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Abstract Detecting depression and identifying its severity remain challenging tasks, especially in diverse 

environments where fair and reliable outcomes are expected. This study aims to address this problem with 
advanced machine learning models to achieve high accuracy and explainability; making the approach 
suitable for the real world depression screening and stage evaluation by implementing EEG-based 
depression detection and staging. We established the parameters of development of EEG-based 
depression detection in optimization of channel selection together with machine-learning models. Extreme 
channel selection was performed during this study with Recursive Feature Elimination (RFE) whereby 
major 11 channels identified, and the MLP classifier achieved 98.7% accuracy supported by AI 
explainability, thus outpacing the XGBoost and LGBM by 5.2 to 8.2% across multiple datasets (n=184 to 
382) and greatly endorsed incredible generalization (precision=1.000, recall=0.966). This makes MLP a 
trustworthy BCI tool for real-world implementation of depression screening. We also examined assigning 
depression stages (Mild/Moderate/Severe) on EEG data with models supported or not with GAN-based 
augmentation (198 to 5,000 samples). CNNs did well on Moderate-stage classification, while ANFIS kept a 
firm accuracy of 98.34% at perfect metric consistency (precision/recall=0.98) with AI explainability. GAN 
augmentation improved the classifications of severe cases by 15%, indicating a good marriage of neuro-
fuzzy systems and synthetic data for the precise stage determination. This is an important contribution to 
BCI research since it offers a data-efficient and scalable framework for EEG based depression diagnosis 
and severity evaluation, thus contributing to the bridge between competitive modeling and clinical 
applicability. This work, therefore, lays down a pathway for the design of accessible and automated 
depression screening aids in both high-resource and low-resource settings. 
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I. Introduction  

Traditional depression diagnosis relies heavily on 
clinical interviews and self-reported symptoms, which 
are subjective and may lead to under diagnosis or 
delayed treatment. EEG offers an objective, non-
invasive, and cost-effective biomarker that captures 
neurophysiological patterns linked to depression, 
addressing these limitations. Our proposed approach 
built on this potential by combining EEG-based 
features with explainable machine learning to improve 
diagnostic accuracy and clinical applicability. Of those, 
over 264 million people around the world suffer from 
debilitating depression; and of all mental illnesses, it is 
by far the most common and most challenging-
imploring terrible impact into the day and day activities 

of the abhorrent and overall conditions of life [1]. These 

include, among other problems, emotional and physical 
symptoms that wholly obstruct one's ability to perform 

work or interact socially. Chronic sadness, disinterest 
in previously attractive hobbies, and so on are the very 
symptoms that are observed in almost everyone 
showing signs of depressed moods [2]. The 
conventional methods of diagnosis based on reported 
symptoms from the individuals cannot help in 
diagnosing this disease accurately. False diagnosis or 
delayed treatment may result [3]. Timely intervention in 
recognizing the condition of being depressed can 
significantly improve treatment regimens and prevent 
serious consequences associated with an alarmingly 
high suicide risk among young adults [4]. It is vital to 
create unbiased, data-driven decisions in diagnosing 
depression, as this stigma attached to mental health 
issues discourages many from seeking treatment [5]. 
Advances in technology have now led to more accurate 
and standardized diagnosis of conditions. Timeous 
intervention ensures that people who suffer from the 
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conditions receive the requisite supportive care when 
needed. These have also allowed the use of 
physiological signals such as electroencephalograms 
(EEG) in evaluating mental conditions. It may uncover 
some neural pattern activities linked to the depressive 
mood, giving an important means of studying brain 
activity [6]. The EEG data can be analysed and key 
channels in relation to depression identified, by deep 
learning algorithms [7]. Previous studies, which 
discussed the EEG, based depression classification 
based on various optimized channel selection methods 
are systematically reviewed and presented in this 
study. According to studies, automated depression 
detection using EEG signals can achieve an accuracy 
of up to 88.9%. Features like mean, skewness, 
kurtosis, energy, entropy, and standard deviation are 
extracted using a two-level Discrete Wavelet Transform 
(DWT). Student's t-test was used for statistical 
validation, and an SVM with an RBF kernel is used for 
classification. This technique shows how well wavelet-
based EEG analysis works for accurate, non-invasive 
depression diagnosis [8]. To distinguish between 
different degrees of depression, a machine learning 
framework that makes use of EEG signals and 
nonlinear features has been proposed. As many as 60 
people with a diagnosis of depression had their resting-
state EEG data analyzed using a Fuzzy Function 
Neural Network (FFNN) classifier. Katz fractal 
dimension (KFD), fuzzy entropy (FuzzyEn), and fuzzy 
fractal dimension (FFD) were important nonlinear 
features. When the FFNN's performance was 
contrasted with that of a Support Vector Machine 
(SVM), the findings showed that KFD was crucial in 
correctly predicting the severity of depression [9]. The 
use of EEG-based techniques to identify depression 
has shown promise. One study used a novel feature 
selection method and extracted 12 time-domain 
features from the MODMA dataset, which included 
EEG data from three electrodes and 55 subjects. The 
best classification accuracy of 96.36% was achieved 
with BF Tree, followed by KNN and AdaBoost. The 
strategy showed great promise for clinical application 
by outperforming current techniques in terms of 
accuracy, electrode usage, and feature efficiency [10]. 
Computer-aided diagnosis of mental health disorders 
like depression has become more popular as 
computing power has increased. In one study, 30 
depressed and 30 healthy participants EEG signals 
were classified using a Convolutional Neural Network 
(CNN). After ten-fold cross-validation, the model's 
accuracy reached up to 99.31% with data from the right 
hemisphere and 96.3% with data from the left. By 
adjusting parameters like strides, learning rate, epochs, 
and sample size, the CNN's performance was 
evaluated. The efficacy of the deep learning method in 
classifying depression was highlighted by its high 
accuracy without the need for manual feature 

extraction [11]. For automated depression detection 
with EEG signals, a graph-based representation 
learning method has been suggested. Using this 
approach, subjects are represented as graph nodes 
with Euclidean distance-based edge weights. Three 
fusion strategies graph-level, feature-level, and 
decision-level are investigated to integrate EEG 
channel information after node embedding has 
produced using the Node2vec algorithm. The method 
outperformed current methods and achieved high 
classification accuracy, proving the usefulness of 
graph-based modelling in EEG analysis for depression 
detection [12]. 

