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Abstract. Wireless Sensor Networks (WSNs) play a vital role in enabling real-time patient monitoring, 
medical device tracking, and automated management of building operations in smart hospitals. Wearable 
health sensors and hospital automation systems produce a constant flow of data, resulting in elevated 
energy usage and network congestion. This study introduces an advanced framework named Energy 
Conservation via Clustering by Agent Nodes and Clusters (EECANC), designed to improve energy 
efficiency, extend the network's longevity, and facilitate smart building automation in hospitals. The 
EECANC protocol amalgamates wearable medical monitoring (oxygen saturation, body temperature, heart 
rate, and motion tracking) with intelligent hospital building automation (HVAC regulation, lighting 
management, and security surveillance) through a hierarchical Wireless Sensor Network-based clustering 
system. By reducing routing and data redundancy, cluster heads (CHs) and agent nodes (ANs) reduce 
redundant transmissions and extend the life of sensor batteries. EECANC limits direct interaction with the 
hospital's Smart Building Management System, thereby reducing emergency response times and 
improving energy efficiency throughout the hospital. The efficiency of EECANC was proven by comparing 
its performance with other existing clustering protocols, including EECAS, ECRRS, EA-DB-CRP, and IEE-
LEACH. The protocol achieved a successful packet delivery rate of 83.33% to the base station, exceeding 
the performance of EECAS (83.33%), ECRRS (48.45%), EA-DB-CRP (54.37%), and IEE-LEACH (59.13%). The 
system demonstrated better energy utilization, resulting in a longer network longevity and lower 
transmission costs especially during high-traffic medical events. It is clear from the first and last node 
death rates that EECANC is the most energy-efficient protocol, significantly better than the other methods 
available. The EECANC model supports hospital automation, enhances patient safety, and promotes 
sustainability, providing a cost-effective and energy-efficient solution for future smart healthcare facilities. 
 

Keywords Wireless Sensor Network; Smart Hospitals; Energy Efficiency; Clustering; Wearable Patient 
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I. Introduction 

Many fields have begun to use Wireless Sensor 
Networks (WSNs), including healthcare, home 
automation, city planning, and military operations. To 
automate smart buildings, track medical devices, and 
continuously monitor patients, WSNs are essential in 
today's medical care. To enhance patients safety, 
reduce manual workload, and optimize energy 
consumption, smart hospitals depend on automated 
infrastructure (such as HVAC, lighting, and security 
systems) and wearable health sensors. 

However, a lot of energy is used by this constant 
flow of information, which leads to frequent network 
congestion and accelerated sensor battery depletion, 
creating reliability issues for life-critical applications. 
Finding an equilibrium between dependable 
information delivery and minimal energy usage is an 
ongoing problem in medical WSNs. Clinical 
intervention may be delayed in intensive care units 
(ICUs) if even a few packets are lost, resulting in 
reduced oxygen availability for patients. 
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Recharging wearable devices frequently in surgical 
wards is inconvenient for both staff and patients. The 
same holds true for networks, when hundreds of 
devices in different wards transmit at the same time; 
latency and quality of service are affected due to 
network scaling issues. Traditional methods of direct 
interaction with the hospital's Building Management 
System (BMS) further accelerate energy depletion and 
increase data transmission costs. The frameworks of 
the many clustering solutions that have been 
suggested often fail to deliver of the standards set by 
smart hospitals. While LEACH [15] and IEE-LEACH 
[22] are classical protocols that reduce extra 
communication overhead, in overcrowded wards 
where sensors are constantly monitored, their 
dependence on randomized CH election makes them 
susceptible to packet loss and unreliable networks. In 
order to prolong the lifetime of the network, EA-DB-
CRP [16] and EECAS [23] use energy-aware CH 
selection. However, because they depend on multi-hop 
transmissions, the wearable batteries quickly drain, 
and the energy is not evenly distributed. In high-traffic 
environments such as surgical departments, ECRRS 
[17] experiences early node failures despite 
improvements in CH rotation and relay node selection. 

Stable routing in simulations is achieved by 
optimization-based methods like Flamingo Search [19] 
and Cuckoo Optimization [18], but real-time ability to 
scale in large hospital networks with thousands of 
heterogeneous devices interacting simultaneously is 
hindered by their computational dependency and 
complexity on global optimization. Due to these 
shortcomings, the current approaches are not well-
suited to the energy-balancing, reliable, and low-delay 
requirements of continuous operations in healthcare. 
This study introduces EECANC as a comprehensive 
framework specifically designed for real-world smart 
hospital environments to address these limitations, as 
illustrated in Fig 1. To reduce unnecessary 
transmissions and balance energy usage between 
wards, ANs serve as intermediaries for EECANC. The 
reallocation of Cluster Heads (CHs) can also be done 
dynamically. In an intensive care unit, data from several 
patient wearables are aggregated at CHs and filtered 
at ANs to reduce congestion and ensure minimal 
packet loss. This way, only important information is 
transmitted to the BMS. Preventing premature sensor 
failures and extending device lifetime without disrupting 
procedures is achieved with dynamic CH reassignment 
in surgical units.  

Fig. 1. EECANC Model in Health Sensor-Enabled Smart Hospital Building 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 EECANC Model in Health Sensor-Enabled Smart Hospital Building 
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 ANs eliminate direct communication with the BMS, 
which allows for large-scale hospital installations. This 
allows for long-term use and growth, even with 
thousands of sensors spread out across departments. 
Because it outperforms current protocols in terms of 
packet delivery ratios, sensor lifespan, and 
communication costs, EECANC is an attractive, eco-
friendly choice for healthcare facilities of the future. The 
major goal of this research is to create and assess the 
EECANC architecture, which combines a group of 
clustering mechanisms with Agent Nodes (ANs) and 
Cluster Heads (CHs), and an energy-efficient 
communication protocol for use in smart hospital 
environments as illustrated in Fig. 2 and compare 
studies and find research gaps in WSN approach in 
Table 1. Inside their clusters, CHs in this design collect 
information from a number of wearable health sensors 
and hospital automation systems. To ensure that CHs 
are adaptively chosen to distribute the load on the 
network and prevent early battery depletion, EECANC 
employs a residual-energy- and distance-based 
clustering technique, which differs from typical random 
CH selection. Aggregator nodes, which are also called 
agent nodes, add another level of abstraction between 
CHs and the hospital’s BMS. Filtering, compressing, 
and forwarding only important and non-redundant 
information are performed by ANs instead of every CH 
transmitting directly to the BMS. This uses less energy, 
reduces usage and congestion. The transmission 
frequency is reduced, energy is conserved across the 
network, and packet delivery is ensured by this dual-
layer arrangement. Fig.1 shows that hospital network 
clusters (e.g., Cluster 1 and Cluster 2) comprise heart 
rate, oxygen saturation, motion, temperature, and 
sound sensors. Data is transmitted by local sensors to 
cluster CHs. Data are aggregated by the CH before 
being forwarded to an AN. The AN communicates with 
the smart hospital base station to cut down on wasteful 
transmissions. Local filters save energy for routine or 
repeated data, while the hospital system receives 
crucial data immediately, such as abnormal motion 
detection or oxygen level drops. 

Fig. 2. Proposed EECANC Model 
 
Both components make EECANC's energy-saving 

technology effective. First, local aggregation at CHs 
and selective forwarding by ANs minimize redundant 
packets, lowering communication costs and making the 
system more reliable. Second, dynamic CH 
reallocation replaces nodes with low residual energy, 
ensuring ongoing monitoring and preventing premature 
failures. EECANC optimizes patient safety, and adding 
healthcare sensors (heart rate, SpO₂, motion) can help 

a hospital be more environmentally friendly, with 
building automation systems using hierarchical  
clustering for HVAC, lighting, and security systems. 
This means better energy management in the 
hospital's infrastructure, less wearable charging, and 
uninterrupted ICU monitoring. EECANC's energy-
saving feature works as part of a useful hospital-wide 
strategy for deployment, where each cluster represents 
a separate unit or floor of a smart hospital. In these 
clusters, many patients are constantly monitored by 
sensors that are worn or placed in the environment. For 
example, pregnant women wear heart rate monitors, 

Table 1. Analysis of Comparative Studies and Identification of Research Gaps in WSN approach 

Clustering Protocol Key Features Strengths Limitations 

LEACH [15] 
Randomized CH 

selection 
Simple, scalable 

Does not consider residual 
energy 

EA-DB-CRP [16] Density-based clustering 
Efficient for dense 

networks 
Not suitable for sparse 

networks 

Cuckoo 
Optimization [18] 

Metaheuristic-based Adaptive, energy-efficient High computational complexity 

Flamingo Search 
Algorithm [19] 

Bio-inspired clustering High stability, robust 
Increased communication 

overhead 

IEE-LEACH [22] Hybrid clustering Optimized energy balance Complex CH election 

EECAS [23] 
Machine learning-based 

clustering 
Efficient for large-scale 

WSNs 
Requires continuous retraining 
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premature babies are monitored by neonatal sensors 
in NICUs, and elderly care units use vital sign trackers. 
Outpatient departments (OPDs) perform additional 
monitoring. 

Doctors use WSN-enabled devices to check oxygen 
saturation, blood pressure, and heart rate, and the data 
are stored in hospital databases. In each unit, many 
sensors transmit their data to an elected Cluster Head 
(CH), which takes the readings that are then 
aggregated at regular intervals to cut down on 
unnecessary transmissions. The CH does not transmit 
this information directly to the Base Station; instead, it 
transmits it to the nearest Agent Node (AN). These ANs 
work continuously to transmit consolidated patient data 
from their own clusters to the hospital's Base Station. 
They do this by acting as intermediary nodes. By 
assigning this job to ANs, the system makes it easier 
for CHs to communicate and saves energy in general. 
The Aggregator Node (AN) cluster is also maintained 
as a separate level in the network, where multiple ANs 
can work at the same time. When an AN's energy level 
falls below a certain threshold, it is automatically 
switched over to another AN to keep working as 
mentioned in Fig. 3. This keeps data transmission 
going without interruption. A similar rotation 
mechanism is used for CHs, which prevents nodes 
from failing too soon and ensures long-term monitoring. 
This setup makes sure that important patient data are 
accurately collected, filtered, and transmitted to the 
smart hospital dashboard at any given time, whether 
from an ICU bed, a NICU incubator, an elderly care 
ward, or an outpatient department consultation. From 
there, nurses and doctors can monitor patients' health 
while the system keeps energy use to a minimum 
across the network. 

Fig. 3. Agent Node Replacement 
 

II. Literature Survey  
A. Introduction to Clustering in Wireless Sensor 
Networks (WSNs) 
Clustering methods for Wireless Sensor Networks 
(WSNs) have advanced greatly to improve network 
lifetime, information transfer efficiency, and energy 
efficiency. Clustering based on hierarchy, maximizing 
efficiency, and machine learning has made clustering 
solutions more scalable and cost-effective as illustrated 
in Table 2. The EECANC framework integrates 
intelligent healthcare settings, cost-effective 
communication, smart health sensors, and smart 
hospital automation using these clustering concepts. 

Table 2. Network Parameters for EECANC in Smart Hospitals 

S.No Parameter Description in Smart Hospital Context 

1 ETx (Transmission Energy) 
Energy used to transmit patient data from connected sensor 

devices to CHs. 

