328 0.9720 0.9683 0.9599 

DeepLabV3 + ResNet-101 0.9721 0.9465 0.9826 0.9681 0.9671 

DeepLabV3 + MobileNetV3_Large 0.9468 0.9023 0.9643 0.9441 0.9390 

U-Net 0.887 0.808 0.850 0.950 -- 

Seg-Net 0.865 0.775 0.792 0.977 -- 

MedT 0.735 0.595 0.662 0.864  

Mask2Task -- 0.830 -- -- -- 

DDViT 0.901 -- -- -- -- 

U-Net + Attention U-net 0.9463 0.8906 0.9071 0.9112 0.8687 

U-Net + ResNet-50 0.9417 0.8363 0.9207 0.9389 0.8981 

U-Net + MobileNet-V2 0.8895 0.7758 0.7477 0.9733 0.7456 

U-Net + EfficientNet-B0 0.9011 0.7827 0.8884 0.9377 0.8716 

U-Net + DenseNet21 0.9442 0.8373 0.9071 0.9366 0.9251 
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a learning rate of  1 × 𝑒−4 . The experimental outcomes 

for the entire dataset, with all classes combined, are 
presented inTable 2 and Table 3.  

 

Table 2. Assessment metrics with respect to the 
validation set 

Metrics ResNet-50 ResNet-
101 

MobilNet-
V3_Large 

Epochs 40 40 40 

Jaccard  0.9035 0.8985 0.8758 

Dice 0.9478 0.9442 0.9321 

Training  
Time 

1h 34m 
11s 

1h 34m 
11s 

14m 09s 

 

Table 3. Assessment metrics with respect to test 
set 

Metrics ResNet-50 ResNet-
101 

MobilNet-
V3_Large 

Epochs 40 40 40 

Jaccard  0.9406 0.9464 0.9095 

Dice 0.9693 0.9722 0.9525 

 

Table 2 and Table 3 present the quantitative results of 

the DeepLabV3 model with three different backbone 

architectures, ResNet-50, ResNet-101, and 

MobileNetV3_Large, evaluated on both the validation 

and test sets. On the validation set (Table 2) ResNet-50 

achieved the highest Dice coefficient of 0.9478 and a 

Jaccard index of 0.9035, slightly outperforming ResNet-

101 (Dice = 0.9442, Jaccard = 0.8985). 

MobileNetV3_Large exhibited lower performance (Dice 

= 0.9321, Jaccard = 0.8758), but with significantly 

shorter training time (14 minutes vs. over 1 hour for the 

others). This demonstrates that MobileNetV3_Large 

offers a lightweight alternative when computational 

efficiency is prioritized, even though there is some 

sacrifice in segmentation accuracy. For the test set 

(Table 3) ResNet-101 delivered the best overall 

performance, achieving a Dice coefficient of 0.9722 and 

a Jaccard index of 0.9464. ResNet-50 followed closely 

(Dice = 0.9693, Jaccard = 0.9406), while 

MobileNetV3_Large scored lower but still acceptable 

(Dice = 0.9525, Jaccard = 0.9095). These results 

suggest that ResNet-101, owing to its deeper 

architecture, generalizes slightly better on unseen data. 

C. Performance Comparison with Existing Works 

This section presents an evaluation of DeepLabV3 
using ResNet-50, ResNet-101, and 
MobileNetV3_Large backbones, alongside a 

comparison with existing studies conducted on the 
same dataset, including U-Net [8], SegNet [8], MedT 
[8], Mask2Tasks [10], DDViT [9], U-Net + Attention U-
Net [4], U-Net + ResNet-50 [4], U-Net + MobileNet-V2 
[4], U-Net + EfficientNet-B0 [4], U-Net + DenseNet21 
[4]. Table 4 compares the proposed method with other 
deep learning approaches for CRC segmentation 
evaluated with the EBHI-Seg dataset. The symbol " -- " 
denotes unavailable results, and the highest values in 
each column are highlighted in bold. Additional per-
class segmentation results are provided in the 
appendix. 