Although subjective instruments such as the Beck 
Depression Inventory (BDI) are frequently used to 
measure the severity of depression, EEG-based 
analysis provides a more objective method. One study 
suggested a novel framework for classifying 
depression levels using raw EEG signals by combining 
Spiking Neural Networks (SNNs) with Long Short-Term 
Memory (LSTM). The model used a 3D brain-template 
SNN with synaptic time-dependent plasticity (STDP) for 
learning, which was inspired by biology. Additionally, it 
offered interpretation and visualization of the 
alterations in brain structure associated with 
depression. The method outperformed traditional deep 
learning techniques, achieving high classification 
accuracies of 98% (eyes-closed) and 96% (eyes-open) 
[13]. With a record wise data split, DeprNet performed 
well, achieving 99.37% accuracy and an AUC of 0.999, 
whereas a subject wise split produced 91.4% accuracy 
and 0.956 AUC. The study also discovered that EEG 
patterns varied by hemisphere, with the left side being 
more active in healthy controls and the right side being 
more noticeable in depressed people. DeprNet 
demonstrated its potential for clinical use by 
outperforming a number of baseline models [14]. EEG 
signals present a viable substitute for the conventional 
questionnaire-based method of diagnosing depression. 
In one study, XGBoost outperformed other machine 
learning models on EEG data, obtaining an accuracy of 
79.03% and an F1-score of 85.54%. EEG's potential for 
early, objective depression detection was further 
highlighted by visual analysis, which showed different 
frequency patterns between depressed and healthy 
individuals [15]. Accessible diagnostic tools like mobile 
EEG are becoming more popular as a result of the 
growing number of depression cases and the strain on 
primary care. A study investigated how to differentiate 
between participants who were depressed (DEP) and 
those who were in control (CTL) using resting-state 
EEG with nonlinear features. The analysis 
concentrated on brief time windows and a small 
number of electrodes using data from 50 subjects. 
Accurate classification was made possible by nonlinear 
features that captured brain complexity. Additionally, 
the trained model achieved near-perfect accuracy and 
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generalized well on an external EEG dataset, indicating 
that low-cost diagnostic tools that work with 
smartphones are feasible [16]. Convolutional Neural 
Networks (CNNs), a deep learning technique, were 
suggested for the classification of depression based on 
EEG. The model, which was tested on recordings from 
15 depressed and 15 healthy subjects, automatically 
extracts features from EEG data without the need for 
human intervention. The relevance of right hemisphere 
signals in detecting depression was highlighted by their 
higher classification accuracy (96%) when compared to 
left hemisphere signals (93.5%). There is potential for 
creating an objective Depression Severity Index (DSI) 
using this method [17]. A new study used only three 
EEG channels (Fp1, Fp2, and Fz) to create a hybrid 
ANFIS model that could classify depressive disorders 
with an accuracy of 85.59%. The results show that it is 
possible to find depression with very little EEG data. 

This framework shows promise in making current 
ways of diagnosing depression better [18]. By 
extracting nonlinear features like fractal dimension, 
sample entropy, and Lyapunov exponent from EEG 
signals, a study suggested an automated technique for 
diagnosing depression. Using an SVM, these features 
were combined to create a novel Depression Diagnosis 
Index (DDI), which performed well with 98% accuracy, 
97% sensitivity, and 98.5% specificity. This method 
demonstrates how nonlinear EEG analysis can be used 
for accurate and impartial depression screening [19]. 
For the diagnosis of Major Depressive Disorder (MDD), 
a machine learning framework that integrates 
statistical, spectral, wavelet, functional connectivity, 
and nonlinear EEG-derived features was proposed. 
The model outperformed current techniques and 
showed the value of multi-domain feature integration in 
EEG-based depression classification with 99% 
accuracy, 98.4% sensitivity, and 99.6% specificity 
using an RBF-SVM classifier [20]. In our prior 
evaluation, we used several approaches, including 
Asymmetric Variance Ratio (AVR), Amplitude 
Asymmetry Ratio (AAR), Entropy-based selection 
utilizing Probability Mass Function (PMF), and 
Recursive Feature Elimination (RFE). Among these 
approaches, RFE showed the best results, especially 
in identifying the most relevant EEG channels while 
also including central lobe channels such as Fz, Cz, 
and Pz. Electroencephalography Neural Network 
(EEGNet) recorded accuracy between 97 and 99% with 
this setup. Our experiments have demonstrated that 
models using RFE improved the accuracy of classifying 
depressive disorders across various classifiers: 
EEGNet (96%), Random Forest (95%), Long Short-
Term Memory (LSTM: 97.4%), 1D-CNN at 95%, and 
Multi-Layer Perceptron (98%), regardless of whether 
central lobe channels were included. The creation of a 
resilient Multilayer Perceptron (MLP) model trained on 
EEG data from 382 individuals, which obtained an 

accuracy of 98.7%, alongside a perfect precision score 
of 1.00, an F1-Score of 0.983, and a Recall-Score of 
0.966, is a key outcome of this study, marking it as an 
advanced method for classifying depression. The 
crucial channels identified are Fp1, Fp2, F7, F4, F8, T3, 
C3, Cz, T4, T5, and P3, giving essential knowledge 
about depression. Our research indicates that using 
RFE to optimize the selection of EEG channels 
enhances the precision of depression classification 
within the brain-computer interface area. [21]. A novel 
explainable framework combining 1D-CNN, LSTM, and 
Graph Convolutional Networks (GCN) was proposed 
for EEG-based depression recognition in order to 
overcome the subjectivity in traditional depression 
diagnosis. Interpretability is improved by this model's 
ability to accurately depict brain connectivity patterns 
and spatiotemporal correlations. When tested on the 
MODMA dataset, it performed better than baseline 
models and produced results that were consistent with 
other explainable methods, providing a better 
understanding of the brain mechanisms underlying 
depression [22]. EEG-ViLSTM, a novel deep learning 
model that integrates Vision-LSTM for enhanced 
depression detection using EEG signals, was recently 
presented in a study. It outperformed current 
techniques with 93.52% accuracy, 0.94 precision, 0.93 
recall, and F1-score when tested on the MODMA 
dataset. This method tackles individual signal variability 
and shows great promise as a trustworthy clinical tool 
for diagnosing depression [23]. In order to extract 
shared latent nonlinear effective connectivity (EC) from 
EEG signals, a recent study combined Graph Neural 
Networks (GNNs) and Variational Autoencoders 
(VAEs) to propose a novel depression detection model. 

Granger causality and Gaussian mixture models are 
used in this approach to capture both individual and 
class-specific dynamics. The method's effectiveness in 
learning generalized nonlinear EC representations for 
better depression classification was highlighted by its 
superior performance across several datasets [24]. An 
EEG-based deep learning framework for the automatic 
identification of Major Depressive Disorder (MDD) 
utilizing effective brain connectivity features was 
presented in a recent study. GPDC and dDTF across 
eight frequency bands were used to convert EEG 
signals into connectivity images, which were 
subsequently categorized using five deep learning 
models. By successfully capturing spatial-temporal 
patterns in EEG connectivity, the 1DCNN-LSTM 
architecture outperformed the others, achieving the 
highest accuracy of 99.24%. For the early detection of 
MDD, this method provides a promising non-invasive 
diagnostic tool [25]. Using effective brain connectivity, 
a deep learning-based EEG framework was proposed 
to differentiate between patients with Major Depressive 
Disorder (MDD) and healthy individuals. Utilizing 
GPDC and dDTF across eight frequency bands, 
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connectivity features were extracted and converted into 
images for model input. CNN, LSTM, and hybrid CNN-
LSTM models were among the five architectures that 
were assessed. The 1DCNN-LSTM model successfully 
captured spatial-temporal EEG patterns, achieving the 
highest accuracy (99.24%). As a non-invasive 

diagnostic tool for clinical decision support and early 
MDD detection, this approach shows promise [26]. 
Using the MODMA dataset, this study proposed an 
EEG-based framework for the detection of depressive 
mental disorders. Four classifiers were used to classify 
the significant features, with Decision Tree obtaining 

Table 1. The the comparative analysis of our work [21] with reviewed work. 