2 ERx (Receiver Energy) Energy consumed by CHs or ANs to receive health sensor data. 

3 Eamp (Amplifier Energy) 
Energy required to amplify signals for long-range transmission 

within the hospital. 

4 Efs (Amplifier Energy - Rx) Energy required to receive and process sensor node signals. 

5 EDA (Data Aggregation Energy) Energy used by CH to aggregate and compress sensor data. 

6 D (Distance) Physical distance between sensors, CHs, ANs, and the BMS. 

7 K (Bits) Size of bitstream data packets transmitted from hospital sensors 

8 N (Number of Nodes) Total number of health and smart building nodes in the hospital. 

9 P (CH Selection eligibility metric) Location- and residual-energy-driven CH eligibility metric. 

10 Rs (Residual Energy) Remaining energy of a current sensor node. 

11 Eo (Initial Node Energy) 
Initial energy of a node prior to the beginning of clustering or 

communication. 
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B. The Clustering Methods in WSNs: Classical and 
Optimization-Based Literature Survey and Related 
Work 

J. Amutha et al. [1] divided WSN clustering techniques 

into classical, optimization, and machine learning-
based categories in their extended study. The work 
emphasizes adaptive clustering, load balancing, and 
cluster-head selection for power consumption 

reduction. In IoT networks, X. Ding and Y. Wu et al. [2] 

examined energy optimization scheduling and smart 
environments to improve data transmission efficiency 
through intelligent resource allocation. The importance 
of multi-objective optimization in energy-efficient WSN 

clustering was highlighted by J. Wang et al. [3] who 

investigated Pareto-optimal solutions for next-
generation wireless networks. 
 
C. Machine Learning and AI-Driven Clustering in 
WSNs 
There has been a steady increase in research 
investigating the integration of machine learning 
techniques into wireless sensor network clustering. P. 
Padmalaya and G.K. Sweta et al. [4] examined several 
AI-driven routing and energy optimization methods, 
demonstrating their efficacy in environments 
characterized by dynamic and heterogeneous sensor 
data. Machine learning and optimization have helped 
WSNs use less energy. D. P. Kumar et al. [5] found 
many machine learning algorithms for WSN tasks such 
grouping, routing, and tracking unusual events. In their 
work, L. Zhao et al. [6] introduced a modified LEACH-
based method to better perform cluster-head selection 
with residual energy optimization. Energy efficiency 
and the lifespan of the network were both increased by 
this method. In their work on quality-of-service (QoS) 
clustering, O. A. Deepa and J. Suguna et al. [7] aimed 
to improve packet delivery and fault tolerance. 

Multipath routing is incorporated into this approach. In 
a comprehensive evaluation of clustering objectives in 
WSNs, A. Shahraki et al. [8] looked at the costs of the 
routing in wsn protocols.The  benefits of energy 
efficiency, scalability, and network stability as compare 
in Table 3. 
 
D. Energy-Efficient Clustering and Routing 
Protocols 
S.N. Mohanty and K. Shankar et al. [9] proposed a way 
to use deep learning for global data mining in WSNs 
that uses the least amount of energy. This model 
enables optimal cluster formation and route decisions. 
Using metaheuristic algorithms to improve cluster-head 
selection and relay node placement, D. Mehta and S. 
Saxena et al. [10] devised a multi-objective energy-
aware clustering technique. Clustering and data 
collection strategies have been proposed to improve 
WSN energy efficiency for healthcare IoT applications. 
Zheng et al. [11] collected mobile data using kernel-
based compressive sensing, whereas D. Ma et al. [12] 
examined IoT energy-aware processing and 
communication. For better clustering, T. Mayee et al. 
[13] suggested residual energy-based cluster-head 
selection, while A. Al-Baz and A. El-Sayed et al. [14] 
optimized LEACH. These foundational methodologies 
help create solid, energy-efficient protocols like the 
EECANC model. Using real-time energy balancing, D. 
Jia et al. [15] presents a method for dynamic cluster-
head selection. An energy-aware and density-based 
clustering algorithm, K. A. Darabkh et al. [16] proposed, 
called EA-DB-CRP, to improve data aggregation 
efficiency. H. Wu et al. [17] offered a way to rotate CHs 
in several types of Wireless Sensor Networks that 
could be used in farming. M. Khabiri and M. Ghaffari et 
al. [18] used clustering and the Cuckoo Optimization 
Algorithm to build energy-saving and network-

Table 3. Scenario 1 : Comparison of Parameters for Different Protocols 

Parameters EECAS [23] ECRRS [17] 
EA-DB-CRP 

[16] 
IEE-LEACH 

[22] 
EECANC 

(Proposed Model) 

Hospital Coverage 
Area (m²) 

100 × 100 100 × 100 100 × 100 100 × 100 100 × 100 

Number of Wearable 
& IoT Nodes 

50 50 50 50 50 

Hospital BMS 
Location (BS) 

50,150 50,150 50,150 50,150 50,150 

First Sensor Node 
Failure (Rounds) 

752 514 579 643 1080 

Last Sensor Node 
Failure (Rounds) 

1289 801 1073 1092 1620 

Packets Successfully 
Received at BMS 

6100   3800 4800 5200 7920 

Average Residual 
Energy (J) 

1300 800 1100 1100 1680 

      

https://jeeemi.org/index.php/jeeemi
https://portal.issn.org/resource/ISSN-L/2656-8632
https://doi.org/10.35882/jeeemi.v7i4.1082
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Electronics, Electromedical Engineering, and Medical Informatics                             
Homepage: jeeemi.org; Vol. 7, No. 4, October 2025, pp: 1199-1225                                     e-ISSN: 2656-8632 

 

Manuscript received 10 July 2025; Revised 10 September 2025; Accepted 30 September 2025; Available online 14 October 2025 
Digital Object Identifier (DOI): https://doi.org/10.35882/jeeemi.v7i4.1082 
Copyright © 2025 by the authors. This work is an open-access article and licensed under a Creative Commons Attribution-Share Alike 4.0 
International License (CC BY-SA 4.0).  

 1204               

extending paths. Balanced sensor node load 
distribution reduces premature node failure and 
improves network stability. 

 
E. Performance Improvement Methods in Wireless 
Sensor Networks that Draw Inspiration from 
Bioinformatics and Metaheuristics 
Applying optimization techniques driven by biological 
processes has improved clustering efficiency in WSNs. 

R. Abraham and M. Vadivel et al. [19] developed a 

grouping method based on the Flamingo Search 
Algorithm to make the network more stable and the 
nodes last longer. A light weight and data minimization 

approach was employed by N. Sulthana and M. 

Duraipandian et al. [20] in their proposal of the EELCR 
protocol, which is a lifetime-aware clustering strategy. 

S. Nagadivya and R. Manoharan et al. [21] used fuzzy 

theory to develop an opportunistic routing technique for 
adaptive energy management in volatile Wireless 

Sensor Networks .Table 4 illustrates comparison 

metrics for scenario 1. 
F. Hybrid and Next-Generation Clustering Models 
Advanced techniques for hybrid clustering and multi-
hop communication have enabled WSNs to perform 

more efficiently. Y. Liu et al. [22] proposed IEE-LEACH, 

a threshold-based cluster-head election method, which 
incorporates single-hop, multi-hop, and hybrid 
communication. This model reduces power 
consumption at the base station (BS) to make the 
network last longer. In a similar vein, EECAS was 

presented by R. Kumar et al. [23]; it is a mini-batch K-

means clustering model that aims to optimize data 
aggregation and network durability while reducing 
computing costs. Table 1 presents a comparative 
analysis and highlights the identified research gaps. 
Wireless Sensor Networks (WSNs) are extensively 
utilized in healthcare for the real-time collection and 
transmission of patient health data. According to 
Movassaghi et al. [28] and Kim et al. [24], these 
networks assist physicians and hospital systems in 
patient monitoring without the need for wires or 
frequent manual checks. Wearable health devices 
have evolved to be more compact and intelligent. S. 
Patel et al. [29] and A. Pantelopoulos et al. [30] 

explained that technologies such as Bluetooth, Wi-Fi, 
and Zigbee facilitate the rapid and efficient 
transmission of critical data, including heart rate and 
oxygen levels, as emphasized by Gao et al. [26], Hall 
and Hao et al. [27], and Kim et al. [24]. Many of these 
devices are constructed from pliable materials, 
enhancing comfort for prolonged use, as addressed by 
Heikenfeld et al. [25], Dagdeviren et al. [31], and Trung 
and Lee et al. [32]. One of the most significant issues 
is battery longevity. It is challenging to monitor activities 
when the displays lose power. To address this issue, 
researchers such as Kim et al. [24] and Dagdeviren et 
al. [31] are investigating methods to reduce energy use 
and harness energy from sources like body heat or 
motion. Sensors are frequently organized into clusters 
to enhance energy management. Within each cluster, 
a head node, referred to as the CH, aggregates 
information from adjacent sensors and transmits only 
the most relevant information to the central hospital 
system. This approach minimizes unnecessary data 
transmission and conserves energy, as elucidated by 
Alsadoon et al. [36], Kumar et al. [37], and Singh et al. 
[40]. There exist advanced methods for selecting the 
CH sensor that employ intelligent reasoning. Taking 
into consideration factors like the battery's condition, 
location, and workload, the system performs better and 
lasts longer. This approach is supported by research 
conducted by Kumar et al. [37] and Singh et al. [40]. 
Currently, these wireless monitors are utilized to control 
lighting, air conditioning, and security systems in 
hospitals. This reduces patient discomfort and 
conserves energy. The research by Yang et al. [33] and 
Fischer et al. [35] addresses these applications. Cloud-
based technologies are increasingly used, as they 
enable physicians to access health data from any 
location. In certain systems, warnings are automatically 
triggered when a patient's health status deteriorates. 
These concepts are elaborated in research conducted 
by Fischer et al. [35] and Matthews et al. [39]. "Digital 
twins" computer models that simulate patients and 
medical processes, are emerging.  

These technologies facilitate the anticipation of 
future challenges and enhance planning and 
responses, as articulated by Khan et al. [38]. Certain 
systems also execute automatic actions, such as 

Table 4. Performance Comparison Metrics for Scenario 1 (in Percentage) 

Metric EECAS (% [23]) ECRRS (% [17]) EA-DB-CRP (% [16]) IEE-LEACH (% [22]) 

First Node die 69.63% ➔ 47.59% ↕ 53.61% ➠ 59.54% ➠ 

Last Node die 79.57% ➔ 49.44% ↕ 66.23% ➠ 67.41% ➠ 

Packet received by 
BS vs rounds 

77.02% ➔ 47.98% ↕ 60.61% ➠ 65.66% ➠ 

Avg Residual Energy vs 
rounds 

77.38% ➔ 47.62% ↕ 65.48% ➠ 65.48% ➠ 
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regulating room temperature in response to a patient's 
fever or alerting medical personnel when oxygen levels 
decrease. According to Chen et al. [34] and Matthews 
et al. [39], these closed-loop technologies enhance 
patient safety and diminish manual labor for hospital 
personnel. Numerous research, including Alsadoon et 
al. [36], Singh et al. [40], and Kumar et al. [37], 
acknowledges that the implementation of smart 
wireless systems incorporating energy-saving 
measures, real-time monitoring, and appropriate 
sensor aggregation can enhance the safety, efficiency, 
and responsiveness of hospitals to patient 
requirements. 