The performance metrics in Table 4 demonstrate 
the effectiveness of the proposed approach in 
segmenting adenocarcinoma tissue using a ResNet-
101 backbone. The method achieves the highest 
performance across nearly all metrics, with a Dice 
coefficient of 0.9721, a Jaccard index of 0.9465, a 
precision of 0.9826, and an accuracy of 0.9671, 
significantly outperforming the baseline and competing 
models. The elevated precision score (0.9826) 
indicates the model's strong ability to correctly identify 
true positive regions with minimal false positives. 
Additionally, the recall (0.9681) is competitively high, 
suggesting good sensitivity for detecting 
adenocarcinoma areas. Although Seg-Net achieves 
the highest recall (0.977), it does so at the cost of lower 
Dice and Jaccard scores. Among the U-Net variants, 
Attention U-Net and U-Net with DenseNet21 show 
strong results, with Dice scores of 0.9463 and 0.9442, 
respectively. However, both fall short of our model in 
terms of overlap-based metrics and precision. U-Net 
with a ResNet-50 encoder performs decently but 
demonstrates lower Jaccard and Dice indices than the 
proposed ResNet-101-based model, highlighting the 
benefits of deeper residual representations.  

Transformer-based approaches yield mixed 
outcomes. MedT exhibits weak performance (Dice = 
0.735, Jaccard = 0.595), likely due to its high data 
demands and lack of strong inductive biases. DDViT 
shows moderate capability (Dice = 0.901). 

The Mask2Tasks model, which focuses on multi-task 
learning, reports only the Jaccard index (0.830). While 
this value is superior to that of some CNN baselines, it 
still lags behind our model by a significant margin. 
Furthermore, this table reinforces the influence of the 
encoder backbone. U-Net with MobileNet-V2, despite 
achieving high recall (0.9733), exhibits low precision 
(0.7477). U-Net with EfficientNet-B0 provides balanced 
results but still falls short of the proposed method’s 
overall performance. The model utilizing the ResNet-
101 backbone exhibits superior segmentation 
performance for adenocarcinoma, benefiting from both 
deeper feature extraction and better generalization, 
outperforming both traditional CNN architectures and 
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recent transformer-driven approaches across nearly all 
metrics. 

Our proposed approach demonstrates a strong 
balance of accuracy, robustness, and clinical 
relevance. It precisely delineates cancerous tissue 
boundaries and effectively distinguishes benign from 
malignant regions with high sensitivity. The strong 
agreement between predicted regions and those 
delineated by experts confirms its reliability, while 
minimal overfitting reflects stable training behavior and 
solid generalization across diverse colorectal tissue 
types. By outperforming leading approaches for all 
cancer categories, the model demonstrates both 
efficiency and adaptability. These strengths highlight its 
suitability as a reliable decision-support tool for 
improving diagnostic accuracy in colorectal cancer 
histopathology. 

D. Segmentation Results Images 

Qualitative results presented in Fig. 5 demonstrate that 
all DeepLabV3-based architectures effectively 
delineate cancerous and non-cancerous regions in 
colorectal histopathological images. The outputs 
produced by the three variants exhibit strong visual 
agreement with expert-labeled regions, confirming the 
capacity of the models to capture relevant tissue 
morphology. Among the evaluated models, the 
DeepLabV3-ResNet-101 configuration exhibited the 
most precise boundary localization and preserved fine 
glandular structures more effectively than the other 
versions. The DeepLabV3-ResNet-50 model achieved 
comparable results. However, it occasionally produced 
smoother boundaries, while the MobileNetV3_Large 
backbone, despite its faster inference, showed slight 
degradation in boundary precision, particularly in areas 
with complex glandular morphology. These visual 
outcomes align with the quantitative results reported in 
Tables 2 and 3. The strong performance of 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (g) (k) (l) 

Fig. 5. Ground truth and segmentation results for some colorectal tissue classes using DeepLabV3 with 
different backbones. (a–c) ground truth masks for low-grade IN, high-grade IN, and serrated adenoma; (d–
f) results with ResNet-50; (g–i) results with ResNet-101; (j–l) results with MobileNetV3-Large backbones. 
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DeepLabV3-ResNet-101 stems from its deep 
hierarchical architecture and the Atrous Spatial 
Pyramid Pooling (ASPP) module, which together 
enable multi-level contextual understanding and 
precise discrimination of epithelial, stromal, and 
glandular regions, effectively capturing the 
heterogeneous textures and glandular variability 
characteristic of colorectal tissue. In contrast, the 
lightweight MobileNetV3_Large backbone 
demonstrates that efficient models can still achieve 
acceptable segmentation quality while substantially 
reducing computational cost, rendering it suitable for 
immediate processing scenarios or resource-limited 
applications.  