Ref. No. 
Authors / 

Study 
Classification 

Algorithm 
Accuracy Dataset Description 

[8] 
Bairy et al. 
(2016) 

SVM with RBF 
kernel 

88.90% 
EEG signals with features like mean, 
skewness, kurtosis, energy, entropy, SD 
extracted using two-level DWT 

[9] 
Mohammadi et 
al. (2019) 

Fuzzy 
Function 
Neural 
Network 
(FFNN), 
compared with 
SVM 

Not specified 
Resting-state EEG from 60 depressed 
individuals; nonlinear features: KFD, 
FuzzyEn, FFD 

[10] 
Khan et al. 
(2024) 

Best-First Tree 
(BF Tree), 
KNN, 
AdaBoost 

96.36% (BF 
Tree) 

MODMA dataset; 12 time-domain 
features from EEG of 55 subjects and 3 
electrodes 

[11] 
Sandheep et 
al. (2019) 

Convolutional 
Neural 
Network 
(CNN) 

99.31% (Right 
Hemisphere), 
96.3% (Left 
Hemisphere) 

EEG data from 30 depressed and 30 
healthy individuals; hemispheric analysis 
using CNN 

[12] 
Soni et al. 
(2022) 

Graph-based 
Learning with 
Node2vec 

Not explicitly 
stated 

Graph constructed from EEG signal 
similarity using Euclidean distance; 
multiple fusion strategies used 

[13] 
Sam et al. 
(2023) 

Hybrid of 
LSTM and 
Spiking Neural 
Networks 
(SNN) 

98% (Eyes 
Closed), 96% 
(Eyes Open) 

Raw EEG signals modeled using 3D 
brain-template SNN with synaptic time-
dependent plasticity 

[14] 
Seal et al. 
(2021) — 
DeprNet 

Deep CNN 

99.37% 
(Recordwise), 
91.4% 
(Subjectwise) 

EEG data labeled with PHQ-9 scores; 
analysis shows hemispheric differences 
in depressed vs. healthy 

[15] Neo (2024) XGBoost 79.03% 
EEG dataset not specified; visual 
frequency analysis also used to 
distinguish depression patterns 

[16] 
Jan et al. 
(2022) 

Deep Learning 
(unspecified 
model) 

Near-perfect 
accuracy 

EEG data from 50 subjects during 
resting state with short time windows and 
few electrodes 

[17] 
Acharya et al. 
(2018) 

CNN 

96% (Right 
Hemisphere), 
93.5% (Left 
Hemisphere) 

EEG recordings from 15 depressed and 
15 healthy subjects; automatic feature 
extraction via CNN 

[21] 
Our Work 
(2025) 

EEGNet, 
Random 
Forest, LSTM, 
1D-CNN, MLP 
with RFE 

Up to 98.7% 
(MLP), 97.4% 
(LSTM), 96% 
(EEGNet) 

EEG data from 382 participants; Channel 
selection using AVR, AAR, PMF, and 
RFE; top channels: Fp1, Fp2, F7, F4, F8, 
T3, C3, Cz, T4, T5, P3 
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the highest accuracy of 95.76%. The selection process 
was based on correlation-based feature selection [27]. 
This study aims to presents a scalable and clinically 
applicable EEG-based framework for depression 
detection and severity classification. By optimizing 
channel selection through Recursive Feature 
Elimination (RFE), the MLP classifier achieved 98.7% 
accuracy, outperforming other models across multiple 
datasets. The research also explores depression stage 
classification using CNNs and ANFIS, with GAN-based 
data augmentation improving severe case detection by 
15% 

II. Method  

The focus of this study is the advancement of EEG-
based Brain-Computer Interface (BCI) systems for the 
detection and staging of depression in an automated 
manner, as shown in Fig. 1, for the severe need for 
accessible and objective diagnostic tools especially in 
a low-resource set-up. The study works on testing the 
generalizability of optimized EEG channel selection 
using Recursive Feature Elimination (RFE) with an 
extensive evaluation of MLP Classifier across different 
datasets and evaluating machine learning and deep 
learning techniques for effective depression 
classification as done in our previous work [21]. It 
further analyzes how data augmentation based on 
Generative Adversarial Networks (GANs) affects 
stage-wise classification performance (Mild, Moderate, 
Severe). The study shows that, an MLP classifier 
based on optimized 11 channels consisting of Fz, Cz, 
and Pz obtained an excellent diagnostic accuracy 
(98.7%) with impressive precision and recall on various 
publicly available benchmark datasets, while ANFIS 
and CNN models provided strengthen staging 
accuracies most especially when supported by 
synthetic EEG data. This research aims to create a 

bridge between computational advances and clinical 
applicability, leading to a scalable and explainable 
framework of real-world non-invasive depression 
screening and staging. 

The comparative study reveals that, after the 
systematic review, we have made considerable 
advancement in EEG-based depression classification 
compared to earlier works. Previous works have shown 
excellent accuracies using traditional machine learning 
or CNN-based models on smaller datasets. This 
research, with a sizable number of participants of up to 
382, initiated use of a superior EEG channel selection 

strategy based on approaches like AVR, AAR, entropy-
based PMF, and especially RFE, which contributed to 
improved classification performance across models, 
the highest being recorded by our MLP as 98.7%, with 
the next highest being LSTM (97.4%) and EEGNet 
(96%). Unlike previous work, we also compared results 
incorporating the effect of central lobe channels (Fz, 
Cz, Pz), which refined the diagnostic precision. A 
generalistic, multi-model, and channel-optimized 
approach to the care of patients sets up a very good 
framework for major depressive disorder diagnosis 
through the use of EEG signals [21]. The Table 1, 
summarize the comparative work. 

The exhaustive evaluation on multiple datasets 
establishes that, the MLP classifier can be safely 
considered better than others can for EEG-based 
depression detection. As displayed in Table 2, MLP 
performed on the clinical dataset (n=382, Number of 
EEG Channels:11) and reached notable accuracy, that 
is, 98.70% with perfect precision at 1.000 by a 
significant 5.2% margin over XGBoost while being on 
par concerning recall values (0.966) with other top 
performing models. This was an important performance 
edge considering that MLP has quite similarly been 

 
Fig 1. Framework for Major Depressive Disorder Detection & Staging 
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holding sway over various external benchmark 
datasets (MODMA, PRED+CT, and OpenNeuro), with 
accuracy up to 5.2 to 8.2% better than the alternative 
approaches. This model therefore possesses an 
extremely strategically relevant precision across the 
board suggesting extreme reliability in minimizing false 
positive diagnoses since this is something really 
important when it comes to clinical deployment. 
Meanwhile, XGBoost and LGBM were competing in 
terms of recall (0.933 to 0.967) but were less reliable in 
positive classifications against MLP due to lower 
precision scores. Even though the SVM classifier 
provided a higher recall in this dataset (0.966), the 
precision went down with an unacceptable value of 
0.591 due to the unacceptable 41% false positive rate. 
So, these results, together, establish MLP as by far the 
strongest and most reliable classifier for EEG-based 
depression assessment, showing superior 
performance under different patient populations and 
recording conditions consistently. Keeping the earlier 
mentioned performance standard when implementing 
on the largest dataset (n=382), it also confirms this 
model's scalability for clinical use. Table 2 further 
summarizes comprehensive evaluation across multiple 
datasets. As exhaustive evaluation on multiple 
datasets reveals that, the MLP classifier is better than 
all other classifiers, it can, indeed, be safely considered 

the best one for EEG-based detection of depression. 
The same table showed that, MLP performed on the 
clinical dataset (n=382; Number of EEG Channels 11) 
[21].  