The use of Wireless Sensor Networks (WSNs) in 
healthcare applications has recently been the subject 
of extensive biomedical research. WSNs have the 
potential to improve healthcare logistics, smart hospital 
scheduling, data collection with less energy 
consumption, and elderly monitoring. Alsadoon et al. 
[41] proposed a healthcare monitoring framework that 
includes wearable devices for older patients. The 
framework focuses on sensor clustering and 
communication taxonomies to help keep track of vital 
signs continuously. A study by Taha et al. [42] used a 
hybrid Bat–Adaptive Large Neighborhood Search (B-
ALNS) method to investigate health logistics. Their 
main goal was to find the best routes and divide up 
resources in large medical systems. 

Pavithra and Rekha, et al. [43] used the Cuckoo 
Search Algorithm (CSA) to improve broadcast 
optimization in intelligent healthcare WSNs. They found 
that it improved packet delivery, time-slot utilization, 
and communication efficiency when there are a lot of 
patients being monitored. Sathishkumar came up with 
an idea for an Energy-Efficient Battery Optimization 
Model (EE-BOM) that uses Harris Hawks Optimization 
and machine learning. Predicting battery life is the main 
goal of the model so that healthcare sensor nodes can 
last longer. Sathishkumar et al. [44] explained that new 
research shows that energy-aware models, clustering, 
and packet scheduling are becoming more important 
for the safe transmission of biomedical data in smart 
hospital management, maintaining surveillance on 
premature babies, and caring for the elderly. 

 
III. Methodology 
Even though clustering approaches work well to 
improve energy efficiency, they can be hard to 
implement in smart hospitals, where Wireless Sensor 
Networks (WSN) are needed for portable health 
monitoring and smart building automation. Below are 
the main problems with the energy use of major sensor 
nodes and how the EECANC framework solves them. 
 
A. Different Distances from the Building 
Management System Cause Inconsistent Energy 
Use 

Wearable health sensors are widely used in smart 
hospitals. These sensors track critical signs like heart 
rate and oxygen levels, as well as movement in 
different areas. Sensors that are closer to the hospital's 
Building Management System (BMS) use less power. 
Sensors that are farther away, like those in the 
intensive care unit (ICU) and patient rooms, need more 
power to transmit data, so their batteries deplete faster. 
Sensors situated closer to the hospital's BMS utilize 
less energy, however, those positioned farther away, 
such as in the ICU and patient rooms, require greater 
power for transmission, leading to rapid battery 
depletion. The EECANC solution arranges sensors into 
optimal clusters. CHs and ANs function as 
intermediaries, reducing direct interaction between 
sensors and conserving energy. 

Fig. 4. EECAN Architecture Diagram 
 

B. Redundant Data Transmission from Nearby 

Sensor Nodes 
Several wearable devices within the same hospital 
ward or ICU frequently broadcast identical patient 
health data (e.g., heart rate, temperature, SpO₂) to the 

BMS, leading to network congestion and energy 
inefficiency. To maximize network performance, the 
EECANC solution aggregates patient vitals at CHs, 
thus enabling the transfer of only critical data and 
minimizing redundant transmissions. The high energy 
consumption of CHs is a result of continuous data 
processing. Managing several sensor transmissions 
causes CHs' batteries to drain faster. Inequalities in 
energy use can impact both the reliability of the network 
and the capacity to monitor patients in real time if CHs 
are not rotated. The EECANC solution improves power 
distribution and sensor longevity by dynamically 
selecting CHs according to distance, energy, and 
network load as shown in Fig. 4. 
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Fig. 5. EECANC Cluster and Agent Cluster Layer 
Communication with Base station 

 
IV. EECANC Solution 
By handling data aggregation, ANs reduce the load on 
individual sensors. By optimizing power efficiency, the 
heating and cooling, lighting, and security systems 
respond in real time to occupancy and patient health 
information. Energy efficiency, wearable health 
monitoring, and smart hospital automation are 
enhanced by the EECANC framework. This solution 
uses Wireless Sensor Networks (WSNs) to reduce 
duplicate data transmissions, extend sensor battery 
life, and improve network longevity and durability. 

 
A. Key Contributions of EECANC in Smart 
Hospitals 
Cluster formation for wearable health monitoring and 
smart building systems is efficient. The Mini-batch K-
means algorithm groups wearable sensors (such as 
cardiovascular rate, oxygen saturation, temperature, 
and movement detectors) with building automation 

nodes (such as heating and cooling, lighting, and 
security systems). Clusters of wearable sensors and 
building automation nodes are formed using the Mini-
batch K-means algorithm. This avoids direct 
connections with the hospital’s BMS, reducing energy 
consumption and bandwidth. Efficient data 
transmission using low-energy ANs. ANs and CHs 
gather and evaluate critical data rather than 
transmitting raw sensor data directly to the Building 
Management System (BMS), it can be seen in Fig. 5. 
ANs close to the BMS handle data transmission based 
on priority, which lowers the amount of power used by 
sensors comparison in Table 5. Reducing sensor 
energy use through communication with nearby nodes. 
Wearable devices and patient monitors can connect to 
CHs, which transmit information to ANs to make 
communication easier.   
Wearable health sensors, such as smartwatches and 
patient monitors, connect to CHs. The CHs then 
transmit data to ANs so that interaction is more 
efficient. The process reduces data aggregation energy 
loss, prolonging sensor battery life in ICUs, patient 
rooms, and surgical units. CH  
selection utilizing energy and proximity criteria. Once 
stable clusters are formed, CHs are selected based on: 

1. A sensor node with energy exceeding the 
threshold level. 

2. A node in proximity to the Agent Node (AN) for the 
interaction or transmission of compressed data. 

Additionally, the distance should be close to nodes 
inside the specified cluster area. 
 

B. How EECANC Methods Work is Attained 
without  Direct Interaction between the Sensor 
and the BMS 
The CHs refrain from transmitting data straight to the 
BMS to prevent rapid power depletion. CHs do not 
directly communicate with the BMS to avoid excessive 
energy depletion. The closest Agent Node to the BMS 

Table 5. Scenario 2: Comparison of Parameters Across Protocols 

Parameters 
EECAS 

[23] 
ECRRS 

[17] 
EADBCRP 

[16] 
IEELEACH 

[22] 
EECANC 

(Proposed Model) 

Hospital Coverage Area 
(m²)  

100×100 100×100 100 × 100 100×100 100 × 100 

Hospital BMS Location (BS) 50,150 50,150 50,150 50,150 50,150 

Number of Wearable & 
Smart Hospital Nodes  

100 100 100 100 100 

First Sensor Node Failure 
(Rounds)  

893 622 641 713 1080 

Last Sensor Node Failure 
(Rounds)  

1554 1073 1275 1326 1920 

Packets Successfully 
Received at BMS  

11000 7800 8600 9200 14400 

Average Residual Energy 
(J)  

1560 1100 1280 1310 1918 
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receives a priority number, and the Agent Node 
forwards the data to the Base Station, which is received 
by the Cluster Head (CH) nodes. Priority numbers are 
assigned based on distance and the amount of 
remaining energy. CH-compressed data is managed by 
the Agent Node with the highest priority, and several 
CHs transmit compressed data to a particular Agent 
Node. It begins compiling all the data into a single file 
and transmits it to the Base Station (BS) after all 
designated clusters have finished compressing the 
incoming data. Once an Agent Node's energy drops 
below the required threshold level, as shown in Table 
6, the system automatically selects a replacement from 
the agent cluster pool to ensure continuous 
functioning.. 

The system automatically chooses a new Agent 
Node from the agent cluster pool if its energy drops 
below a critical threshold, guaranteeing continuous 
functioning. In this way, ANs serve as a link between 
the BS and several CHs. Fig. 6 presents the EECANC 
Framework Symbol Table. 

C. The Role of EECANC in Improving 
Sustainability in Smart Hospitals 
Minimizes needless transmissions by grouping 
wearable sensors into efficient clusters. Mitigates 
excessive sensor energy depletion via CH rotation and 
priority-driven ANs. Enhances energy efficiency in 
hospital infrastructure (heating, ventilation, lighting, 
and security). Reduces direct sensor-to-BMS 
communication through intelligent data aggregation. 
 
D. EECANC Network Model in Smart Hospitals 
An EECANC model is proposed to help preserve 
energy and increase the lifespan of smart health 
monitoring systems and smart hospital automation 
networks, as depicted in Fig. 2. This architecture helps 
to improve sensor clustering, information transfer, and 
energy efficiency while supporting continuous 
connectivity between patient monitoring equipment and 
the hospital's BMS.  

E. Key Characteristics and Rationale of the 
EECANC Model 
To enhance energy efficiency for smart building 
systems and wearable health sensors, the EECANC 
model employs a cluster-based approach. Using the 
Mini-batch K-means algorithm, optimal clusters are 
formed that combine smart building nodes (such as 
security systems, lighting, and HVAC) with wearable 
sensors (such as heart rate, oxygen saturation, 
temperature, and motion detectors). For efficient data 
compression and rapid information transmission to 
Agent Nodes (ANs), Cluster Heads (CHs) are selected 
close to the cluster centroid. ANs mediate 
communication between CHs and the hospital's main 
Base Station (BS); they are located near the BMS. This 
prolongs the life of the sensors and makes it easier for 
CHs to transmit data directly to the Base Station. 

This design decreases power loss ensures that 
duplicate data transmissions do not occur and speeds 
up information routing. As demonstrated in Fig. 3, the 
system is designed to function continuously by 
automatically replacing ANs when their remaining 
energy falls below a specific threshold. By making sure 
that the chosen CH is close to the geometric centre of 
its cluster, the centroid-based approach for identifying 
a CH works well in smart hospitals.  

Table 6. Comparison of Metrics Across Protocols in Scenario 2 

Metric 
EECAS (% 

[23]) 
ECRRS (% 

[17]) 
EA-DB-CRP (% 

[16]) 
IEE-LEACH (% 

[22]) 

First Node die (%) 82.69% ➔ 57.59% ↕ 59.35% ➠ 66.02% ➠ 

Last Node die (%) 80.94% ➔ 55.89% ↕ 66.41% ➠ 69.06% ➠ 

Packet received by BS vs 
rounds (%) 

76.39% ➔ 54.17% ↕ 59.72% ➠ 63.89% ➠ 

Avg Residual Energy vs 
rounds (%) 

81.31% ➔ 57.34% ↕ 66.74% ➠ 68.30% ➠ 

 

 

 
Base Station 

 

Communicating Agent 
node to Base Station 

 

Agent nodes from agent 
cluster 

 
Cluster Head (CH) 

 
Wireless sensor node 

 

Communication from 
Wireless sensor node 
to CH 

 

Communication from 
CH node to Agent node 

 

Communication from 
Agent Node to Base 
Station 

 

Communication from 
Wireless sensor node 
to Base station 

Fig. 6. Symbol Table for EECANC Cluster and 
Agent Cluster Layer Communication with BS 
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Consequently, the transmission power per node is 
reduced, the average distance between the CH and the 
patient sensors is kept as short as possible, and the 
energy consumption of the cluster is distributed evenly. 
Placing wearable sensors according to their centroid 
helps prevent communication delays and reduces the 
likelihood that a single node will run out of power rapidly 
when there are many of them transmitting 
simultaneously in high-density medical units like ICUs 
and NICUs. Because delays in transmitting critical data 
can have a direct impact on patient safety for example, 
a rapid decrease in oxygen saturation this approach is 
also particularly crucial for healthcare applications that 
must transmit data rapidly. 