 

IV. Discussion 

This study investigated how different backbone 
networks within the DeepLabV3 framework affect 
segmentation performance in colorectal 
histopathological images. The models were tested 
using ResNet-50, ResNet-101, and 
MobileNetV3_Large encoders to analyze differences in 
accuracy and boundary delineation for various tissue 
classes. With DeepLabV3-ResNet-101 as the baseline, 
all alternative models showed varying degrees of 
performance decline. Accordingly, Tables 5 and 6 
present the percentage changes of the other 
backbones relative to the DeepLabV3-ResNet-101 
baseline, providing a quantitative comparison of their 
evaluation on the validation and test sets.  

 

Table 5. Percentage differences in validation set 
metrics compared to the DeepLabV3-ResNet-101 
baseline 

Metrics  
(%) 

ResNet-50  MobilNetV3_Large 

Jaccard  +0.56%  –2.53% 

Dice +0.38%  –1.28% 

On the validation set, ResNet-50 shows slight 
improvements in some metrics, with a Jaccard gain of 
+0.56% and a Dice gain of +0.38%, suggesting it 
generalizes reasonably well. In contrast, 
MobileNetV3_Large exhibits decreases (Jaccard –
2.53%, Dice –1.28%), reflecting its limited capacity to 
capture complex features. Test-set results further 
highlight differences in generalization. ResNet-50 
shows minor declines (Jaccard –0.61%, Dice –0.30%), 
indicating slightly reduced performance on completely 
unseen images compared to the baseline. 
MobileNetV3_Large experiences more substantial 
drops (Jaccard –3.90%, Dice –2.03%), confirming that 
while it is computationally efficient, it struggles to 
maintain segmentation accuracy on more challenging 
data. Overall, the results emphasize that DeepLabV3-

ResNet-101 remains the most robust backbone, 
achieving consistently high performance across both 
validation and test sets. ResNet-50 offers a reasonable 
trade-off with slight reductions in some metrics, 
whereas MobileNetV3_Large demonstrates that 
efficiency gains may come at the expense of accuracy 
in histopathological segmentation. 

 

Table 6. Percentage differences in test set metrics 
compared to the DeepLabV3-ResNet-101 baseline 

Metrics  
(%) 

ResNet-50  MobilNetV3_Large 

Jaccard  -0.61%  –3.90% 

Dice -0.30%  –2.03% 

 

A. Integration of Deep Learning-Based 

Segmentation into Clinical Workflow for 

Colorectal Cancer Diagnosis 

The integration of DL into digital pathology workflows 
holds transformative potential for enhancing colorectal 
cancer diagnosis and segmentation. DL-based models, 
notably those employing convolutional neural networks 
(CNNs) [29], [30], [31] and transformer architectures 
[32], [33], enable automated, accurate segmentation of 
histopathological whole-slide images (WSIs), as 
demonstrated in the Experiments and Results section. 
However, to achieve real-world clinical impact, these 
models must be embedded within comprehensive 
diagnostic pipelines that support and augment the 
expertise of pathologists. Incorporating DL systems 
into the clinical workflow yields several critical benefits. 
First, they streamline efficiency by significantly 
shortening slide interpretation time, thus accelerating 
the diagnostic workflow  [34]. Second, they enhance 
accuracy by detecting subtle morphological features 
that may be overlooked by human observers, 
contributing to more precise and reproducible 
assessments [35]. Third, DL integration facilitates 
scalability, enabling high-throughput analysis of large 
datasets, which is particularly advantageous in large-
scale clinical studies and screening programs [36]. 
Finally, these systems increase consistency by 
minimizing inter- and intra-observer variability, 
supporting standardized diagnostic outcomes [37]. 
Beyond colorectal cancer, the proposed pipeline 
demonstrates strong generalizability. Although initially 
validated using the EBHI-Seg dataset, its modular and 
adaptable architecture supports retraining or fine-
tuning with other histopathological datasets. This 
flexibility allows for application across a broad range of 
cancer types and tissue structures, enhancing the utility 
of DL-based tools in diverse clinical contexts. 

B. Proposed Workflow Integration 
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Inspired by [34], [38] [39] and [40], we propose a 
workflow, illustrated in Fig. 6, that incorporates DL-
based segmentation models at critical stages of the 
histopathological diagnostic process:   

1. Slide Acquisition and Preprocessing. 

Histopathological slides are digitized using high-

resolution scanners. Basic preprocessing steps 

such as stain normalization, artifact removal, and 

tiling into manageable patches are performed to 

prepare the data for automated analysis [41]. 