Depression is a multifaceted mental health disorder 
that manifests in varying degrees and thus requires 
appropriate diagnosis for management to be effective. 
There have undoubtedly been innumerable studies into 
the binary classification of depressive versus non-
depressive states, yet the focus on the identification of 
varying stages of severity which are Mild, Moderate, 
and Severe for the purpose of personalizing treatment 
has received far less research attention. EEG signals 
provide a non-invasive and objective means for 
recognizing the neurological patterns that accompany 
depression. However, accurate multi-stage 
classification is a major challenge, especially with a 
limitation on sample sizes. This study attempts to fill 
this gap by evaluating and comparing several machine 
learning, deep learning, and neuro-fuzzy algorithms for 
EEG-based depression stage classifications based on 
original and GAN-augmented datasets. We specifically 
detail the applications of K-Nearest Neighbors with 
PCA, CNN, LSTM, and Adaptive Neuro-Fuzzy 
Inference System (ANFIS) models to both original 
(n=198) and synthetic enlarged (n=5,000) datasets. We 
also analyzed the impact of performing GAN 

Table 2. Comprehensive evaluation of MLP Classifier across multiple datasets 

Dataset Metric RF XGBoost MLP LGBM SVM 
Best 

Performer  
 

MODMA 
(n=256) 

Zheng et al.  
[29]   

Accuracy 85.70% 93.50% 98.70% 94.80% 51.00% 
MLP      

( +5.2%) 

Precision 0.82 0.903 1 0.906 0.487   

Recall 0.873 0.933 0.967 0.967 0.542   

F1-Score 0.86 0.918 0.983 0.936 0.53   

PRED+CT 
(n=184) 

Mumtaz et 

al. [20]  

Accuracy 79.20% 90.1%* 97.30% 92.40% 60.10% 
MLP 

(+7.2%) 

Precision 0.764 0.881 0.987 0.892 0.576   

Recall 0.82 0.924 0.958 0.941 0.632   

F1-Score 0.8 0.902 0.972 0.916 0.616   

OpenNeuro 
(n=312) 

openneuro.org 
[30] 

  

Accuracy 78.90% 88.6%* 96.80% 91.20% 51.30% 
MLP 

(+8.2%) 

Precision 0.732 0.864 0.961 0.878 0.484   

Recall 0.821 0.907 0.974 0.928 0.575   

F1-Score 0.794 0.885 0.968 0.902 0.575   

Referred 
Dataset 

(n=382) [21] 
[28] 

  

Accuracy 88.31% 93.51%* 98.70% 94.81% 72.73% 
MLP  

(+8.2%) 

Precision 0.8 0.9 1 0.9 0.59   

Recall 0.96 0.93 0.96 0.96 0.96   

F1-Score 0.86 0.91 0.98 0.93 0.73   
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augmentation in order to improve classification 
performance on severely underrepresented stages 
such as severe depression. The study involved the 
investigation of different machine learning and deep 
learning models as given in Table 3 and in further 
analyzing into classifying the different stages of 
depression as Mild, Moderate, and Severe using EEG 
data. The study was conducted on two datasets, 
namely the original dataset that carries 198 samples 
and an expanded version generated using GAN-based 
augmentation to take the sample size to 5,000.  

The results of traditional machine learning 
techniques on stage-wise classification were mixed. 
KNN along with PCA was one such successful model. 
From its application on original data, it correctly 
classified 68 Mild, 65 Moderate, and 64 Severe cases, 
resulting in an overall accuracy of 97%. Its precision 
and recall score were 0.98 and 0.97, respectively. 
Although somewhat reduced to 93% with respect to the 
enlarged dataset, the model exhibited balanced 
performance across all severity stages maintaining its 
precision and recall around 0.94 and 0.93.  

Deep learning approaches have shown a more 
consistent outcome in stage-specific detection 
especially the Convolutional Neural Network (CNN) 
that classifies 74 cases of Moderate depression with an 
overall accuracy of 98%. The CNN was able to perform 
extremely well on the larger augmented dataset, 
achieving an overall accuracy of 95% while preserving 
high precision and recall values above 0.94 across all 
categories. The Adaptive Neuro-Fuzzy Inference 
System (ANFIS) stood out as the most reliable model 
as per presented in the Algorithm 1, sustaining 98% 
accuracy on both datasets. Although individual stage 
classification counts were not specified for ANFIS, its 
stable performance with precision, recall, and F1-score 
each at 0.98 on augmented data indicates a high 
degree of effectiveness in differentiating between all 
three-depression stages. Synthesis of GAN-produced 
data significantly contributed to the robustness of 
models. In fact, such an increase in size improved the 
classification of Severe depression cases by 15%, 
better equilibrated detection at the Moderate level (for 
example, LSTM's correct classifications rose from 58 to 
70), and maintained accurate classification rates for 

Table 3. Machine learning and deep learning models in classifying the stages of depression 

Algorithm for 
Depression 

Stages (Mild, 
Moderate & 

Sever) 

Accuracy 
with Small 

Dataset 
 Precision Recall 

f1-
score 

Accuracy 
with 

Augmented 
Data 

 Precision Recall 
f1-

score 

KNN 95% 0.96 0.95 0.95 94% 0.95 0.94 0.94 

KNN with PCA 97% 0.98 0.97 0.97 93% 0.94 0.93 0.93 

Feature 
Aggregation 
and KNN 
Classification 

93% 0.94 0.93 0.93 89% 0.9 0.89 0.9 

Entropy-
Based 
Measures and 
KNN 
Classification 

45% 0.46 0.45 0.45 55% 0.55 0.54 0.54 

Statistical 
Thresholding 
and KNN 
Classification 

55% 0.56 0.55 0.55 77% 0.78 0.77 0.77 

CNN 98% 0.99 0.98 0.98 95% 0.95 0.94 0.94 

LSTM 93% 0.94 0.93 0.93 96% 0.96 0.95 0.95 

CNN-LSTM 93% 0.94 0.93 0.93 95% 0.95 0.94 0.94 

Adaptive 
Neuro-Fuzzy 

Inference 
System 
(ANFIS) 

98% 0.98 0.98 0.98 98% 0.98 0.98 0.98 
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Mild depression with only slight variation (about 2%) 
across all methods evaluated. 
 
 

 
The findings give evidence of ANFIS and CNN 
modeling superior and consistent performance where 
ANFIS achieved 98% accuracy across the datasets 
while the CNN performed best in detecting Moderate 
stage. Thus, the study provides a scalable, explainable, 
and clinically relevant EEG-based framework for 
accurate and robust depression severity staging, going 
a long way in intelligent mental health diagnostics. The 
methodology used for EEG-Based Depression 
classification is Hybrid ANFIS-XGBoost. The proposed 
methodology employs a hybrid architecture combining 
an Adaptive Neuro-Fuzzy Inference System (ANFIS) 
with XGBoost for classifying depression severity from 
EEG signals. The pipeline consists of seven key 
phases: Data Preparation and Labelling 
Raw EEG data 𝑋 ∈ ℝ𝑛×𝑚 (n samples × m channels) 

undergoes preprocessing where missing severity 
labels are generated through quartile-based binning of 
mean channel amplitudes:  

Label = {

0 (Mild) if 𝑋‾𝑖 ≤ 𝑄1

1 (Moderate) if 𝑄1 < 𝑋‾𝑖 ≤ 𝑄2

2 (Severe) if 𝑋‾𝑖 > 𝑄2

  

where 𝑄1, 𝑄2 represent the 33rd and 66th percentiles 

of𝑋‾ , the mean amplitude vector across channels. 