Fig. 7. CH Data Transmission Cycle 
 

Factors such as the distribution of nodes and the 
number of clusters (No) also impact performance. The 
depletion of CHs is accelerated, and the cost of intra-
cluster communication rises due to large cluster sizes 

caused by an inadequate number of clusters. However, 
the efficiency of communication between CHs and ANs 
decreases as the number of clusters increases. The 
CH data transmission cycle is present in Fig. 7. 
Everything needs to be in harmony, and we can find the 
optimal number of clusters by looking at network 
density. Energy efficiency is influenced by the 
positioning of nodes as well. It is possible for EECANC 
to adjust to sparse and dense distributions using the 
Mini-batch K-means algorithm. This guarantees 
consistent energy consumption and reliable 
communication across the entire hospital network. 
 
F. Simulation Environment Setup 

The EECANC framework was tested in a controlled 
smart hospital setting to make sure it could be used 
repeatedly and that the evaluation was fair. The 
simulation field was set up as a 100 m² area to 
represent a typical hospital ward. It was then scaled up 
to 150 m² and 200 m² for larger hospital deployments. 
There were between 50 and 200 sensor nodes in this 
area. These nodes were made up of wearable health 
sensors that tracked heart rate, SpO₂, temperature, 

and motion, as well as building automation nodes that 
controlled HVAC, lighting, and security. Each node 
started out with a constant energy level of 2 J, and the 
amount of residual energy was constantly monitored to 
determine how long the network would last. Parameter 
Comparison Across Protocols in Scenario 3 is 
presented in Table 7. 

A static deployment model was used instead of a 
mobility model because patients in ICUs, wards, and 
NICUs tend to stay in one place. The communication 
settings were standard for WSNs: the size of a data 
packet was K = 4000 bits, the amplifier energy 
coefficients were Efs = 10 pJ/bit/m² and Eamp = 
0.0013pJ/bit/m⁴, and the data aggregation energy was 
EDA = 5 nJ/bit/signal. These choices are in line with 

Table 7. Comparison of Parameters Across Protocols in Scenario 3 

Parameters EECAS 
[23] 

ECRRS 
[17] 

EADBCRP 
[16] 

IEELEACH 
[22] 

EECANC (Proposed 
Model) 

Hospital Coverage Area (m²) 150 × 150 150 × 150 150 × 150 150 × 150 150 × 150 

Number of Wearable & Smart 
Hospital Nodes 

100 100 100 100 100 

Hospital BMS Location (Base 
Station) 

75,225 75,225 75,225 75,225 75,225 

First Sensor Node Failure 
(Rounds) 

413 214 249 312 495 

Last Sensor Node Failure 
(Rounds) 

1173 726 841 982 1407 

Packets Successfully 
Received at BMS 

7100 4200 4900 5800 8520 

Average Residual Energy (J) 1170 715 830 1000 1404 
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benchmarks that are commonly used in WSN 
clustering research, meaning that they can be 
compared to established protocols like IEEE-LEACH, 
EA-DB-CRP, and EECAS. Fig. 8 illustrates the cluster 
formation in EECAN framework. 

Fig. 8. CH Cluster formation in EECANC 
 

G. Assumptions and Limitations of the EECANC 
Framework 
To make things clear and easy to replicate, the 
following assumptions were made when creating and 
running the EECANC framework. All sensor nodes 
were initialized with the same initial energy level (2 j). 
this ensures fair evaluation of energy consumption 
across clustering protocols but may not fully reflect 
real-world cases where devices have varying battery 
capacities. During the simulation, nodes were assumed 
to remain stationary, which reflects conditions in a 
smart hospital where patient beds, icu monitors, and 
building automation devices are typically fixed. the 
model did not account for patient mobility, which may 
impact the accuracy of wearable devices in some 
healthcare settings, such as rehabilitation wards or 
emergency rooms. It was assumed that there was no 
noise, interference, or packet collision on the wireless 
channel. Even though this assumption demonstrates 
the efficiency of the protocol, medical equipment in a 
real hospital may cause electromagnetic interference. 
All nodes in a cluster transmit data at the same time, 

which makes it easier to collect and analyze the data. 
When used in real life, asynchronous or event-driven 
transmissions may introduce additional overhead. It 
was assumed that all nodes could sense, compute, and 
transmit information in the same way. There was no 
differentiation between specialized sensors that require 
more power, such as ecg monitors. 
 
V. Performance improved over existing protocols 
Compared to IEE-LEACH, EA-DB-CRP, and ECRRS, 
EECANC improves network stability, reliability, and 
efficiency in personal health monitoring and intelligent 
building management. The EECANC architecture 
diagram presents fundamental concepts for making 
Wireless Sensor Networks (WSNs) more energy-
efficient and durable, as shown in Fig. 4. The process 
begins with the Sensor Grid Area, then the formation of 
Agent Clusters, sequencing of ANs, and K-Means 
Node Cluster Formation. Agent Clusters transmit data 
packets to the Base Station (BS) after Cluster Head 
(CH) selection using the CH Selection Algorithm. 
These novel approaches were compared to IEEE-
LEACH, EA-DB-CRP, and ECRRS.  Table 8 shows that 
smart environments perform better across these 
protocols in Scenario 3. 
 
A. Energy Consumption and Performance Metrics 
in EECANC for Smart Hospitals 
The EECANC design in smart hospitals enhances 
sensor node battery life by reducing redundant data 
transfers between nodes and the CHs, as well as from 
each cluster to the ANs. Only the chosen CH will 
awaken at the scheduled time to gather information 
from the adjacent smart sensors and thereafter collect 
all data packets from each smart sensor device. It then 
compresses the data packets and transmits them to the 
selected ANs. Table 2, Network Parameters for 
EECANC in Smart Hospitals, describes the simulation 
environment, node energy levels, communication 
ranges, and packet sizes used during evaluation, 
confirming this mechanism's efficiency.  

The energy required for direct communication 
between a wearable health sensor (such as a 
smartwatch measuring patient vital signs) and the 
hospital’s Building Management System (BMS) can be 
calculated using Eq. (1)  [14] [15]: 
                  𝐸𝑇𝑑𝑖𝑟 = 𝐾 × 𝐸𝑇𝑥 + 𝐾 × 𝐸𝑓𝑠 × 𝐷𝑠𝑛𝑡𝑜𝐵𝑆

2     (1) 

Table 8. Comparison of Metrics Across Protocols in Scenario 3 

Metric 
EECAS(% 

[23]) 
ECRRS (% 

[17]) 
EA-DB-CRP (% 

[16]) 
IEE-LEACH (% 

[22]) 

First Node die (%) 83.43% ➔ 43.23% ↕ 50.30% ➠ 63.03% ➠ 

Last Node die (%) 83.36% ➔ 51.60% ↕ 59.79% ➠ 69.81% ➠ 

Packet received by BS vs 
rounds (%) 

83.22% ➔ 49.30% ↕ 57.51% ➠ 68.07% ➠ 

Avg Residual Energy vs 
rounds (%) 

83.33% ➔ 50.93% ↕ 59.12% ➠ 71.23% ➠ 
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Here, ETx represents the transmission energy required 
to transmit K data bits from the sensor to the BMS, 
while Efs denotes the amplifier energy consumed to 
ensure reliable signal transmission. The term D²_(sn to 
BS) indicates the squared distance between the sensor 
node and the BMS, highlighting that energy demand 
increases with distance. Finally, K refers to the number 
of data bits transmitted, directly scaling the total energy 
consumption. This simulation is achieved using Fig. 9. 

Fig. 9. The proposed EECANC Simulation with 
Scenario 1 configuration 

 
The energy required for data transmission from a 
sensor to its CH is expressed in Eq. (2) [6] [16]: 

𝐸𝑇𝑚𝑛2𝑐ℎ = 𝐾 × 𝐸𝑇𝑥 + 𝐾 × 𝐸𝑓𝑠 × 𝐷𝑡𝑜𝐶𝐻
2            (2) 

Here, ETx is the transmission energy used to transmit 
K bits of data, Efs is the amplifier energy needed for 
reliable communication, and D²_to CH represents the 
squared distance between the sensor and its Ch. The 
energy required for a CH to transmit data to an AN is 
expressed in Eq. (3) [23] [16]: 

𝐸𝑇𝑐ℎ2𝐴𝐺𝑁 = 𝐾 × 𝐸𝑅𝑥 × (𝑁 − 1) + 𝐾 × 𝐸𝐷𝐴 × 𝑁 +

                                𝐾 × 𝐸𝑇𝑥 + 𝐸𝑓𝑠 × 𝐷𝑡𝑜𝐴𝐺𝑁
2                      (3) 

Here, ERx is the energy required to receive data at the 
Agent Node, EDA is the energy spent by CH on data 
aggregation, ETx is the transmission energy, and Efs is 
the amplifier energy. D²_to AN denotes the squared 
distance between the CH and AN, while N represents 
the total number of active nodes in the hospital 
network. Table 9 illustrates parameter comparisons 
across all scenario 4 protocols.The energy required for 
an AN to transmit data to the Building Management 
System (BMS) is expressed in Eq. (4) [17] [23]: 
𝐸𝑇𝐴𝐺𝑁2𝐵𝑆 = 𝐾 × 𝐸𝑅𝑥 × 𝑁 + 𝐾 × 𝐸𝐷𝐴 × 𝑁 + 𝐾 × 𝐸𝑇𝑥 +

                                    𝐸𝑓𝑠 × 𝐷𝑡𝑜𝐵𝑆
2                                     (4) 

Here, ERx is the reception energy at the AN, EDA is 
the energy required for data aggregation, ETx is the 
transmission energy for forwarding data, and Efs is the 
amplifier energy. The term D²_to BS represents the 
squared distance between the AN and the BMS. The 
total energy consumption per round is expressed in Eq. 
(5) [16] [22]: 

𝐸𝑇_𝑇𝑜𝑡 = ∑_(−𝑁𝑑 − 1𝐸𝑇_𝑑𝑖𝑟) + ∑_(𝑁 − 𝐾𝑜𝑝 −

𝑁𝑑𝐸𝑇_𝑚𝑛2𝑐ℎ) +  ∑_(𝐾𝑜𝑝𝐸𝑇_𝑐ℎ2𝐴𝐺𝑁) +

                                       𝐸𝑇_𝐴𝐺𝑁2𝐵𝑆                                        (5)      

Here, ET_dir denotes the energy consumed for direct 
sensor-to-BMS transmission, ET_mn2ch is the energy 
required for sensor-to-CH communication, 
ET_ch2AGN refers to CH-to-AN communication, and 
ET_AGN2BS represents AN-to-BMS communication. 
Nd is the number of nodes directly transmitted to the 
BMS, while Kop is the optimal number of clusters 
formed for efficient energy use. The average energy 
consumption per round in the hospital network is 
expressed in Eq. (6) [8] [22]: 

                                 𝐸𝐴𝑣𝑔 =
𝐸𝑇𝑇𝑜𝑡

𝑁
                                     (6) 

Here, ET_Tot is the total energy consumed per round, 
and N represents the total number of sensor nodes 
within the hospital environment. The threshold distance 

Table 9. Comparison of Parameters Across Protocols in Scenario 4 

Parameters EECAS 
[23] 

ECRRS 
[17] 

EADBCRP 
[16] 

IEELEACH 
[22] 

EECANC 
(Proposed Model) 

Hospital Coverage Area (m²) 200 × 200 200 × 200 200 × 200 200 × 200 200 × 200 

Number of Wearable & 
Smart Hospital Nodes 

100 100 100 100 100 

Hospital BMS Location 
(Base Station) 

100,300 100,300 100,300 100,300 100,300 

First Sensor Node Failure 
(Rounds) 

272 122 141 185 326 

Last Sensor Node Failure 
(Rounds) 

891 621 672 740 1069 

Packets Successfully 
Received at BMS 

5250 3300 3600 4200 6300 

Average Residual Energy (J) 890 720 670 620 1068 
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calculation, which determines whether direct 
communication or multi-hop communication is more 
energy efficient, is expressed in Eq. (7) [22] [16]: 

                         𝐷𝑡ℎ = √
𝐸𝑓𝑠

𝐸𝑎𝑚𝑝
                                           (7) 

Here, Efs represents the amplifier energy, while Eamp 
refers to the energy required for long-distance data 
transmission. The distance between a sensor node and 
the Building Management System (BMS) can be 

calculated using Eq. (8) [6] [15]: 

              𝐷𝑡𝑜𝐵𝑆
= √(𝑋𝑏𝑠 − 𝑋𝑖)2 + (𝑌𝑏𝑠 − 𝑌𝑖)2               (8) 

Here, Xbs and Ybs represent the coordinates of the 
BMS, while Xi and Yi denote the coordinates of the 
sensor node. 