2. Deep Learning-Based Segmentation. A DL 

segmentation model (e.g., DeepLabV3 based on 

ResNet-101) is applied to delineate cancerous 

tissue from surrounding normal or dysplastic 

regions. This identifies regions of interest (ROIs), 

such as glandular structures, tumor boundaries, and 

stromal invasion zones. 

3. Pathologist-Guided Review with CAD Assistance. 

The segmented regions are overlaid on the original 

WSI and displayed within a computer-aided 

diagnosis (CAD) interface. Pathologists can interact 

with predictions, verify or modify masks, and make 

informed decisions based on visual and quantitative 

cues. 

4. Quantitative Reporting and Decision Support. The 

segmentation output is further processed to derive 

metrics such as tumor burden, gland density, or 

invasion depth. These outputs aid in staging, 

prognosis, and treatment planning. 

5. Post-Diagnosis Archiving and Model Feedback. 

Verified annotations and reports are archived. 

Pathologists' corrections can be used for continual 

learning to improve model performance. 

 

Fig. 6. Integration of the proposed deep learning–
based segmentation model into the colorectal 
cancer diagnostic workflow. 
 
While the proposed approach demonstrates strong 
segmentation performance and clear clinical potential, 
it is important to acknowledge its current limitations and 
highlight avenues for future research. Although the 
EBHI-Seg dataset provides a valuable benchmark for 
colorectal cancer segmentation, its relatively limited 
size and single-institution origin may restrict the 
generalizability of our findings. Variations in staining 
protocols, scanner types, and patient demographics 
across different clinical centers can influence model 

performance. Expanding training and validation to 
include multi-center datasets will be essential to ensure 
broader applicability. 
The best-performing configuration in this study, 
DeepLabV3 with a ResNet-101 backbone, requires 
substantial computational resources, which may pose 
challenges for deployment in resource-limited clinical 
environments. While we explored more efficient 
architectures such as MobileNetV3, further 
optimization and model compression techniques are 
needed to balance accuracy with practicality. 
Our current work focuses primarily on colorectal cancer 
segmentation. The model’s performance on other 
cancer types or more challenging pre-cancerous 
lesions remains untested. Extending the evaluation to 
a broader range of pathological conditions would yield 
a better understanding of the reliability and versatility of 
the proposed pipeline. 
To overcome these limitations, future research will 
concentrate on: 
1. Conducting extensive, multi-institutional validation 

studies to assess the model’s robustness across 
different patient populations and clinical settings. 

2. Integrating the model into forward-looking clinical 
studies to evaluate its impact in actual clinical 
settings on diagnostic accuracy, pathologist 
workflow, and reporting times. 

3. exploring lightweight and efficient network 

architectures and compression strategies to support 

deployment in varied healthcare environments. 

 

V. Conclusion          

This study aimed to evaluate the effectiveness of deep 

learning-based semantic segmentation models for 

computer-aided diagnosis of colorectal cancer (CRC) in 

histopathological images, with particular focus on 

evaluating backbone architectures and their impact on 

performance. Our results show that the DeepLabV3 

architecture, particularly when paired with ResNet-50 or 

ResNet-101 backbones, achieves a segmentation 

accuracy of 0.97, effectively delineating glandular 

structures and reliably distinguishing benign from 

malignant tissue regions. The model demonstrated 

consistent performance across evaluation metrics, 

confirming its robustness, stability, and strong 

generalization capability. Rigorous dataset 

preprocessing and targeted data augmentation further 

enhanced segmentation accuracy and model 

convergence. Moreover, the multi-class evaluation 

across key colorectal tissue categories provided a more 

clinically relevant and fine-grained analysis than 

previous studies, highlighting the model’s potential utility 

in supporting diagnostic processes. 

Upcoming studies will concentrate on large-scale 

validation across multi-center datasets and exploration 
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of advanced architectures to further optimize 

performance. Additionally, prospective validation 

through real-world clinical trials will be undertaken to 

strengthen the practical utility and clinical relevance of 

the proposed method. Ultimately, the integration of deep 

learning into CRC diagnostic workflows could support 

more consistent, efficient, and timely clinical decision-

making in pathology practice. 
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