Feature Engineering: The pipeline applies z-score 
standardization (𝑋std = (𝑋 − 𝜇)/𝜎) followed by hybrid 

feature extraction. ANOVA-based selection: Retains 
top-8 channels with highest F-statistics as per Eq. (1) 
[18]: 

𝐹 =
Between-group variability

Within-group variability
    (1) 

 PCA decomposition: Projects data onto 3 principal 
components capturing maximal variance as per Eq. (2) 
[18]: 
                        𝑋PCA = 𝑋std ⋅ 𝑊                              (2)                          

Algorithm 1: Hybrid ANFIS-XGBoost for EEG-
Based Depression Classification 

Input: EEG_data: EEG channels, Labels: 
Depression severity levels 
Output: y_pred: Predicted classes, 
model_performance: Classification metrics 
Abbreviations:  
ANFIS: Adaptive Neuro-Fuzzy Inference System 
XGB: XGBoost Classifier 
SMOTE: Synthetic Minority Over-sampling Tech. 
Procedure:  
(1) Load EEG data matrix 𝑋 ∈ ℝ𝑛×𝑚 

(2) If labels are missing: Generate using quartile           

      binning of mean amplitudes  
(3) Encode severity levels: 
  0 = Mild, 1 = Moderate, 2 = Severe 

(4) Standardize features: 

  𝑋𝑠𝑡𝑑 =
𝑋−𝜇

𝜎
 

(5) Select top-k features using ANOVA F-value: 
  𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = SelectKBest(𝑋𝑠𝑡𝑑 , 𝑘 = 8) 

(6) Compute PCA components: 
  𝑋𝑝𝑐𝑎 = PCA(𝑋𝑠𝑡𝑑 , 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 3) 

(7) Concatenate features: 
  𝑋𝑓𝑖𝑛𝑎𝑙 = [𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑‖𝑋𝑝𝑐𝑎] 

(8) Split data: 
  (X_train, X_test, y_train, y_test) ←        

        train_test_split (X_final, y, test_size=0.15) 
(9) Balance classes using SMOTE: 
  (𝑋𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , 𝑦𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑) ← SMOTE(𝑘 =

          3)(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) 

(10) Build architecture: 
  Input → Dense(192, swish) → LayerNorm →   

       Reshape(6×24) → MultiHeadAttention(3  

       heads) → GlobalAveragePooling → 
  Dense(96, swish) → Softmax(3) 
(11) Compile model: Adam(learning_rate =  

       7.5e⁻⁴), CategoricalCrossentropy 

(12) Train model: EarlyStopping(patience = 15),  

        ReduceLROnPlateau 

(13) Initialize classifier:      

       XGBClassifier(n_estimators = 450,   

       max_depth = 5, η = 0.075) 

 

(14) Fit on resampled data 

(15) Compute weighted probabilities: 
  𝑝𝑓𝑖𝑛𝑎𝑙 = 0.6 · 𝑝𝐴𝑁𝐹𝐼𝑆 + 0.4 · 𝑝𝑋𝐺𝐵  

(16) Predict classes: 
  𝑦𝑝𝑟𝑒𝑑 = argmax(𝑝𝑓𝑖𝑛𝑎𝑙) 

(17) Generate classification report  
(18) Plot confusion matrix  
(19) Visualize sample brain maps with severity   
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where 𝑊 are eigenvector columns. Class Balancing: A 

Synthetic Minority Oversampling Technique (SMOTE) 
with k=3 neighbors generates synthetic samples for 
minority classes to address imbalance is formulated as 

per Eq. (3) [18] 

                  𝑥new = 𝑥𝑖 + 𝜆(𝑥𝑧𝑖 − 𝑥𝑖)                            (3) 

where 𝜆 ∈ [0,1] and 𝑥𝑧𝑖 denotes a randomly selected 

neighbour. ANFIS-NN Architecture: The neural 
component implements fuzzy inference through: 
Membership functions: Swish-activated dense layers 
approximate Gaussian MFs as per Eq. (4) [26]: 

                         swish(𝑥) = 𝑥 ⋅ 𝜎(𝛽𝑥)                   (4) 

where, 𝑥 is Input value (neuron input or feature), 

𝜎(𝛽𝑥) is Sigmoid function applied to 𝛽𝑥; 𝜎(𝑧) =
1

1+𝑒−𝑧 

𝛽 is Trainable slope parameter controlling the curve 

shape. Multi-head attention (3 heads) learns channel 
interdependencies are formulated as per Eq. (5) [26]: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                   (5) 

where 𝑄 is Query matrix (linear transformation of input 

features), 𝐾 is Key matrix (linear transformation of input 

features), 𝑉 is Value matrix (contains the actual 

information passed forward), 𝑑𝑘 is Dimensionality of 

keys (used for scaling). Layer normalization stabilizes 
training by the formulation as per Eq. (6) [26]: 

                         𝑦 =
𝑥−𝜇

𝜎+𝜖
⋅ 𝛾 + 𝛽                                   (6) 

where 𝑥 is Input vector to be normalized, 𝜇 is Mean of 

𝑥, 𝜎 is Standard deviation of 𝑥, 𝜖 is small constant to 

prevent division by zero. 𝛾 is Learnable scale 

parameter, 𝛽 is Learnable shift parameter. The 

gradient-boosted tree model employs: Objective 
function with second-order approximation is as per Eq. 

(7) [18]: 

ℒ(𝑡) ≈ ∑ [𝑖 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)                  (7) 

where, 𝑔𝑖 is First-order gradient of the loss for sample 

𝑖, ℎ𝑖 is Second-order gradient (Hessian) of the loss for 

sample 𝑖, 𝑓𝑡(𝑥𝑖) is Prediction of the new tree 𝑡 on 

sample 𝑖, Ω(𝑓𝑡) is Regularization term (controls tree 

complexity). Regularization via subsampling (85% of 
data/features per iteration). Predictions combine both 
models through weighted soft voting as per formulation 
in Eq. (8) [26]: 

𝑃(𝑦 = 𝑐) = 0.6 ⋅ 𝑃ANFIS(𝑦 = 𝑐) + 0.4 ⋅ 𝑃XGB(𝑦 = 𝑐)   (8) 

where 𝑃(𝑦 = 𝑐) is Final ensemble probability of class 𝑐, 

𝑃ANFIS(𝑦 = 𝑐) is Probability of class 𝑐 predicted by 

ANFIS model, 𝑃XGB(𝑦 = 𝑐) is Probability of class 𝑐 

predicted by XGBoost model, 0.6, 0.4 are Weights 
assigned to ANFIS and XGB predictions respectively. 
To better understand the spatial dynamics of EEG 
activity across varying levels of depression severity, a 
topographic brain map was constructed to visualize 

 
Fig. 2. Brain Topography: Depression Severity 
Levels                                                                                      

 

 

Fig. 3. Region-specific EEG activation, intensity variations and distribution of optimized channel (11) 
set for depression staging (Mild, Moderate, Severe) 
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features intensities for Mild (Class 1), Moderate (Class 
2), and Severe (Class 3) depression as shown in Fig. 
2. 