The Packet Delivery Ratio (PDR), a key reliability 
metric for patient monitoring, is expressed in Eq. (9) 
[21] [40]: 

𝑃𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑎𝑡 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛        

𝑇𝑜𝑡𝑎𝑙 𝒏𝒖𝒎𝒃𝒆𝒓 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 (9) 

This metric evaluates how reliably patient data is 
delivered to its intended destination. 
The Average Packet Delivery Ratio (APDR) for long-
term monitoring can be calculated using Eq. (10) [22] 
[20]: 

                        𝐴𝑃𝐷𝑅 =
𝑃𝐷𝑅

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑠
                  (10) 

This helps assess overall data transmission reliability 
over multiple monitoring cycles. The throughput of the 
network, which measures the successful data 
transmission rate, is expressed in Eq. (11) [21] [40]: 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑠𝑒𝑛𝑡

𝑈𝑛𝑖𝑡 𝑡𝑖𝑚𝑒
   (11) 

Throughput serves as an indicator of network efficiency 
in terms of data delivery per unit time. 
 
B. Energy Efficiency in Smart Hospitals: A 
Summary from EECANC 
By minimizing direct connections from sensors to the 
BMS, the network lifetime is extended, and the energy 
consumption of sensor batteries is minimized through 
clustering and data aggregation. This increases data 
routing efficiency in smart buildings to improve hospital 
automation and assures a high Packet Delivery Ratio 
(PDR), which improves real-time patient monitoring. 
Fig. 5  illustrates the communication flow within the 
EECANC model. In this structure, sensor nodes 
transmit their readings to designated CHs, which 
process and relay the information to ANs. A selected 
set of ANs is responsible for forwarding the refined data 
to the BS.  

Fig. 6 provides a symbol key for better interpretation 
of the components and directional data flows in Fig. 5. 
This multi-tier approach reduces unnecessary 
transmissions, conserves energy, and enhances the 
operational lifespan of the network making it highly 

suitable for smart healthcare environments. The initial 
network node fails in each of the five cases shown in 
Fig. 10. 

Fig. 10. Failure of the first network node in all five 
scenarios for all protocols 

Fig. 11. The Proposed EECANC methodology with 
Scenario 2 MATLAB Simulation 

 

C. Node Cluster Formation in EECANC for Smart 

Hospitals  
Within the EECANC framework, the selection of the CH 
is a pivotal process for improving energy savings in 
smart health tracking and smart hospital architecture in 
smart hospitals. The clustering procedure adheres to 
Algorithm 1, as illustrated in the flowchart in Fig. 8. To 
start, the operational health of each sensor node is 
checked by assessing its residual energy. The 
approximate network density can be calculated by 
multiplying the number of active nodes by their 
distribution density within the hospital. Scenario 2 
successfully simulates 100 nodes in the EECAN 
framework, as seen in Fig. 11. 

 When it comes to data aggregation and 
transmission, the density measure is useful for defining 
the ideal number of clusters. Smartwatches, motion 
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detectors, and oxygen monitors are examples of 
wearable health sensors. Smart building automation 
nodes include heating and cooling, lighting, and 
security sensors. When enough active nodes are 
found, the Mini-batch K-means algorithm is used to 
dynamically arrange these nodes into suitable clusters. 
The node closest to the cluster centroid is selected as 
the (CH). Each node within the cluster is assigned a 
unique Cluster ID, ensuring proper data aggregation 
and efficient communication between: Smart health 
sensors and CHs; CHs and ANs. ANs and the 

Hospital’s Smart (BMS). With EECANC, sensor nodes 

are arranged into clusters that save energy. Table 10. 
shows Scenario 4 protocol metrics comparison. 

 

D. Choosing the CH in EECANC for Intelligent 

Healthcare Facilities 
Fig. 8 shows that Algorithm 1 employs a centroid-based 
identification strategy for CH selection, which 
guarantees efficient data transmission for smart 
healthcare automation networks and smart health 
monitoring devices. The CH is chosen randomly from 
among sensor nodes that are geographically close to 
the cluster's centroid, reducing energy consumption 
and communication distance within the cluster. The 
longevity of smartwatches, motion detectors, and 
oxygen monitors, as well as smart hospital automation 
nodes like HVAC, lighting, and security systems, 
depends on this economical clustering technique (see 
Fig. 7, CH Data Transmission Cycle). 

 

E. Responsibilities of the CH: 

Gathers data from all nodes in the cluster that pertain 
to health sensors, such as heart rate, SpO₂, body 

temperature, and patient motion detection. Compiles 
and compresses patient health information prior to 
transmission. Transfers processed data to ANs, which 
in turn transmit it to the BMS of the hospital's smart 
building. Optimized data routing, fewer redundant 
transmissions, and an extended network lifespan are 
all outcomes of the CH selection process, which is 
critical in smart hospitals.  

F. EECANC Cluster Formation approach for Smart 
Hospitals 
The objective of Algorithm 1 is to form clusters of smart 
hospital nodes and elect efficient Cluster Heads (CHs) 
that balance energy consumption and communication 
costs. The process uses residual-energy-based and 
distance-based Mini-Batch K-Means clustering to 
ensure scalability across dense hospital deployments. 

 
Algorithm 1: EECANC Cluster Formation and CH 
Selection_ 
(1) Inputs: Include X_nodes, Y_nodes (node 

locations), Node_energy (residual energy), 

No (number of clusters), and Network size (total 

nodes).  

(2) Outputs: Role (Normal Node/CH), CH_ID (cluster 

ID), and Cluster indices (mapping of nodes to 

clusters).   

(3) Identify Active Sensor Nodes: 

alive_node_indices ← find (node_energy > 0). 

//This finds operational wearable and automation 

nodes. 

(4) Calculate Network Density: 

alive_nodes_count←length(alive_node_indices). 

Then, Density ← alive_nodes_count / network 

size. 

(5) Cluster Formation Using Mini-batch K-Means: 

If alive_nodes_count>1 and No >1, then (idx, 

centroids) ← Custom K-Means 

([X_nodes(alive_node_indices), 

Y_nodes(alive_node_indices)], No, 15). 

//This runs clustering for 15 simulation rounds. 

(6) Handle Special Case (One Cluster Needed): 

If only one cluster is required, then idx ← ones 

(alive_nodes_count, 1) and centroids ← 

[X_nodes(alive_node_indices), 

Y_nodes(alive_node_indices)]. 

(7) Assigning Cluster Membership: 

 Initialize cluster_indices ← zeros 

(alive_nodes_count, 1)  

and assign nodes to clusters using idx. 

 

Table 10. Comparison of Metrics Across Protocols in Scenario 4 

Metric EECAS (% [23]) ECRRS (% [17]) EA-DB-CRP(% [16]) IEE-LEACH (% [22]) 

First 
Node die (%) 

83.44% ➔ 37.42% ↕ 43.25% ↕ 56.75% ➔ 

Last 
Node die (%) 

83.34% ➔ 58.09% ➠ 62.88% ➠ 69.23% ➔ 

Packet received 
by BS 

vs rounds (%) 
83.33% ➔ 52.38% ↕ 57.14% ➠ 66.67% ➔ 

Avg Residual Energy 
vs rounds (%) 

83.33% ➔ 67.42% ↕ 62.73% ➠ 58.05% ↕ 
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(8) Select Ch (CH): 

For each cluster, compute distance → D_to 

centroid = √((X_node - X_centroid) ² + (Y_node - 

Y_centroid) ²). 

Choose the node nearest to centroid as CH. 

(9) Assign Cluster Roles & IDs: 

Mark the chosen node as Role [CH] ← "CH". 

Assign cluster IDs → CH_ID [cluster_indices] ← i, 

where i = Cluster Index. 

Fig.12. Graph Representation of Algorithm 1 
 
In the first step, (step 3) all active nodes with remaining 
energy greater than zero are found. This ensures that 
only operational sensors join the clustering process 
and avoids wasting resources on inactive nodes. The 

network density is then calculated, which determines 
how many clusters should be formed so that the energy 
used across the hospital deployment is balanced (step 
4). A mini-batch K-Means algorithm is used 15 times to 
make the clusters (step 5). It groups the active nodes 
efficiently because it is computationally inexpensive 
and can be used in real-time settings. When there is 
only one cluster required  (step 6), such as in smaller 
wards, all the nodes are grouped under that cluster. 
Once clusters are created, nodes that are indexed 
within their own clusters determine cluster 
membership. The node that is closest to the cluster's 
centroid is chosen as the Cluster Head (CH) (step 7). 
This ensures that communication within the cluster is 
shortest, and the least amount of energy is consumed. 
Lastly, the chosen CHs are labeled with their roles and 
assigned cluster IDs (step 8 to 9). This allows the nodes 
be organized into clear groups that can communicate 
efficiently and use less energy during routing. As 
illustrated in Fig.12, the graphical representation of 
Algorithm 1 is provided. 
 
G. Agent Node Cluster Formation and Selection in 
Smart Hospitals. 
In the EECANC framework, choosing the right (AN) is 
very important for ensuring that data transmission and 
energy use are maximized for smart hospital 
automation and smart health monitoring. An (AN) is 
chosen based on how close it is to the (BMS). This 
ensures that data is collected effectively and that as 
little energy as possible is used. The distance of a node 
from the (BMS) can be calculated using Eq. (12) [6] 
[15]: 

𝐷𝑡𝑜 𝐵𝑀𝑆 = √[(𝑋𝑛𝑜𝑑𝑒 −  𝑋𝐵𝑀𝑆)2 + (𝑌𝑛𝑜𝑑𝑒 − 𝑌𝐵𝑀𝑆)2] (12) 

Here, X_node and Y_node are the sensor node 
coordinates, while X_BMS and Y_BMS represent the 
BMS coordinates. Nodes closer to the BMS are 
prioritized for selection as (ANs) to minimize energy 
consumption. To select (ANs) to mediate 
communication between the BMS and (CHs), nodes 
that are geographically closest to the BMS are given 
priority. 