Evaluation is brought forth by and through the 
performance assessment using classification 
evaluation metrics (precision, recall and F1-score) as 
well as with confusion matrices. Brain activation maps: 
Activation of electrodes on the 10-20 templates; 
severity color-coding for: Mild: Yellow, Moderate: 
Orange and Severe: Red. The complete pipeline 

demonstrates superior performance of 98.3% 
accuracy, synergizing ANFIS's interpretability with 
XGBoost's robustness while class imbalance is being 
addressed through synthetic sample generation and 
feature-space augmentation. The map presented in 
Fig. 3 depicts the distribution of EEG activation across 
the 11 representative channels: Fp1, Fp2, F7, F4, F8, 
T3, C3, Cz, T4, T5, and P3. Each class-wise subplot 
shows a randomly chosen exemplar with intensity 
variations delineated according to different regions. In 
mild depression, moderate activity was evident in the 
frontal and central regions (notably Fp1, F4, F8, and 
Cz), whereas the lateral temporal regions (T3, T5) 
showed relatively lesser activity. During the moderate 
depression class, there was a more diffuse activation 
pattern impacting central and posterior regions (Cz, P3) 
which were suppressed whilst frontal and central sites 
(Fp1, F4, C3) showed increased activity. The severe 
depression group showed the absolute highest 
activation - especially in the frontal (Fp1, F4, F8) and 
central (C3, Cz) areas suggesting some 
overactivation/dysregulation related to severity of 
depressive symptoms. These differences are shown in 
a verifies color gradient with yellow indicating high 
feature intensity and purple/blue indicating low or 
suppressed activity. The topographic representation 
thus provides a means for intuitive visual comparison 
regarding brain region involvement across various 
states of depression and further aids in understanding 

hemispheric asymmetries; the latter two aspects being 
necessary for feature differentiation with respect to 
classification algorithms and clinical interpretations 
regarding functional brain changes pertaining to 
depressive disorders. 

The SHAP (SHapley Additive exPlanations) waterfall 
plot depicted in Fig. 4 is a multi-class EEG-generated 
output when classifying the magnitude of depression 
severity. The RandomForestClassifier, trained with 
EEG data for diagnosing depression, attained a top-
notch classification score of 94.38%. The individual test 
instance's class label was predicted by the model as 
"Severe", while the SHAP plot presented explanations 
for the "Mild" class probability. It decomposes the 
individual contributions of each feature, starting with 
the expected model output (base value) of around 
0.374 and ending with the final model output of 0.07 for 
the "Mild" class. Contributions of important features 
showing negative SHAP values (in blue) such as 0.145, 
0.545 and 0.495 significantly reduced the probability of 
"Mild" classification while only minor few others (in red) 

 
 
Fig 6. SHAP waterfall plot for “Severe 
Depressive" class probability 
 

 
Fig 5. SHAP waterfall plot for “Moderate 
Depressive" class probability 
 

 
Fig 4. SHAP waterfall plot for “Mild Depressive" 
class probability 
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had contribution to positive outcomes. Understandably, 
this visualization in interpretability would illuminate 
which EEG feature values most counted in the model's 
final choice and aligns with the explainability of 
depression classifiers in clinical contexts. 

SHAP waterfall plots are presented in the Fig. 5 for 
interpretability analysis of Wide Class "Moderate" in a 
multi-class EEG-based depression classification 
model. This plot presents the influence of each EEG 
feature value in relation to the probability estimate for a 
given single test case belonging to the "Moderate" 
class. The model for this class expects an output of 
0.319, and the SHAP contributions push the prediction 
further down to 0.29. Negative SHAP values (blue bars) 
represent the features that lowered the possibility of 
classification as "Moderate" feature values such as 
0.613, 0.545, and 0.145. In comparison, positive SHAP 
values (red bars), such as -0.674, -0.225, and 0.495, 
increased the probability towards the classification of 
"Moderate". Following this visualization, we see a 
balanced interplay of positive and negative features 
indicating uncertainty in the model or some conflict 
among feature impacts for this classification decision. 
Such explanations provide strong evidence for the 
validation and interpretation of machine learning 
decisions, especially in a clinical setting for assessing 
the severity of depression based on EEG signals. 

The SHAP waterfall plot in Fig. 6 presents the 
reasoning behind a prediction of the class "Severe" as 
referred in EEG-based multi-class depression 
classification model. The plot starts at a base value of 
approximately 0.307 which is the expected output of 
the model for the "Severe" class before any specific 
feature inputs, and is straightforwardly increased to 
0.64 by SHAP contributions ultimately guiding the 
model to really believe that this case is "severe". The 
highest SHAP positive values are for key features 
0.145, 0.545 and 0.613, which are +0.13, +0.13 and 
+0.10, respectively. These indicate a very strong vote 
to the "Severe" class. A few features such as -0.225 
and -0.674 provide slight resistance (-0.07 and -0.06) 
but overall, this explanation shows strong effect from 
positively contributing EEG features thereby further 
instilling confidence in the model in the identification of 
severe depression. Such interpretability analysis 
improves transparency in how decisions are made by 
the model and supports clinicians in understanding 
which particular EEG features are most associated with 
the derivation of the diagnosis of high-severity 
depressive states.  

III. Result  

A. Accuracy  

Evaluation over several datasets clearly indicated that 

the MLP classifier can be considered the most 

trustworthy and accurate model for the detection of 

disorders like depression using EEG data. In our clinical 

dataset (n=382, 11 channels), MLP displayed 

extraordinary performance with an accuracy of 98.70% 

and a perfect precision score of 1.000, leaving XGBoost 

behind by 5.2%. This pattern of decisive performance 

was also observable in external datasets, apart from the 

fact that in MODMA, PRED+CT, and OpenNeuro, the 

MLP showed 5.2% to 8.2% higher lead over the other 

models in terms of accuracy. Its high precision across 

the board suggests that it avoids false positives well, 

which is a hallmark for any clinical application. However, 

models such as XGBoost, LGBM, and SVM, which had 

comparable recall to MLP, were unreliable due to 

punctual precision in identifying depressed cases. 

Based on the outcome, MLP is, therefore, established 

as the most robust and scalable approach for EEG-

based depression diagnosis. More details regarding the 

performance comparison are shown in Table 2.  

As described in Table 3, the current study conducted 

in assessing the performance of various machine 

learning and deep learning models when it comes to 

classifying depression stages-Mild, Moderate, and 

Severe-using EEG data. The dataset chosen for the 

study was the original one of 198 samples, as well as 

another expanded dataset through GAN-based 

augmentation of 5,000 samples. KNN-PCA therefore 

stood out from other methods by proving to identify most 

cases correctly in each category, having an overall 

accuracy rate of 97%, and precision and recall scores of 

0.98 and 0.97 respectively. Though it slightly dropped to 

93% in the performance on the enlarged testing data, it 

was still balanced at all the levels. The deep learning 

models, especially CNN, exhibited stronger consistence 

and reliability results; it identified 74 cases as Moderate 

and hit 98% accuracy on original data. Even on the 

augmented larger dataset, CNN was able to achieve 

impressive feats with 95 % accuracy and precision and 

recall above 0.94, proving that it is exceptionally robust 

in detecting depression according to stages. Table 4 

summaries hyperparameter settings and tuning 

strategies for classifiers used for stage-wise depression 

severity. 

As mentioned in Algorithms 1, the Adaptive Neuro-

Fuzzy Inference System (ANFIS) is proven to be the 

best model according to this study by virtue of the fact 

that it has sustained 98% accuracy on both original and 

GAN-augmented datasets. Although ANFIS does not 

have exact class-wise classification available, it is 

precision, recall, and F1 score on augmented data which 

is consistent at 0.98, suggesting that it has an ability to 

discriminate among the three stages of depression. 

Evidently, the addition of samples generated using 

GANs has largely improved the performance of the 

model: in particular, a 15% increase in identification of 
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the severe cases as well as a better approximate 

balance in moderate-stage detection, where LSTM, for 
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instance, improved from 58 to 70 in terms of accurate Table 4. Summary of hyperparameter settings and tuning strategies used for classifiers in Table 3 for 
depression severity staging  

Classifier Key Hyperparameters 
Tuning 

Strategy 
Optimization 

Method 
Reproducibility 

Measures 

Random 
Forest (RF) 

n_estimators=100, 
max_depth=10, 
min_samples_split=2, 
min_samples_leaf=1, 
criterion='gini' 

GridSearchCV 
Bootstrap 
aggregation 

Fixed random seed (42) 

K-Nearest 
Neighbors 
(KNN) 

n_neighbors=5 None 
Euclidean 
distance voting 

Fixed random seed (42) 

KNN + PCA 
n_neighbors=5, n_components=5 
(PCA) 

None 
PCA + Euclidean 
distance 

Fixed random seed (42) 

KNN + 
Aggregated 
Feature 
(Weighted 
Avg.) 

n_neighbors=5, 
method=weighted_average with 
random weights 

None 
Feature 
aggregation + 
KNN 

Fixed random seed 
(42), Random weight 
initialization 

KNN + 
Statistical 
Thresholding 

n_neighbors=5, feature via mean 
+ std thresholding 

None 
Binary feature 
extraction + KNN 

Fixed random seed (42) 

CNN 
(Convolutiona
l Neural 
Network) 

Conv1D layers: filters=[32, 64], 
kernel_size=3, Pooling: 
MaxPooling1D(pool_size=2), 
Dense: units=64, Dropout=[0.2, 
0.3], Optimizer: 'adam', 
batch_size=8, epochs=30 

EarlyStopping 
with val_loss 

End-to-end 
backpropagation 

Fixed random seed 
(42), EarlyStopping 

LSTM (Long 
Short-Term 
Memory) 

LSTM layers: 64 → 32, Dense: 32, 
Dropout: [0.3, 0.3, 0.2], Optimizer: 
'adam', batch_size=8, epochs=30, 
Conv1D: filters=32, kernel_size=3 
+ MaxPooling1D(pool_size=2) 
,LSTM layers: 64 
(return_sequences) → 32, Dense: 
32, 

EarlyStopping 
with val_loss 

Sequence 
modeling with 
temporal 
dependencies 

Fixed random seed 
(42), EarlyStopping 

Hybrid CNN-
LSTM 

Conv1D: filters=32, kernel_size=3 
+ MaxPooling1D(pool_size=2) , 
Optimizer: 'adam', batch_size=8, 
epochs=50 

EarlyStopping 
with val_loss 

Spatio-temporal 
modeling (feature 
extraction + 
sequence 
learning) 

Fixed random seed 
(42), EarlyStopping 

Hybrid 
Ensemble 

Model: 
(1) ANFIS-

inspired 
Attention-

based Neural 
Network 

(2) XGBoost 
Classifier 

ANFIS Model: 
• Dense(192), Activation: swish 
• MultiHeadAttention: 
num_heads=3, key_dim=16 
• Optimizer: Adam(lr=0.00075) 
• Loss: categorical_crossentropy 
• Epochs: 150 
• Batch size: 32 
• Class Weights: {0: 1.5, 1: 1, 2: 1} 
XGBoost: 
• n_estimators=450 
• max_depth=5 
• learning_rate=0.075 
• subsample=0.85 
• colsample_bytree=0.85 
• eval_metric='mlogloss' 

Manual tuning 
using empirical 

evaluation 
across: 

• Learning rate 
• Number of 
estimators 
• Feature 

combinations 
(SelectKBest + 

PCA) 
• Attention 

head/dimension 
settings for 

neural attention 
block 

Adam optimizer 
with learning rate 
scheduling 
(ReduceLROnPlat
eau) for ANFIS 
• Gradient 
Boosting 
(XGBoost's built-
in optimization for 
log-loss) 

• Fixed random seed in 
train_test_split and 
SMOTE: 
random_state=42 
• Model checkpoint via 
restore_best_weights=
True in EarlyStopping 
• Feature scaling using 
StandardScaler 
• Code structured into 
functions for 
consistency and 
repeatability 
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classifications. Mild stage accuracy remained 

unchanged with little variation (~2%) across techniques.  

All of these characteristics make ANFIS and CNN 

noticeable in their uniformity and accuracy that promote 

an EEG-based system for upscaling, interpreting, and 

clinically relevant assessment of severity in depression 

stages. SHAP waterfall plots clearly explain and 

illustrate how the model predicts different stages of 

depression: Mild, Moderate, and Severe, based on EEG 

data. These are the visualizations that eventually build 

the model's final decision. In the Mild category, certain 

negative SHAP contributions from features such as 

0.145 and 0.545 work against the chances of predicting 

Mild cases; while some positive contributions help it 

away from this class prediction. In the Moderate 

category, a combination of both positive and negative 

effects causes the model to show some uncertainty in its 

decision. On the contrary, predictions for the severe 

class are driven more strongly by positive impacts from 

features upholding 0.145, 0.545, and 0.613, prompting 

the model towards the definition in full confidence. It 

shows which EEG features contribute most to the 

predicted indication of depression from the by attributing 

important consequences for the clinical-trustworthiness-

a model's rationale of how the diagnosis could normally 

be understood and accepted in mental-health settings. 

To further investigate the impact of dataset size on 

model performance, we compared results obtained from 

a smaller dataset (199 samples) and an augmented 

dataset (5,000 samples). As illustrated in Fig 7, all 

evaluation metrics (accuracy, precision, recall, and F1 

score) improved with the larger dataset. For the smaller 

dataset, performance metrics averaged around 0.969 to 

0.970, whereas with the augmented dataset they 

consistently increased to approximately 0.975 to 0.976. 

The most notable improvement was observed in 

precision, suggesting that the expanded dataset 

reduced misclassification errors and enhanced class 

separability. This analysis confirms that model 

performance scales positively with dataset size, 

highlighting the importance of data augmentation in 

improving robustness and generalizability. 

To further validate the robustness of our findings, we 

conducted statistical significance testing and calculated 

confidence intervals for model performance as per   

Table 5. Confidence intervals (95%) were reported for 

classification accuracy across all models, ensuring that 

observed differences were not attributable to random 

variation. Additionally, paired t-tests and ANOVA were 

applied to compare model performances, which 

confirmed that the improvements observed with MLP 

and ANFIS over other classifiers were statistically 

significant (p < 0.05) as per Table 5. These additional 

analyses reinforce the reliability of our results and 

strengthen the evidence supporting the superiority of the 

proposed models. 