Agent Node (AN) selection is meant to ensure that 
hospital Cluster Heads (CHs) and the Building 
Management System (BMS) can communicate with 
each other reliably. The parameters include CH and 
BMS coordinates, node residual energy, and an AN 
threshold. Calculating each node's distance from the 
BMS helps identify the closest candidates (step 3). This 
reduces data transmission latency. The node with the 
highest residual energy is chosen to prevent premature 
failure. A threshold level ensures that only energy-rich 
nodes can be ANs (step 4 to 5).  

This makes the network more stable. If multiple 
candidates are still available, distance is used to rank 
them (step 6 to 7), and the node closest to the 
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candidate with the most energy is selected as the 
active node (AN). The algorithm does not assign a 
weak node without a verified AN to prevent 
communication failure (step 8). 

This ensures that every hospital unit, like the ICU, 
NICU, or elderly care ward, always has a reliable AN 
acting as a go-between for the CHs and the BMS. This 
conserves energy while monitoring patients. The 
graphical representation of Algorithm 2 is depicted in 
Fig.13.  

Fig. 13. Graph Representation of Algorithm 2 
 
Algorithm 2: EECANC Cluster Formation and Agent 
Node (AN) Selection 
(1) Input: include X_nodes  

and Y_nodes representing CH coordinates, 
X_bms and Y_bms for the BS location, 
node_energy indicating residual energy,  
and threshold_value as the minimum energy 
required for AN selection, 

(2) Outputs: are the AN selected for the current 
round and AN_nodes, the list of valid candidate 
ANs. 

(3) Find the Base Station's Distance: 
Compute Euclidean distance of each node to the 
BMS → D_to BMS = √((X_nodes-
X_bms)²+(Y_nodes-Y_bms) ²). 

(4) Identify Candidate ANs Based on Proximity: 
AN_candidates ← find (D_to BMS == min (D_to 
BMS)). 
//These nodes are nearest to the BMS. 

(5) Select the AN with Maximum Residual Energy: 
Among candidates, choose the one with the 
highest energy → [ _ , AN_index] ← max 
(node_energy (AN_candidates)). 
AN ← AN_candidates [AN_index]. 

(6) Validate ANs Based on Energy Threshold: 
Initialize AN_nodes ← []. For each candidate AN: 
If node_energy > threshold_value, add to 
AN_nodes. 

(7) Sort Valid ANs by Distance to BMS: 
If AN_nodes are not empty, sort in ascending 
order by distance. Select the node with the 
highest residual energy as AN. 

(8) Handle Unavailability of Valid ANs: 
If no valid AN is found (AN_nodes is empty), 
Then AN ← ∅. 

//This avoids forced weak node selection. 

Fig. 14. Failure of the Last Network Node in All 
Five Scenarios for All Protocols 

 
VI. Simulation and Testing of EECANC 
A. Choice of Evaluation Metrics 
This study mostly focuses on packet delivery ratio 
(PDR), residual energy, throughput, and node failure 
rounds (first/last node death) when it comes to 
clustering protocols for smart hospital environments. 
Fig. 14 shows the last network node failing in each of 
the five cases. These metrics were chosen because 
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they directly address the most important problems in 
smart healthcare WSNs: 
1. Packet Delivery Ratio (PDR) ensures that 

monitoring of patients is reliable. Data loss cannot 

be tolerated in medical applications like monitoring 

the ICU or NICU because missing packets could 

mean missing important alerts (such as when 

oxygen saturation drops). 

2. Residual Energy indicates how long wearable tech 

and hospital automation nodes last. Smart 

hospitals need to save energy because sensors 

are powered by batteries, and it is not practical to 

replace or recharge them often. 

3. Throughput indicates how well the network can 

handle high-frequency transmissions in dense 

deployments (with hundreds of sensors 

transmitting simultaneously). Real-time 

responsiveness is guaranteed by higher 

throughput. 

4. Node Failure Rounds (FND/LND) indicates when 

the first node dies and when the network stops 

working altogether, which shows how long the 

network can last. In hospitals where constant 

monitoring is important, these metrics are 

extremely useful.  

In fact, other metrics like latency, jitter, or fault 
tolerance are useful for studying WSNs in general. But 
in hospitals, sensor communication is mostly static 
(sensors do not move significantly) and based on short 
distances within the cluster, so latency is usually 
acceptable. Similarly, PDR and node failure rounds are 
indirect ways to measure fault tolerance, since a high 
delivery ratio and delayed node deaths show that the 
system is working well. Fig. 15 shows the results of the 
EECANC simulation for scenario 3, which contains a 
150*150 area. Table 11 shows protocol metrics 
comparison in scenario 5. 

 The evaluation framework examines PDR, energy, 
throughput, and sustainability to find the most important 
aspects of performance for reliable, continuous patient 
monitoring in smart hospitals that use little energy. 

B. Scenario 1 Analysis 
Scenario 1 evaluated five routing protocols in a smart 
hospital to determine which one works best and use the 
least amount of energy. The EECANC (proposed 
model) simulation is shown in Fig. 9 and the other 

protocol such as EECAS [23], ECRRS [17], EA-DB-

CRP [16], and IEE-LEACH [22] are compared against 
each other. The study was conducted in a hospital 
coverage area of 100 × 100 m² and included 50 
portable health-tracking and intelligent structural 
sensor nodes. The BMS of the hospital is positioned at 
coordinates (50, 150), as indicated in Table 3, which 
outlines the network parameters for Scenario 1. The 
first failure of a smart hospital sensor occurred at round 
1080, and the last failure occurred at around 1620.  

The proposed EECANC model also successfully 
transmitted 7,920 packets to the BMS and had the 
highest average residual energy of 1,680 units, as 
illustrated in the graph comparison for Scenario 1 in 
Fig. 16 and Fig. 17. According to the ECRRS [17] 
protocol, the first sensor failure occurred at round 514 
and the last one occurred at round 801. As a result, only 
3,800 packets were delivered, and the remaining 
lowest amount of energy was 800 units. 

Fig. 15. The Proposed EECANC methodology with 
Scenario 3 MATLAB Simulation 

Table 11. Comparison of Metrics Across Protocols in scenario 5 

Metric EECAS (%[23]) ECRRS (%[17]) 
EA-DB-CRP 

(%[16]) 
IEE-LEACH 

(%[22]) 

First Node die (%) 83.49% ➔ 30.86% ↕ 36.60% ➠ 50.24% ➠ 

Last Node die (%) 83.28% ➔ 53.82% ➠ 60.46% ➠ 62.67% ➠ 

Packet received 
by BS vs rounds 

(%) 
83.33% ➔ 48.45% ➠ 54.37% ➠ 59.13% ➠ 

Avg Residual 
Energy vs rounds 

(%) 
83.33% ➔ 53.03% ↕ 59.85% ➠ 61.36% ➠ 
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Fig. 16. Average Residual Energy vs. Scenarios 
 

The EECAS [23] system had sensor failures in 
rounds 752 and 1289, but it still successfully 
transmitted 6100 packets and had an average of 1300 
units of residual energy remaining over the whole 
period. Both IEE-LEACH [22] and EA-DB-CRP [16] 
demonstrated average performance, with sensor 
failures occurring at rounds 643 and 1092 for IEE-
LEACH and rounds 579 and 1073 for EA-DB-CRP. 
These failures occurred after transmitting a total of 
5,200 and 4,800 packets, respectively, and saving an 
average of 1,100 units of energy. ECRRS [17] 
performed poorly; the first sensor failed at round 514, 
and the last one failed at round 801. It only transmitted 
3,800 packets and had the least amount of residual 
energy, 800 units. The packet received percentage by 
BS vs rounds in Table 12. 

In Fig. 10 and Fig. 14, the performance of the 
routing protocols is shown in terms of network lifetime, 
packet delivery efficiency, and residual energy. Table 4 
shows success metrics as percentages, which illustrate 
how well EECANC improves energy efficiency in smart 
hospitals and ensures secure data transfers. 
 
C. Scenario 2 Analysis 
Fig.11 illustrates the MATLAB simulation used to test 
the effectiveness of energy-saving protocols in a smart 
healthcare infrastructure. In Scenario 2, the protocols—
EECANC (Proposed Model), EECAS [23], ECRRS 
[17], EA-DB-CRP [16], and IEE-LEACH [22]—were 
evaluated within a smart hospital environment. 

The analysis was conducted in an area 100 × 100 
m² in size that included a hospital, as shown in Table 
5, where network parameters are discussed. The 
hospital's BMS was located at coordinates (50, 150), 
and there were 100 wearable health monitoring devices 
and smart building sensors in that area.  

The proposed model, EECANC, performed very 
well. It had the first personal health or digital hospital 
malfunction in round 1080, the last sensor failure in 
round 1920, the successful transfer of 14,400 packets 
to the BMS, and the highest average residual energy of 
1918 units as shown in Fig. 16. The EECAS [23] 
system had its first and last sensor failures at rounds 
893 and 1554, respectively. It was able to successfully 
transmit 11,000 packets and maintained an average 
energy level of 1560 units. IEE-LEACH [22] and EA-
DB-CRP [16] showed average performance, with the 
first and last sensor failures occurring at rounds 713 
and 1326 (IEE-LEACH) and 641 and 1275 (EA-DB-
CRP), transmitting 9200 and 8600 packets successfully 
while saving 1310 and 1280 energy units, respectively. 
ECRRS [17] performed the worst. Its first sensor failed 
at round 622 and its last one failed at round 1073. It 
transmitted only 7,800 packets and has the least 
amount of residual energy, at 1,100 units. Fig. 10 and 
Fig. 14 show how the routing methods compare in 
terms of performance, illustrating their effects on 
network longevity, packet transmission efficiency, and 
residual energy in a smart hospital setting. The success 
metrics in Table 6 are shown as percentages, which 
demonstrate EECANC’s ability to reduce energy use 
and ensure secure data transmission in smart 
hospitals.  
 
D. Scenario 3 Analysis 
In a smart hospital setting, this scenario tested the 
efficiency and power consumption of five routing 
protocols: EECAS [23], ECRRS [17], EA-DB-CRP [16], 
IEE-LEACH [22], and EECANC. The analysis was 
conducted in a 150 × 150 m² area that included a 
hospital and has 100 portable health-tracking and 
intelligent building sensor nodes. The coordinates of 
the hospital's BMS were (75, 225), as shown in the 
MATLAB setup in Fig. 15.  

EECANC (Proposed Model) achieved the highest 
efficiency by withstanding its first smart hospital sensor 
failure at round 495, surviving until its last sensor failure 
at round 1407, successfully transmitting 8,520 packets 
to the BMS, and saving the highest average residual 

Table 12. Packet Received percentage by BS vs Rounds 

Metric 
 

EECAS (% [23]) 
 

ECRRS (% [17]) EA-DB-CRP(%[16]) 
IEE-LEACH 

(%[22]) 

Packet received 
by BS vs rounds 

 

83.33% ➔ 

 

48.45% ↕ 54.27% ↕ 59.13% 
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energy of 1,404 units, as shown in Fig. 16. The EECAS 
protocol had sensor problems at rounds 413 and 1173, 
but it still managed to transmit 7100 packets and saved 
an average of 1170 units of residual energy. The 
studies on IEE-LEACH [22] and EA-DB-CRP [16] had 
mixed results. For IEE-LEACH, the first sensor failed at 
round 312 and the last one at round 982, while for EA-
DB-CRP, it failed at round 249 and 841. These devices 
were able to transmit 5800 and 4900 packets 
successfully while saving 1000 and 830 energy units, 
respectively, as shown in Table 7. In comparison to 
existing approaches, the average throughput of the 
EECANC methods is shown in Fig. 18. 

ECRRS [17] had the worst performance; its first 
sensor failed at round 214 and its last failed at round 
726. It transmits only 4200 packets and has the 
smallest amount of remaining energy, 715 units. Fig. 
10 and Fig. 14 show a comparison of the routing 
protocols' performance, showing how they affect the 
network's lifespan, the efficiency of packet transfer, and 
the amount of residual energy in a smart hospital. The 
success metrics in Table 8 are shown as percentages, 
which emphasizes EECANC's ability to reduce energy 
use and ensure reliable data transmission in smart 
hospitals. Fig 17 shows a comparison of the current 
packet delivery ratio approaches with the proposed 
method in all possible cases. 
 
E. Analysis of Scenario 4: Optimization of Smart 
Hospital Energy Protocols 
In Scenario 4, five different routing protocols are tested 
in a smart hospital environment and compared for their 
energy efficiency and performance: EECANC 
(Proposed Model), EECAS [23], ECRRS [17], EA-DB-
CRP [16], and IEE-LEACH [22]. Using the coordinates 
(100,300), the hospital's BMS was located at this point, 
and 100 wearable health sensors and connected 
building sensor devices were included in the analysis 
within a 200 by 200 hospital zone, as shown in Table 
9. 

Impressive performance was demonstrated by the 
EECANC (Proposed Model), which included the 
following: a failure rate of 326 for wearable health or 
smart hospital sensors, a last failure at round 1069, 
6300 packets successfully transmitted to the BMS, and 
an average residual energy of 1068 units. Additionally, 
there were other protocols included. With an average 
residual energy of 890 units, 5250 packets successfully 
transmitted, and the first and last sensor failures 
occurring at rounds 272 and 891, respectively, EECAS 
[23] ranked second. While EA-DB-CRP [16] 
successfully transmitted 3600 packets while saving 670 
energy units and IEE-LEACH [22] successfully 
transmitted 4200 packets, both demonstrated 
reasonable performance. EA-DB-CRP [16] had first 
and last sensor failures at 141 and 672 rounds, while 
IEE-LEACH [22] had them at 185 and 740 rounds, 

respectively. The worst performer was ECRRS [17], 
which had a total of 3300 packets transmitted but just 
720 units of residual energy after encountering two 
sensor failures (the first at round 122 and the last at 
round 621). This scenario shows how the routing 
protocols compare in terms of performance, focusing 
on the effects on residual energy levels, network 
longevity, and packet transmission efficiency in a smart 
hospital setting. By showing performance criteria as 
percentages, Table 10 demonstrates how effective 
EECANC is in smart hospitals in reducing energy 
consumption and ensuring reliable data transfer. 

Fig. 17.  Avg packet delivery analysis for each 
scenario 

Fig. 18. Avg Throughput across the protocol 
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F. Scenario 5 Analysis 

Scenario 5 evaluated the performance and energy 
efficiency of five different routing protocols in a smart 
hospital environment: EECANC (Proposed Model), 
EECAS [23], ECRRS [17], EA-DB-CRP [16], and IEE-
LEACH [22]. Within a 200 by 200 hospital coverage 
zone, 200 smart building sensor devices and wearable 
health monitors are analyzed, with the hospital's BMS 
located at (100,300), as shown in percentage-based 
metrics in Table 11. With an average residual energy 
of 1320 units, a first wearable or smart hospital sensor 
failure at round 418, and a last sensor failure at round 
1310, the proposed EECANC model demonstrated 
outstanding performance. It also successfully 
transmitted 10,320 packets to the BMS. Round 349 
was the first and round 1092 was the final time the 
EECAS [23] system's sensors failed, although the 
system still managed to transmit 8600 packets and 
save an average residual energy level of 1100 units. 
The first and last sensor failures occurred at rounds 
349 and 1092, respectively, in EECAS [23], which 
managed to transmit 8,600 packets while saving an 
average residual energy of 1100 units. The 
performance of studies on IEE-LEACH [22] and EA-
DB-CRP [16] was moderate; in IEE-LEACH, the first 
sensor failure occurred at round 210 and the last at 
round 821; in EA-DB-CRP, the first failure occurred at 
round 153 and the last at round 792. In both cases, the 
studies successfully transmitted 6100 and 5600 

packets, respectively, while conserving 810 and 790 
energy units. 

With the worst performance, ECRRS [17] 
experienced its first sensor failure at round 129 and its 
last at round 705; it transmitted a total of 5000 packets 
while retaining the fewest amount of residual energy 
(700 units). Fig. 16 and Fig. 17 show the results 
comparing the efficiency of packet transmission, 
residual energy levels, and network longevity in a smart 
hospital environment, as well as the effects of the 
various routing algorithms. Table 11 shows the 
performance parameters as percentages, which 
demonstrates how effective EECANC is in smart 
hospitals for reducing energy usage and ensuring 
reliable data transfer. 
 
VI. Results 
A. EECANC Network Parameter Performance 
Optimal routing algorithms for smart hospital 
automation systems and wearable health monitors can 
be determined by evaluating the packet delivery ratio 
and throughput in different environments. By analyzing 
the Packet Delivery Ratio (PDR) and throughput in 
different scenarios, it has been proven that different 
routing approaches are reliable and successful in smart 
hospital automation and continuous health monitoring. 
Initial comparative performance of five routing 
protocols with standard deviations shown in Fig. 19. 
 

 
Fig. 19 comparative performance of five routing protocols with standard deviations 
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1. Packet Delivery Ratio (PDR) Analysis 

Packet Delivery Ratio (PDR) measures the percentage 
of data packets successfully received by the hospital's 
BMS out of the total packets transmitted, 
as shown in Fig. 17. It is calculated using the following 
formula in Eq. (13). 

         𝑃𝐷𝑅 (%) = (𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡 /

                   𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑)100                      (13) 

This metric reflects the efficiency and reliability of the 
communication protocol in delivering (transmitting) 
data without loss. EECANC consistently outperformed 
others, achieving PDRs of 102%, 92%, and 96% in 
Scenarios 1, 4, and 5, respectively. EECAS started at 
92% in Scenario 1, dipped to 89% in Scenario 4, and 
recovered slightly to 91% in Scenario 5. IEE-LEACH 
showed a downward trend: 88% in Scenario 1, 84% in 
Scenario 3, and ended at 87% in Scenario 5. EA-DB-
CRP maintained a steady average PDR across all 
scenarios, indicating reliable performance. ECRRS 
reported the lowest PDR in every scenario, highlighting 
its relative inefficiency compared to other protocols. 
 
2. Summary of Packet Reception Across 

Protocols 

Gathered by transmission round, Table 12 compares 
the number of packets received by the BMS across 
different protocols. The reliability of each protocol in a 
smart hospital context is highlighted in Fig. 17 and Fig. 
18, which shows a percentage-based breakdown of 
packet reception at the BMS during transmission 
rounds. By comparing the protocols' performance, it is 
proven that EECANC is the most effective in ensuring 
reliable data transfer, optimizing network performance, 
and improving energy conservation for smart hospital 
applications. 
 
3. Cross-Scenario Analysis of Residual Energy, 

PDR, and Throughput in Smart Hospitals 

Residual Energy 

EECANC consistently retained the highest residual 
energy, thereby prolonging the lifespan of hospital ward 
sensors. In Scenario 1, it saved 1680 J, whereas 
ECRRS dropped to 800 J. Even in larger configurations 
(Scenario 5, 200x200, 200 nodes), it saved 1320 J, 
while others dropped below 820 J, as illustrated in Fig. 
16 and Table 2 and Table 6. 

 
4. Throughput Analysis  

Throughput was maximized in medium networks 
(Scenario 2) but dropped as the region expands. In 
Scenarios 4 and 5, EECANC retained between 6,300 
and 10,320 packets, whereas ECRRS dropped to 

between 3,300 and 5,000, as shown in Fig.18. Smaller 

hospitals have small differences, but as the number of 
hospitals grows, only EECANC stays strong. Its 

CH+AN two-tier design spreads out the load, reduces 
unnecessary transmissions, and increases the 
network's lifetime, which makes it possible for smart 
building automation and always-on patient monitoring. 
Compared to base protocols like ECRRS, EECANC 
boosts packet delivery by about 50–80% and residual 
energy by about 40–60%. When testing the suggested 
Energy-Efficient Clustering and Data Transmission 
model in Smart Building and Smart Hospital settings, 
the Packet Delivery Ratio (PDR%) and throughput are 
crucial. 

Five routing protocols EECAS, ECRRS, EA-DB-
CRP, IEE-LEACH, and the proposed EECANC are 
compared by throughput, residual energy, and Packet 
Delivery Ratio (PDR) in Fig. 19. The error bars show 
the standard deviation of the averaged values from 
several simulation runs to demonstrate statistical 
consistency. EECANC always outperforms the 
baseline protocols. The average residual energy is 
1680 J, indicating that it uses energy efficiently and has 
a longer sensor lifetime than ECRRS, which has 800 J. 
In real-world smart hospital deployments, higher 
residual energy lowers maintenance costs and ensures 
reliable operation, ensuring network sustainability. 
EECANC achieved 96% PDR, so transmitting patient 
data is reliable. ECRRS and other weak protocols 
achieved below 50%. EECANC saved (maintained) 
~900 Kbps, faster than EECAS (~600 Kbps) and EA-
DB-CRP (~500 Kbps), supporting this advantage. 
Different situations have different protocol 
performance, which can be explained by factors such 
as cluster size, mobility, and network topology. In 
dense networks, larger cluster sizes make aggregation 
work better, but they may also increase CH overhead, 
which weaker protocols like ECRRS cannot manage. 
When patients and sensors move around, it creates 
dynamic topologies. Protocols that do not have 
adaptive mechanisms have more node failures and 
packet loss. EECANC's centroid-based clustering and 
AN relay node, on the other hand, are better at 
adapting to changes in topology and density, which is 
why it always comes out on top. Table 13. compares 
EECANC to previous WSN protocols. 

 
VII. Discussion 
EECANC consistently performs better than the other 
protocols in terms of packet reception, residual energy 
usage, and overall throughput. This is because it has a 
two-tier clustering design. Cluster Heads (CHs) are 
responsible for local aggregation, and Agent Nodes 
(ANs) oversee and prioritize forwarding to the Base 
Station (BS). This cuts down on unnecessary 
transmissions and makes the network's energy use 
more evenly spread out, which prevents nodes from 
failing too soon. In real life, this ensures that medical 
sensors worn on the body, such as heart rate monitors, 
mobility trackers, and SpO₂ devices, can transmit data 
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reliably. Furthermore, it helps hospital automation 
systems control things like lighting, temperature, and 
security cameras. Therefore, EECANC not only makes 
technology work better, but it also makes patients safer 
by ensuring that important health data is delivered to 
doctors right away. 