IV. Discussion  

This study demonstrates that EEG-based machine 

learning and deep learning models can effectively detect 

depression and classify its severity, offering a promising 

framework for objective psychiatric assessment. The 

Multilayer Perceptron (MLP) achieved the highest 

accuracy (>98.7%) and perfect precision on the clinical 

dataset while maintaining consistent performance 

across external datasets (MODMA, PRED+CT, 

OpenNeuro) as per results in Table 2. Such high 

precision is clinically valuable as it minimizes false 

positives, while deep models like CNN, LSTM, and 

ANFIS showed robustness by maintaining high accuracy 

despite dataset size or augmentation. In contrast, 

traditional models such as KNN-PCA, although initially 

accurate (97%), showed decreased performance on 

GAN-augmented data, reflecting their sensitivity to data 

variability. These findings are consistent with prior 

studies reporting the superiority of deep learning 

methods in capturing complex spatiotemporal EEG 

features for psychiatric classification. Earlier work has 

shown CNN accuracies around 95 to 97% for 

depression detection, comparable to our CNN 

performance (98% on original and 95% on augmented 

data). ANFIS also matched prior results showing its 

effectiveness in modelling nonlinear EEG patterns. 

Notably, our GAN-based augmentation enhanced 

recognition of severe depression, aligning with evidence 

that synthetic oversampling can mitigate class 

imbalance. Unlike earlier studies, we validated the 

realism of GAN-generated samples using distributional 

Table 5. Statistical significance testing and calculated confidence intervals for model performance 

Model Accuracy (%) 95% CI (Lower) 95% CI (Upper) 
p-value vs 
Baseline 

MLP 88.5 86.2 90.7 <0.01 

ANFIS 86.7 84.4 88.9 <0.05 

CNN 83.2 81 85.4 0.07 

LSTM 82.5 80.1 84.8 0.09 

SVM 79.8 77.3 82.2 0.12 
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similarity metrics (Chi-square p ≈ 0.9999), adding rigor 

to the augmentation approach.  

The comparative analysis in Table 1 highlights the 
progressive improvements achieved by our proposed 
framework [21] over earlier EEG-based approaches for 
depression detection and severity classification. Initial 
studies such as Bairy et al. (2016) [8] using SVM with 
RBF kernel reported only 88.9% accuracy on 
handcrafted EEG features, while Mohammadi et al. 
(2019) [8] applied Fuzzy Function Neural Networks but 
did not provide explicit accuracy metrics, limiting their 
interpretability and reproducibility. Khan et al. (2024) [8] 
achieved 96.36% by using Best-First Tree and 
AdaBoost on the MODMA dataset, yet their reliance on 
a small set of 12 time-domain features from just 3 
electrodes restricted spatial generalization. Other 
studies like Sandheep et al. (2019) [8] and Acharya et 
al. (2018) [8] used CNN-based models with reported 
accuracies of 99.31% (right hemisphere) and 96% 
(right) / 93.5% (left) respectively, but were limited by 
small sample sizes (n ≤ 60), reducing clinical 
scalability. Seal et al. (2021) [8] reported 99.37% 
accuracy using Deep CNN on PHQ-9 labelled data, 

which may not reflect clinically diagnosed depression. 
Soni et al. (2022) [8] and Sam et al. (2023) [8] 
experimented with advanced Graph-based and LSTM-
SNN models but either lacked explicit accuracy reports 
or focused on restricted conditions (eyes open/closed), 
while Neo (2024) [8] using XGBoost achieved only 
79.03% accuracy. In contrast, our work [8] analysed a 
much larger dataset of 382 participants and applied 
channel optimization (AVR, AAR, PMF, RFE) along 
with GAN-based augmentation to address class 
imbalance. Our models MLP (98.7%), LSTM (97.4%), 
and 1D-CNN (96%) demonstrated consistently high 
accuracy on both clinical and external datasets 
(MODMA, PRED+CT, OpenNeuro). Additionally, we 
incorporated SHAP explainability to improve model 
transparency, a component largely missing from 
previous works. Overall, our framework combines high 
accuracy, robust generalizability, interpretable 
predictions, and balanced performance across 
depression stages, thereby offering a more clinically 
viable and scalable solution than prior EEG-based 
studies. Our proposed ANFIS-based framework 
outperforms both, achieving 98% accuracy, 0.98 
precision, recall, and f1-score on stage-wise 

 
Fig 7. Performance analysis of the model (ANFIS) on scaled Dataset size vs. original Dataset  
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depression classification (Mild, Moderate, Severe). 
Unlike [8], it leverages optimized multi-channel feature 
selection (AVR, AAR, PMF, RFE) and, unlike [8], 
achieves comparable accuracy without 
computationally intensive connectivity measures, 
making it more efficient, explainable (via SHAP), and 
clinically scalable. 

However, several limitations warrant caution. While 
GAN-based augmentation improved severe-class 
classification, it introduced subtle distributional shifts that 
reduced KNN-PCA accuracy, underscoring the risk of 
overfitting to synthetic patterns. Although histogram-
based validation confirmed strong similarity between 
real and generated samples, further external validation 
on independent datasets is needed to establish 
generalizability. Additionally, SHAP-based explainability 
was primarily visual and qualitative; future work should 
include quantitative stability analyses across folds. The 
models were not tested on cases with comorbid 
conditions or atypical EEG profiles, which may affect 
clinical applicability, and computational resource 
requirements were not assessed. 

Despite these limitations, our results suggest that 
combining deep learning models such as MLP, CNN, 
and ANFIS with explainability tools like SHAP can 
support accurate and interpretable EEG-based 
depression assessment. The demonstrated 15% 
performance gain for severe depression after GAN 
augmentation highlights its potential for addressing class 
imbalance, though broader multi-center validation is 
needed before clinical deployment. Future work should 
also integrate confidence intervals, resource efficiency 
analyses, and class-specific SHAP attribution (Fig 4 to 
6) to enhance reliability, practicality, and clinical trust. 
Overall, this framework represents a robust step toward 
scalable and explainable EEG-based depression 
diagnostics.  
V. Conclusion  

The primary aim of this study was to develop and 

evaluate an EEG-based framework using machine 

learning and deep learning models for accurate 

detection of depression and classification of its severity 

levels. Across clinical and external datasets (MODMA, 

PRED+CT, and OpenNeuro), the Multilayer Perceptron 

(MLP) emerged as the most reliable model, achieving 

the highest overall accuracy of 98.7% and 100% 

precision, consistently outperforming traditional 

approaches. Deep learning models, including 

Convolutional Neural Network (CNN) and Adaptive 

Neuro-Fuzzy Inference System (ANFIS), also 

demonstrated strong performance, accurately 

classifying depression into Mild, Moderate, and Severe 

stages with accuracies exceeding 95%. Importantly, 

GAN-based data augmentation contributed to an 

improvement of approximately 15% in classification 

performance for Severe depression, addressing class 

imbalance and enhancing model robustness. 

These findings highlight the potential of the proposed 

framework to serve as a practically realizable and 

explainable tool for early and reliable depression 

diagnosis in clinical environments by combining high-

performance models with interpretability (SHAP) and 

data augmentation strategies. 

For future work, we plan to validate this framework on 

larger and more diverse independent EEG datasets to 

assess cross-dataset generalizability, evaluate its 

performance in patients with comorbid psychiatric or 

neurological conditions, and analyse its robustness to 

atypical EEG patterns. Further work will also focus on 

quantifying model explainability, incorporating 

confidence estimation, and optimizing computational 

efficiency to enhance clinical adoption. 
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