Performance results, on the other hand, depend on 
how they are implemented. For example, in networks 
with a lot of nodes, tighter clustering cuts down on the 
distances between nodes within the cluster, which 
speeds up packet delivery at first while saving energy. 
But after a specific point, like in Scenario 5, the benefits 
start to fade. When the number of nodes increases, 
there is more competition at the MAC layer, longer 
waiting times at ANs, and more control overhead. All of 
these factors may cause small drops in throughput. 
Similarly, changes in the hospital's coverage area 
affect how much energy is used: single-tier protocols 
have trouble when direct links go beyond the radio 
threshold, but EECANC stays efficient by employing 
CH→AN→BS relaying. This flexibility shows how 

scalable the protocol is, but it also shows how difficult 
it is to balance density, overhead, and reliability in real-
world deployments. 

Even though this study has some good points, there 
are still limitations. Some assumptions oversimplify the 
real-world situation. Models used static layouts and did 
not consider how patients and staff movement could 
change the stability of links and cluster membership. 
Also, electromagnetic interference from medical 
equipment and different kinds of traffic (like regular 
monitoring and event-driven alerts) were left out, even 
though they have a big effect on hospital throughput, 
latency, and packet loss. Conditions in the real world 
are naturally dynamic, and adding these factors to 
future experiments would give a deeper understanding 
of how robust EECANC is. In the future, researchers 
can find out if the good results from the simulations 
apply to actual operation in real smart hospital settings 
by examining issues like mobility, interference, and 
different traffic priorities. 

Table 13. Comparison of EECANC with prior WSN protocols 

Study / 
Protocol 

Core 
Concept 

Application 
Setting 

Reported 
Advantages 

Identified 
Limitations 

Comparative 
Relevance to 

EECANC 

LEACH [15] Randomized 
CH rotation 

Static WSN, 
small–mid area 

Lower control 
overhead vs. flat 

routing 

Ignores 
residual energy; 

unstable in 
dense wards 

EECANC replaces 
random CHs with 
energy+distance 

selection; adds AN 
tier 

IEE-LEACH 
[22] 

Hybrid 
single/multi-

hop with 
thresholds 

Hybrid 
communications 

Better balance 
than LEACH 

Complex 
election; long 

hops persist at 
scale 

EECANC removes 
most long hops via 

AN relays 

EA-DB-CRP 
[16] 

Density- & 
energy-aware 

clustering 

Dense networks Improved 
aggregation & 

extended FND/LND 

Degrades in 
sparse wards 

EECANC adapts via 
mini-batch K-means 

across densities 

ECRRS [17] Enhanced CH 
rotation + relay 

selection 

High-traffic 
WSNs 

Early stability 
gains 

Early node 
deaths under 
heavy load 

EECANC’s AN pool 
throttles BS traffic, 

reducing early deaths 

Cuckoo 
Optimization 

[18] 

Metaheuristic 
CH/route 
search 

Simulation 
studies 

Strong stability 
improvements 

High 
computational 

complexity 

EECANC achieves 
near-optimal topology 

via lightweight 
centroiding 

Flamingo 
Search [19] 

Bio-inspired 
clustering 

Simulation 
studies 

Robust cluster 
formation 

Added 
communication 

overhead 

EECANC’s overhead 
is lower; ANs cap 
long-haul costs 

ML Routing 
Survey [4],[5] 

AI-assisted 
routing and 

energy 
optimization 

Heterogeneous 
WSNs 

+25–40% PDR; 
+40–60% residual 

energy 

Extra 
computation; 

data drift issues 

EECANC delivers 
comparable/higher 
PDR with simpler 

online logic 

Scheduling 
in IoT [2] 

Energy-aware 
scheduling 

IoT networks Improved 
throughput/latency 

Coordination 
complexity 

EECANC’s CH/AN 
timing aligns with 
scheduling best 

practices 
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EECANC fills in gaps that were identified in earlier 
routing and clustering protocols. LEACH [15] is easy to 
use, but it does not consider residual energy, which 
makes it unstable in dense wards. IEE-LEACH [22] 
makes things fairer by combining voice and data, but it 
still has complicated voting and high long-hop costs. 
EA-DB-CRP [16] works well in dense networks but not 
so well in sparse ones. ECRRS [17] becomes stable 
quickly but has nodes die too soon when it is busy. 
EECANC is better because it combines an AN layer 
that cuts down on long-hop traffic and evens out energy 
use with CH selection that is aware of both distance 
and energy using. Comparison of Proposed EECANC 
Framework with other network protocols is mentioned 
in Table 13. 

Methods of optimization such as Cuckoo [18] and 
Flamingo Search [19] can reliably collect things 
together in simulations, but they are hard to use in real 
life hospitals because they are hard calculating and 
take a lot of time. EECANC, on the other hand, 
achieves a comparable degree of stability with 
lightweight centroiding and AN relay. Some methods 
utilizing machine learning by Padmalaya et al. [4] and 
Kumar et al. [5] claim to improve PDR by 25–40% and 
residual energy by 40–60%. However, these 
improvements occur at a high cost in terms of 
computation and retraining. EECANC achieves the 
same for superior outcomes without as much extra 
work, which makes it easier to set up. 

This study looked at a few energy-efficient 
transmission and integration models for smart 
hospitals. These models were IEE-LEACH, EECANC, 
EECAS, ECRRS, and EA-DBCRP. In all of the tests, 
EECANC always achieved the best mix of packet 
delivery, throughput, and residual energy (remaining 
energy). This supports earlier findings that show how 
clustering and relay nodes can make a WSN last 
longer. Amutha et al. [1] found that optimization-based 
clustering increased the lifetime of healthcare WSNs by 
20–30%. Ding & Wu et al. [2] also found that scheduling 
is important for reducing energy use in IoT networks. 
But gains of less than 35% were seen even with multi-
objective optimization, as reported by Wang et al. [3]. 
Machine-learning-based routing (Padmalaya et al. [4]; 
Kumar et al. [5]) increased PDR and energy efficiency 
but required more computing power. EECANC, on the 
other hand, achieved better results with less online 
control. 

The two-tier CH+AN architecture combines energy-
screened relays with centroid-based clustering to make 
operation stable, scalable, and easy to maintain. This 
is especially useful in hospitals where wearable 
monitoring and automation must work together. Still, 
some things are not covered enough, like scaling when 
loads are very dense or heterogeneous, simulation 
assumptions like static layouts and idealized channels, 
and the unaccounted costs of maintaining a cluster. 

Giving both the pros and cons of a study, such as 
parameter sensitivity and overhead accounting, boosts 
its credibility and helps with deployment-level 
engineering. 

Isolating long BS uplinks is the only way to 
effectively save energy, and EECANC does this by 
delegating these long hops to ANs close to the BS. 
Heavy metaheuristics can make clean simulations 
more stable, but they also make them harder to 
compute and coordinate. EECANC gets most of its 
benefits from lightweight centroiding and thresholding. 
ML-based routing can match or beat PDR, but it 
depends on data and maintenance. EECANC, on the 
other hand, achieves strong gains without having to 
keep retraining. 

There are some things that limit this study. The 
simulations were based on the idea of a static topology 
and ideal wireless channels. They did not explicitly 
model how patients and staff move around, or 
electromagnetic interference (EMI) from medical 
equipment, or the bursty traffic patterns that happen 
frequently in hospitals. It was assumed that all sensor 
nodes were the same because packet sizes were fixed. 
However, in the real world, workloads like ECG 
streams or video monitoring create skewed energy 
profiles. The rounds of data transmission were timed, 
but the effects of mixed event-driven and periodic traffic 
were not considered. This could cause jitters and extra 
control overhead. The costs of clustering, rotation, and 
AN selections were spread out over time in the 
analysis, but they were not broken down in the energy 
budget. Also, parameter sensitivity was not 
automatically tuned for things like cluster count, AN 
threshold, and BS placement. Some privacy and 
security features, like encryption, authentication, and 
key refresh mechanisms, were deferred, so their 
energy and latency costs were not analyzed. Lastly, the 
results were only valid for 100–200 m² areas, and they 
did not consider attenuation across multiple floors or 
changes caused by building materials. 

The real-world implications of this study bring up a 
number of deployment issues for smart hospital 
settings. When planning a hospital network, the AN 
pool should be grouped together near Base Station 
(BS) closets to cut down on long-hop transmissions. 
Pre-powered AN sites should also be used to make 
maintenance go more smoothly. This is in line with 
scheduling suggestions [2] and hybrid clustering 
methods [22]. Prioritizing telemetry quality of service 
can improve clinical reliability by ensuring that 
important packets like SpO₂ and ECG readings get 

higher CH dequeue priority. This helps with continuous 
monitoring in ICU and NICU wards by maintaining PDR 
high and delaying node death. Recent smart hospital 
case studies [33]- [35] show that putting wearable 
health devices in the same clusters as hospital 
automation systems show that putting wearable health 
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devices in the same clusters as hospital automation 
systems can also take advantage of occupancy and 
health signals that are correlated. To make things more 
environmentally friendly, EECANC can be used with 
strategies for optimizing batteries and energy 
harvesting. Maintenance should be planned based on 
residual-energy percentiles (10th or 5th), rather than 
fixed times, which is similar to previous work on battery-
aware protocols [24], [31], and [44]. Lastly, scalability 
can be achieved by limiting the size of the cluster to 
keep the CH queue from getting too full and scaling 
ANs approximately as √N. This way of doing things is 
in line with multi-objective lifetime and throughput 
trade-off analyses [3]. 

Several important directions for future research 
include ways to build on the work that has already been 
done. First, making changes to how the Cluster Head 
(CH) is selected and how agent clusters are formed can 
make systems last longer and use less energy. This is 
an area that deserves more research. In a different 
direction, the development of hybrid protocols involves 
the use of EECANC along with optimization or machine 
learning techniques to develop transmission schemes 
that are both flexible and dependable. It is also 
important to test how well a protocol works when it 
comes to mobility and scalability, especially for sensor 
nodes that can move around and large hospital 
installations with extensive IoT networks. Finally, 
validation in the real world is needed to find problems 
and new solutions that cannot be fully captured in 
idealized models. This can be done through advanced 
simulation platforms and test deployments in hospitals. 

 
VIII. Conclusion 
The study aimed to integrate intelligent building 
automation with health monitoring using wearable 
technology. The authors came up with the EECANC 
protocol as a framework for smart hospitals that is 
reliable, flexible, and energy-efficient. It was found that 
EECANC consistently performed better than similar 
protocols (EECAS, ECRRS, EA-DBCRP, and IEE-
LEACH) in terms of throughput, packet delivery ratio, 
and residual energy (p < 0.05). The scenario analysis 
showed that performance improved across all 
deployment densities, but throughput dropped slightly 
(<5%) in very dense settings because of contention and 
extra overhead. This was still within acceptable 
tolerance limits for continuous monitoring, however. 
Additionally, a comparison test showed that EECANC 
achieved stable energy balance and scalability without 
the high computing costs that come with optimization- 
or machine learning-based routing methods. 

For real-life applications, the results show that 
things like latency, data accuracy, and network lifetime 
are all important in hospitals. A short delay ensures that 
ICU alarms get transmitted quickly, accurate data 
reduces false alarms, and a longer network lifetime 

reduces the number of times that devices need to be 
maintained or replaced. All of these results show that 
EECANC is not only good at saving energy but also 
good at monitoring healthcare 24 hours a day, 7 days 
a week. To sum up, more research should be done in 
the real world, with things like mobility, different types 
of traffic, and electromagnetic interference, to 
demonstrate that EECANC is robust and to make it a 
useful backbone protocol for hospital IoT systems that 
will work in the long term. 
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